
A New Architecture for Adaptive 
Digital Logic 

Mehrdad Salami, M.Sc. 

A thesis submitted for the degree of 

Doctor of Philosophy 

in the 

Department of Electrical and Electronic Engineering 
Faculty of Engineering 

VICTORIA Z 
UNIVERSITY 

X 

z 
o 
r-

o 
o 
-< 

1996 

c:^^ 

LIDRAPiY --M 



f'TS THESIS 
006.31 SAL 
30007004695393 
ja'ami, Mehrdad 
A new architecture for 
adaptive digital ?og?c 



Preface 

This work is conducted under guidance of Dr. Greg Cain as supervisor. Some of the 

research results presented here were included in the following papers [Salami M. and 

Cain G.], published in conference proceedings or currently under review for journal 

publication: 

[1] "The Quest for a New Computing Architecture Based on Genetic Algorithms", 
Proceedings of the Electrical Engineering Congress (EEC94), The Institution of 
Engineers Australia, Canberra, Australia, November 1994, pp. 635-640. 

[2] "An Adaptive Control System Based on Genetic Algorithms", Proceedings of the 
First International Workshop on Intelligent Adaptive System (IAS-95), Melbourne 
Beach, Florida, April 1995, pp. 63-77. 

[3] "A Genetic Algorithm Processor", Proceedings of the Iranian Conference on 
Electrical Engineering (ICEE95), Iran University of Science and Technology, 
Tehran, Iran, May 1995, pp. 233-239. 

[4] "Adaptive Hardware Optimization Based on Genetic Algorithms", Proceedings of 
The Eighth International Conference on Industrial Application of Artificial 
Intelligence & Expert Systems (IEA95AIE), Melbourne, Australia, June 1995, pp. 
363-371. 

[5] "Multiple Genetic Algorithm Processor for the Economic Power Dispatch 
Problem", Proceedings of The First lEE/IEEE International Conference on 
Genetic Algorithms in Engineering Systems: Innovations and Applications 
(GALESIA'95), lEE Conference Publication No. 414, The University of 
Sheffield, Sheffield, UK, September 1995, pp. 188-193. 

[6] "An Adaptive PID Controller Based on Genetic Algorithm Processor", 
Proceedings of The First lEE/IEEE International Conference on Genetic 
Algorithms in Engineering Systems: Innovations and Applications 



(GALESIA'95), lEE Conference Publication No. 414, The University of 
Sheffield, Sheffield, UK, September 1995, pp. 88-93. 

[7] "A Multiple Genetic Algorithm Processor for a PID Controller System", 
Proceedings of The International Conference on Genetic Algorithms 95 
(MENDEL'95), University of Bmo, Brno, Czech Republic, September 1995, pp. 
67-71. 

[8] "Genetic Algorithms for Solving the Economic Power Dispatch Problem", 
Proceedings of The Electrical Engineering Conference 1995 (EEcon95), The 
Institution of Engineers Australia, Adelaide, Australia, September 1995, pp. 59-
64. 

[9] "A PID Controller Based on a Multiple Genetic Algorithm Processor", 
Proceedings of Control 95 Conference (Control'95), The Institution of Engineers 
Australia, University of Melbourne, Melbourne, Australia, October 1995, pp. 359-
362. 

[10] "Multiple Genetic Algorithms Processor for Engineering Applications", Poster 
Proceedings of The Eighth Australian Joint Conference on Artificial Intelligence 
(Ar95), The University of New South Wales, Canberra, Australia, November 
1995, pp. 79-86. 

[11] "Implementation of Genetic Algorithms on Reprogrammable Architectures", 
Applications Stream Proceedings of The Eighth Australian Joint Conference on 
Artificial Intelligence (Ar95), The University of New South Wales, Canberra, 
Australia, November 1995, pp. 121-128. 

[12] "Application of Multiple Genetic Algorithm Processor in Complex Systems", 
Proceedings of The Second New Zealand International Conference on Artificial 
Neural Network and Expert System (ANNES'95), IEEE Computer Society 
Publication, University of Otago, Dimedin, New Zealand, November 1995. 

[13] "Genetic Algorithm Processor for Adaptive IIR Filters", Proceedings of The 
Second IEEE International Conference on Evolutionary Computing (ICEC'95)^ 
The University of Western Australia, Perth, Australia, December 1995, pp. 423-
428. 

[14] "A Robust Genetic Algorithm", Proceedings of The First Aimual CSI (Computer 
Society of Iran) Computer Conference (CSICC'95), Sharif University of 
Technology, Tehran, Iran, December 1995, pp. 542-548. 

Ill 



[15] "Genetic Algorithms Processor for Adaptive Engineering Systems", Proceedings 
of The First International Conference on Fuzzy Logic and the Management of 
Complexity 1996 (FLAMOC'96), The University of Sydney, Sydney, Australia, 
pp. 265-269. 

[16] "Genetic Algorithms Toolbox for Matlab", Proceedings of The 1996 Australian 
MATLAB Conference, CEANET Inc., The University of Melbourne, Melbourne, 
Australia, January 1996, pp. 1 -A. 

[17] "Genetic Algorithm Processor on Reprogrammable Architectures", Proceedings of 
The Fifth Aimual Conference on Evolutionary Programming 1996 (EP96), MIT 
Press, San Diego, CA, March 1996. 

[18] "Application of Genetic Algorithm Processor in a PID Controller System", to 
appear in the Proceedings of The Fourth Iranian Conference on Electrical 
Engineering (ICEE96), The University of Tehran, Iran, May 1996. 

[19] "Genetic Algorithm Processor for the Frequency Assignment Problem", to appear 
in the Proceedings of The Ninth International Conference on Industrial 
Application of Artificial Intelligence & Expert Systems (IEA96AIE), Fukuoka 
Institute of Technology, Fukuoka, Japan, June 1996. 

[20] "Hardware Implementation of Genetic Algorithms", paper submitted to the 
Journal of Evolutionary Computing, Reference number EC-KD-9602-0160 
January 1996. 

[21] "Application of Genetic Algorithm Processor in Engineering", paper submitted to 
the IEEE Transactions on Industrial Electronics Magazine, February 1996. 

[22] "Hardware Genetic Algorithms and Their Applications", to appear in the 
Proceedings of IEEE International Conference on Industrial Technology, 
Shanghai, China, 2-6 December 1996. 

Research related activities 

Member of the program committee in The International Conference on Genetic 
Algorithms 95 (MENDEL'95), University of Bmo, Bmo, Czech Republic, 
September 1995. 

IV 



Member of the program committee in The Intemational Conference on Genetic 
Algorithms 96 (MENDEL'96), University of Bmo, Bmo, Czech Republic, Jime 
1996. 

Invited paper for the Special Session on Genetic Algorithms Applications in the 
IEEE Intemational Conference on Industrial Technology, Shanghai, China, 
December 1996. 

Paper review for IEEE Transactions on Industrial Electronics: 
Paper Number: 1728 Review A, 
Authors: Park J.H. and Choi Y.K., 
Title: "An On-line Control Scheme with Evolution Strategy for Unknovm 
Nonlinear Dynamic Systems", 
Date sent: Febmary 7, 1996. 



Declaration 

I hereby declare that this thesis is the result of my ovm research and has not been 

submitted for a degree to any other university. 

Mehrdad Salami 
Department of Electrical and Electronic Engineering 
Faculty of Engineering 
Victoria University of Technology 
Melboume, Australia 

VI 



Abstract 

This thesis reports research into the hardware implementation of Genetic Algorithms 

and engineering applications. These algorithms are significant to engineering as a means 

of providing additional adaptive capability to known and existing control mechanisms. 

The first part of the thesis is concemed with the underlying mechanisms of Genetic 

Algorithms and a model of a computing architecture which directly executes these 

algorithms in a generic form. The model has been developed and simulated using the 

hardware descriptive language VHDL and the Mentor Graphics tools miming on SUN 

systems. It has been tested using a standard software test suite and synthesised into Field 

Programmable Gate Array (FPGA) technology. Test results demonstrate the 

performance of the Genetic Algorithm Processor (GAP) on a number of standard 

problems and the speedup achievable in comparison with software Genetic Algorithms. 

The second part of the thesis is concemed with the applications of the GAP to 

engineering problems including economic power dispatch, PID controllers and adaptive 

digital filters. A new hardware configuration based on multiple units of the original 

design is introduced as a means of handling applications where long bit strings are 

required. Finally, the ability of the GAP to adapt an existing controller or filter to a 

dynamically changing environment is investigated. 
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Chapter 1 

Introduction 

In recent times some new classes of probabilistic search algorithms have been 

developed to handle difficult or intractable problems. Principal among these 

developments are Genetic Algorithms [Holland, 1992; Goldberg, 1989b] and the 

method of Simulated Annealing [Kirkpatrick et al., 1983]. The search method used in 

Genetic Algorithms (GAs) mimics some of the mechanisms and principles of natural 

evolution in biological systems. They have exhibited an almost unique ability to solve 

difficult problems in discrete configuration spaces where solutions are found as 

unconnected points in a P-dimensional space rather than as points on differentiable 

surfaces. Examples include adaptive game-playing, biological cell simulation, machine 

leaming, pattern recognition, VLSI microchip layout and job scheduling. These discrete 

configuration problems usually have an enormous set of candidate solutions that 

expands in a non-polynomial fashion with the problem dimension (P). Such problems 
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are thus known as NP Hard and algorithms which seek exact solutions are generally 

only used when P is small. 

GAs handle large configuration spaces by sampling and processing randomly selected 

points in the space. The nature of GAs and their wide applicability make them excellent 

candidates for hardware implementations, thus obtaining a great speedup over software 

implementations. This speedup would allow hardware GAs to be applied to much more 

complex problems. 

Because a general-purpose GA engine requires certain parts of its design to be easily 

changed (e.g. the operators), a Genetic Algorithm Processor (GAP) was not feasible 

until Field-Programmable Gate Arrays (FPGAs) were developed. FPGAs aUow for 

reprogrammability which is an essential concept behind the development ofthe GAP 

model. 

This thesis describes the GAP, an implementation of a hardware genetic algorithm. 

Because ofthe reprogrammability of FPGAs, the GAP is a general purpose GA engine 

which is useful in many applications where conventional GA implementations are too 

slow and expensive. The GAP works as a optimiser with the system imder test and gives 

its user the ability to specify many ofthe GA parameters. 

1.1 Introduction to Genetic Algorithms 

The Darwinian theory of evolution depicts biological systems as the product of ongoing 

process of natural selection. During the 1950s researchers became interested in genetic 

processes and the possibility of emulating them in computer systems. The foundations 

of Genetic Algorithms theory were initially developed by John Holland and his students 

and in recent years have been applied to problems as diverse as pattem recognition and 

optimisation. GAs are probabilistic algorithms and their behaviour is still in many ways 

not well understood. It can be said that genetic algorithms are probabilistic algorithms 
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which start with an initial population of likely problem solutions, and then evolve 

towards better solution version. New solutions are generated with the use of genetic 

operators pattemed upon the reproductive processes observed in nature. Also from the 

area of genetics come the names of the concepts we use. Each element of a current 

solution space (population) is called a chromosome, and its components are called 

genes. Genetic operators also have names originating in genetics: cross-over, mutation 

and inversion. Genetic algorithms allow engineers to use a computer to evolve solutions 

over time, instead of designing them by hand. Because almost any method, theory, or 

technique can be encoded on a computer, this implies an approach to problem solving 

that can be automated by a computer. More specifically, computer science has long been 

interested in how the design, development, and debugging of computer programs could 

be automated, and genetic algorithms provide one avenue toward this goal. 

There are four major differences between GA-based approaches and conventional 

problem solving methods. 

1. GAs use probabilistic transition mles, not deterministic mles. 

2. GAs use payoff (objective function) information. Other supplementary knowledge of 

the problem may be useful but is not essential. 

3. GAs search from a population of points, not a single point. 

4. GAs work with a coding ofthe parameter set, not the parameters themselves. 

These four properties make GAs robust, powerfiil, and data-independent [Goldberg, 

1989b]. The GA operations, selection, crossover and mutation, primarily involve 

random number generation, copying, and partial string exchange. Thus they are 

powerful tools which are simple to implement. They have been applied to many areas, 

including VLSI layout optimisation, job shop scheduling, function optimisation and the 

travelling salesman problem. 
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1.2 Introduction to VHDL 

VHDL is an acronym for VHSIC Hardware Description Language (VHSIC is an 

acronym for Very High Speed Integrated Circuit). It is a hardware description language 

that can be used to model a digital system at many levels of abstraction ranging from the 

algorithmic level to the gate level. The complexity ofthe digital system being modelled 

could vary from that of a simple gate to a complete digital electronic system, or 

anything in between. The digital system can also be described hierarchically. Timing 

can also be explicitly modelled in the same description. 

The language not only defines the syntiax but also defines very clear simulation 

semantics for each language constmct. Therefore, models written in this language can 

be verified using a VHDL simulator. It is a strongly typed language and is often verbose 

to write. It inherits many of its features, especially the sequential language part, from the 

Ada programming language. Because VHDL provides an extensive range of modeling 

capabilities, it is often difficult to imderstand. Fortimately, it is possible to quickly 

assimilate a core subset ofthe language that is simple to understand without leaming the 

more complex features. This subset is usually sufficient to model most applications. The 

complete language, however, has sufficient power to capture the descriptions of the 

most complex chips to a complete electronic system. 

VHDL is a hardware description language and, therefore, VHDL descriptions are 

generally used to model hardware components and system (i.e. gates, chips, boards, etc). 

However, VHDL provides an abstract framework for describing hardware which is 

easily extended into other domains. A VHDL digital device can range from a gate to a 

microprocessor, to a complete system and beyond. The guiding factor is that the 

underlying system be based on a general stimulus-response model that uses discrete (i.e. 

non-continuous) values. 
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1.3 Introduction to Field Programmable Gate Arrays 

A field-programmable gate array (FPGA) is an inexpensive hardware component, 

usually costing on the order of $100, which allows the user to program its functionality 

quickly and inexpensively. This allows for cheaper prototyping and shorter time-to-

market of hardware designs. FPGAs are slower and have a lower gate density than full-

custom (customised VLSI chips) and semi-custom (Mask-Programmed Gate Arrays 

(MPGAs)) design methodologies. However, FPGA costs per chip and tumaroimd times 

for low-volume designs and prototypes are much better than for MPGAs and fiill 

custom designs [Xilinx, 1994]. 

In general, FPGAs consist of logic blocks, I/O cells and interconnection lines. The logic 

blocks implement the actual logic of the FPGA using primitives such as NAND gates, 

multiplexers or lookup tables. The I/O cells allow the FPGA's logic blocks to connect to 

the pins. The interconnection lines comiect logic blocks to each other and to the I/O 

cells. The routing done by these lines is implemented with wire segments and a system 

of programmable switches. The switching technology can be any one of pass-transistors 

controlled by static RAM cells, anti-fuses, EPROM transistors or EEPROM transistors. 

FPGAs were first created by Xilinx Incorporated in 1984. Since that time, many other 

companies have marketed FPGAs, the major ones being Xilinx, Actel and Altera. Actel 

FPGAs use an anti-fuse technology which is programmable only once. Reprogrammable 

FPGAs use EPROM, EEPROM or static RAM technology. Xilinx FPGAs, using static 

RAM technology, are used in this thesis and in many other design projects which 

require hardware reprogrammability. 

1.4 IVIapping GAs to FPGAs through VHDL 

Genetic algorithms are currently used in many applications as a robust general-purpose 

optimisation technique. For optimisation problems in which a solution must be 

computed quickly by genetic algorithms a hardware implementation may be necessary. 
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The nature of GA operators is such that GAs lend themselves well to pipelining and 

parallelisation. This capability for parallelisation and pipelining makes a GA an 

excellent candidate for mapping to hardware. 

There are many ways to map a GA to an FPGA device, including Register Transfer 

Language (RTL), CUPL (for PLD devices) and VHDL. Synthesis tools are available for 

each method to create a PLD or FPGA device file from a source file. However, the basic 

operations of a GA require addition and multiplication that make it difficult to use RTL 

or CUPL as language tools or PLDs as a device for implementation. Fortunately in 

VHDL it is possible to use integer arithmetic without being concemed with the 

hardware implementation details. VHDL is an excellent environment for algorithmic 

implementation as long as there is not too much arithmetic in the design. 

1.5 Thesis outline 

The remainder of this thesis is organised as follows. Chapter 2 reviews the background 

for this work and methods of using reconfigurable hardware to speed up general 

applications. Chapter 3 explains the theory behind GAs and different types of GAs and 

genetic operators. For those who are not familiar with Genetic Algorithms, Appendix A 

explains GAs with a simple example. Chapter 4 describes the GAP model, hardware 

prototype and verification ofthe design and its performance analysis. In Chapter 5, the 

GAP will be analysed mathematically to find out the bottlenecks of the model. Chapter 

6 explains the implementation ofthe GAP on FPGA devices including discussion about 

functionality and limitations ofthe design. Appendix D demonstrates a brief explanation 

of the Xilinx FPGAs and their internal stmcture. Chapter 7 deals with applications 

including a PID control system, dynamic power dispatch and an adaptive IIR filter. 

Several GAP configurations are tested to find the best configuration for each 

application. Chapter 8 demonstrates the multiple GAP, a parallel configuration for 

handling more complicated applications. Chapter 9 describes the adaptive capabilities of 
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the GAP and its application in the three problems. Chapter 10 presents conclusions and 

possible avenues for future work. Appendix A describes Genetic algorithms with a 

simple example. Appendix B shows Gray code tables and the VHDL code for the GAP 

modules is given in Appendix C. Appendix D describes Xilinx FPGAs and their intemal 

stmctures. 



Chapter 2 

Background and related works 

This chapter continues the basic description of genetic algorithms that was provided in 

Chapter 1. A much more detailed description is provided in Chapter 3. Next, VHDL is 

described and the advantages and disadvantages of using VHDL are discussed. This is 

followed by a review of related work in mapping frequently used software routines into 

configurable hardware and finally a brief review of research into previous hardware GA 

models. 

2.1 Basic idea of Genetic Algorithms 

Genetic Algorithms were developed initially by John Holland in the 1960's [Holland, 

1975] as a form of search technique modelled on Darwinian evolution. The most 

accessible introduction is by Goldberg [1989b]. Other sources are Davis [1991b], Fogel 

[1995] and the Proceedings of the GA and PPSN conferences [Grefenstette, 1985; 
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Grefenstette, 1987; Schaffer, 1989; Belew and Booker, 1991; Forrest, 1993; Schwefel 

and Maimer, 1990; Manner and Manderick, 1992]. 

GAs are relatively a new class of search algorithms in which good solutions to a 

problem are sought using an objective function. The search process in GAs is based on 

the natural evolution of biological organisms in which successive generations are given 

birth and are raised until they themselves are able to reproduce. GAs are becoming 

increasingly important mathematical tools for nonlinear optimisation problems. 

For a genetic algorithm to improve a solution, it is necessary to reject the poor solutions 

and only allow reproduction from the best ones. This is analogous to the so called law of 

survival in which only organisms that adapt best to the natural environment tend to 

survive. In this case, the role of environment is played by a so called evaluating 

function, measuring the degree of fitness of an attempted solution to problem 

requirements. This function is equivalent to testing whether a given state is close to 

optimal. The use of a population of trial solutions helps the GA avoid converging to 

false peaks (local optima) in the search space. 

A detailed description of different GAs will be discussed in Chapter 3 and a simple 

genetic algorithm definition with one example is included in Appendix A. 

2.2 Applications of GAs 

Genetic Algorithms have been employed in a wide variety of combinatorial optimisation 

and job scheduling problems including 

1 - Travelling salesman problem [Homaifar et al., 1993]. 

2 - Job shop scheduling, rescheduling and open shop scheduling [Fang et al., 1993]. 

3 - Vehicle routing to service a set of customers with demands and least time for 

servicing [Thangiah et al., 1993]. 
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4 - Pallet loading which involves the optimal packing of a predetermined number of 

cartons onto pallets [Jullif, 1993]. 

A complete list of applications can be found in the proceedings of the genetic 

algorithms conferences [Belew and Booker, 1991], [Forrest, 1993] and [Eschelman, 

1995]. The use of GAs in this research has been inspired by a number of specialised 

applications of GAs in electronic engineering design including 

1 - PID controller widely used in industry. In a PID (Pfoportional-Integrator-

Differentiator) controller we attempt to drive a plant accordance to a given reference 

signal. The design objective is to determine a set of gains for the controller to match the 

set of roots of the closed loop control equation chosen by designer. PID controller 

design is often carried out by an experienced operator using a trial and error procedure. 

In applying GAs to a PID controller, a GA tries to estimate the three gain parameters of 

the PID controller while ensuring that transient response specifications are met [Hwang 

and Thompson, 1993]. 

2 - Economic Power Dispatch (EPD) which is used in power stations to schedule the 

supply of fuel to meet the system load demand at minimal cost. Conventional 

optimisation techniques become very complicated when dealing with complex dispatch 

problems and are limited by their lack of robustness and efficiency in practical 

applications. In this problem GAs are used to minimise an objective fimction, usually 

the total cost of generators, while satisfying both equality and inequality constraints 

[Walters and Sheble, 1993]. 

3 - Adaptive communication filtering in which the objective is to determine the 

optimum setting of parameters defining the system to minimise a suitably defined error 

function. There are two types of adaptive filters: adaptive FIR filters and adaptive IIR 

filters [Willsky, 1985]. Algorithms relating to the adaptation of FIR filters are well 

established. The role of GAs in adaptive IIR filter design is in the approximation of a 
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desired function (HI) by a rational transfer function (H2) for different values. This 

approximation is achieved by minimising an error surface between HI and H2 [Roberts 

and Mullis, 1987]. 

4 - Channel Assignment in Cellular Mobile Networks: Frequency assignment is an 

important problem in cellular radio networks. Early methods used algorithms based on 

regular hexagonal arrays but as real cellular networks are far from regular, these 

algorithms are not suitable. GAs are used to find a good frequency assignment allowing 

for frequency reuse by non-adjacent cells which allows the number of communication 

channels over the network to be maximised with a limited number of frequencies [Kunz, 

1991]. 

i: 

5 - Genetic Synthesis of Neural Networks: Neural networks are a technology in which 

computers leam directly from data, thereby assisting in classification, function 

estimation and similar tasks. Most classical leaming algorithms for neural networks aim 

at finding weights for a neural network whose architecture is frozen. On the other hand a 

GA generates and tests a population of different architectures on a specific problem 

[Gmau, 1993]. The objective is to discover an optimal network for the problem [Davis, 

1991b]. 

The above research has demonstrated that genetic algorithms can be used to produce 

near optimal solutions without regard to the complexity of the algorithms or the 

computing resources required. The approach in this thesis is to investigate whether a 

simple genetic algorithm embedded in hardware is effective on problems like these. 

This research also considers the real-time performance of these hardware devices. 

2.3 The VHDL language 

VHDL was developed to address a number of recurrent problems in the development, 

exchange and documentation of digital hardware. For instance, a typical microprocessor 
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would include thousands of pages of documentation to be sorted through during design 

and testing and referred to throughout the maintenance life of the component. When the 

component needs to be replaced, it takes substantial effort to reconstmct its intended 

behaviour. A good HDL design solves this problem because the documentation is 

executable and all elements are tied into a single model. 

While there have been many hardware description languages, before VHDL, there was 

no accepted industry standard. Many of the existing languages have been developed to 

serve the simulators that mn them, and are often proprietary developments of particular 

companies. Others target a particular technology, design level, or design methodology. 

VHDL is technology independent, is not tied to a particular simulator or value set, and 

does not enforce a strict design methodology. It allows the designer the freedom to 

choose technologies and methodologies while remaining within a single language. No 

one can foresee the changes that will take place in digital hardware technology. 

Therefore, VHDL provides abstraction capabilities that facilitate the insertion of new 

technologies into existing designs. 

VHDL is used to describe a model for a digital hardware device. This model specifies 

the extemal view of the device and one or more intemal views. The intemal view 

specifies the functionality or stmcture of the device, while the extemal view specifies 

the interface of the device through which it commimicates with the other models in its 

environment. 

The following are the major capabilities that the language provides along with the 

features that differentiate it from other hardware description languages [Coelho, 1989]: 

1 - VHDL supports hierarchical design. A digital system can be modelled as a set of 

interconnected components. Each component can then be modelled as a set of 

interconnected subcomponents. 



Chapter 2. Background and related works 13 

2 - VHDL can be used for various digital modeling techniques such as finite-state 

machine descriptions, algorithmic descriptions, and boolean equations. 

3 - VHDL is an IEEE and ANSI standard, and therefore, models described using this 

language are portable. There is a strong interest in maintaining this as a standard so that 

re-procurement and second-sourcing may become easier. 

4 - The language is publicly available, easy to understand, readable, and above all, it is 

not proprietary. 

5 - VHDL supports a behavioural description of hardware from the digital level to the 

gate level. One of the primary advantages of VHDL lies in its ability to capture the 

operation of a digital system on a number of descriptive levels at once, using a coherent 

syntax and semantics across these levels, and to simulate this system using any mixture 

of these levels of description. It is therefore possible to simulate designs that mix high-

level behavioural descriptions of some subsystems with detailed implementations of 

other subsystems in the model. 

6 - VHDL is not technology-specific, but is capable of supporting technology-specific 

features. It can also support various hardware technologies, for example, it may define 

new logic types and new components, it specifies technology-specific attributes. By 

being technology independent, the same behaviour model written in VHDL can be 

synthesised to utilise different vendor libraries (Such as PLDs, FPGAs or ASICs). 

7 - VHDL is modelled on a philosophy similar to that of many modem programming 

languages that design decomposition aids are just as important as detailed descriptive 

capabilities. Packages, configuration declarations and the concept of multiple bodies 

exhibiting different implementations of an entity are all present in this language to 

support design sharing, experimentation and design management. 

Chapter 6 explains how a VHDL model can be implemented on FPGA architectures. 
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2.4 Previous work in reconfigurable hardware 

Recently there has been a sharp increase in work with reconfigurable hardware systems 

based on Field Programmable Gate Arrays (FPGAs) technology (see Chapter 6). 

Gokhale et. al. [1991] developed a programmable linear logic array called SPLASH 

with several documented applications including one-dimensional pattem matching 

between a DNA sequence and a library of such sequences. SPLASH consisted of 32 

Xilinx XC3090 FPGAs and 32 memory chips and greatly outperformed several 

supercomputers including a CM-2 and CRAY-2. 

Athanas [1992] has been researching a series of reconfigurable computing architectures 

based on Xilinx FPGA technology. He developed the PLADO hardware platform which 

includes an array of Xilinx XC3090 FPGAs to assist in computation. The PLADO 

hardware platform worked in conjunction with the PLADO configuration compiler 

designed to analyse candidate hardware segments of a C program, choose the best 

segments for hardware implementation, and map these segments to the files necessary 

for programming Xilinx FPGAs. Candidate hardware segments were marked by the 

programmer and analysed by the compiler for feasibility of execution in a single clock 

cycle when implemented on the FPGA array. 

At Digital Equipment Corporation's Paris Research Lab, Bertin et al. [1993] worked 

with a Programmable Active Memory (PAM) architecture which is a 5 x 5 array of 

Xilinx XC3090 FPGAs and supporting hardware, all combined to act as a coprocessor 

to a host system. Compiling and mnning an application on the PAM architecture 

consists of 

• identifying the critical computations best suited for hardware implementation, 

• implementing and optimising the hardware part on the PAM, 
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• implementing and optimising the software part on the host system. 

The PAM was tested on ten applications including data compression, string matching 

and binary 2D convolution. In each ofthe ten applications, the performance ofthe PAM 

implementation was competitive with a supercomputer implementation but was up to 

100 times cheaper in cost per operation per second. The key, according to Bertin et al., 

is to choose an application with a single inner loop which isimplementable on the PAM 

and which accounts for a vast percentage of the software nm time. Thus many complex 

supercomputer applications are beyond the reach of current PAM. technology. 

The above research has inspired the production of commercial prototyping boards for 

implementing and testing FPGA designs. Virtual Computer Corporation [Casselman, 

1993] now markets the line of Virtual Computers which consist of arrays of Xilinx 

XC4010 FPGAs and ICUBE IQ160 Filed Programmable Interconnect Device (FPID). 

XC4010s do the processing for the Virtual Computer while the IQ160s allow the user to 

program the interconnect between the XC4010s. The number of XC4010s ranges from 

22 to 52. While other FPGA-based boards exist on the market today as prototyping 

boards, the Virtual Computer is intended to act as a reconfigurable coprocessor. 

Another line of commercial products is from National Technologies Incorporated (NTI) 

[McLeod, 1994]. Their X-12 system uses a dozen XC3000 FPGAs, each with a 32K x 8 

Static RAM (SRAM) at its disposal. Like the products from Virtual Computer 

Corporation, the X-12 system is intended for reconfigurable hardware use rather than 

prototyping. 

As an example of an application, Eldredge and Hutchings [1994] used an NTI X-12 

board to develop an FPGA based neural network which utilised mn-time 

reconfiguration. To save the FPGA space, evaluation of different stages of the neural 

network (feed-forward, back propagation and updating) occupied the same FPGAs at 

different times during the mn. When a new stage of the run was to be made, a master 
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system reconfigured FPGAs as needed and started the next stage. FPGA requirements 

were reduced to one fifth. 

Another example of a reconfigurable system is given by Gilson [1993] who used an X-

12 reprogrammable logic board from NTI to build a Nano-Processor (nP). The nP is a 

customisable stored-program processor which occupies less area than a fully customised 

reconfigurable hardware system still retaining a significant speed advantage over a 

conventional microprocessor due to the nP's customisable instmction set. The small size 

of the nP allows for some application-specific hardware to also occupy valuable FPGA 

space. 

2.5 Hardware implementation of optimisation algorithms 

Optimisation algorithms involve either a search for an optimum path through a network 

of discrete points or a search along a performance surface for a point of minimum error 

or maximum performance. This task is often time consuming and expensive for 

computers and can be addressed by specialised hardware. Algorithms like simulated 

annealing or genetic algorithms can be implemented on special hardware to improve the 

optimisation speed. 

Aimealing is a term borrowed from metallurgy to describe how nature can produce 

ordered stmctures in discrete systems of interacting particles by slow and carefiil 

cooling. As the system cools the small interaction between particles can lead to an 

ordered configuration representing the minimum energy state. Rapid cooling causes 

'quenching' in which irregularities become frozen in and the system remains disordered. 

Simulated annealing models this process on a computer in an attempt to solve some 

large scale optimisation problems. The method of simulated annealing can be applied to 

many problems of combinatorial optimisation. Such problems involve a search through 

a data stmcture for a path which optimises some property of the data. In many 
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mathematical problems we are not dealing with 'energy' levels or forces between 

particles but we can still employ the same principles to achieve optimum minimisation 

[Kirkpatrick et al., 1983]. 

Abramson [1992] described a special purpose machine for solving an integer 

programming problem using simulated annealing. The hardware executed the code 

about 100 times faster than the same program mnning on a workstation and cost less 

than a personal computer to build. Interestingly, this machine gained its performance 

from two main sources. First, it utilised very low level concurrency which cannot be 

extracted by vector and parallel computers. Second, it avoided all address arithmetic 

normally required for matrix manipulation. The board was implemented using 

conventional logic devices and was hosted by a PC or workstation. It was controlled by 

a simple finite state machine which implemented the annealing algorithm, and contained 

no fast logic or pipelined stages. 

Abramson et al. [1995] are now working on a project called Guess to develop a class of 

computer architectures which deliver very high performance on solving integer 

optimisation problems. These architectures will be designed to support both simulated 

annealing and branch-and-bound algorithms through system reconfiguration. Guess 

makes use of an Aptix AP4 reconfigurable logic board which contains up to 16 Xilinx 

4010 Field Programmable Gate Arrays, plus a number of Aptyx switch chips. The 

switches make it possible to connect the pins of the Xilinx parts together, and thus the 

board is totally reconfigurable. 

2.6 Previous work in hardware Genetic Algorithms 

So far little work has been done in implementing a hardware-based GA. Husband and 

Mill [1991] have implemented a version of a GA on a transputer based parallel machine 

to optimise a manufacturing scheduling problem. 
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Spiessens and Manderick [1991] implemented a genetic algorithm on a Distributed 

Array of Processors (DAP). The DAP from Active Memory Technology Ltd is a fine 

grain massively parallel Single Instmction Multiple Data (SIMD) computer. The 

processors are arranged in a 2- dimensional cyclic mesh. The size of the dimensions is 

32*32 for the DAP-510 and 64*64 for the DAP-610. Each processor has a direct 

connection to its own local memory. The DAP attaches to a host computer which is 

used for program development, debugging, loading and controlling DAP program. The 

DAP is mainly programmed in a version of the FORTRAN language which includes 

extensions for dealing with vectors and arrays as single objects. ' . 

DCP Research Corporation in Edmonton, Alberta has implemented a suite of 

proprietary GAs in a text compression chip [Wirbel, 1992]. 

Chen et al. [1993] have implemented a GA for diversity minimisation on a Thinking 

Machines Corporation Connection Machine CM-5 in the Computer Science Department 

at the University of Wisconsin-Madison. This machine consists of 64 SPARC 

processors each with 32 megabytes of local memory connected by a "fat free" network. 

In Multiple Instmction Multiple Data (MIMD) mode, the processors run asynchronously 

and communicate via calls to the routines in a message passing library. 

Tetsuya Higuchi et al. [1994] at the Electrotechnical Laboratory in Tsukuba are 

developing self-adapting hardware which uses a GA to modify hardware configuration 

bit strings that control the connections in programmable logic devices. The evaluation 

function in this case is a string's performance in particular tasks, e.g. controlling a robot 

arm. 
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Principles of Genetic Algorithms 

This chapter is provided as an introduction to genetic algorithms, a class of optimisation 

algorithms that draw their inspiration from evolution and natural selection. The 

intension is to describe the features and variations of GAs and to give the reader an idea 

of the sophistication that may be employed to enhance performance. In the design of 

hardware GAs, there is a need to avoid complexity and some ofthe features described in 

this chapter are very difficult to implement in hardware. 

GAs were defined by John Holland in his 1975 book: "Adaptation in Natural and 

Artificial Systems" [Holland, 1975]. Since then the GA community has gradually 

grovm, mostiy in the USA, with a series of intemational conferences starting in 1985. 

However, Holland's book is rather theoretical, and a more accessible book is Goldberg's 

"Genetic Algorithms in Search, Optimisation and Machine Leaming" [Goldberg, 

1989b]. With the arrival of this and Davis's "Handbook of Genetic Algorithms" [Davis, 

19 
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1991b], interest in GAs looks set to increase further. What follows is a review ofthe art 

of GAs, recovered both from the literature and experimentation. 

3.1 The simple principles 

A GA operates on a problem that is specified in terms of a number of parameters. For a 

function optimisation, these may be the values of coefficients for the real time operation 

of an industrial plant, the control settings for a neural network, the numbers of imits or 

the leaming rates. One key feature of GAs is that they hold a population of such 

parameters, so that many points in the problem space are sampled simultaneously. The 

population is generated either at random or by some heuristic. The former is usual when 

the aim is to compare different algorithms. The latter may be more appropriate if the 

object is to solve a real problem. Each set of parameters may be regarded as a vector, 

but the traditional name is a string. Another key feature of Holland's GA is that these 

parameters are bit strings, with real or integer valued problem parameters being coded 

by an appropriate number of bits. The nature of this coding is functionally extremely 

important and is discussed further in Section 3.5.1. Each string is rated, by miming the 

system that is specified. In the case of a function evaluation, this may be very quick. For 

an aircraft simulation [Bramlette and Bouchard, 1991] or a neural network, the 

evaluation might take minutes or even hours. A new population is then generated, by 

choosing the best strings preferentially. A simple way of doing this is to allocate 

children in proportion to the test performance (or rather, in proportion to the ratio of a 

string's test performance to the average of all the strings). With no other operators 

affecting the population, the result of this is that the best string increases in number 

exponentially, and hence rapidly takes over the whole population. 

Novel stmctures are generated by a process resembling sexual reproduction. Two 

members of the new population are chosen at random, and new offspring are produced 

by mixing parameters from the parents. In the earliest work [DeJong, 1975], a single 
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crossover was used, where parameters were copied from one parent up to some 

randomly chosen point, and then taken from the other. Thus the strings ABCD and 

EFGH might be crossed to produce AFGH and EBCD. Much subsequent work on GAs 

has studied the relative merits of different recombination algorithms. The preferred form 

of recombination is problem and coding-dependent and some other possibilities will be 

discussed further below. 

A second operator that introduces diversity is mutation in which the value of a 

parameter is changed arbitrarily. This process is not the major source of new stmctures, 

that is the role of recombination, but it serves to produce occasional new "ideas", and to 

replace combinations that might be lost in the stochastic selection processes. The precise 

role of mutation depends on the coding used in the genes and is also discussed further 

below. 

The cycle for a basic genetic algorithm is as follows. Generate a population of parameter 

sets, test them against the problem, select for reproduction on the basis of performance, 

recombine pairs of parameter sets and mutate a few to generate the new population and 

restart the cycle. We shall now look at each aspect ofthe algorithm in more detail. 

First a note about terminology. GAs are inspired by biological evolution, and exponents 

often borrow terms from the study of natural genetics. Some workers refer to strings as 

chromosomes, their natural analogue. Genotype and phenotype may be used to describe 

the genetic string and the decoded parameter set respectively. We need to distinguish 

between the parameters of the target problem and the components of the genetic string. 

The term gene is often used for the components. This is an inaccurate interpretation, 

since in biology a gene is usually taken to be something that codes for a whole trait, 

such as blue eyes. However, the application of GAs has not advanced to the point where 

this meaning of gene would be usefiil. Therefore the term will be adopted here to mean 

the individual components of a string, while parameter refers to tiie target problem. A 
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real-valued parameter might be coded directly by a real-valued gene, or by a number of 

binary genes. Possible values of a gene are commonly knovm as alleles: 0 and 1 for a bit 

string. The set of possible alleles is known as the alphabet. Finally, a distinction will be 

made between crossover and the more general recombination. Crossover is the 

traditional form of recombination, simply selecting between the parent strings and not 

affecting gene values. The simplest form of crossover changes from one parent to the 

other at a single point. 

3.2 Evaluation 

There may not seem much to discuss about evaluation of the parameter set. If the task is 

an artificial one, such as a function evaluation that is being used to test the GA, then 

there should indeed be no problem, provided the function is deterministic. Where the 

function is stochastic, as many real-world processes are, there is the issue of how much 

to try and reduce the noise. GAs are relatively immune to noisy evaluations, compared 

with, for instance, gradient ascent methods that may be throvm right off course by an 

odd result. However, it is still naturally the case that accurate evaluations are to be 

preferred to noisy ones. The accuracy can be improved by doing q evaluations and 

averaging, the noise decreasing with 7^ . However this may not be the best approach, 

particularly if the evaluation takes a long time. There is evidence [Grefenstette and 

Fitzpatrick, 1985; Fitzpatrick and Grefenstette, 1988] tiiat it is better to do a fast, noisy 

evaluation and get on to the next generation, rather than spend time accurately assessing 

each individual. 

Another important aspect ofthe evaluation procedure is that it should reflect the desired 

target problem. One part of this is simple accuracy. Suppose the aim is to improve the 

design of a jet engine. The parameters might be values such as the angle and size of fan 

blades. Clearly the real engines will not be tested as specified, it would be done by 

computer simulation. However, the end product can only be as good as the simulation. 
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A rather more subtle aspect of the simulation has to do with constraining it sufficiently. 

This became apparent in some work on tuning neural network parameters [Spears, 

1989]. The only information the GA gets is the evaluation result, usually a simple scalar 

value. When, for reasons of evaluation time, the test is a reduced version ofthe real task, 

it must be very carefully constmcted. 

One difficulty is the need to optimise more than one aspect of performance 

simultaneously, or to optimise one subject to some constraints. For instance a neural 

network may be required to do as well as possible, but quickly, or without exceeding 

some size. It may be possible to build such constraints into the operators that produce 

new strings. This is usually to be preferred, since it both avoids the problem at 

evaluation time and concentrates search in fruitful areas. However, such operators may 

not be feasible, either because it is simply very difficult to satisfy all the constraints, or 

because the various factors, test score and mn time in the neural network case, only 

become available after evaluation. 

The standard GA requires a scalar evaluation value for the parent selection process, so 

the various test values and constraints need to be combined. The easiest method is some 

linear combination. If the balance between the components is not good, the GA will 

surely optimise the easiest one at the expense ofthe others. It may be that the only way 

to discover the correct combination is by trial and error. A possibility that might merit 

investigation is to alter the balance dynamically. For instance if, during the GA mn, the 

evaluation time dropped below some limit, the time element in the evaluation function 

could be reduced. 

Richardson [1989] has looked at various ways of handling penalty functions for 

constraint satisfaction. It might be thought that violation of constraints should be 

harshly penalised. However, Richardson argues that this may cause the GA to fail, 

especially if it is difficult to satisfy the constraints. His suggested solution is to try and 
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constmct a penalty function that is proportional to the distance of the string from 

feasibility, rather than simply counting the number of constraints that have been 

violated. 

In some cases there is more than one potential measure of the same aspect of a string's 

performance. In the application of GAs to leaming the weights for a neural network, the 

error of a network may be measured in a number of ways,-for instance the sum squared 

error across all the training set, or the worst individual bit error. While the aim of 

training is usually taken to be minimising the squared error, th^ real target for a binary 

training set is to get each individual bit the correct side of 0.5. However, if this was set 

as an evaluation target when using the traditional sigmoidal output function, the GA 

always become stuck with all the values just above 0.5. If the squared error alone was 

used, the GA tended to minimise it quickly by solving the easy bits, and letting the hard 

ones go to 1.0 error. It was then imable to correct the remaining bits and a combination 

had to be used. 

GAs are by no means reliable, and sometimes no progress is made on a problem. 

Perhaps there are too many constraints, or the area of the possible search space that 

gives scores significantly better than zero, is too small. A possible approach, used in 

some work on parameter tuning [Hancock, 1989], is to alter the evaluation fimction 

during the GA mn. The problem is initially made easier, perhaps by relaxing some of 

the constraints, so that the GA is able to make some progress. When some performance 

level is achieved, the task is gradually made harder. This approach makes strong 

assumptions about the presence of a fairly continuous path in the search space as the 

task changes, which may be unjustified. While a GA may be expected to do a 

reasonable job of finding a way past some discontinuities there can be no guarantees. 

In some optimisation procedures, it is natural to talk about the optima being small 

values. Others are more naturally described as hill-climbing algorithms. It makes no real 



Chapters. Principles of Genetic Algorithms 25 

difference to a GA whether it is aiming to go up or down. However, descriptions of 

strings as being high-ranking, or having high fitness, suggest that hill-climbing is the 

natural target. Except where stated otherwise, this will be the case in this work. 

3.3 Scaling and selection 

Having evaluated the strings, the best need to be selected in some way to form the new 

population. There are two aspects to this process: how to decide what proportion ofthe 

new population should come from each string, and, how to cope with the reality of a 

finite population size. 

The simplest means of allocating strings to the new population is in proportion to the 

ratio of their evaluated fitness to the average of the whole population. Thus if a 

particular string has twice the average fitness, it would be expected to be chosen twdce 

to act as a parent. This was the method used in the first thorough experimental work on 

GAs, reported in DeJong's thesis [DeJong, 1975]. While it works well enough for nicely 

behaved functions, it can cause problems if the function has large areas of poor 

performance, with localised good spots. Once one string finds a good area, its fitness 

will be far above the average. It will dominate the next generation, with consequent loss 

of diversity, a phenomenon known as premature convergence. Conversely, towards the 

end of an optimisation, most of the population should be highly rated. Those that are 

slightiy better than average get little selective advantage, and the search stagnates. 

The traditional approach to this, implemented in Grefenstette's public domain GA 

program Genesis [Grefenstette, 1987], is to use a movable baseline for the evaluation. 

This is typically set to the evaluation score of the worst string, either in the current 

generation or within some small (5-10) window of recent generations. The baseline may 

be set somewhat below the worst value, to ensure that even the worst string gets some 

chance to reproduce. This can be important, both as a general guard against premature 

convergence and because poor sfrings may be poor because they are on the shoulder 
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between different maxima. Indeed allowing poor individuals to reproduce entitles the 

evolutionary system to escape local maxima. The baseline re-expands the fitness scale 

such that, for instance, the ratio between 0 and 1 is the same as that between 99 and 100. 

The problem of exceptionally good strings is handled by using a scaling algorithm that 

ensures a constant fitness ratio, typically about 2, between the best and the worst. 

A more radical approach suggested by Baker [1985] is to use the fitness scores only to 

give a ranking and then assign a fixed hierarchy of selection probabilities. It is possible 

to use a geometric scaling [Montana and Davis, 1989], such, that the best string is 

assigned a fitness of say 0.9, the second, 0.9 , the third, 0.9 and so on. The scaling 

factor can be varied during the mn so as gradually to increase the selection pressure, 

perhaps starting at 0.95 and ending at 0.85. One potential advantage of this method is 

that the evaluation no longer needs to retum a single scalar value. 

A disadvantage ofthe method is that the selection pressure, in terms ofthe ratio of 

selection probability of best to worst, is dependent on the population size. This must be 

remembered when comparing different GA nms. Whitley [1989] has suggested an 

alternative algorithm for use in Genitor that avoids this effect. However, this 

implements a linear scaling rather than the geometric scale proposed in [Montana and 

Davis, 1989]. The latter gives relatively more reproductive opportunities to the better 

strings. 

Having decided the ideal proportions, some finite number of copies of each string must 

be chosen for reproduction. The simplest method of doing this is to add up the total 

fitness (whether scaled or not). Then, for each string to be selected, pick a random 

number between 0 and that total and work through the list of strings, summing their 

fitness values until a number bigger than the random one is reached. Each string will 

then be chosen with a probability that reflects its share ofthe total fitness. The process is 

known as roulette wheel selection, it being equivalent to spinning a wheel where the 
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sectors are allocated according to each string's fitness. However, Baker [1987] showed 

that the random nature of the algorithm can result in significant inaccuracies in the 

selection process. He suggested a more accurate algorithm, called Stochastic Universal 

Sampling (SUS) that guarantees the correct whole number of offspring for each string. 

Fractional numbers of expected offspring are allocated proportional, so if 1.7 are 

expected, 1 will be obtained with probability 0.3 and 2 with probability 0.7. Another 

way of looking at the algorithm is as a modified roulette wheel, with as many, equally 

spaced pointers as strings to be selected and only one spin is required. This algorithm 

can make a remarkable difference in performance, particularly in small populations. In 

some cases it has produced an order of magnitude improvement in solution time. 

3.4 Generation and crowding 

The simplest method of mnning a GA is to replace the whole population each 

generation. In this case, therefore, the generation size (the number of strings evaluated 

in each generation) is equal to the population size. This was the method used for most of 

DeJong's main work [DeJong, 1975]. A more conservative method is to ensure that the 

best string from the previous generation survives, by simply adding it to the pool ofthe 

new generation if necessary. DeJong calls this the elitist strategy, and he showed that it 

generally improves performance on unimodal functions. The elitist strategy ensures the 

best string survives the whole generation procedure. On multimodal fimctions the 

strategy may be less beneficial, since it can make escape from a local maximum more 

difficult. A compromise that has been used by many people is to keep the best for a few, 

perhaps 5, generations, but then delete it if no further progress has been made. 

The generation size may be smaller than the population, in which case some method 

must be used to decide which of the old population to delete. This may be done at 

random, or weighted to make the worst number most likely or even certain to go. An 

interesting altemative, intended to reduce premature convergence, was introduced by 
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DeJong when tackling a function designed to have multiple local maxima. For each 

member of the new generation, a small number C (the crowding factor) of the old 

population are chosen at random. The one with the highest number of bits in common is 

replaced by the new string. This effectively introduces competition between strings that 

are close together in the parameter space, discouraging convergence on one good spot. 

The strategy gave significantiy enhanced performance on the multi-modal function. The 

required value of the crowding factor C is surprisingly small - 2 or 3 for a population of 

100. If it is much larger then the system will have difficulty converging on any 

maximum. 

A significantly different GA model uses a generation size of just one. This was 

introduced by Whitley with his Genitor system [Whitley and Kauth, 1988], and termed 

steady-state reproduction by Syswerda [1989]. Genitor is very conservative, the 

offspring is only added to the population if its performance exceeds the current worst, 

which is then deleted. An apparent drawback of this method is that the one-at-a-time 

selection procedure inevitably suffers from the same kind of sampling error as roulette 

wheel selection. This is tmlikely to affect good strings, since they will in any case 

survive for many evaluations (until they become the worst), but may result in the weak 

strings getting less chance to breed than they should. This potential loss of diversity is 

moderated by ensuring that there are no duplicate strings. However, the potential 

sampling error on poor strings combined with the very conservative memory of the 

good ones suggests that the system may have difficulty in escaping from local minima. 

This is supported by Whitiey's results on DeJong's original test set [Whitley, 1989]. 

3.5 Reproduction and coding 

This section discusses the various operators used to create a new generation from the 

strings selected to be parents. The key to the explorative power of GAs is held to be 

recombination. The numerical arguments in favour of recombination are easy to see 
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[Davis, 1991b]. Suppose two new alleles are required to cause a big fitness 

improvement in a population. Such new alleles can only come from mutation, which 

happens infrequently, say with a probability of 10"̂  per reproduction. If each new allele 

presents some advantage, then without recombination, strings containing one or other 

will eventually appear and prosper, but still have to wait for another rare mutation to 

acquire both. With recombination it requires only that two strings each with one of the 

alleles interbreed. 

Despite this, there have been claims that recombination contributes nothing to the 

optimisation process [Fogel and Atmar, 1990]. Whether or not it does contribute 

usefully depends very much on how it interacts with the underlying coding of the 

strings. 

3.5.1 Coding 

One ofthe important differences between the other methods in evolution strategies and 

Holland's GA is the form of coding of the parameters. Other approaches hold the 

parameters as normal computer variables: integer or real as appropriate. While some 

work on GAs also uses this form of coding, Holland specified a bit-string coding. Some 

problems contain boolean parameters for which such a coding is ideal. However, real or 

integer parameters may be coded with arbitrary precision by using sufficient bits. Any 

digital computer will have such a bit coding in any case, but the details are usually 

hidden from high-level languages. 

Whether or not to use bit coding is a contentious issue. GA-purists tend to regard real-

coded algorithms as not being proper GAs. Meanwhile more pragmatic experimenters 

have produced good results with real coding. We shall first consider the advantages 

claimed for bit coding. 
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Access to the bit level gives the crossover operator the ability to explore the whole 

search space. Given just the strings containing all ones and all zeros, repeated 

application of simple crossover can in principle produce any desired bit pattem, and 

therefore any parameter values. If the parameters held directly as real values, then 

crossover can only explore new combinations of the values existent in the population. 

Actually the same is tme of bit-coded GAs, crossover cannot affect a bit that has the 

same value in every member ofthe population. It is the role of mutation to replace bit 

values that may have been lost so that crossover may form new combinations. Real-

coded algorithms depend more heavily on mutation to provide new values. Since 

mutation is random, it will desttoy good parameter values as well as improving bad 

ones. 

A possibly more important reason for using bit coding has to do with the way the search 

space is sampled. It maximises the. effect knovm as intrinsic parallelism, a prediction of 

schema theory, to which we now turn. 

3.5.2 Schemata 

A problem with any optimisation procedure is credit assignment. Suppose we have a 

good result: which ofthe parameters caused it? Most likely several in combination. A 

similarity template or schema, in this context, specifies some of the parameters, leaving 

others as "don't care" (usually shovm as "*"). Schemata provide a way of describing the 

underlying similarities between successful strings. There are many such schemata 

contained within even a short binary stiring. For instance 1101 contains 11**, *10*, 

*1*1: 16 (2"̂ ) in all. All 16 of these schemata are selected and evaluated when the 

complete string is. The reproduction operators are processing not only the basic strings 

but also all the constituent schemata. Each schema is likely to be represented by many 

strings, so it is possible to work out an average score for each. Such explicit calculation 

is unnecessary, however, as the process is automatically handled by the selection of 

whole strings, good schemata will thus tend to increase in numbers. Using f, as the 
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fitness of schema s, C/g) as the number of copies in the population at generation g and 

/ as the average fitness of the whole population, we can write an expression for the 

expected number of copies in the next generation: 

E(c,{g+\))=C,{g)^p{s) (3.1) 

The unexplained term p(s) is the probability that the schema survives the reproduction 

operators. The likelihood that a schema is affected by mutation depends on the number 

of defined bits in the schema, known as the order ofthe schema. The likelihood that a 

schema of order % survives mutation is {\-p^)°\ where p„ is the probability of 

mutation at each bit. For the typically small values of p„ that are used, this may be 

approximated by (1 - Osp^)- Note that some users takep^ to be the probability that a bit 

is randomly reset, so that the chance of it being changed is actually half p„. This is 

implemented in Grefenstette's public domain Genesis package [Grefenstette, 1987], 

though it has been changed back to the more natural use in Schraudolph's GAucsd 

development of Genesis [Grefenstette and Schraudolph, 1992]. 

The probability that a schema survives crossover is a function of its defining length d,. 

This is the distance between the first and last defined bits. Thus the schema 1* 1** has d, 

= 2. There are two possible positions where a crossover could come between the 

defining bits. Short schemata have a proportionately better chance of surviving 

crossover than longer ones. For a string of total length /, the chance of a schema 

surviving a single point crossover with paobabilty p^ is 

p{s)>l-p,-^^ (3.2) 

because there are (/ - 1) possible positions for the cross site. The inequality exists 

because, unlike mutation, crossover does not imply loss of the schema. In the limit. 
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crossing two identical strings will have no effect on any schemata. So the calculated loss 

is a worst case. 

/ / E(c,{g+l))>C,{g) ds 
(/-I) ^^"'" ^-PcTri\-(^sPi (3.3) 

This is the schema theorem, originally from 'T/ze fundamental algorithm of Genetic 

Algorithms" by Goldberg [1989b]. If the fitness of a schema is sufficiently above 

average to outweigh the loss terms, its proportion in the population will grow 

exponentially. This is most likely for short defining length, low order schemata. 

One source of the power of GAs is that many schemata are being processed 

simultaneously. The number may be estimated [Holland, 1975; Goldberg, 1989b] as the 

order of m\ where m is the size of the population. This phenomenon is known as 

intrinsic parallelism, and has been described as the only case where an exponential 

explosion works to our advantage. 

The order of m^ estimate hides an assumption as to the value of m, which is chosen to 

expect one copy of each schema being processed. The derivation of tiie estimate is given 

by Goldberg [1989b]. The chance that a schema survives crossover is related to its 

defining length. Depending on the selection pressure within our GA, we may set a 

required survival probability for schema that will be processed usefully. By using the 

survival probability equations from above, we may calculate a maximum useful schema 

length 4. The estimate for the number of usefiilly processed schemata n, is then 

[Goldberg, 1989b]: 

n,>m{l-h + l)2'^-^ (3.4) 
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The order of w estimate arises from assuming a population size of 2^^'^. This is done 

to prevent over estimating the total number of schemata by having many copies of each 

in a large population. 

For a given small population, clearly n^ is highly dependent on l^. This is the origin of 

the desire for a low cardinality alphabet, i.e. a coding where each gene has few possible 

alleles, preferably 2, since then the length ofthe string, and therefore the value of/̂  will 

be maximal. 

Unfortunately, the success of this parallel search is not guaranteed. It requires that two 

good genes in combination will produce a better result than either alone. This is known 

as the building block hypothesis. It rates lots of schemata in parallel, but how does the 

performance of a given schema, say 1****, relate to the performance of more defined 

schemata that incorporate it, such as 1***1? For an extremely simple optimisation 

problem such as maximising the number coded by. the binary sfring, the combination is 

straightforward. 1**** will be highly rated, ****! much less so, but higher on average 

than ****0, so its numbers should increase. If it does not already exist, crossover will 

soon produce 1***1, which will be better than either parent. 

Although tasks like that have been used for testing GAs, it is not immediately clear that 

the hypothesis applies so well in other problems. It is possible to test the behaviour of 

GAs under such circumstances by designing problems that are deliberately deceptive 

and thus might be expected to mislead the algorithm [Goldberg, 1987; Vose, 1990]. 

Suppose that an integer parameter happens to have a maximum at 8. If the function is 

smooth, then 7 will also get a good score, but its binary coding will be very different. 

The schema **111 may be quite highly rated, but it is unlikely to reach 01000. The use 

of Gray codes is one possible solution for this "Hamming cliff problem that we turn to 

that in the following section. 
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3.5.3 Gray codes 

Gray codes have the property that the binary codings of adjacent integers differ in only 

one bit, see Appendix B. For instance, the Gray code for 7 is 0100, for 8 it is 1100. This 

means that such changes can always be made by a single mutation. The use of Gray 

coding might therefore be expected to improve the hill-climbing ability of a GA. Its use 

was suggested by Hollstien [1971], who reported tentative benefits, and by Bethke 

[1981], who also reported empirical success. Camana and Shaffer [1988] report that it 

improves performance on DeJong's classic 5 problem test suite [DeJong, 1975]. Some 

authors have therefore adopted Gray coding as standard, while it is an option on the 

Genesis package. 

There are also arguments against the use of Gray codes, to do with the schema theorem. 

Goldberg [1989a] hints at a problem in his analysis of the use of Walsh codes in 

deception, but it is quite easy to demonstrate. With simple binary coding, a given bit 

always makes the same contribution to the value ofthe extemal parameter. With Gray 

coding, this is not the case. Thus, coding integers from 0 - 1 5 in normal binary, the 

schema ***0 has an average value of 7, while ***1 has an average of 8, reflecting the 

value of the least significant bit. With Gray coding, both schemata have the same 

average, 7.5. There is no longer any information about the merits of setting this bit from 

the overall averages, which suggests that the degree of implicit parallelism will be 

reduced. Such interdependence between bits is commonly knovm as epistasis, another 

term borrowed from biology. 

The effects of a single bit mutation clearly differ between the two coding strategies. 

Mutating the most significant bit in a standard binary coding causes a big change in the 

number being represented. In Gray coding, adjacent numbers differ in only one bit, so it 

might appear that a single bit mutation will cause less dramatic effects. However, there 

are still highly significant bits in a Gray code. For instance, the Gray code for 0 is 0000, 

as with ordinary binary, but 15 is 1000. The possible big changes balance out the small 
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ones, so that the expected average change caused by a single mutation is the same for 

both codings 3.75 over the range 0-15. 

If the use of Gray coding interferes with the parallel search, but makes mutation-driven 

improvement easier, a Gray coded GA should be more sensitive to the mutation rate. 

This prediction was tested by looking at DeJong's test set, using the Genesis package 

[Grefenstette and Schraudolph, 1992]. 

The test set, although quite carefully constmcted to include a variety of problems, is 

now showing its age. The five functions are given in Table 3.1. They have been heavily 

criticised by Davis [1991a], who shows that a simple bit climbing algorithm out-

perfonns standard GAs on all but one of them. This is because they are rather regular, 

for instance the optima are conveniently placed at zero in Fl and F4 and at one end of 

the range in F3. F5 looks frightful, being a plane with 25 sixth order fox-holes, differing 

only slightly in depth. However, the holes are laid out on a regular grid, that actually 

makes solution rather easy since a change in only one parameter can cause the move to 

the adjacent hole. It seems clear from Davis's results that these functions should no 

longer be used for comparison of new algorithms. They are used here simply to 

demonstrate some of the differences caused by changes in coding strategy. 

Except for F4, all the mns used a population and generation size of 100, the elitist 

strategy and a two-point crossover probability of 0.6 (if not selected for crossover, a 

string is passed to the next generation unaltered except for possible mutation). They 

were run for 4000 evaluations, or, since strings that were simply duplicates of a parent 

were not re-evaluated, until two generations had passed with no evaluations. F4 has a 

much longer string than the others, and showed a tendency to premature convergence 

with a population of 100. It was run with a population of 400, for 20000 evaluations, but 

with duplicates being re-evaluated, since the function has noise added. The results are 

shown in Figure 3.1a to 3.1 e. The graphs give the best value obtained, averaged over 10 
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experiments, at a variety of mutation rates. Note that DeJong's functions are defined as 

minimisation tasks, so low values are good. 

Function Number 

Fl 

F2 

F3 

F4 

F5 

Fimction 

3 

100(xl-X2f+{l-Xif 

5 

^int eger{xi) 

30 

y^/jc, +Gauss{0,\) 

n nn7+y ' 

1=1 

Range 

-5 < jĉ  < 5 

"̂  .-2 <Xi<2 

-5 <x^<5 

-1.3<x,. <1.3 

-65 < X; < 65 

Table 3.1: DeJong's five test fimctions. 

The most remarkable result is given by the simplest unimodal task, Fl. The Gray coded 

algorithm showed a very marked dependence on mutation rate, being significantiy better 

than normal binary coding only over a fairly narrow band, and much worse if the 

mutation rate was too low. This fits with the hypothesis that Gray coding is more 

dependent on mutation for progress, but is potentially better at hill climbing. The results 

for F2 and F3 show a similar mutation-dependency for Gray coding, for which the 

results are somewhat worse than simple binary coding. Gray coding appears better for 

F4 and F5. Note that the optimum of F4 is undefined, because of the Gaussian noise 

tenn, which accounts for the negative values shovm on the graph. In F4, mutation 

appears to have no beneficial effect at all. 
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These results have been includes to show a number of effects: 

• Even when averaging over 10 mns, there is a fair amount of noise in the data. GAs are 

stochastic algorithms, and any paper claiming comparative results based on just one mn, 

of which there are a surprising number, should be treated with suspicion. 

• Mutation, on the whole, has the expected effect, too little or too much being harmful. 

Too little usually results in premature convergence, too much is dismptive. However, 

the ideal rate varies between different problems. It is related to string length /, a 

reasonable first approximation being 1//. 

• Gray coding is certainly not a universal solution. Even in the simple hill-climbing case 

of Fl, precisely the sort of problem it is intended to address, its relative sensitivity to 

mutation rate means that its advantage over simple binary coding is not consistent. 
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It is not surprising that Gray codes are not consistently better. It can be shovm that all 

fixed coding schemes of a given length work out equally well when all functions are 

averaged over [Camana and Schaffer, 1988]. However, this result depends on averaging 

over literally all functions, including those which are random look-up tables. Any given 

coding then simply reshuffles the entries in the table. Attempting to optimise such 

functions is rather fmitless, real-world problems usually have at least some continuity. 

The relative empirical success of Gray coding suggests that it matches the GA to the 

continuities of such problems, at least better than the inherently discontinuous binary 

coding. 

3.5.4 Real value genes 

Goldberg [1990] has discussed arguments for and against real coding. He argues that 

selection by the GA rapidly reduces the range of parameter values present in the 

population, to form a virtual alphabet, which is then used for further processing. His 

reasoning may be summarised as follows. In the early generations of a GA, each 

parameter can be treated individually, since there has not been time to collect much 

information about combinations of parameter values. An average fitness can be 

calculated (in principle) for all values of each parameter, by integrating over all values 

of all the other parameters. Goldberg calls this a mean slice. Unless the parameter has 

no effect on the function, some parts of its range will be better than others. 

Goldberg and Deb [1991] show that these above-average regions will come to dominate 

the population very quickly, in the order of log(log(m)) generations, where m is the 

population size and log is in base 2. Thus for a typical population of 100, only above-

average alleles are left after 3 or 4 generations. Note that an allele in this case may be a 

sizeable region of the parameter's range, and that there may be several disconnected 

regions within the range. After the initial selection has taken place, the action of 

crossover is limited to exploring combinations of these sub-ranges. Figure 3.2. Goldberg 

argues that, presented with a high (infinite) cardinality alphabet, the system effectively 
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produces its own lower-cardinality virtual alphabet, one specifically tailored to the 

problem in hand. This may explain the empirical success of real-coded GAs. 

Range of 

parameter B 

Range of parameter A 

Figure 3.2: Simple crossover with a virtual alphabet. After the first few 
generations, the parameter values become restricted to the grey areas. 
Crossover can then only explore the intersection of these areas. 

Goldberg then goes on to point out that for some functions, the initial, individual 

parameter fitness averages may not hold the global solution. Figure 3.3 is an example of 

a function that is designed to confuse such a real-coded GA. The central maximum is 

too small to have much effect on the global averages, so in the initial few generations 

the population settles into the two broad humps. Thereafter, no amount of crossover will 

reach the central peak. Goldberg describes such functions as being blocked, and argues 

that this is a potentially serious shortcoming of real-coded GAs. 
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Figure 3.3: Example of a function that might, by Goldberg's analysis, cause 
problems for a real-coded GA. 

However, this blocking presupposes the traditional form of crossover, that cuts strings 

between genes. Just as for mutation, we may ask what is an appropriate form of 

recombination for real-coded genes. Again, an obvious possibility works quite 

differently, cross the gene values to produce a new value somewhere in between those 

ofthe parents. Such a recombination works extremely well on the function shovm in 

Figure 3.3, because the global maximum is convenientiy situated in the centre of the 

range, between the two broad local maxima. Radcliffe [1990] reports that this 

recombination, that he calls flat crossover, along with a mutation operator that 

introduces new alleles at the end of a gene's range, works better than binary coding on 

the first four of DeJong's fimctions. Again this is not surprising, given their 

convenientiy sittiated maxima. However, it should be clear that the form of 

recombination operator can dramatically affect the behaviour of the GA and has the 

potential to overcome Goldberg's concem about blocking. 
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3.5.5 Adaptive coding 

A problem with coding real variables in a fixed number of bits is the limit on result's 

precision. When coding a problem for a GA, a sensible designer will restrict each 

parameter to a reasonable range, but there will still be some compromise between 

covering this range, and sufficient precision in whatever tums out to be the important 

part of it. Schraudolph and Belew [1990] have suggested a solution, which they call 

Dynamic Parameter Encoding (DPE). Genes initially code for the whole of the 

parameter range. However, when a gene converges sufficiently on one part ofthe range, 

the coding automatically "zooms in" on this area. The allocated number of bits is thus 

brought to bear on a reduced parameter range, increasing the available precision. The 

process may be iterated as the GA residences in on the best area of each parameter. This 

method means that each gene can use fewer bits, resulting in faster operation and 

convergence ofthe GA. Schraudolph and Belew report encouraging results, again using 

DeJong's test set, but there are attendant risks, since it is possible to narrow the search 

too quickly and miss something important. Thus, their performance on the multi-modal 

F5 was worse than without DPE, because there was insufficient resolution to find the 

correct hill to climb. 

A more complex adaptive coding strategy has been suggested by Shaefer [1987]. His 

system, knovm as ARGOT, dynamically adjusts the parameter range coded by each 

gene. If the population clusters in a small part ofthe range, the boundaries are drawn in, 

much as in DPE. However, they may also move out if the population is widely 

distributed. If the population approaches one end ofthe range, the boundaries are shifted 

to re-centre it. The boundaries may also be "dithered", moved randomly by small 

amounts to effect a general mutation. Finally, the number of bits used may be changed, 

depending on the degree of convergence. Shaefer's results, for a number of fimction 

optimisations, indicate that the adaptive strategy compares well with a simple GA 

approach. However, it is obvious that there are many parameters associated with 



Chapters. Principles of Genetic Algorithms 44 

decisions about changing the coding, and these are not specified. It seems likely that 

different adaptive strategies would be necessary for different problems. Referring to the 

range expansion, Schraudolph and Belew [1990] comment that they "believe it would be 

impossible to establish a well-founded, general trigger criterion for this operator". 

Nevertheless, such adaptive methods clearly have potential. 

3.5.6 Conclusion 

In this section we have looked at some possible codings and reproduction operators for 

numeric parameters. Many optimisation problems can be expressed purely in numerical 

terms, but there are also many that cannot, particularly order-based tasks such as the 

travelling salesman problem, while the coding for all examples used in this thesis is 

largely boolean. It is necessary that the reproduction operators can process similarities 

in the task in such a way as to combine useful building blocks. The real art of applying a 

GA to a task is therefore: 

1. To identify the potential building blocks in a problem. 

2. To design operators, principally recombination, that can process these building 

blocks. 

Davidor [1991] has counted 56 different recombination operators in the literature. It 

may seem unfortunate that so much design effort is needed for each new application of a 

GA. It may also be difficult to identify what the suitable building blocks are. 

3.6 Tuning GAs 

Optimisation tasks ofthe sort considered in this thesis consist essentially of two parts: a 

search ofthe parameter space and hill climbing. There are numerous techniques for the 

second job (see Schwefel [1981] for a comparative review), one approach to the first is 

to restart repeatedly from different positions. The two phases are traditionally called 
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exploration and exploitation. GAs have the ability to do both. Some researchers seek to 

advance on the Holy Grail of a universal optimisation algorithm, that will cope with any 

fitness surface. DeJong's work aimed to provide a set of parameters for a GA that are 

reasonably robust, but such general algorithms will inevitably be beaten on any one 

problem by an algorithm that is tuned to the task. 

The effect on the balance of exploration and exploitation of a number of GA parameters 

may be summarised: 

Population size: A small population will tend to converge more rapidly. 

Generation size: Changing only a fraction of the population each generation increases 

inertia, preventing convergence. 

Mutation rate: Depends on the size of mutation. Big mutations encourage exploration, 

small mutations can be a means of hill climbing. 

Recombination rate: Higher recombination rate encourages exploration while the 

population is diverse, but reduces it when the population has converged. 

Selection pressure: If selection pressure is increased, either by scaling fitness values or 

by a high value for the scaling factor in rank-selection, hill-climbing will be encouraged. 

Crowding: Maintains diversity, thus promoting exploration. 

Elitist strategy: If the best individual from the previous population always survives, hill 

climbing is encouraged. 

One possible method of matching these parameters to a given problem is to use a meta-

level GA to tune them. The meta-GA specifies a population of GAs that act on the target 

problem. These are evaluated and the information used to improve the match of 

parameters to the task. CPU demand rather mles out this approach for any real-worid 
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task, but Grefenstette [1986] was able to provide an improvement on DeJong's 

parameter set for his 5 functions. 

Other workers have attempted introducing controls within the GA, which monitor 

convergence of the population and adjust control parameters accordingly [Shaefer, 

1987; Whitley, 1990]. Goldberg argues against such "central authority" in his "Zen and 

the art of Genetic Algorithms" [Goldberg, 1989a], based on. that it is not easy to 

establish robust criteria for making any adjustments. However, Ackley [1987] reports 

empirical success with an ingenious system he calls "Stochastic iterated genetic 

hillclimbing". This implements a kind of voting system, such that the algorithm climbs 

a hill until it effectively becomes bored with it, whereupon it goes off to find another 

hill to climb. 

Tanese [1987] has suggested a multiple population GA, intended for miming on 

separate processors, where the different populations have different parameter settings, 

the hope being that one will be near the ideal for the problem in hand. 

An altemative approach to the tuning problem, mentioned in Section 3.5.6 is to adapt 

operator probabilities while the GA is running. One approach to this is to code, say, the 

mutation rate on the genetic string, where it will be selected along with the target 

parameters. Another, suggested by Davis [1989] takes a rather more interventionist 

approach of keeping a record ofthe improvement in fitness caused by each operator, and 

using this score periodically to adapt the probability of applying each operator. Montana 

and Davis [1989] use this method to good effect in evaluating potential operators for use 

in training neural network weights. It has the advantage that different operators may be 

of value at different stages of the search, the adaptive procedure allows those that are 

contributing most at any point to be selected. It also allows different operators to be 

compared. 
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3.7 Evaluating GAs 

Traditionally the performance of GAs, and other optimisation techniques, has been 

reported in terms of online and offline performance. The latter is the average of the best 

individuals in each generation, the former refers to the average performance of all the 

strings since the start of mn. This is of particular relevance when the system being 

optimised is a real-time one, like mnning a plant, and where getting it wrong costs 

something. Another measure is best-yet, simply the best performance so far seen. An 

altemative is the number of evaluations to achieve a given performance. That means 

evaluations, not generations, is important, since for any complex problem evaluations 

are expensive. Herdy [1991] reports results for a system with a variety of population 

sizes, from 1 to 40. The size 40 system requires 134 generations to completion, which is 

claimed to be better than the single string system, which takes 3072. The single string 

system requires fewer evaluations than any ofthe others, the result of a very simple hill-

climbing task. 

A complication arises because ofthe inherent noisiness of GAs. As has been noted, it is 

important to average over a mmiber of runs. Even then, comparison is complicated by 

the typically non-normal disttibution of results, especially with multi-modal functions. 

It seems that an algorithm that consistentiy finds the global maximum will be better than 

one that does so on average more rapidly, but sometimes fails altogether. In the end, it is 

important to specify the test conditions fully. 
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The GAP model 

This chapter describes the Genetic Algorithm Processor (GAP) model and its behaviour. 

Firstly the motivation for developing the GAP model, then a description ofthe basic 

GAP design and finally, a description ofthe pipelining in the design. 

4.1 Justification for the GAP model 

Genetic algorithms have been applied to many problems and have been recognised as a 

robust general-purpose optimisation technique. However in many optimisation problems 

in engineering software implementations are too slow to be useful. 

Simple empirical analysis of many basic GAs indicates that a small number of simple 

operations and the fitness fimction occupy 80-90% of the total execution time. If m is 

the population size and g is the number of generations, a typical GA executes each of its 

operations mg times. For complex problems, large values of m and g are required, so it 

48 
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is essential to make the operations as efficient as possible. Pipelining aids the efficient 

use of all of the hardware resources with maximum speed but it has its limitations and 

we cannot expect a very large speed improvement. 

The stmcture and simplicity of a GA's computations provide a good basis for hardware 

implementation. Pipelining of a GA's operations is straightforward. For example, the 

selection, crossover, mutation and fitness operators can be easily chained together to 

form a coarse-grained pipeline. Section 4.4 provides a more detailed description of the 

pipelining available to the GAP. 

Although the basic GA's operators are simple to implement in hardware, each problem 

needs some adjustments to the design. To use a general-purpose GA engine would 

require some special changes in the GAP hardware characteristics for a new application. 

The inflexibility of conventional hardware inhibits implementation and use of a general-

purpose hardware-based GA. This is a major reason why hardware-based GAs have not 

been widely implemented to date. 

The reprogrammability and low cost of FPGAs circumvent the problem of hardware 

inflexibility, while still maintaining a great speedup over software. The GAP design is 

implemented on FPGA technology and the extemal unit for evaluating the performance 

of each member is separate from the GAP. It will allow the user to apply the GAP 

model to a variety of different applications. 

4.2 Basic Genetic Algorithm Processor design 

Primarily there should be three connections between the GAP and the rest of the model 

(Figure 4.1). 

1 - A Setup Unit (SU) which is implemented in software on a host computer. This unit 

is responsible for generating an intial population which, in the absence of precise 

information about the problem, is made up of random strings. It also assigns a low 
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fitness value to each of these strings and downloads this data to the GAP along with the 

starting parameters. 

2 - A Memory Unit (MU) that stores genetic strings and fitness values. The GAP 

provides all necessary control signals to control the Memory Unit. It must be considered 

that the bit length of memory will vary with the application. For the experiments in 

Chapter seven, 8 bit, 16 bit, 24 bit, 32 bit and 48 bit length for memory are considered. 

The GAP was recompiled for each different bit length. 

3 - A Fitness Unit (FU) which is extemal to the GAP and must be designed specially for 

the problem at hand. It accepts a string from the GAP as a controlling input then applies 

this to the problem, measures the performance (e.g. from the error signal) and retums a 

fitness value to the GAP. The rate of fitness evaluation is also problem dependent. High 

speed signal processing technology is normally required to evaluate and retum each 

fitness value at a rate to match the presentation of strings from the GAP. 
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Figure 4.1: Extemal coimections to the GAP. 
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The process starts by filling the Memory Unit with the random population and other GA 

parameters from the Setup Unit. Then the Setup Unit sends a "Start" signal to the GAP. 

The GAP detects this signal and mns the GA using the parameters already in memory. 

After the set number of generations, the GAP sends an "End" signal to the Setup Unit 

which then reads the final population from the shared memory. 

4.2.1 Development environment of the GAP 

The GAP, like other hardware design projects, could have been developed at four 

different general levels: the behavioural level, the Register Transfer Level (RTL) the 

stmctural (gate or transistor) level, and the physical (mask) level [Weste and 

Eshraghian, 1993]. The GAP hardware was designed at the behavioural level using a 

Hardware Description Language (HDL), a high-level language used to specify hardware 

designs. The reasons for this choice are as follows. 

• A HDL allows the designer to specify the behaviour of a complex system in terms of 

the actions performed by different modules and the connections between these modules. 

Contrast this with specifying the gate-level stmcture ofthe modules. 

• A HDL allows for general (parameter-independent) designs to be created. The specific 

designs implemented from the general designs depend upon designer-specified 

parameters provided at implementation time. For example, many aspects of the GAP 

such as I/O bus size, storage facility size and pseudorandom number generator size 

depend on the size of each population member (m). Thus, some of the general design 

aspects can be declared as a function of m, which is provided at implementation time. 

This allows for quick reimplementation ofthe system if m changes. 

The HDL chosen for this thesis is VHDL. VHDL was selected because of its 

widespread use and standardisation. The following additional tools were used in the 

development ofthe GAP. 
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• Design Architect from Mentor Graphics was used to define the behaviour of the GAP 

in VHDL code and compile the code. 

• QuickSim II and QuickVHDL from Mentor Graphics was used to simulate the 

compiled VHDL code. The simulations were used to verify the design's correctness 

(Section 5.1) and analyse its performance (Section 5.2). 

• AutoLogic from Mentor Graphics was used to synthesise the VHDL code to gate-level 

schematics composed of Xilinx components. 

• FPGA Foundry from NeoCAD was used to map the Xilinx schematics to a file 

suitable for programming the Xilinx FPGAs. 

4.2.2 A look at the overall design 

A VHDL model of a general Genetic Algorithm was created. The model allows the 

GAP'S user to choose several parameters which are a subset of the general GA 

parameters described in Appendix A. These user-controlled parameters are: 

• the initial population size and its members, 

• the number of generations in the GAP nm, 

• the initial seed for the pseudorandom number generator, 

• the mutation and crossover probabilities. 

Values for these parameters would be selected by the user in Setup Unit which would 

then pass them to the Memory Unit to initialise and start the GAP. 

Other GA parameters, such as the length ofthe member strings and the coding scheme, 

would be indirectiy specified according to the fitness function. These parameters are 

determined by the way the fitness function decodes and evaluates the population 
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members. Note that other stopping criteria, other than fixed number of generations, can 

be easily implemented. After a certain number of generations, which will be specified 

by a GAP parameter, the GAP looks at the final population and determines if the 

stopping criteria are met. If so, the GAP halts and reports the final population to the 

user. Otherwise the GAP continues from where it stopped. Thus, nearly all the general 

GA parameters listed in Appendix A can be directly or indirectly specified in the GAP. 

4.2.3 The modules and their functions 

The modules in Figure 4.2 are based on the GA operators defined in Goldberg's simple 

genetic algorithm (sGA) [Goldberg, 1989b]. Many other GA models exist, but the GAP 

was based on the sGA because the sGA is simple to understand and implement. The 

sGA is also a well-known GA implementation. The basic stmcture ofthe sGA is similar 

to description in Section 3.1. More detail conceming the fiinctionality of the GAP 

modules and their sGA cotmterparts is given below. 

Fitness Unit 

Mutation 

Module 

T 
Crossover 

Module 

Figure 4.2: Module-level ofthe overall GAP model. 



Chapter 4. The GAP model 54 

The GAP modules operate concurrently and together form a coarse-grained pipeline. All 

modules are written in VHDL and are independent of the operating environment and 

implementation technology (e.g. Xilinx FPGAs or fabricated chips) except for the 

Memory Interface Module. The functionality of this module varies according to the 

physical memory attached to it and the desired interface between the GAP and the user. 

The basic functionality ofthe GAP design in Figure 4.2 is as follows. 

1. After all the parameters have been loaded into the shared hiemory, the Memory 

Interface Module (MIM) receives a "Start" signal from^ the Setup'Unit. The MIM acts as 

the main control tmit ofthe GAP and is the GAP's interface to the memory. 

2. The MIM informs the Fitness Module (FM), Mutation Module (MM), Crossover 

Module (CM), Selection Module (SM), Read Module (RM), and the Pseudorandom 

Number Generator (PNG) that the GAP is to begin execution. Each of these modules 

requests necessary parameters from the MIM, which fetches them from the appropriate 

places of the shared memory. 

3. The Read Module starts the pipeline by requesting population members and their 

fitness values from the MIM and passing them along to the Selection Module. 

4. Whenever the Selection Module receives a new candidate A from the RM, it 

determines if A is to be selected (the selection process is described in more detail 

below). If not, it waits for a new member to be sent by the RM. Otherwise, it stores A 

and proceeds to select a second member B in the same manner. After B has been 

selected, the pair (A and B) are sent to the Crossover Module for further processing. 

Once the pair is sent, the SM resets itself and restarts the process to select another pair. 

5. When the Crossover Module receives the pair of members A and B, it decides, using a 

random value from the PNG, whether to perform crossover. When completed, the new 

members ̂ ' and B' formed by crossover of ̂  and B, are sent to the next module. 
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6. When the Mutation Module receives A' and B', it decides, using a random value, 

whether to perform mutation. When completed, the new mutated members A" and B" 

aie sent to the Fitness Module for evaluation. 

7. The Fitness Module accepts ^4" and B" and evaluates them in an extemal Fitness Unit. 

Ideally the FU completes its evaluation in only one clock cycle. After evaluation, the 

FM writes the new members to memory through the MIM. The FM also maintains some 

records conceming the current state of the GAP such as the sum of fitness values in the 

current population and the number of generations. These records are used by the SM to 

select new members and by the FM to determine when the GAP mn is completed. 

8. At the end of the GAP nm the FM informs the MIM of completion which in tum 

stops the GAP modules and sends the "End" signal to the Setup Unit. 

Each ofthe GAP modules is described in more detail below. 

4.2.3.1 Pseudorandom Number Generator (PNG) 

The Pseudorandom Number Generator generates a sequence of pseudorandom bit 

strings based on the theory of linear Cellular Automata (CA). CA was shovm by Serra 

[1990] to generate better random sequences than Linear Feedback Shift Registers 

(LFSRs) which are commonly used as pseudorandom number generators. The CA used 

in the PNG consists of 16 altemating cells that change their states according to mles 90 

and 150 as described in [Wolfram, 1984]: 

Rule 90: s(i)+ = s(i-l) 0 s(i+l) 

Rule 150: s(i)+ = s(i-l) 0 s(i) 0 s(i+l). 

Here s(i) is the current state of site (cell) i in the linear array, s(i)+ is the next state for 

s(i), and © is the exclusive OR operator. Thus in Rule 90 a cell is updated according to 

the inputs from its neighbours while in Rule 150 each cell also considers its state when 
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Updating. It has been shovm that a 16-cell CA whose cells are updated by the mle 

sequence 150-150-90-150...90-150 produces a maximum-length cycle. It cycles through 

all possible 2 bit patterns except the all Os pattem, and has more randomness than an 

LFSR of corresponding length. This scheme is implemented in the PNG. 

The PNG is a key component of the GAP model and its output is used by three GAP 

modules. The PNG supplies pseudorandom bit strings to the Selection Module for 

scaling dovm the sum of fitness values. This scaled sum is used when selecting pairs of 

members from the population. The PNG also supplies pseudorandom bit strings to the 

Crossover Module and Mutation Module for determining whether to perform crossover 

and/or mutation and for choosing the crossover and mutation points. 

4.2.3.2 Memory Unit (MU) 

The memory is not tmly part of the GAP model, but it is presented here for 

completeness. It is assumed that some memory is available to the GAP model and that 

its specifications are knovm to the Memory Interface Module. The memory is shared by 

the MIM and Setup Unit (Figure 4.1) and acts as the communication medium between 

them. Before the GAP mn, the Setup Unit writes the GA parameters specified in Section 

4.2.2 into the memory and signals the MIM. After receiving the signal, the MIM 

distributes the parameters to the appropriate modules. During the GAP run, the 

population members are read from and written to the memory by the MIM. When the 

GAP run is finished, the memory holds the final population which is then read by the 

Setup Unit. 

The important thing about memory is the word size (bit length) of memory and the 

capacity. For simple operation ofthe GAP the memory capacity is not very important. 

Most GA algorithms are operate with a population of less than 200 and the 

recommended population is about 100 members. On the other hand the bit length of 

memory is very important and affects the overall performance ofthe model. Memory bit 
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length will be discussed fiirther in Chapter 7 and 8. For the GAP model, experiments 

were conducted with 8, 16, 24, 32 and 48 bit memories. 
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Figure 4.3: The Memory Unit map. 

Figure 4.3 shows the contents of the Memory Unit during GAP processing. In the 

memory there are k GA parameters and two populations each with m members. The GA 

parameters are located in the bottom of the memory. They are initialised by the Setup 

Unit in the beginning. The next section is the first population which will be initialised 

with random member strings by the Setup Unit. The top section, the second population, 

will be filled during operation of the GAP. Each member has two data items: the 

member bit sfring and the fitness value ofthe member. For example, for a population of 

32 members a total of, ^+2*(32+32)= ^+128 locations are required. 
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4.2.3.3 Memory Interface Module (MIM) 

The Memory Interface Module is the only module in the GAP model which has 

knowledge of the GAP's environment. It provides a transparent interface to the memory 

for the rest of the model. At startup, the MIM acts as a control module and instmcts the 

other modules to initialise. During initialisation, the other modules send requests to the 

MIM for user-specified GAP parameters. These requests involve a simple handshaking 

protocol initiated by the requesting modules providing a coded address to the MIM. The 

MIM then converts this coded address to a physical memory address. The parameter 

received from memory is then passed on to the requesting module. When the GA mn is 

complete, (as signalled by the Fitness Module), the MIM stops the system and informs 

the Setup Unit of completion. 

As described in Section 4.2.3.2, two copies ofthe population are maintained. One copy 

Pt represents the population at time t and the other copy P,+i represents the population at 

time t + 1. During a run the RM reads from P, and the FM writes to P,+/. In memory, P, 

and Pt+i are stored in separate memory blocks, labelled PO and PI (for population 0 and 

population 1 in Figure 4.3). For ease of implementation, the mapping h: {P,, P,+i } -)• 

{PO, PI } altemates between generations by the MIM, e.g. if h(P,) = PO in the current 

generation, then h(P,) = PI in the next generation. At any given time the FM knows (by 

MIM) which of P, and P,+j is located in PO and PI. 

To make the GAP independent of its operating environment, the RM and FM only know 

the indexes ofthe population members they want to read or write rather than the actual 

addresses. Not requiring knowledge ofthe actual addresses simplifies porting the GAP 

to other operating environments. Therefore, it is up to the MIM to translate the indexes 

from the RM and FM to the correct addresses by adding the appropriate base address 

(i.e. PO's base address or Pi's base address) to the indexes. A signal line from the FM 

specifies which population is being read from and which is being written to. This signal 

value is toggled by the FM after every generation. 
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The MIM was designed to be the only GAP module required to be aware ofthe system's 

execution environment (e.g. population index). Thus design and technology changes are 

easier to accommodate and only the MIM need be modified to meet changed 

specifications. 

4.2.3.4 Read Module (RM) 

The Read Module constantly cycles through the current'population and passes the 

members on to the Selection Module. The roulette wheel selection process used by the 

sGA [Goldberg, 1989b] (Section 4.2.3.5) is independent ofthe olrder that the population 

members are searched. So constant cycling through the population works as well as the 

sGA implementation. The Read Module sends the index of a population member to the 

MIM, reads in the member, then increments the index and reads in the fitness value. The 

member and fitness value are then passed to the Selection Module. The index is then 

incremented modulo the population size so the next population member will be 

requested from the MIM. This process continues until the GA run is complete when the 

MIM stops all the modules. 

4.2.3.5 Selection Module (SM) 

The GAP'S selection method is similar to the implementation of roulette wheel selection 

fotmd in the sGA. Each time a new population member is required, the following 

process is executed by the Selection Module. 

1. Using a uniform real random number rand G [0,1], scale down the sum ofthe fitness 

values ofthe current population to get a fitness threshold: 

FitThreshold = rand * E (all fitness values) (4.1) 

2. Starting at population member 0, examine the members in the order they appear in the 

population. 
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3. Each time a new member is examined, accumulate its sum in a mnning sum of fitness 

values Fit_Sum. As soon as Fit_Sum > Fit_Threshold the member under examination is 

selected. Otherwise the next member is examined (Step 2). 

The Selection Module executes the roulette wheel selection process similar to the sGA, 

but it selects a pair of population members A and B simultaneously rather than one 

member at a time. It receives the sum of the fitness values of the current population 

members from the Fitness Module and scales dovm this sum by two random values 

provided by the Pseudorandom Number Generator. These two scaled sums, SumA and 

SumB, are stored for future use. Upon receipt of a population member M and its fitness 

from the Read Module, Ms fitness is accumulated in a running sum SumR. If SumR 

surpasses SumA at this time, then M is latched as the selected member A. Selected 

member B is chosen in the same fashion. Since the values SumA and SumB are 

determined by independent random numbers, selection of A and B are independent, 

concurrent processes. 

Once A and B are selected, they are sent to the Crossover Module for further processing. 

After sending A and B, the Selection Module resets SumR and scales dovm the sum of 

fitness values by two new random values to generate new values for SumA and SumB. 

When an entire generation has been selected, the FM resets the Selection Module so that 

it can use the new sum of fitness values in its calculations. This process repeats until the 

Selection Module is halted by the MIM at the end ofthe GAP run. 

4.2.3.6 Crossover Module (CM) 

The Crossover Module waits for a new pair of members A and B from the Selection 

Module. It then reads a pseudorandom unsigned binary integer randl from the PNG and 

compares it to the crossover probability Pc (also interpreted as an unsigned binary 

integer) that it received from the MIM as a user-specified parameter. If randl < Pc then 

crossover is performed between A and B forming two new members A' and 5 ' . A new 
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pseudorandom bit string rand2 is used as an index of A and B which indicates the 

crossover point. If randl > Pc then crossover is not performed and A'= A and B'= B. 

Because of this implementation, the crossover step takes only one clock cycle and arrays 

of multiplexers and inverters are essentially all that are required for doing the job. In 

contrast, the sGA has to cycle through each bit of the new member and copy the result 

to a new location that forces it to spend more time in the crossover operation. 

4.2.3.7 Mutation Module (MM) 

The Mutation Module waits for two new members A' and B' from the Crossover 

Module. It then reads a pseudorandom unsigned binary integer rand3 from the PNG and 

compares it to the mutation probability Pm that it received from the MIM as a user-

specified parameter. If rand3 < Pm then mutation is performed on a single bit in A'. The 

mutated bit is selected by another pseudorandom bit string rand4 which acts as a pointer 

into the bit string A'. The final new member is A ". The same steps are repeated for the B' 

member to produce B" and the new members are sent to the Fitness Module. Here the 

GAP differs from the sGA in that the sGA makes a decision about mutating each bit in 

A', effectively increasing the mutation probability. The GAP makes only one mutation 

decision for each new member and chooses the mutation point at random. This 

implementation decision was based on simplifying the design and speeding up the 

operation. 

The mutation step takes only one clock cycle in this implementation. In the sGA, 

mutation is slower because it is carried out bit by bit. On the other hand, in the GAP 

mutation will be decided for a new member and finally only one bit per member will be 

changed. 
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4.2.3.8 Fitness Module (FM) 

The purpose of the Fitness Module is to evaluate the population members mated by the 

Crossover Module and Mutation Module and insert them into the new population. 

Although there are control signals for asynchronous evaluation ofthe fitness value, ideal 

performance is only achieved if the fitness value can be computed in one clock cycle per 

member. 

When the FM receives a pair of members from the Mutation Module, it evaluates their 

fitness using the Fitness Unit and then writes the new members-fmd their fitness values 

to the appropriate memory location with the help of the Memory Interface Module. The 

FM then waits for the MM to send two more members. 

The FM also maintains a mnning sum ofthe fitness values for reporting to the Selection 

Module after each generation. The Selection Module will then scale down that sum with 

a random value and use the scaled sum in the selection process. Additionally, the 

Fitness Module maintains a record of how many generations remain to be tested and 

how many members still need to be chosen in the current generation. When the last 

generation is complete, the FM notifies the Memory Interface Module of GAP 

completion. 

4.2.3.9 Fitness Unit (FU) 

The Fitness Unit accepts a genetic string, calculates the fitness value and retums the 

result to the Fitness Module. The actual process of evaluation of the fitness for each 

string will depend on the problem. One possible configuration which would suit the 

application of a GAP to some engineering problem such as instrument tuning is shovm 

in Figure 4.4. The Transducer (e.g. a Digital to Analog Converter (DAC) or a state 

machine) converts the genetic string into suitable signals for the Unit Under Test (UUT) 

which is the system to be optimised. A Fitness Measurement (e.g. an Analog to Digital 
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Converter (ADC) or signal processor) converts and evaluates the responses of the UUT 

and delivers the result as a digital fitness value. 

Fitness, 
Digital 
Signals 

M Fitness 

Measuement 

Is/lenben, 
Digital 
Signals 

Unit : 

km Under i H T r a n s d u c a M | | ^ i H 

Figure 4.4: Typical Fitness Unit. 

Ideally the Fitness Unit should complete the fitness evaluation within one clock cycle 

after setting up the input value. This becomes quite difficult to achieve in most practical 

situations (see Chapter 10). It is possible to extend this time, but it will decrease the 

overall performance of the GAP. This means the GAP is best suited to fast response 

environments. There are some control signals between the Fitness Unit and FM to 

synchronise the GAP with a slower Fitness Unit. 

4.3 Design parameters 

Since the modules ofthe GAP model were written entirely in VHDL, specific aspects of 

the design such as I/O bus size or storage facility size can be specified in terms of 

parameters which can be easily changed when the need arises (Section 4.2.1). The 

interesting parameters ofthe GAP are n: the bit length ofthe population members,/, the 

bit length of the fitness values, m: the size of the population and ngen: the maximum 

number of generations. Other parameters affect the GAP, but they address particular 
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implementation details and are not as interesting as those listed above. These parameters 

are specified at VHDL compile time and should not be confiised with the GA run time 

parameters. They include addressm: width of address bus for the Memory Unit, valuem: 

width of data bus for Memory Unit and randomsize: size of the maximum random 

number in the GAP. 

All of these parameters are defined in a single package file called a geneparam in the 

VHDL code. When the need arises for changing the design for a special purpose (e.g. 

new limitations are applied by the Fitness Unit), all that is necessary is to change the 

appropriate values in the geneparam package and recompile the VHDL code. Although 

some facilities exist for parameterising and scaling of designs at lower levels of design 

entry (e.g. at the gate level), they are not as easy to use or as intuitive as using the 

VHDL packages. It should be noted, however, those design entry methods are only 

feasible if HDL synthesis tools are available. If one wants to go beyond design 

simulation to implementation without using HDL synthesis tools are available, then a 

lower level of design entry is necessary. 

4.4 Pipelining 

As mentioned in Section 4.1, GA operations can be easily pipelined and parallelled. 

This offers the GAP a great advantage over sequential software GA implementations. 

The design in Figure 4.1 is a coarse-grained pipeline. The Read Module gets a new 

population member from the Memory Interface Module and passes it to the Selection 

Module. When the SM has received a pair of members it passes the pair to the CM 

through a handshaking protocol and immediately restarts the selection process. After 

crossover and mutation are complete (in CM and MM), the MM passes the new 

members to the Fitness Module by a hand-shaking protocol and CM looks to the 

Selection Module for the next pair. Finally, when the FM receives the new members, it 
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evaluates them and sends the new members and their fitness values to the MIM for 

writing to memory. 

Thus GA operations are executed in a pipelined fashion and a significant speedup over 

software implementations is expected. 



Chapter 5 

Design verification and analysis 

This chapter starts with tests to verify the functionality of the model. The GAP is 

applied to find an optimum point on each of two different mathematical fimction 

surfaces. This is followed by a mathematical analysis of the design using techniques 

described by Kenyon et al. [1993]. This includes an analysis ofthe pipelines to identify 

the bottlenecks which concludes with a series of tables and graphs comparing the 

number of clock cycles consumed in GAP simulations with that predicted from the 

analysis. 

5.1 Verification of correct functionality 

Two levels of functional verification were used. First each module was tested to confirm 

correct operation under all conceivable conditions. For each module a set of test input 

vectors is selected and the output vector is examined carefiilly to confirm correct 

66 
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functionality. The second level of functional verification involved simulating the GAP 

on different fitness functions to see how well the functions were optimised. The 

modules were connected in the configurations of Figures 4.1 and simulated on the two 

fitness functions. During these simulations each module was closely examined to 

confirm correct functionality. Completion of these simulations verified the correctness 

of the operation of the modules and their intercommunication. In both examples, the 

population size was 32, the size of each member was 16 bits and the maximum width of 

the fitness values was 8 bits. 

In the first example, the GAP was tested with the following mathematical fitness 

fimction [Davis, 1990]. 

F ( X , Y ) = 0 . 5 -

[sinJ(x^+Y^) j -0.5 

(l.0 + 0.001*(x^+Y^)) 
(5.1) 

Figure 5.1: Problem surface for (5.1). 

This is typical of functions used in testing genetic algorithms and other hill climbing 

strategies. This function is represented by the surface shovm in Figure 5.1 (i.e. the 
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fitness landscape). This function has a global maximum at the point (0,0) and a series of 

maxima which are located on the ridges and peaks ofthe surface near: 

R = ^ ( x ' + Y ' ) = 7 t , 2 7 t , . (5.2) 

These kinds of problems are very difficult for conventional gradient ascent methods 

such as the Newton-Raphson method. The search for the global maximum usually ends 

in becoming trapped in one of the local maxima. Because genetic algorithms use a 

population of attempted solutions which are randomly generated, a (nearly) correct 

solution can be obtained in most cases. The results of simulation are shovm in Figure 

5.2. The fitness functions were optimised over the discrete domain 

D = { x | - 1 0 < x < 1 0 } , { y | - 1 0 < y < 1 0 } . (5.3) 

The fitness value varies between 0 and 1. These results are averaged over 10 nms for 

each test. 
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Figure 5.2: The results of example 1. 
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In the second example, another mathematical fitness fimction (5.4) was used. This is 

also a typical function used as benchmark for quasi-discrete problem surfaces for 

comparing genetic algorithms. 

Fix Y)= (-''•^''•l^'*^')*^''^Cos{2*x)^Cos{2''y))) (5.4) 

The surface of this fimction is shown in Figure 5.3. 

Figure 5.3: Problem surface for (5.4). 

This fimction has a global maximum at the point (0,0) with the value about 400 and a 

series of maxima which are located near 

X = 7 t , 27 t , . . . Y = 7C,27t, . . . (5.5) 

This fimction has peaks at (7t,0), (0,7t), (0,-7t), (-7t,0) and GAs may become trapped on 

them. The results of simulation are shown in Figure 5.4. These results are average over 

10 runs and the fitness function was optimised over the discrete domain 
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D = { x | - 1 0 < x < 1 0 } , { y | - 1 0 < y < 1 0 } . (5.6) 

These two examples show that the GAP is capable of optimising some difficult 

fimctions. 
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Figure 5.4: The normalised results of example 2> 

5.2 Mathematical analysis 

The modules in Figures 4.1 were analysed to determine the parameters which impact on 

asynchronous pipeline performance. These parameters are defined in [Kenyon et al., 

1993] as follows. 

1. i: The stage number. Each stage corresponds to the operation of one of the GAP 

modules (Table 5.1). 

Stage niunber (0 

Module 

0 

Read 

1 

Selection 

2 

Crossover 

3 

Mutation 

4 

Fitness 

Table 5.1: Each stage number is matched with one module ofthe GAP. 
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2. Sj: The actual service time of pipeline stage (module) / is the amoimt of time stage i 

takes to receive a message at its inputs, process it and send the output to the next stage. 

3. F,: The flow rate of stage i is the number of messages arriving at stage i during the 

entire run. 

s • F • 

A. Sfjormi- The normalised service time of stage / is defined.as •S'̂ orw/ = "TT '~~ where 
^ out 

Fgui acts as a normalising factor. 

5. Fgut'- The flow rate out ofthe pipeline. 

The analysis is designed to calculate tiie flow rate (Fd, defining service time (s,) and the 

normaUsed service time (Snormi) for each module and hence finds the bottleneck ofthe 

system. The other parameters in the analysis are: 

6. g: The number of generations in the GAP nm. 

7. m: The population size. 

8. T: The total number of clock cycles in the entire GAP mn. 

9. r: The total number of cycles to read from the memory. 

10. w: The total number of cycles to write to tiie memory. 

11. c?: The number of delay cycles in the Fitness Unit. 

To retain technological independence, all formulae and simulation results are given in 

terms of clock cycles. In this analysis, F„„, = mg/2 because mg members are selected in 

the GA mn a pair at a time. Once S„ormi was detemiined for each stage, all the S^ormfs 

were compared. The stage with the highest S^^^^. will be the pipeline bottleneck. 
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Although not expUcitly mentioned, the analysis ofthe Read Module (Section 5.2.1) and 

the Fitness Module (Section 5.2.4) involve the Memory Interface Module. This is 

because the Read Module and the Fitness Module's service times partially depend on 

communication overhead with the MIM and the MIM's time to read from and write to 

the memory. Thus, the MIM can be thought of as partially merged with the Read 

Module and partially merged with the Fitness Module. 

After analysing each module, the GAP will be simulated to determine the values of 5,-

and Fj for each module in practice. The following sections present the results of the 

analyses and simulations ofthe GAP modules. 

5.2.1 Read Module analysis 

The simple request-acknowledge handshaking protocol between the Read Module and 

the Memory Interface Module requires 6 clock cycles to communicate a request for a 

new population member and to receive that member. It also requires r cycles for the 

Memory Interface Module to read the member from memory. Thus, it typically takes 

(6+r) cycles to fetch a member from memory. For each member the GAP needs to read 

the next location for fitness value as well, therefore the total number of cycles is 

(12+2r). However, if the Fitness Module requests access to the MIM to write a new 

population member to the memory, it will receive priority. 

To keep the GAP simple no pre-emption is supported, so if the FM has a lock on the 

MIM, the RM is blocked. The FM's access to the MIM could block the RM between 1 

and (4+w) clock cycles, all equally probable. To find a weighted average of these 

delays, first note that the FM will make exactly 2mg write requests during the entire 

GAP mn. In each generation the GAP writes every pair (member+fitness) back to the 

memory. Then the probability of an FM write request at a given clock cycle is 2mg/T. 

This means that at the time of a RM read request, there is a 2mg/T probability of an 
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additional delay of (4+w) cycles, a 2mg/T probability of an additional delay of (3+w) 

cycles, etc. The weighted average of these possible delays is: 

4+vc 

2_.2img 
j=\ _{5 + w){A + w)mg 

The delay should be multiplied by two because the Read Module needs to read two 

values from memory. Therefore the average service time ofthe RM is: 

(w^ +9w + 20jmg 
So = 12 + 2r + 2- '— (5.8) 

The flow rate of the RM is the number of messages it generates. This can be 

approximated by multiplying the nmnber of pairs of members that must be selected 

(mg/2) by the average number of members that the Selection Modules must receive to 

select one pair (m/2): 

Fo = ^ (5.9) 

The normalised service time for the RM (S ) is the product of SQFO to the 
ftOf/TlQ 

normalising factor Fo„„ the total flow out ofthe pipeline, which is equal (mg/2). So 

(5.10) 
"'"'"^ Fout ° 2 2 

*" (w^+9w + 2o)mg^ 
12 + 2r + 2 

V 

5.2.2 Selection Module analysis 

Since the input flow differs from the output flow, the service time Sj for the Selection 

Module is a weighted average of the service time per input (5, ,„) and the service time 

per output (5'io„,). Accumulation of fitness values and the necessary comparisons to 

check for selection are easily done in one clock step, so S^ ,„= 1. However, 5, „„, is more 
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complex. In the best case, the handshaking and transmission between the Selection 

Module and the Crossover Module is 7 cycles. 

If the GAP is operating at maximum efficiency, the FM would be always busy. But if 

the Fitness Module is blocked by the Read Module, then the FM blocks the CM, which 

in tum blocks the Selection Module which is ready to send output. The Fitness Module 

has a probability of 

l-SoFo= 1 
AT 

(5.11) 

of being busy. If the Selection Module is ready, it will take an average of 
(54 -A-Id) cycles (Section 5.2.5) to be served by the Fitness Module (S4 is the 

service time for FM). So the total additional delay is: 

(54-4-2J) 
AT 

(5.12) 

which leads to the following formula for the service time per output: 

•̂ 1 o«/ - "7 + 

(54-4-2^) f 2 \ 

m gSQ 

AT 

(5.13) 

Since one output message is generated for approximately every m input messages, 

averaging 5, ;„ and S^ „„, yields the actual service time for the Selection Module as: 

^1 = 

OT5I,„ + 1X5',O„, 

m 
-Sii„ + 

^\out 

m 
(5.14) 

The Selection Module's flow rate is: 

^1 = 
m^g (5.15) 
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which is the total number of messages expected to activate the Selection Module during 

the GAP mn. Finally, the Selection Module's normalised service time is given by 

norm] f ' 9 
^ nut ^ out 

(5.16) 

Applying (5.14), it produces: 

m m 
norm\ -~Z^iin '^^\out-~Z + ^-^ 

{$4-A-2d) I m gSp (5.17) 

5.2.3 Crossover Module analysis 

The Crossover Module normally takes 7 cycles to process input and transmits the result 

to the Mutation Module. If however, the MM is blocked while waiting to send to the 

FM (see Section 5.2.2 for more detail), then an added delay is incurred because the GAP 

has no buffering in its modules. Due to the nature ofthe GAP, the added delay is: 

( 5 4 - 4 - 2 0 ? ) (^ m^gSQ 

AT 
(5.18) 

This is because over the entire run (T cycles long), the Fitness Module will delay all 

(54-4-2c/) 
previous modules with a delay of cycles with the probabifity of 

^ 2 A 
m gSQ 

AT 

Using the above probability, the service time for the CM is: 

^2=7 + 
(54-4-2c/) ^^_/nVo^ 

V AT 
(5.19) 

The CM's flow rate is: 
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F , = ^ (5.20) 

and the CM's normalised service time is: 

, ^s^^ gm2^^ (5 21) 
««'-'«2 F,„, ^ 2 gm ^ 

5.2.4 Mutation Module analysis 

The Mutation Module normally takes 7 cycles to process input and transmits it to the 

Fitness Module. If the FM is blocked while waiting to send to the MIM, then an added 

delay is incurred. The delay for this module is exactiy equal to that of the Crossover 

Module: 

53 = 7 + 
{s^-A-2d){^ ff^Vol (522) 

V AT 

and the normalised time is: 

norm^ F„„, 2 mg 

5.2.5 Fitness Module analysis 

When the Fitness Module receives input in the fomi of strings A" and B", the following 

events occiu: diuing processing. 

1. Evaluate A" and B", accumulate their fitness values and request access to the 

Memory Interface Module. The delay time for this step is (4+2d) cycles where d is the 

delay cycle in the Fitness Unit. 

2. Wait for the MIM to acknowledge the request. For this step the delay time is between 

1 and (6+r). The potential additional delay is due to the lock that the RM may have on 



Chapter 5. Design verification and analysis 77 

the MIM. In the worst case, the FM requests MIM access immediately after the RM 

locked the MIM. This worst case would cause a delay of (6+r). The average delay is: 

r+6 

(5.24) 
r + 6 2 

3. Receive the MIM's acknowledgment, send A", wait for the MIM to write A", notify 

the FM and issue the next request: (4+w) cycles. 

4. Steps 2 and 3 will be repeated 4 times. Two times for writing the actual member and 

two more times for writing their fitness values. This makes the service time for the 

Fitness Module equal to: 

S4=A + 2d + A(A + w + (^^)) = 3A + 2d+Aw + 2r (5.25) 

The flow rate for the Fitness Module is the total number of pairs of members that must 

be written to the memory, which is: 

F,=^ (5.26) 
^ 2 

and the normalised service time for the Fitness Module is: 

S =^i^ = s.=3A+2d+Aw + 2r (5.27) 
nor/M4 p ^ 

'• out 

5.2.6 GAP analysis 

To detemiine the bottleneck ofthe GAP model in Figure 4.1, substittite the appropriate 

parameters into the equations for S^^^^, {0 < i < 4} and find the maximum. The fixed 

parameters substitiited were w = r = 0 and J=0. The value of T can be detemiined by 
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estimating how many messages the Read Module will have to generate, multiplying it 

by its service time SQ, and then adding the service times for the remaining pipeline 

modules to process the RM's final message (earlier messages would have been 

processed concurrentiy while the RM generated more messages): 

r = - ^ ^ ^ + 5i+52+53 + 54 (5.28) 

Because ofthe m g component in (5.28), the first term easily dominates the remaining 

four terms. Equation (5.28) can be simplified by dropping Sj+}2+S3+S4 and leaving an 

approximation of J as: 

- ^ (5.29) 

Since the right hand side of (5.29) is in terms of 7, convert it to a quadratic equation and 

find its roots: 

T^-Am^gT-2lm^g^=0 (5.30) 

which gives 

T = 2m^g + yJAm'^g^ + 2 Ig^ m^ (5.31) 

and produces 

T=m^g[2±-J A+ 21 Im] (5.32) 

The positive root fotmd from evaluating (5.32) was used to evaluate (5.7-5.32). The 

results of these evaluations are given in Table 5.2 which shows the service time and the 

normalised service time for each stage in clock cycles. 
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Since the Read Module has the maximum value of S^om^ it was identified as the 

bottleneck of the GAP. To evaluate the performance of the GAP, the information in 

Table 5.2 was analysed to determine the number of clock cycles per generation per 

population member. Here g is the number of generations, m is the population size, T is 

the estimated time for completion, and R is the rate in clock cycles at which that test 

executed per generation per population member. Values for R were calculated by: 

R = — (5.33) 
^g 

Table 5.3 presents the results which indicate roughly 4m clock cycles per generation per 

member. 

5.2.7 Comparison between simulation and analysis 

During the GAP simulations, statistics of number of clock cycles and the total service 

times were generated for all modules (Table 5.4). These values approximate the 

evaluations of the analysis fimctions given in Section 5.2.5 (Table 5.2). The Read 

Module is obviously the bottleneck ofthe GAP model. 

Along with the above analysis, simulation statistics were generated to determine the 

actual number of clock cycles per generation per population member. Here T^ is the 

actual time for completion, and R^ is the actual rate in clock cycles at which that test 

executed per generation per population member. R^ was calculated by: 

R,=^ (5.34) 
mg 

Table 5.5 presents the results ofthe simulations which indicate that R^ is roughly 4m 

clock cycles per generation per member. 
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No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

m 

16 

16 

16 

16 

32 

32 

32 

32 

64 

64 

64 

64 

128 

128 

128 

128 

g 

16 

32 

64 

128 

16 

32 

64 

128 

16 

32 

64 

128 

16 

32 

64 

128 

So 

17.216 

17.219 

17.219 

17.219 

16.6309 

16.631 

16.631 

16.633 

16.321 

16.322 

16.322 

16.322 

16.162 

16.162 

16.162 

16.162 

SnO 

137.73 

137.74 

137.75 

137.75 

266.09 

266.1 

266.1 

266.1 

522.29 

522.29 

522.29 

522.29 

1034.4 

1034.4 

1034.4 

1034.4 

Sl 

2.7490 

2.7500 

2.7509 

2.7512 

1.6642 

1.6643 

1.6643 

1.6643 

1.2765 

1.2765 

1.2765 

1.2765 

1.1239 

1.124 

1.124 

1.124 

s„i 

21.992 

22.002 

22.007 

22.009 

26.627 

26.629 

26.629 

26.63 

40.849 

40.849 

40.85 

40.85 

71.934 

71.934 

71.934 

71.934 

S2» S3, 

Sn2» Sn3 

7.1327 

7.0663 

7.0332 

7.0166 

7.0337 

7.0168 

7.0084 

7.004 

7.0085 

7.0043 

7.0021 

7.0011 

7.0022 

7.0011 

7.0005 

7.0003 

S4, Sn4 

46 

46 

46 

46 

46 

46 

46 

46 

46 

46 

46 

46 

46 

46 

46 

46 

T 

17685 

35318 

70583 

141115 

68175 

136297 

272540 

545028 

267467 

534881 

1069709 

2139365 

1059273 

2118493 

4236933 

8473813 

Table 5.2: Analysis ofthe service times in clock cycles for the GAP model (Sn=Snorm)-



Chapter 5. Design verification and analysis 81 

No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

m 

16 

16 

16 

16 

32 

32 

32 

32 

64 

64 

64 

64 

128 

128 

128 

128 

g 

16 

32 

64 

128 

16 

32 

64 

128 

16 

32 

64 

128 

16 

32 

64 

128 

T 

17685 

35318 

70583 

141115 

68175 

136297 

272540 

545028 

267467 

534881 

1069709 

2139365 

1059273 

2118493 

4236933 

8473813 

R 

69.0821 

68.98 

68.929 

68.9036 

133.154 

133.102 

133.076 

133.064 

261.198 

261.172 

261.16 

261.153 

517.223 

517.21 

517.204 

517.2 

Table 5.3: Perforaiance estimation based on the GAP analysis in Table 5.2. 
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Figure 5.5 compares the total number of cycles to complete a task in the case of both 

simulation and mathematical analysis. The analysis line and simulation line are very 

close which lends confidence to the mathematical analysis. There is a mismatch for both 

small and large m values. This mismatch is a result of simplification in the mathematical 

analysis. 

Figure 5.6 compares the results of simulation and mathematic analysis for actual time 

completion. It shows that these two results are very similar and the difference is 

produced by the simplification in the mathematical analysis. 

5.3 Design improvements 

The above analysis and simulations ofthe GAP suggest that design improvements could 

be made in the following ways. 

• Increase parallelisation of the Selection Modules which is the bottleneck of the GAP 

model. Parallelise the Selection-Crossover-Mutation-Fitness pipelines. 

• Parallelise the intemal stmctm-e of each module. For example, rather than selecting 

one pair at a time, ,the Selection Module can select two independent pairs. Then the SM 

can pass both pairs to the Crossover Module. The CM can then perform two 

independent crossovers in parallel and send them to MM, where two pairs can be 

mutated in parallel and sent to the Fitness Module for evaluation. This stmcture reduces 

inter-module communication overhead, requires increased communication bandwidth, 

and reduces the modularity ofthe design. 

• Modify the Fitness Module to evaluate both new members in parallel. The current 

design evaluates them sequentially. Concurrent evaluation could save at least two clock 

cycles per pair of members. This would be most useful if the delay in the Fitness 

Module is large and affects the overall performance. 
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No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

m 

16 

16 

16 

16 

32 

32 

32 

32 

64 

64 

64 

64 

128 

128 

128 

128 

g 

16 

32 

64 

128 

16 

32 

64 

128 

16 

32 

64 

128 

16 

32 

64 

128 

So 

19.3975 

19.7261 

19.4114 

19.4523 

16.2439 

16.4684 

16.5604 

16.9103 

15.9955 

16.1872 

16.0987 

16.1079 

15.4788 

15.3877 

15.4796 

15.5151 

SnO 

155.18 

157.81 

155.29 

155.62 

259.90 

263.49 

264.97 

270.56 

511.86 

517.99 

515.16 

515.45 

990.64 

984.82 

990.69 

992.96 

Sl 

2.459 

2.4844 

2.457 

2.4629 

1.7603 

1.7794 

1.7878 

1.8168 

1.5336 

1.5497 

1.5423 

1.5432 

1.3895 

1.382 

1.3896 

1.3926 

s„i 

19.6719 

19.875 

19.6562 

19.7031 

28.1641 

28.4707 

28.6045 

29.0688 

49.0742 

49.5889 

49.3545 

49.3838 

88.9297 

88.4458 

88.9365 

89.1285 

S2J S3, 

Sn2? Sn3 

7.9543 

7.4727 

7.5059 

1.311 

7.3.125 

7.2891 

7.3643 

7.4102 

7.2422 

7.2539 

7.3096 

7.2827 

7.1543 

7.2266 

7.2387 

7.219 

S4, Sn4 

46.5938 

46.4219 

46.3242 

46.2832 

46.2969 

46.207 

46.1582 

46.1343 

46.1504 

46.1025 

46.0771 

46.0664 

46.0742 

46.0483 

46.0361 

46.0306 

T 
* a 

19807 

40344 

79453 

159300 

66485 

134850 

271270 

554060 

262015 

530370 

1054990 

2111235 

1014360 

2016845 

4057825 

8134315 

Table 5.4: Simulation results of GAP tests. 
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No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

m 

16 

16 

16 

16 

32 

32 

32 

32 

64 

64 

64 

64 

128 

128 

128 

128 

g 

16 

32 

64 

128 

16 

32 

64 

128 

16 

32 

64 

128 

16 

32 

64 

128 

T 
^ a 

19807 

40344 

79453 

159300 

66485 ^ 

134850 

271270 

554060 

262015 

530370 

1054990 

2111235 

1014360 

2016845 

4057825 

8134315 

Ra 

77.3711 

78.7969 

77.5908 

77.7832 

129.8535 

131.6895 

132.4561 

135.2686 

255.874 

258.9697 

257.5659 

257.7191 

495.293 

492.3938 

495.34 

496.4792 

Table 5.5: Performance simulations ofthe GAP tests. 
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Figure 5.5: The result of comparison between mathematical analysis and 
hardware simulation of total number of cycles (T) needed to complete a task 
with different m and g according to Tables 5.3 and 5.5. 
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Figure 5.6: The result of comparison between mathematical analysis and 
hardware simulation of clock cycle rate (R) with different m and ^ 
according to Tables 5.3 and 5.5. 
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• Modify the Memory Interface Module's interaction with the Fitness Module. In the 

cunent GAP design the MIM services one request and then immediately looks for a new 

request. So after the FM sends one member, it has to wait for the RM to receive service 

before the FM has a chance to send the second member. Modifying the MIM to always 

service the FM twice in a row would reduce some blocking delays for the FM. 

However, this could also increase some blocking delays for the RM. 

• Make the inter-module communication protocol more efficient. The current 

handshaking protocol requires six clock cycles per data transfer. If these delays were 

reduced, the entire GAP would nm much faster. 

• Buffer the outputs of all the modules. This should reduce the delays associated with 

some modules waiting for service and blocking others that are waiting upstream in the 

pipeline. 

• Use a memory configuration which supports reads and writes of population members 

in parallel. Coupled with effective buffering, this could significantiy reduce delays due 

to modules blocking each other. Additionally, an ability to read from one population 

while concurrentiy writing to another would eliminate the blocking that occurs between 

the Read Module and the Fitness Module. 

• When implementing the aforementioned improvements, design the GAP from scratch. 

The original VHDL implementation ofthe GAP could be redesigned to be much more 

space and time efficient. Throwing away the old design while retaining the lessons 

leamed from it is the best way to attain this goal. Some modules could even be designed 

at the gate level if even more speedup were desired. The improved space and time 

efficiency would allow faster clocking. 



Chapter 6 

Implementation of the GAP on FPGAs 

This section starts with an explanation of programmable technologies particularly 

FPGAs. This is followed by a description of the GAP implementation on FPGAs and 

preliminary hardware tests. Finally the GAP is compared with a software model to find 

how much speed advantage can be achieved. 

6.1 ASIC design 

Integrated circuits consist of cormected transistors fabricated on a single semiconductor 

chip. The locations and cormectivity of the transistors are defined by several masks. A 

mask corresponds to one of the silicon compoimd layers that form transistors and 

intercoimect layers. 

Digital integrated circuit implementations may be grouped into two main categories, 

fully custom and semicustom designs, as illustrated in the hierarchy shown in Figure 

87 
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6.1. These approaches have facilitated the design and manufacturing of Application-

Specific-Integrated Circuits (ASICs) for digital applications. 

Design Methods _ 

Semi-Custmn 
Design 

JVfesk Programmable Gate Arrays 

Programmable 
Devices 

FPGAs 

PLDs 

_ Custran Design 

Figure 6.1: Circuit design methods and target technologies. 

1. Custom design: Custom ICs are created using unique masks for each layer during the 

manufacturing process. Since the designer confrols all stages of the chip layout, 

maximum design flexibility and high perfonnance are possible. Consequentiy, only 

highly skilled designers are engaged in tiiis design methodology. Also, the development 

time is long, and its costs are extremely high. For high volume applications, the high 

cost of design and testing custom ICs can be ignored. 

2. Mask-Programmable Gate Arrays (MPGAs): Gate array implementations use 

generic masks for all but the metalUsation layers, which are customised to the user's 

specifications [Hollis, 1987]. The generic masks create an array of modular fimctional 

blocks. Modules of transistors are arranged in rows that are separated by fixed-width 

channels. User logic is implemented by patterning these fransistors into logic functions 

and connecting the different modules. The design is usually facilitated by a cell library. 
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making the designer's expertise less critical than in the case of the full custom 

methodology. For the same reasons, MPGAs offer shorter development time and lower 

development costs than do custom ICs. 

6.1.1 Field programmable technology 

Field-programmable devices are prefabricated in a variety of architectures based on an 

array of logic cells. The logic is implemented by personalising the basic cells and 

electrically programming the interconnects. This is usually done in the user's laboratory 

rather than the factory. 

Implementing the design in programmable logic devices has the advantage of fast 

tumaround but it limits the design flexibility. Development time and costs are 

significantly lower than for any other IC implementation methodology but the cost per 

gate is high for voltmie production. According to their architectures, two main 

categories of user programmable logic devices can be distinguished: Programmable 

Logic Devices (PLDs) and Field-Programmable Gate Arrays (FPGAs). 

1. PLDs consist of programmable AND arrays (product terms) and fixed fan-in 

programmable OR gates that are followed by flip-flops, as shown in Figure 6.2. The 

outputs ofthe flip-flops can be fed back as input lines in the product terms. The product 

line can be connected to any combination of inputs. The connections are indicated by an 

"o" and are programmed by users to implement their designs. The connecting device 

may be a fuse as in the case of bipolar chips, or a transistor. The transistor can be chosen 

to act as an open connection or to fimction normally as a switch [Monolithic Memories, 

1986]. PLDs are at the low-density end of field programmable logic devices. Their 

densities range from 1,000 up to 10,000 gates. Their utilisation varies with applications, 

but it is typically very low because of the rigid AND/OR architecture. Initially, PLDs 

used to be fabricated in bipolar technology but Complementary Metal-Oxide 

Semiconductors (CMOS) devices are now more popular. 
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Figure 6.2: General stmcture of a PLD. 

2. FPGAs combine the architecture of gate arrays with the programmability of PLDs. 

Some of the FPGA real estate is occupied by vendor logic to. implement the field 

programmability feature ofthe FPGA, and a large portion of the die area is allocated for 

programmable routing. The number of gates typically available to the user in current 

(1995) designs varies from 3,000 to 40,000. An FPGA normally consists of an array of 

uncommitted logic blocks in which the design is to be encoded (Figure 6.3). A logic 

block consists of universal gates that can be programmed to represent any function: 

multiplexers (MUXs), Random-Access Memories (RAMs), NAND gates, transistors, 

etc. The connectivity between blocks is programmed by different types of devices. 

Static Random-Access Memory (SRAM), Electrically Erasable Programmable Read

only Memory (EEPROM), or antifiises. Further description of FPGA architectiires is 

given in Appendix D. 
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Figure 6.3: General Stmcture of a FPGA. 

6.1.2 The design cycle 

The design process for using FPGAs generally requires six steps [Chan and Mourad, 

1994]: 

1. Entering the design in the form of schematics, logic expressions and hardware 

description language statements. 

2. Simulating the design for functional verification. 

3. Mapping the design into the selected FPGA architecttire. 

4. Placing and routing the FPGA design. 

5. Extracting delay parameters and maximum frequency. 

6. Configuring or programming the device. 
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Most FPGA vendors allow the entry ofthe design in a schematic form though, it is also 

possible to enter the design in boolean expressions. The most flexible design entry is via 

a hardware description language. The most popular languages are Verilog HDL and 

VHDL. Such languages require logic synthesis tools before mapping into FPGAs. 

Skipping the simulation steps enables the designer to obtain the end product faster, but 

can weaken the product quality. Usually, the design goes through several iterations of 

simulation. 

For every FPGA, the vendor provides design implementation tools to perform steps 3 to 

5. The front-end design entry (schematic capture or other methods) and simulators may 

also be part ofthe tools. Most vendors configure their package with different front-end 

tools to allow the user more choice and flexibility. 

Steps 3 and 4 involve several processes: logic minimisation, technology mapping, 

placement, and routing. Technology mapping binds the technology independent 

description of the circuits to the basic entities of the target technology. Placement 

allocates these entities to a specific physical block on the device and routing establishes 

the connections between the different blocks, and is usually done in two stages: global 

routing and detailed routing. All FPGA vendors have an automatic placement and 

routing tool. The placement and routing algorithms have a strong effect on the 

performance ofthe design. 

6.2 Design implementation cycle 

The GAP was implemented on FPGA technology using the VHDL language [Coelho, 

1989] and Mentor Graphics tools. These tools facilitate modelling the behaviour and 

design of the architecture. QuickVHDL was used to compile the design and the 

NeoCAD FPGA Foundry software converted the GAP modules to Xilinx files to 

implement the design into field programmable gate arrays. 
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6.2.1 Entering the design 

There are many advantages in using VHDL. Firstiy, it is accepted intemationally for 

hardware implementation and there are many vendors that provide simulators for 

VHDL. Secondly, it is a high level language and the programmer does not need to 

specify all details of the design. For instance the add and multiply operators, and in 

some cases division operators, are automatically expressed in hardware and the designer 

can use them in any design. Third, VHDL is the generic language for hardware 

implementation. If in the next decade new technology arrives and replaces existing 

hardware technologies, then by using a mapping tool we will be able to map our design 

to the new technology. 

The design is written in a hierarchical configuration. The main core ofthe GAP consists 

of the Memory Interface Module, Read Module, Selection Module, Crossover Module, 

Mutation Module, and Fitness Module (Figure 4.1). Each module is written in a separate 

block and one main block (GAP Module) handles coimectivity between the modules. 

This block is used for synthesis and hardware implementation. For the simulation 

purposes, two more modules (Memory Unit and Fitness Unit) are included with the 

GAP Module to form the main design (Main Module). 

After designing the GAP modules in VHDL, they are compiled to generate a schematic 

diagram. Figure 6.4 shows the schematic diagram of the GAP module, created 

automatically using the Autologic tools in Mentor Graphics Software. The six blocks 

inside the schematic are the same six blocks in the Figure 4.1. The input and output 

signals are necessary to connect the GAP to the Memory Unit and Fitness Unit. 

6.2.2 Simulating the design 

Computer-aided design tools have greatiy facilitated the design implementation process. 

These tools have replaced many of the heavy design tasks such as design entiy. 
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verification and synthesis (logic minimisation, technology mapping, state reduction, and 

state assignment). These tasks are time consuming and often error-prone. 

Figure 6.4: The schematic diagram ofthe GAP. 

Simulation is a process that imitates the fiinctionality or behaviour of the digital design 

on a computer. It is used to identify design enors or timing problems in a circuit. 

Simulation was originally used for prototyping and employs models that represent 

system attributes. These may include behavioural or timing models. Now it is often used 

to debug a prototype. FPGAs have also been used to prototype designs before their 

actual fabrication in other technologies. 
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There are several aspects of a digital circuit that need to be verified before 

implementation: functionality, timing, effect of certain parameters, etc. There are also a 

variety of simulation types that are dictated by circuit-level representations. For 

example, the functionality of a circuit may be simulated at the behaviom-al level, the 

gate or logic level, or the circuit level. In the case of FPGAs, the functional simulation 

can be performed at the behavioural level or the gate level. This simulation may be run 

with zero (no) delays, or one-unit delays. In the case of timing simulation, several 

approaches can be taken. Timing can be checked with nominal delays for the technology 

or with worst case scenarios. More importantly, timing can be verified using the actual 

layout ofthe design on the FPGA. The actual delays ofthe placed and routed design can 

be extracted and used in a timing simulation. 

Initially the behaviour of the model was simulated without regard to synthesis in 

hardware. It is possible to mix and test a combination of synthesisable and 

unsynthesisable modules. For the test examples the simulation studies were conducted 

with the memory and fitness units in an imsynthesised form. 

The Memory Unit in the design is based on the MCM6164 static 8K x 8bit RAM chip. 

Two or more memory chips operate in parallel to give 16 to 32 bit member sfrings in the 

population. The GAP module provides the necessary read, write and chip-enable signals 

for memory operation. 

QuickVHDL version 8.2 was used for compiling and simulating the GAP Module and 

the whole design. The simulation of modules for correct functionality was shovm in 

Section 5.1. 

6.2.3 Mapping the design into FPGAs 

There is a wide variety of Field-Programmable Gate Arrays as shown in Table 6.1. 

Some of these devices are actually Programmable Logic Devices with specific 
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enhancements that make them larger and more flexible than traditional PLDs. The 

products can be compared by focussing on four factors that can influence the design and 

the selection ofthe device for a given application: 

1 - architecture, 

2 - gate density or capacity, 

3 - routing resources or basic cells, 

4 - programming method. 

For each vendor listed in the first column in Table 6.1, the range of capacities for 

different devices is given. The effective capacities are usually lower since high 

utilisation ofthe logic modules would generally decrease routability. The architecture is 

identified in the third column as gate array (or row-based FPGAs), matrix form, sea-of-

gates, or Programmable Logic Array (PLA). The next colunm is the logic unit in which 

the user logicis implemented. The last column lists the programming method. 

The Xilinx logic cell array family was introduced in 1983. Since then the product has 

passed through three generations: series XC2000, XC3000, and more recently the 

XC4000. 

Table 6.2 summarises the main features of the three generations of Xilinx devices. The 

number of equivalent gates capacity (two-input NANDs) serves as a guide for a designer 

to select the appropriate part type. 

User logic is implemented by configm-ing the logic components. The Xilinx chip 

incorporates SRAM technology and is reprogrammable. The number of Configiu-able 

Logic Blocks (CLBs) in an Logic Cell Array (LCA) ranges from 64 in the XC2064, the 

low end ofthe 2000 series, to 576 in the XC4013, the largest device presentiy available 

ofthe 4000 series (1994). 
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A Xilinx 4000 series component (XC4013) was selected to implement the design 

because of its high capacity and large number of Input/Output pins. 

The following steps are followed in transfening the VHDL models into FPGA 

technology. First the model (GAP Module) is synthesised using Autologic version 8.2 

from the Mentor Graphics Software. Then the synthesized model is transferred to a 

netiist file format using Mentor Graphics Software. 

Manufacturer 

Actel 

Altera 

Algotronics 

Concurrent 

Crosspoint 

Plessey 

QuickLogic 

Xilinx 

Capacity 

(Number 

of gates) 

2K-8K 

1K-5K 

5K 

3K-5K 

5K 

2K-40K 

1.2K-1.8K 

2K-10K 

Architecture 

Gate Array 

Extended 

PLA 

Sea-of-gates 

Matrix 

Gate Array 

Sea-of-gates 

Matrix 

Matrix 

Basic Cell 

MUX 

PLA 

Functional 

XOR, AND 

Transistors 

NAND 

MUX 

RAM block 

Programming 

Method 

Antifuse 

EPROM 

SRAM 

SRAM 

Antifuse 

SRAM 

Antifuse 

SRAM 

Table 6.1: Examples of FPGAs. 
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Feature 

Number of 

chips in family 

Equivalent 

gates 

MAXI/Os 

Flip-Flops 

MAX CLBs 

Number of 

package PINs 

XC2000 

2 

1K-1.5K 

58-74 

122-174 

64-100 

34-74 

XC3000 

6 

2K-9K 

64-176 

256-1320 

64-484 

34-176 

XC4000 

11 

2K-13K 

^ 64-192 

256-1536 

64-576 

61-193 

Table 6.2: Features ofthe Xilinx devices (up to year 1994). 

Then the NeoCAD FPGA Foundry tools are used to map the netiist file to an FPGA 

device. The result is a mapped model ofthe design for a specific family (XC4000). The 

mapped model is then placed and routed on the selected device type (i.e. XC4013). 

Finally the model is transferred to bitmap format for downloading to the chip. If the 

design is small enough to fit in one chip then the place and route phase and 

downloading is straightforward. On the other hand if the design is large (which occurs 

in most cases of the GAP implementation) then it must be partitioned across multiple 

chips. There are special tools in the NeoCAD software for partitioning. Figure 6.5 

shows an FPGA XC4003 chip containing the Read Module. The black boxes inside the 

chip are the CLBs with defined logic. 
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Figure 6.5: The Read Module for the 24 bit configuration on XC4003. 

Converting the VHDL code to a bitmap file normally takes hours and depends on the 

memory bit length in the GAP Module. The steps in the process were timed for GAPs 

with 4, 8,16, 24 and 32 bit members. The time for each step in the conversion process is 

summarised in the Table 6.3. All timing is based on mnning the process steps on a SUN 

Sparc 10 workstation. 

Table 6.3 shows that most of the processing time is spent in the synthesise, partitioning 

and place and route phases. 
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Configuration 

Number of Chips 

Compile 

(Minutes) 

Synthesise 

(Minutes) 

Netiist Format 

(Minutes) 

Partitioning 

(Minutes) 

Mapping 

(Minutes) 

Place and Route 

(Minutes) 

Bit Generation 

(Minutes) 

Total Time 

(Minutes) 

4 BIT 

1 

10 

60 

10 

— 

30 

40 

3 

153 

8 BIT 

2 

10 

72 

14 

60 

40 

54 

5 

255 

16 BIT 

2 

10 

120 

18 

90 

50 

115 

7 

410 

24 BIT 

2 

10 

150 

20 

150 

60 

150 

15 

555 

32 BIT 

3 

10 

180 

30 

180 

70 

210 

20 

700 

Table 6.3: The processing time for mapping VHDL source code of GAP to an FPGA 
bitmap file on a SUN Sparc 10 workstation. 

6.2.4 Programming an FPGA device 

The bitmap file contains information which should be downloaded into an FPGA 

device. A commercially available demonsfration board (Figure 6.6) can be used to 

download the design in the simplest form into a single FPGA. Because of lunitations of 

the board, it is not possible to download a model of the GAP with more than 4 bit 

memory length. 
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Figure 6.6: FPGA demo board component layout. 
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The FPGA demo board is a stand-alone board for experimenting and prototyping with 

FPGAs using Xilinx FPGA device families. The board comes with an XC3020-68 PFN 

and an XC4003-84 PIN part. 

The board coimects to the output port of the SUN workstation. There is a prototyping 

area on the board for adding the memory chips and coimection to the Fitness Unit. The 

program for downloading a bitmap is called BITGEN and is part ofthe NeoCAD tools. 

The bitmap file can be downloaded into an on-board serial EPROM and then the board 

can use the contents of the EPROM at start up for dovmloading to the FPGA chip. An 

altemative way of programming the FPGA is by downloading directly to the FPGA 

using BITGEN and then testing the model. 

Figure 6.7: A 4-bit GAP implemented on the FPGA XC4013 chip. 
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The simplest configuration for the GAP (i.e. 4 bit for memory data and 4 bit for memory 

address) can be implemented on a smaller device ofthe 4000 series such as 4010. Figure 

6.7 shows the layout ofthe 4-bit GAP design on an XC4013 chip. 

6.2.5 GAP parameters and timing considerations 

There are many potential applications for Genetic Algorithms and the GAP in 

engineering. For best performance, each application requires a different set of 

parameters including memory bit length, memory size, population size and probability 

of crossover and mutation. Some of these parameters (population size and probability of 

crossover and mutation) will be stored in the memory before operation ofthe GAP. The 

size and bit length of memory are critical stmctural features of the GAP and must be 

specified in the VHDL code. 

There are several timing issues which must be resolved before the GAP can be used in a 

real-time engineering application. These include the maximum clock frequency of the 

GAP, the number of clock cycles required to complete a task and the response time of 

the fitness calculation. 

Table 6.4 shows the maximum clock frequency of the GAP varying the member's bit 

length. For these results, 8 bits is chosen for the fitness value and the Fitness Unit is 

assumed to retum the fitness value within one clock cycle. The table shows that if more 

XC4013 chips are used in the implementation, then the maximmn attainable frequency 

will be increased. In the first row, the maximum frequency for 4 bits is similar to the 8 

bit configuration because the fitness length is also 8 bits. If 4 bits is selected for the 

fitness value then it is possible to implement the GAP on a single FPGA chip and the 

maximum frequency falls to 5.55 MHz. 
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Member Bit Length 

4 bit 

8 bit 

16 bit 

32 bit 

32 bit 

Number of XC4013 

2 

2 

3 

4 

5 

Maximum Clock 
Frequency (MHz) 

6.26 

6.53 

8.20 

9.67 

11.2 

Table 6.4: Maximum attainable frequency ofthe GAP for different member bit 
lengths. 

Table 6.5 shows the number of clock cycles to process a given number of generations 

for different configurations. The table shows that the number of clock cycles required to 

complete a task increases dramatically with the population size (m) and the number of 

generations (g) as expected from the analysis in Chapter 5. The fourth row ofthe table 

shows the real time for processing the task assuming a 10 MHz clock frequency. Note 

that the Fitness Unit is assumed to retum the fitness value within one clock cycle which 

in this case is 100 nS. The real time for processing the task is between 4 and 400 

milliseconds. 

Population 
size 

Number of 
generations 

Number of 
clock cycles 

Total GAP 
time (mS) 

16 

32 

40344 

4.03 

16 

64 

79453 

7.9 

32 

32 

134850 

13.5 

32 

64 

271270 

27.1 

64 

32 

530370 

53.03 

64 

64 

1054990 

105.5 

128 

32 

2016845 

201.7 

128 

64 

4057825 

405.8 

Table 6.5: Niunber of clock cycles needed by the GAP for processing a task and the 
corresponding real time (based on working clock frequency of 10 MHz). 
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The next issue is the relationship between the response time of an application and the 

processing capability ofthe GAP. Figure 6.8 shows the results of simulation based on a 

10 MHz clock frequency for the GAP. The figure shows the total GAP time to process a 

given number of generations versus the Fitness Unit delay time when the population 

size is 16. There are four curves, one for each number of generations (G). If the delay 

time is small then the GAP needs a fixed amoimt of time to complete the task which 

depends on the number of generations. On the other hand if delay time is high then the 

GAP is waiting for responses from the fitness system. Note that the delay break time 

(which marks the transition from full processing to mostly waiting by the GAP) is 

similar for all numbers of generations (i.e. about 5[iS). 

Figure 6.9 shows the same information when the number of generations is fixed at 16 

and the population size (P) is varied. The graph shows the delay break time is 

proportional to the size of population. 

10 
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10 

Figure 6.8: Total GAP mn time versus the fitness delay time when the number of 
generations varies for population size equal 16. 
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Figure 6.9: Total GAP nm time versus the fitness delay time when population 
size varies for number of generations equal 16. 

This break point is very.importdnt for the GAP model and fitness system or application. 

Indeed before the break point, GAP processing is responsible for 100% ofthe time to 

complete a task, but after that point the percentage falls towards zero. So to take fiill 

advantage of processing speed of the GAP then the delay time of the Fitness Uiut (i.e. 

the application) must be less than the break point; The break point depends only on the 

clock frequency ofthe GAP and the size ofthe population. 

6.3 Comparison with a software GA 

The whole model was tested for performance and comparison with standard genetic 

algorithm models. Firstiy the model was tested with four standard static problems and 

the result of optimisation was compared with software GAs. Later the VHDL models 

were compared with the software approach to compare the speed performance in real 

time processing. 
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6.3.1 Testing the optimisation capability 

The GAP model was tested for fiinctionality using a set of four standard fitness 

fimctions from the DeJong test suites [DeJong, 1975]. These tests include searches for 

an optimum point on flat, curving or noisy surfaces and they are considered to be 

difficult for conventional search algorithms. In each case the equation for the surface 

provides the fitness function for the test and each member string represents a point on 

that surface. The test fimctions are defined as follows. 

1 Sphere: A unimodal function that is three dimensional and has one minimum at 

(0,0,0): 

FXX) = Tx: (6.1) 
1=1 

2 Rosenbrock's saddle: A two-dimensional fimction that has a curving valley that 

fools many optimisation algorithms into halting prematurely and returning a point that is 

not the global optimum: 

F^(X) = (100*(x, -x , )^ -t-(x, - l y ) (6.2) 

3 Step: A five-dimensional function that has long, flat surfaces surrounded by 

discontinuities. Simple hill-climbing algorithms often become stuck on these flat 

surfaces: 

^ 5 

F^(X) = 2_,''nteger(xi) (6.3) 

1=1 

4 Quartic: A 30-dimensional fimction in which evaluation is modified by Gaussian 

noise. Thus, successive evaluations ofthe same point retum different values: 

^. ( ^ ) = I i^- + Gauss (0,1) (6-4) 
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The results of these hardware simulations were compared with those from a software 

implementation using the package SUGAL V2.0 [Hunter, 1995]. A population of 64 

individuals and a mutation rate of 2% and crossover rate of 90% were used for all tests. 

The software GA employs floating point arithmetic and advanced methods of selection, 

normalisation, crossover, mutation and replacement. These methods are generally 

difficult to implement in a hardware algorithm and therefore the. GAP was not expected 

to perform to the same precision. 

The results of comparisons are given in Figure 6.10 to 6.11, which shows the evaluation 

ofthe error value of the best point averaged over 10 runs as a function ofthe number of 

evaluations. One caimot expect the hardware approach to outperform the software 

algorithm in any way. However these tests indicate that the hardware is capable of 

reaching a similar optimum point in the same number of generations. 

6.3.2 Comparing the speed of hardware and software 

The GAP was compared with the Software-based GA (SGA) miming on a 66 MHz 

Pentium. The SGA is fimctionally similar to the GAP. To make the software GA even 

more similar to the GAP, the software GA was changed in the following ways. 

• The SGA's population maintenance was changed from copying population Pt+i into 

population Pt at the end of each generation to using the mapping h:{Pt, Pt+i}-^{Po, Pi) 

as described in Chapter 4. lfh(P,)=Po in the current generation, then h(P^=Pj in the next 

generation. This mapping was controlled by a value that was toggled after every 

generation, just like the GAP's implementation. Thus, all the software GA's copying 

overhead was removed. 
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Figure 6.10: The error value ofthe best individual versus number of generations 
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Figure 6.11: The error value ofthe best individual versus number of generations 
(C =Step, D =Quartic). 
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• The software GA's selection procedure was altered to choose two new members per 

function call instead of one member per call. Thus the software GA's selection 

procedure more closely resembles the GAP's selection module described in Section 

4.2.3.6. 

• The software GA's mutation procedure was changed to more closely resembles 

mutation in the GAP. The GAP's mutation probability of P^ means that there is a P^ 

probability that between the two crossed members, one bit will be flipped. In the 

original software GA this probability applies to each bit of the, crossed members. The 

software GA's mutation procedure was altered to reflect the GAP's mutation operation. 

The GAP was compared with the software GA when optimising the fitness fimctions 

f(x)=x° over the discrete domain Z>=/3S;|-(§<JC<7;. The GAP and software GA both ran 

with 8 bit members and 8 bit fitness values. 

Both the software GA and GAP are started with the same initial population, so the only 

variations in the runs were in the pseudorandom number generation. 

The results ofthe runs are shown in the Figure .6.12 and Table 6.6. The table presents 

the average execution times ofthe software GA and GAP in milliseconds. All I/O times 

are removed from the comparisons. The GAP prototype, clocked at 10 MHz, ran an 

average 5.2 times faster than the software GA. The range of speed improvements varies 

from 3.5 to 7.6. Considering the difference between clock frequencies (66/10=6.6), the 

speed improvements are now range from 23 to 50 with the average of 35 (Table 6.7). 
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Populations 

16(SGA) 

16(GAP) 

32(SGA) 

32(GAP) 

64(SGA) 

64(GAP) 

128(SCTA) 

128(GAP) 

Generations 

16 

15.38ms 

2.00ms 

38.79ms 

7.05ms 

109.62ms 

26.20ms 

347.86ms 

101.44ms 

Generations 

32 

30.77ms 

3.99ms 

77.53ms 

14.10ms 

219.29ms 

52.40ms 

695.71ms 

202.05ms 

Generations 

64 

61.48ms 

8.06ms 

155.06ms 

28.2ms ' 

438.46ms 

104.95ms 

1390.66ms 

405.07ms 

Generations 

128 

122.97ms 

16.11ms 

310.39ms 

56.4tns 

876.92ms 

210.00ms 

2834.48ms 

809.85ms 

Hardware speed 

improvement 

— 

7.63 

— 

5.5 

— 

4.18 

— 

3.5 

Table 6.6: Timing results ofthe software GA and the GAP on different fitness fimctions. 
The GAP was clocked at 10 MHz, the software GA at 66 MHz. 

Populations 

Hardware speed 

improvement 

Overall speed 

improvement 

16 

7.63 

50.4 

32 

5.5 

36.3 

64 

4.18 

27.6 

128 

3.5 

23.1 

Average 

5.2 

35 

Table 6.7: Overall speed improvements. 
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Chapter 7 

Application of the GAP in engineering 

This chapter describes investigations into the potential use ofthe GAP in three different 

applications all of which involve "parameter tuning". In each case the process being 

controlled is approximated by either a polynomial equation or the ratio of two 

polynomials. The role of the GAP is to update the confrol coefficients in the face of 

non-linearities or changes in the plant or process behaviour. 

The first application is a Proportional-Integral-Differential (PID) controller system 

which can be optimised with the GAP. The second application is the Economic Power 

Dispatch problem where the GAP optimises load distribution between generators. The 

third is an Adaptive IIR Filter tuned by the GAP. In all applications various bit length 

configurations are tested to examine the effect of member length in solving problems. 

114 
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7.1 Application in a PID controller 

The conventional PID regulator, because of its remarkable effectiveness, simplicity of 

implementation and broad applicability, is the most widely used digital control strategy 

in use today [Ogata, 1990]. 

In practice, designing PID controllers is often carried out by an experienced operator 

using a 'trial and error' procedure and applying some practical mles. This is a time 

consuming and difficult activity when the dynamic process is slow, partly nonlinear, 

contains significant dead-time, or is subjected to random disturbances. Once designed, 

the control performance may later deteriorate because of nonlinear or time-varying 

characteristics of the process under control. Although PID controllers are common and 

well known, they are often poorly tuned [Dorf, 1991 ]. 

Modem adaptive control algorithms can be a good solution to such problems. They are 

. able to self-time the controller and to adapt it to changes in the process, provided certain 

conditions are fiilfiUed [Paraskevopoulos, 1988]. The inttoduction of these confrollers in 

industiy may cause some resistance and difficulties, mostiy related to the lack of 

knowledge by the operating personnel about their intemal mechanisms. An attractive 

altemative is to try to combine the well-known PID controller with algorithms which are 

able to provide on-line a set of optimal PID parameters, using input/output data from the 

system. 

7.1.1 The PID controller system 

One fomi of controller widely used in industrial process is called a three-term or process 

controller. This controller has a transfer function 

0(S)=^^-K,.^^K,S (7.1) 
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The controller provides a proportional term Kp, an integration term Kj, and a derivative 

term Kj and is also called a PID controller. The equation for the output in the time 

domain is 

u(t) = Kp e(t) + Kt \e(t) dt + K , ^ (7.2) 

If we set Kd=0, then we have the familiar PI controller. When Ki=0, we have 

G(S)=Kp+KoS "^ • (7.3) 

which is called a proportional plus derivative (PD) controller. 

Many industrial processes are confrolled usmg PID controllers. The popularity of PID 

controllers can be-attributed partly to their robust perfonnance in a wide range of 

. operating conditions and partly to their fimctional simplicity, which allows engineers to 

operate them in a simple, straightforward manner. To implement such a controller the 

three parameters must be determined for a given process. 

In PID control we attempt to derive a plant in accordance with a given reference signal 

(Figure 7.1). If a mathematical model of the plant can be derived, then it is possible to 

apply various design techniques for detemiining parameters ofthe controller that will 

meet the transient and steady state specifications ofthe closed loop system. However, if 

the plant is so complicated that its mathematical model cannot be easily obtained, then 

an analytical approach to the design of a PID controller is not possible and we must 

resort to experimental approaches. The process of selecting the controller parameters to 

meet given performance specifications is known as controller tuning. 
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R(S) 

+ 
E(S) 

U(S) 

I ^ 
PID 

Controller 
Plant 
P(S) 

Y(S) 

- • 

Figure 7.1: A typical PID controller system. 

The three gain parameters (Ki, Kp, Kd) of the PID control law interact with the plant 

parameters P(S) in a complex fashion when the designer attempts to derive the specified 

roots of the closed loop equation. These roots are chosen in order to obtain the desired 

transient response ofthe closed loop, while taking the resultant zeros into account. 

The controller introduces a new pole at the origin of the s-plane and shifts the original 

roots ofthe closed loop system to new positions. PID controllers increase the order of 

the closed loop equation by one. In addition to these effects, PID controllers introduce a 

pair of zeros, usually a complex conjugate pair, which will normally have a significant 

effect on the transient behaviour ofthe compensated system. 

Designing PID controllers, even for low order plants such as a robot arm, can be a 

difficult problem. Consider the system illustrated in Figure 7.1 where the PID confroller 

obeys the following control law: 

U{s) = (KirS + Kp+Kj*s)E{s) (7.4) 

where Y(S) is the output of the plant system, R(S) is the reference signal, E(S) is the 

en-or signal equal to Y(S) - R(S) and U(S) is the output ofthe PID controller. Using tiie 

equality S=(l-Z''), (7.4) can be expressed in the Z domain as: 
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U{z) = {Kt/{l-Z-') + Kp + KA^-Z-'))E{z). (7.5) 

The goal of PID controller design is to determine a set of gains, (Kj, Kp, Kj), of the 

control law such that the set of roots ofthe closed loop equation chosen by the designer 

are obtained. 

The efficiency of the system can be measured by calculating the integral of the time 

multiplied by the error for the unit step response during [0,T]: 

T 

error = jt\e(t)\dt (7.6) 
1=0 

The problem confronting the designer, therefore, is to calculate the three gains of the 

PID controller while ensuring that transient response specifications (minimum error, 

overshoot, rising time, settling time and steady-state error) are met. 

7.1.2 Applying the GAP to a PID controller 

The selection ofthe three coefficients of PID controllers is basically a search problem in 

a three dimensional space. Points in the search space correspond to different selections 

of a PID controller's three parameters. By choosing different points of the parameter 

space, different step responses can be produced for a step input. A PID confroller can be 

tuned by moving in this search space on a trial and error basis. 

The main problem in the selection of the three coefficients is that they do not readily 

translate into the desired performance and robustness characteristics that the control 

system designer has in mind. 

Genetic Algorithm Processor simulations have been conducted for the PID controller 

system in Figure 7.1. The simulations measured the response Y(t) to the reference signal 

R(t) which is a unit step fimction as shown in Figure 7.2. In order to represent a typical 
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plant to be controlled we use the transfer function described by Hwang and Thompson 

[1993] as: 

To calculate the fitness value, the transfer function must be converted from the S 

domain to the Z domain, and to the discrete values (K domain). Then 2000 points are 

selected between 0 and 10 seconds ( T = 10/2000 = 0.005). The fitness value is taken as 

the integral of time, multiplied by the absolute error values. 

2000 

Fimess=Y,{{kT)*\e(k)\) 7=0.005 (7.8) 
/t=i 

The following parameters have been selected for the GAP model: 

population size 
generations 
fitness value 
crossover rate 
mutation rate 
member size 

= 64 
= 128 
= 8 bits 
= 90% 
= 2% 
= 24 bits 

Each K value is allocated 8 bits in each member string (or chromosome) which makes a 

total length of 24 bits. So the memory must have at least 256*24 bit locations. Figure 

7.3 and Figure 7.4 demonstrate the result of simulations averaged over ten individual 

runs. The minimum and maximum K values and the normalised error values are shown 

after each generation. Figure 7.5 displays the unit step response signal Y(t) when the 

best set of K values (from the final generation) are applied to the PID controller. The 

measured characteristics ofthe response signal are as follows: 

Steady State Enor =0.000 
Overshoot =1.66% 
Rise Time = 0.975 Second 
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Settling Time = 1.455 Second. 

The results show that the GAP is able to find good K values very quickly (generally in 

20 generations) and the resulting unit step response is acceptable for a PID controller. 

Unit Step Input Signal 

Figure 7.2: The reference signal. 



Chapter 7. Application ofthe GAP in engineering 121 

5 30 

20 

10 

0 

-10 

-20 

WorstK 

Best K 

'0 20 40 60 80 100 
Number of Generations 

120 140' 

5 0 

'O 20 40 60 80 100 120 140 
Number of Generations 

Figure 7.3: The results of GAP simulations for PID controller 
(Kd and Ki). 
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Figure 7.4: The results of GAP simulations for PID controller 
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Figure 7.5: The unit step response ofthe best set of K values. 

7.1.3 Other GAP configurations for the PID controller 

This section compares the results of simulations for different GAP configurations. Three 

configurations were tested with member bit lengths of 12, 24 and 36 bits. The following 

parameters were selected for all GAP configurations: 

generations 
population size 
fitness value 
crossover rate 
mutation rate 

= 128 
= 64 
= 8 bits 
= 90% 
= 2%. 

In all configurations, one third of the memory bit length in each member is used for 

each K value. Figures 7.6 to 7.9 show the results of simulations for the GAP averaged 

over ten individual runs. Ki, Kd, Kp and the normalised error values are shown after 

each generation. 
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Figure 7.6: The results ofthe PID confroller simulation with 12,24 and 36 bit 
configurations (Normalised Error Value). 
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Figure 7.7: The results ofthe PID controller simulation with 12, 24 and 36 bit 
configurations (Kd). 
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Figure 7.8: The results ofthe PID confroller simulation with 12,24 and 36 bit 
configurations (Ki). 
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Figure 7.9: The results ofthe PID controller simulation with 12, 24 and 36 bit 
configurations (Kp). 
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Table 7.1 shows the results of comparison ofthe three different configurations. 

Best values in 

the final 

generations 

Normalised 

error value 

Kd 

Ki 

Kp 

12 bits 

le-2 

12 

2 

13 

24 bits 

7e-3 

62 

5 

90 

36 bits 

8e-3 

81 

-13 

110 

Table 7.1: The simulation results for different configurations. 

From the Figure 7.6, it can be concluded that the 36 and 24 bit processors outperform 

the 12 bit configuration. In the 12 bit configuration the GAP does not have enough 

resolution to converge to the best result. There is not much difference between 36 bit 

and 24 bit configurations, but the 24 bit configuration delivers sHghtly better 

performance than the 36 bit configuration. Considering the lower cost for 24 bits, it can 

be concluded that there is no advantage in using a higher bit length. The speed of 

convergence in 24 bits is also faster than the 36 bit configuration. 

7.2 Application of the GAP in Economic Power Dispatch 

With the development of modem power systems the optimal Economic Power Dispatch 

(EPD) problem has received increasing attention. EPD aims to minimise the fuel cost 

while providing consumers with adequate and secure electiicity. The issue is concemed 

with economically dividing the loads among the generators when the total capacity 
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exceeds load demands [Happ, 1977]. This is a typical constrained nonlinear dynamic 

problem made difficult by an uncertain demand environment. 

7.2.1 The EPD problem 

Two directions have been pursued in the study of optimal operation of power systems. 

One is towards an effective computational algorithm and the other is towards the 

development and formulation of a rigorous theory [El-Hawary and Christensen, 1979]. 

However, it is realised that conventional optimisation techniques become very 

complicated when dealing with increasingly complex dispatch problems and are further 

limited by their lack of robustness and efficiency in a number of practical applications. 

Thus developing a reliable, fast and efficient algorithm is still an active area of research. 

Economic dispatch is mainly concemed with the minimisation of an objective fimction, 

usually the total fiiel cost FyfP), while satisfying both the equality and inequality 

constraints as follows 

p -P +P and Pt , <Pt<Pi (7.9) 
' « i. 'mm max 

where 

•F-p{p)=YjF{Pi) is the total fiiel cost of generation for A/" plants. 
( = 1 

•Pj is the power generated by the unit /. 

•Pf is the total power generation. 

•PR is the total load demand. 

N 
2 •Pi is the total transmission loss PL=^^iPi 
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• Pj and Pj are the lower and upper limits ofpermitted power generation for unit/. 

•Bj is the transmission loss coefficient. 

The total fuel cost for power generation is given by the equation 

F(Pj)=at+btPj+CtPt^+et sin f R, ^ -Pj (7.10) 

where a,-, bj, Cj, e, ,fj are the constants ofthe input-output loadxurve for the generators. 

In most of the conventional methods, the complexity of the problem and its solution 

procedure are dependent largely on the configuration of the power generators and the 

number and type of constraints involved. Conventional optimisation techniques are 

application-dependent and in certain situations, a combination of different 

methodologies has to be employed for an efficient solution [Sasson and Merrill, 1974]. 

There is a large and ever increasing number of specific methods in each of these 

categories and many of these methods have been tried on various issues of economic 

power dispatch and optimal power flow in different combinations. As a mle, the most 

powerfiil optimisation methods are unacceptably slow on problems of large dimensions. 

Conversely, the faster methods tend to be less reliable in convergence and/or require 

restiictive application formulations and modeling assumptions [Cohen and Sherkat, 

1987]. 

No practical methods are guaranteed to solve real problems or find a globally optimal 

solution. The limitations ofthe optimisation techniques have been a major obstacle to 

the development of production quality economic dispatch and optimal power flow 

programs for industiial applications and practical problem formulations. The situation 

has recentiy improved with the development of several promising methods [Choudhury 

and Rahman, 1990], although there are still many obstacles to be overcome. 
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7.2.2 Applying the GAP to the EPD problem 

Genetic Algorithm Processor simulations have been conducted for the optimal 

economic dispatch of a 3 generator power system described in [Walters and Sheble, 

1993]. The constraints and coefficients are shown in Table 7.2. 

Parameter 

Maximum 

Minimum 

a 

b 

c 

e 

f 

Unitl 

600 MW 

100 MW 

0.001562 

7.92 

561 

300 

0.0315 

Unit 2 

450 MW 

150 MW 

0.00194 

7.85 

310 

200 

0.042 

Unit 3 

250 MW 

100 MW 

0.00482 

7.97 

78 

150 

0.063 

Table 7.2: Coefficients for generators in the simulations. 

The loss power is ignored in all simulations and the following parameters were selected 

for the GAP: 

generations 
population size 
fitness value 
crossover rate 
mutation rate 
member size 

= 128 
= 32 
= 8 bits 
= 90% 
= 2% 
= 32 bits 

The demand power is fixed at 850 MW. Half of each member is assigned to the power 

generated from generator one and two (PI and P2). The power for generator 3 (P3) can 

be calculated as P3=850-P1-P2. Each member is 32 bits wide thus PI and P2 are 

allocated 16 bits each. Figure 7.10 plots the minimum and maximum cost after each 

generation averaged over ten individual mns. The actual minimum cost achievable is 

about 8200 MBtii/hr. The GAP needs about 20 generations to find a reasonably good 
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answer and after that it tries to optimise the answer. On average, in the final generation, 

the GAP was able to find the minimum of 8343 which is about 2% off the optimum. 

The best minimum cost in all generations for this configuration was 8212.30 MBtu/hr. 

8900 

8800-

8700 
CQ 

8600 

O8500 
O 
"§8400 
LL 

8300 

8200 

Max Cost 

\J^^^ • /MA^^AA^,^^AJ\^^4^• 
Min Cost 

20 40 60 80 100 120 

Number of Generations 

Figure 7.10: Cost versus number of generations for the best and worst 
individual in the population. 

7.2.3 Other GAP configurations for the EPD problem 

The simulation in this section was repeated for three different member sizes in the GAP. 

The constraints and coefficients are shown in Table 7.2. For all cases the demand power 

is 850 MW and the loss power is ignored. The following parameters were selected for 

all GAPs: 

generations 
population size 
fitness value 
crossover rate 
mutation rate 

= 128 
= 64 
= 8 bits 
= 90% 
= 2%. 
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Figures 7.11 to 7.13 show the result of simulations for configurations of 32, 16 and 8 bit 

members averaged over ten individual mns. In the figures the minimum and maximum 

costs are shovm after each generation. In all configurations half of the member string 

represents PI and the other half represents P2. Table 7.3 shows the best results and tiie 

average results for the three configurations after the final generation. 

Costs 

Best ever 
minimum 

Average 
minimum 

32 bit GAP 

8212.30 

8343 

16 bit GAP 

8211.96 

8271 

8 bit GAP 

8248.23 

8333 

Table 7.3: The best ever minimum costs and the average minimum costs. 

From Figures 7.11, 7.12 and 7.13 and Table 7.3, it can be concluded that the 16 bit 

processor converges to the best result. The 8 bit GAP does not have enough resolution 

to converge to a good result. The 32 bit configuration converges quickly but to a poor 

result. It is evident that the intermediate configuration of 16 bits produces better results 

than the 32 bit configuration. 
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GAP: 8 Bit 
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Figure 7.11: Maximum cost and minimum cost versus number of 
generations for 8 bit members. 

GAP: 16 Bit 
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Figure 7.12: Maximum cost and minimum cost versus number of 
generations for 16 bit members. 
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GAP: 32 Bit 
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Figure 7.13: Maximum cost and minimum cost versus number of 
generations for 32 bit members. 

7.3 Application in adaptive IIR filters 

In recent years there has been a growing interest within the communications industry in 

using adaptive filters. Applications of adaptive filters have been reported for chaimel 

equalisation, noise cancellation and echo cancellation [Willsky, 1985]. In each 

application the task of adaptation is essentially the same: the adaptive filter is adjusted 

to match a desired system transfer fiinction and hence may be regarded as a variant of 

the system identification problem. The common objective is to minimise a performance 

criterion, usually the Mean Square Error (MSE) between the adaptive filter output and a 

desired response. Thus, one ofthe fundamental problems in adaptive filter research is to 

devise suitable algorithms to alter the filter coefficients to minimise the MSE. 
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7.3.1 Properties of Infinite Impulse Response Filters 

Digital filters with an Infinite-duration Impulse Response (IIR) have characteristics that 

make them usefiil in many applications. This section develops and discusses the 

properties and characteristics of these filters. 

Because of its feedback architecture, the IIR filter is also called a recursive filter. In 

contrast to the Finite Impulse Response (FIR) filter with a polynomial transfer function, 

the IIR filter has a rational transfer fimction consisting of a ratio of two polynomials. 

This means it has fiiute poles as well as zeros, and the fifequency-domain design 

problem becomes a rational function approximation problem. This contrasts with the 

polynomial approximation of an FIR filter and gives considerably more flexibility and 

power, but brings with it certain problems in both design and implementation [Roberts 

and Mullis, 1987]. 

The defining relationship between the input and output variables for the IIR filter is 

given by (Figure 7.14) 

Â  M 

y(n) = -J] (̂̂ ^y(̂ -k)-̂ Y, ^(^^^(^-^^ ^^-^^"^ 
k=\ k=Q 

The first summation is a weighted sum ofthe previous Â  output values and the second 

summation is the average of the present plus past M values of the input x(n). The 

calculation of each output term y(n) from (7.11) requires N+M+1 multiplications and 

//+M additions. 

The output of an IIR filter can also be calculated by convolution. 

y(n) = Y, h(k)x(n-k) (7.12) 
Jfc=0 
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Figm-e 7.14: Stmcture of an IIR filter. 

In this case the duration of the impulse response h(n) is infinite, and therefore, the 

number of terms in (7.12) is infinite. The N+M+1 operations required in (7.11) are 

clearly preferable to the infirute number required by (7.12). 

The transfer fimction of a filter is defined as the ratio Y(z)/X(z), where Y(z) and X(z) are 

the z transforms ofthe output >»(«) and input x(n), respectively. It is also the Z transform 

ofthe impulse response. Using the definition ofthe z transform, the transfer function of 

the IIR filter defined in (7.11) can be obtained as: 

H(z) = £ h(n)z" (7.13) 
n=0 

This transfer function is also the ratio ofthe z transforms ofthe v(n) and w(n) terms. 
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M 

2]v(«)z-" 
H(z) = ^ (7.14) 

f^w(n)z-" 

The frequency response ofthe filter is found by setting z = e'", which gives (7.13) the 

form 

H(&) = Ya h(n) €•''"'" • (7.15) 

This frequency-response function is complex valued and consists of a magnitude and a 

phase. Even though the impulse response is a fimction of the discrete variable n, the 

frequency response is a fimction of the continuous frequency variable co and is periodic 

with period 27t. 

The FIR linear-phase filter permits removal of the phase from the design process. The 

resulting problem is a real-valued approximation problem requiring the solution of 

linear equations. The IIR filter design problem is more complicated. Linear phase is not 

possible, and the equations to be solved are generally nonlinear. The most common 

technique is to approximate the magnitude ofthe tiansfer fimction and let the phase take 

care of itself. If the phase is important, it becomes part of the approximation problem, 

which then is often difficult to solve. 

The design of a digital filter is usually specified in terms of the characteristics of the 

signals to be passed through the filter. In many cases the signals are described in terms 

of their frequency content. For example, even though it cannot be predicted just what a 

person may say, it can be predicted that the speech will have frequencies between 300 

and 4000 Hz. Therefore, a filter can be designed to pass speech without knowing what 

the speech is. This frequency-domain description is tme of many types of signals and 

noise or interference. For these reasons, among others, specifications for filters are 
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generally given in terms of the frequency response of the filter. The basic IIR filter 

design process is: 

1. Choose a desired response, usually in the frequency domain. 

2. Choose an allowed class of filters—in this case, the A/th-order IIR filters. 

3. Establish a measure of distance between the desired response and the actual 

response of a member ofthe allowed class. 

4. Develop a method to find the best allowed filter as measured by being closest 

to the desired response. 

The mathematical problem inherent in the frequency-domain filter design problem is the 

approximation of a desired complex frequency-response fimction H0(z) by a rational 

transfer fimction H^(z) with an Mth-degree numerator and an Mh-degree denominator 

for values ofthe complex variable z along the unit circle of z = ^'^. This approximation 

is achieved by minimising an error measure between HJ)(G)) and H^(G)). 

Figure 7.15 illustrates the general stmcture and the components of an adaptive Infinite 

Impulse Response filter with input x(n) and output >-(«). The IIR filter is characterised 

by the adjustable coefficients w(n) and v(n), and a recursive algorithm that adjusts these 

coefficients so that y(n) approximates some desired response d(n), which is determined 

by the particular application. Figure 7.16 shows the adaptive filter in a system 

identification configuration, where D is the set of desired system parameters, and d(n) is 

simply the measured output of the system, which usually includes an additive noise 

process V(n). The objective of the algorithm is to minimise a performance criterion 

which is based on the prediction error e(n) (sometimes called the estimation error), 

defined by e(n) = d(n) - y(n). One commonly used criterion is the mean-square error, 

^=E[e (n)], where E is statistical expectation. Another criterion is based on the method 
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of least squares, and the resulting algorithms are known as recursive Least Mean 

Squares (LMS) [Widrow and Steams, 1985]. 

x(n) 

rr^zl 
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A d a p t i v e 
A Igorithm 

Figure 7.15: Stmcture of an adaptive IIR filter. 

y ( n ) 

The problem here is to calculate the w(n) and vfw) coefficients ofthe filter so that the 

filter delivers the signal y(n) to match the desired response d(n). A novel approach has 

been suggested to overcome this problem. Instead of applying a deterministic algorithm 

to search for the minimum of the MSE surface, it was suggested that an intelligent 

leaming algorithm is used [Tang and Mars, 1989]. Specifically, Stochastic Leaming 

Automata (SLA) were considered. This type of automaton is known to have a well-

established mathematical foundation and global optimisation capability [Narendra and 

Thathachar, 1989]. It has been found that this latter capability can be used firuitftilly to 

search a multimodal performance surface [Shapiro and Narendra, 1969]. In this 

approach the MSE surface is partitioned into a number of hyperspaces and a global 

search is conducted to find the minimum. Global convergence has been demonstrated in 
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a well-known reduced-order system identification example where other methods failed 

to work [Tang and Mars, 1989]. 
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Adaptive 
IIR 

Filter 

/ 

V(n) 
+ 

+ "• 

1 -1 
y(n) 

d(n) 
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e(n) 

Figure 7.16: A typical system for the adaptive IIR filter. 

Since then significant developments have taken place in leaming systems. Etter and 

Masukawa investigated the use of genetic optimisers and linear search algorithms for 

adaptive delay estimation [Etter and Masukawa, 1981]. They found that when the 

performance surface is multimodal, or when noise is present, random search algorithms 

have a better performance than the LMS. Although both genetic optimisers and random 

search are capable of performing global optimisation, little is known about their use in 

adaptive IIR filters. 
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7.3.2 Applying the GAP to adaptive IIR filters 

In using a GA for adaptive filtering as in Figure 7.17, the desired system is defined as a 

fixed IIR filter while the adaptive system is an adaptive IIR filter whose coefficients are 

updated dynamically by a genetic algorithm. 

V(n) 

Desired 
System D 

x(n) 

—>©—I 
d(n) 

- A 
y(n) 

Genetic 
Algorithm 
Processor 

e(n) 

Figure 7.17: The architecture of an adaptive Genetic Algorithm IIR filter. 

Tests were conducted to compare the performance of the GAP with the known results 

for the LMS and SLA algorithms described in the previous section. A reduced-order 

modelling example is considered, in which a second-order system vdth a transfer 

ftinction of: 

Ho(^-')-
0.05-0.4Z -1 

l-1.1314z-^+0.25z~2 
(7.16) 

is modelled by the following first-order filter 
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H,{^-')=-^ (7.17) 
1-oz 

This well-known example was first proposed by Johnson and Larimore [1977] and since 

then has been considered by others to show that recursive LMS carmot achieve global 

convergence [Tang and Mars, 1991]. 

In applying a GA to this problem the fitness value is calculated by converting all 

transfer functions from the Z domain to discrete values (K domain). The input signal 

x(n) is white noise consisting of a window of 1000 random normal samples with the 

standard deviation (sd) equal to one where the additive noise is ignored (y(n)= 0 ). The 

fitness value is calculated by the Fitness Unit as: 

1000 

«=i 

Fimess= MSE = Y, (yin)" d{n)) (7.19) 

The following parameters are selected for the GAP: 

generations 
population size 
fitness value 
crossover rate 
mutation rate 
member size 

= 128 
= 64 
= 8 bits 
= 90% 
= 2% 
= 16 bits. 

All simulations are averaged over ten individual mns started with different initial 

values. Figure 7.18 compares the result of simulations of the genetic algorithm 

processor with the LMS and Stochastic Leaming Automata. The length of each member 

is 16 bits and the 'a' and 'b' values are each allocated 8 bits in each member. 

This figure shows that the GAP model is much faster than other two algorithms but the 

SLA is more accurate than the GAP. 
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20 40 60 80 100 120 
Number of Generations (X 64 = Iterations) 

Figure 7.18: The Mean Square Error (MSE) for three algorithms 
(* Results from [Tang and Mars, 1991]). 

7.3.3 Other GAP configurations for adaptive IIR filters 

This section demonsfrates the results of simulations for the three different member 

string lengths in the GAP. The following parameters are selected for the GAP: 

generations =128 
population size = 64 
fitness value = 8 bits 
crossover rate = 90% 
mutation rate = 2%. 

Figures 7.19 to 7.21 show the result of simulations averaged over ten individual mns for 

GAP configurations of 32, 24 and 16 bits. The figures show the best 'a' and 'b' values 

and MSE after each generation. In all configurations, half of each member stiing 

contains the 'a' value and the other half represents the 'b' value. Table 7.4 summarises 

the performance ofthe three configurations. It is apparent that the best results were 

produced by the 24 bit configuration. 
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Best values 

MSE 

'a' value 

'b' value 

16 bits 

0.39 

0.79 

-0.58 

24 bits 

0.36 

0.815 

-0.54 

32 bits 

0.38 

0.81 

-0.57 

Table 7.4: IIR filter results for three GAP configurations. 

From figures 7.19 - 7.21 and Table 7.4, it can be concluded that the 24 bit processor 

produced consistently better results than the two other configurations. In the 32 bit 

processor the convergence is faster but the final error is higher than for the 24 bit 

processor. In the case of the 24 bit processor, there are some oscillations that slow the 

convergence. The difference in performance is not very large and if the cost of 

implementing the 32 bit GAP is taken into account then the 16 bit configuration has 

performed relatively well. 

GAP: Single Processor 

40 60 80 100 
Number of Generations 

Figure 7.19: The best Mean Square Error (MSE) for the adaptive IIR filters versus 
number of generations for three GAP configurations (16 bit, 24 bit and 32 bit). 
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GAP: Single Processor 
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Figure 7.20: The best 'a' value for the adaptive IIR filters versus number of 
generations for three GAP configurations (16 bit, 24 bit and 32 bit). 
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Figure 7.21: The best 'b ' value for the adaptive IIR filters versus number of 
generations for three GAP configurations (16 bit, 24 bit and 32 bit). 
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7.4 Conclusions 

The GAP is capable of handling difficult control and filtering problems without detailed 

specialised knowledge. A parameter tuning approach is used to adapt a simple linear 

model to non-linear problems. This appears to avoid the need to have a deep theoretical 

understanding of the problem and is thus an attractive engineering approach. Further 

research is required to see how far this approach can be taken. 

The GAP does not necessarily need a large member string length to solve a problem. In 

some applications, the larger bit length configurations seem to have more difficulty in 

tuning and finding good solutions than the moderate configurations. The small 

configurations have the additional advantages of higher speed and lower implementation 

cost. In the next chapter a new configuration ofthe GAP will be introduced to eliminate 

the need for implementing large member strings on a single GAP device. 



Chapter 8 

Multiple GAP architectures 

There are technical problems in implementing the GAP with a long member bit string. 

But the single configuration with small bit string has limited application. This chapter 

describes the limitations of the single GAP and introduces a new configuration which 

provides for long member strings while retaining the simplicity ofthe basic architecture. 

8.1 Limitation of a single processor 

It was shown in Chapter 6 that as the length of the bit string is increased more FPGA 

chips are required to implement the design. As the design becomes distributed over 

several FPGA chips then there is a need for a large number of intemal connections 

between chips. Unfortunately FPGA's have a fixed and limited number of I/O blocks in 

proportion to the number of CLE's. This means that as the bit length increases we 

148 
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eventually reach a point where the I/O resources of individual FPGA chips are 

exhausted and the design carmot be synthesised. 

Two problems result from the high levels of coimectivity in distributed designs. These 

are the board layout costs and the additional I/O delays which complicate the design. 

Interconnection between chips is expensive and increases the board cost. 

The delays in FPGAs are mostly due to routing. In most GAP designs about 70% ofthe 

critical path delay is due to the routing delay and only 30% to the logic delay. So 

routing is the major cause of the low processing speed of the GAP. Implementing the 

GAP with long bit strings means more intercoimections and thus greater routing delays 

and lower speed. 

The ideal solution for these hardware limitations is to implement the GAP on a single 

FPGA chip to minimise the connectivity problem. On the other hand implementing the 

GAP on one chip means working with small bit strings. However even 8 or 16 bit 

configurations are not practical for the GAs in real applications. 

One way to handle this problem is to connect a linear array of GAPs each handling a 

small bit string of 8 or 16 bits. This design delivers a large bit stiing to the problem. 

Thus eliminating most of the hardware limitations. The performance of this model is 

investigated in the following sections. 

8.2 Multiple architectures 

For real applications of the GAP, a means of splitting the bit string of a member 

between multiple GAPs is needed. One practical way of doing this is by dividing the 

fiill member into bit slices. Figure 8.1 shows how a 32 bit member string can be 

distiibuted over four GAPs. Each 8-bit slice is assigned to a separate GAP which can be 

implemented on one FPGA chip. The Fitness Unit operates on a ftill 32 bit member and 

delivers an 8 bit fitness value to all GAPs. 



Chapters. Multiple GAP 
150 

All GAPs in Figure 8.1 operate concurrentiy but at any time only one of them is waiting 

for a response from the Fitness Unit. Each GAP produces new members and tries to 

access the FU to calculate the fitness value. Whenever one new member (bit slice) is 

ready in one ofthe GAPs (say GAP_A) then GAP_A tests the FU to see if it is free. If 

so then the G A P A provides a new member slice on its output. 

Fi tness 

Uni t 

32 b i t Member 

8 b i t F i tness 
Return 

^GAPJVUGAP.BUGAPCLJ 

1 1 1 

8 b i t 

GAPD 

iVfanwy IVfenwy Mmwy 

I 
Mtnay 

Figure 8.1: Splitting one member between four GAPs. 

The FU receives the new member which is made up of the new slice from the GAP_A 

and the current (unchanged) slices from the other GAPs. The FU calculates the fitness 

value and retums the 8-bit result on the buss where it is received by GAP_A. This 

configuration splits the bit string and enables the GAP to handle large bit strings. 

The operation of the multiple GAP architecture can be demonstrated with an example. 

Suppose the fitness function is F(x,y)=x+y. The x value is represented with 4 bits and 

the y value is also represented in 4 bits. Two GAPs can be used to solve this problem. 

One of them contains the x values (GAP_X) and the other one contains the y values 

(GAP_Y). The fitness value is represented in 5 bits. If there is a change to be made in x 

then GAP_X delivers its new string. The string for 7 remains unchanged at the last value 
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delivered by GAPY. Table 8.1 demonstrates how the changes in x and jj; values affect 

the fitness values. 

Action 

Initial values 

Change in x value 

Respond to GAP_X 

Change in j ; value 

Respond to GAP_Y 

Change in x value 

Respond to GAP_X 

Change in y value 

Respond to GAP_Y 

X (4 bits) 

0 

2 

2 

2 

2 

7 

7 

7 

7 

y (4 bits) 

0 

0 

0 

10 

10 

10 

10 

14 

14 

Fitness value (5 bits) 

0 

— 

2 

— 

12 

— 

17 

— 

21 

Fitness Unit 

busy signal 

' 1 ' = busy 

'0 ' 

' 1 ' 

'0 ' 

' 1 ' 

'0 ' 

' 1 ' 

'0 ' 

' 1 ' 

'0 ' 

Table 8.1: A simple example for the multiple GAP configuration. 

It is worth considering how this method relates to the current theory of genetic 

algorithms. 

8.3 Justification for the multiple GAPs 

According to the schema theory of genetic algorithms from Chapter 3, schema of above 

average fitness will increase in the new population according to its fitness value. If a 

similar GA process maintains the schema in the population, then the process should be 

able to increase the schema number in the new population accordingly. Then 

distributing a member between multiple GAPs is reasonable as long as the schemata 
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remain unchanged in the population. For example suppose members of 16 bits are split 

between two 8 bit GAPs and the following schema has a high fitness in the population: 

***********jj**Q ^ ******** (pirstQAP) + ***ii**0 (Second GAP). 

This implies that the second 8 bit schema must have a high fitness in the second GAP as 

well. While generating a new population, the second GAP should increase the 

occurrence of strings matching the schema in the next population. It is unimportant 

whether the first part ofthe member comes from the first GAP or the second GAP. Thus 

the multiple genetic algorithm processor should be able to increase the occurrence of 

strings matching the total schema according to the schema theorem. 

On the other hand if the high fitness schema for the same configuration of two GAPs is: 

******Oioi****** = ******01 (First GAP) + 01****** (Second GAP). 

The active part is divided between two GAPs. Under this schema we cannot guarantee 

that either part of the schema (i.e. ******oi or oi******) has high fitness in the 

population. It is still possible to apply this configuration to see how it works, but we 

cannot explain the process with the GA schema theory. 

It is apparent that under the schema theory, the multiple GAP configuration is not 

expected to work in all cases. Let's assume we know nothing about the problem and 

choose an unsuitable representing schema for the member strings. If we then arbitrarily 

partition the members across several GAPs, there is a good chance that correlations will 

occur between the different sections and this will adversely affect the optimising 

capability ofthe system. The test examples in this chapter avoid this problem mainly by 

using some knowledge of the environment to partition the member strings over the 

multiple GAPs. 
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8.4 Simulation ofthe multiple GAPs 

To simulate the operation of multiple GAPs we need a concurrent programming 

environment. Simulation programs can be handwritten in a concurrent programming 

language like Parallel Pascal or Parallel C to compare how the single and multiple 

GAPs solve problems. Fortunately the VHDL simulation tools can handle concurrent 

processes and it is possible to directly test models of the multiple GAPs. The three 

examples in Chapter 7 were simulated using multiple configurations and the results are 

compared with the single configuration. 

8.4.1 PID controller 

Figures 8.2 to 8.5 show the result of simulations for configurations of two, tluee, four 

and six GAPs averaged over ten individual runs for the PID controller system.- The same 

parameters in Section 7.1.2 are used for all GAPs during simulations. In Figure 8.2 the 

normalised error value is shovm after each generation. All three configurations deliver 

24 bits to the objective fimction; Table 8.2 shows the best final values for the multiple 

configurations. Note that the final error values are close, but the K values are very 

different. This suggests that the problem surface has many local optimum points and 

each configuration merges to one of them. 

Best Values 

Normalised 
error value 

Ki 

Kd 

Kp 

Single GAP 

7e-2 

5 

63 

95 

Two GAPs 

5.8e-2 

3 

42 

83 

Three GAPs 

4.8e-2 

13 

105 

185 

Four GAPs 

5.7e-2 

3 

45 

95 

Six GAPs 

6e-2 

-40 

45 

103 

Table 8.2: The best final values for the five configurations. 
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1 0 

4 0 6 0 8 0 . lOQ^ 
N u m b e r o f G e n e r a t i o n s 

1 2 0 1 4 0 

1 0 
2 0 AO 6 0 8 0 1 0 0 

N u m b e r o f G e n e r a t i o n s 
1 2 0 1 4 0 

AG 6 0 SO 1 0 0 
N u m b e r o f G e n e r a t i o n s 

1 2 0 1 4 0 

Figure 8.2: The results ofthe PID controller simulation with single, 2, 3, 4 and 6 
processors (Error Value). 
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2 0 4 0 6 0 8 0 1 0 0 
N u m b e r o f G e n e r a t i o n s ^ . 

1 2 0 1 4 0 

6 Processor . 6 '*4=24 Bit 

2 Processor . 2 * 1 2 = 2 4 Bit 

AO 6 0 SO 
N u m b e r o f G e n e r a t i o n s 

1 0 0 1 2 0 

2 0 AO 6 0 SO 1 0 0 
N u m b e r o f G e n e r a t i o n s 

1 2 0 1 4 0 

Figure 8.3: The results ofthe PID controller simulation with single, 2, 3, 4 and 6 
processors (Kj Value). 
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I S O 

1 0 0 

so 

o 

-SO 

- 1 0 0 

- 1 5 0 
I 

1SO 

1 0 0 

SO 

o 

-SO 

- 1 0 0 

- 1 5 0 

2 0 -40 6 0 SO. l O O ^ 
N u m b e r o f G e n e r a t i o n s 

6 P r o c e s s o r . 6 ' ' 4=24 B i t 

2 P r o c e s s o r . 2 * 1 2 = 2 4 B i t 

2 0 AO eo SO 1 0 0 
N u m b e r o f G e n e r a t i o n s 

1 2 0 1 4 0 

'fkf^»oM:iC^^ 

3 P r o c e s s o r , 3 * 8 = 2 4 Bi t 

4 P r o c e s s o r , 4 * 6 = 2 4 Bi t 

O 2 0 4 0 6 0 8 0 100 
N u m b e r of Gene ra t i ons 

1 2 0 1 4 0 

1 2 0 1 4 0 

Figure 8.4: The results ofthe PID controller simulation v^th single, 2, 3,4 and 6 
processors (Kj Value). 
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2 0 4 0 6 0 s o 1 0 a 
N u m b e r o f G e n e r a t i o n s 

1 2 0 1 4 0 

2 0 4 0 6 0 SO 1 0 0 
N u m b e r o f G e n e r a t i o n s 

1 2 0 1 4 0 

2 0 4 0 6 0 8 0 1 0 0 
N u m b e r o f G e n e r a t i o n s 

1 2 0 1 4 0 

Figure 8.5: The results ofthe PID controller simulation with single, 2, 3,4 and 6 
processors (Kp Value). 
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The normalised error value column in Table 8.2 shows that all multiple processor 

configurations perform better than the single processor. This is because they work on a 

smaller search space with the same resolution for the objective fimction. On the other 

hand single processor configurations give a smoother curve than the multiple 

configurations. The graphs show that the 2 and 6 GAP configurations converge faster 

than the 3 and 4 GAP configurations and the curves are smoother but the error result in 

the final generation is higher. In the 3 GAP configuration there are no correlations 

between bit strings as each GAP is optimising one K value. This may be the reason why 

the 3 GAP configuration achieves the best error result. 

8.4.2 Economic power dispatch problem 

Figures 8.6 to 8.8 show the result of simulations for configurations of one, four and 

eight GAPs averaged over ten individual mns for the EPD problem. The same GAP 

parameters as in Section 7.2.2 are used for all GAPs during simulations. In the figures 

the minimum and maximum costs are shown after each generation. All three 

configurations deliver 32 bits to the objective fimction. Table 8.3 shows the best results 

and the average result for three configurations after the final generation. 

Costs 

The best 
minimum 

ever 
Average 

One GAP 
32 bit 

8212.30 

8343 

4 GAP 
4*8=32 
8211.47 

8243 

8 GAP 
8*4=32 

8211.56 

8242 

Table 8.3: The best ever minimum costs and the average minimum costs. 

Figures 8.6 to 8.8 and Table 8.3 show that the 4 and 8 processor configurations both 

outperform the single processor. This is mainly because they are working on a smaller 

search space with the same resolution for the objective fimction. The only major 
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difference between the 4 and 8 processor configurations is the maximum cost curve 

which for 4 processors, is lower and smoother than for 8 processors. 

GAP : Single Processor, 32 Bit 
8900 

8800-

8300 

8200 

Max Cost 

/A-VAA^AA^KM^A^^.^^-

Min Cost 

20 40 60 80 100 

Number of Generations 
120 

Figure 8.6: Maximum cost and minimum cost versus number of 
generations for the single processor. 

8900 

8800 

GAP: 4 Processors , 4*8=32 Bit 

20 40 60 80 100 

Number of Generations 
120 

Figure 8.7: Maximum cost and minimum cost versus number of 
generations for the 4 processors. 
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8900 

8800 

GAP: 8 Processors , 8*4=32 Bit 

20 40 60 80 100 

Number of Generations 
120 

Figure 8.8: Maximum cost and minimum cost versus number of 
generations for the 8 processors. 

8.4.3 Adaptive IIR filters 

The multiple GAP configuration has been simulated on the adaptive IIR filter problem 

of Section 7.3. Figures 8.9 to 8.11 show the result of simulations for configurations of 

one, two and four GAPs averaged over ten individual mns. The GA parameters are the 

same as in Section 7.3.2 except that the member size is 32 bits. The graphs show the 

best values from the population for the 'a' and 'b ' parameters of (7.17) and the MSE 

after each generation. We have shown only 50 generations because after that point there 

are no changes in the values. Table 8.4 shows the best final values from each 

configuration. 

Best values 

MSE 

'a' value 

*b' value 

Single Processor 

0.38 

-0.57 

0.81 

Two Processors 

0.46 

-0.54 

0.75 

Four Processors 

0.42 

-0.58 

0.74 

Table 8.4: The final results of each configuration. 
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GAP: Multiple Processors 
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Figure 8.9: The best adaptive IIR characteristics (Mean Square Error (MSE)) 
versus number of generations v^th multiple processors (single, 2 and 4 processors) 
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-1 
0 

GAP: Multiple Processors 

Single Processor 

2 Processors 

4 Processors 
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Number of Generations 

40 50 

Figure 8.10: The best adaptive IIR characteristics ('a' value) versus number of 
generations with multiple processors (single, 2 and 4 processors). 
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GAP: Multiple Processors 

Single-Processor 

2 Prdcessors 

4 Processors 

10 20 30 
Number of Generations 

40 50 

Figure 8.11: The best adaptive IIR characteristics ('b' value) versus number of 
generations with multiple processors (single, 2 and 4 processors) 

The figures (8.9 to 8.11) and Table 8.4 show that the 2 and 4 processor configurations 

both minimise the MSE in a reasonable number of generations. Indeed the 2 processor 

configuration settles faster than the single processor but the final error value (MSE) and 

oscillation is higher than for the single processor. The 4 processor configuration takes 

longer to settle than the single configuration but the final error value is less than for the 

2 processor configuration. The oscillation in the values for 4 processors is greater than 

for the other two configurations. It appears that the multiple configurations are capable 

of finding stable values, but the accuracy is not as good as for the single processor. 

8.5 Conclusions 

This research shows that the multiple GAP configurations have potential to be used in 

real applications. The multiple GAP has been applied to the three applications in 

Chapter 7 and all simulations show this configuration is capable of competing with the 
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single GAP. In two of the applications the multiple GAP appeared to optimise the 

application better than the single GAP but it has not been proven that the multiple GAP 

is always better than the single GAP. For example in the filter application, performance 

of the multiple processors appears to be worse than for the single GAP. To investigate 

the operation of the multiple configurations further mathematical analysis is required 

but this is outside the scope of this thesis 

There are two issues conceming multiple GAP configurations. The first one is the high 

oscillation observed during search and the second pne is selection of the optimum 

number of GAPs for a particular problem. The oscillation problem may be advantageous 

to the operation of the multiple GAP. Oscillation suggest a wider search in the problem 

space and thus a higher chance of finding the global optimum. The second problem, the 

number of GAPs required to solve a particular problem, depends on the coding of the 

problem and this will affect the performance of the search. In selecting a suitable 

configuration of GAP's it is desirable to utilise some problem-specific knowledge. A 

good place to start is with a model which can be used to approximate a solution. If the 

GAP is operating in a parameter tuning role then it is appropriate to select the number of 

GAPs to be equal to the number of model parameters to be tuned. If this fails then the 

model may be inappropriate. 



Chapter 9 

Adaptive behaviour of the GAP 

In the previous chapters the performance of the GAP has been examined in a static 

environment in which the Fitness Unit responses for the same inputs are similar. This 

chapter considers how a GAP might be applied to a dynamic system. For static fitness 

fimctions all members ofthe population eventually converge to the optimum point at the 

end of a successful search cycle. If the optimum point then moves as a function of time, 

the GAP caimot respond efficiently if there is insufficient genetic diversity left in the 

population. We v^ll apply our GAP model to the same applications as in Chapter 7, but 

this time the environment (and thus the fitness evaluation) is to be varied in time. The 

objective is to test the performance ofthe GAP model in dynamic situations. 

164 
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9.1 Adaptive behaviour 

A system is adaptive if during changes in the extemal environment, at least one intemal 

control variable in the system changes to produce better behaviour. If a system is 

adaptive then any larger system based on that system can be adaptive. Figure 9.1 shows 

how an adaptive GAP can be applied to a system and produce adaptive behaviour. 

OUT i 1 IN 

It 
System under control 

OUT IN 

Adaptive 
GAP for 
control 

s 1 

Figure 9.1: An adaptive system based on the adaptive GAP. 

Suppose the system being made adaptive is a PID contt-oller and a GAP is used to 

optimise the K parameters of (7.5). Whenever changes due to extemal causes occur in 

the plant, these changes affect the output of the system and thus eventually affect the 

response to the GAP. If the GAP is adaptive, then it will respond to these changes and 

vary the K values. The new K values change the behaviour of the plant and finally 

change tiie output of the system. If the process works then the whole system has become 

adaptive. 

There are two ways in which the behaviour of a system might change. The first is a 

slight change in the operating point due to changes in environmental factors such as 
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temperature or pressure. The second is a sudden change in a key parameter that affects 

the whole operation ofthe system. 

The GAP has difficulty in keeping track of small changes in the environment. If it is 

necessary to use the GAP in such situations then it should be periodically restarted with 

a population of random members. Recognising that the environment has drifted is 

difficult and restarting from an initialised population slows down the optimisation. 

As an example to show how the GAP operates in a slowly varying environment, it has 

been simulated on the Economic Power Dispatch problem when the demand power is 

varied between 800 and 850 according to the Figure 9.2. 

850 

845 

840 

g^835 

^ 8 3 0 
•o 

ro 825 
E 

S 820 

815 

810 

805 

800 0 

^ 1 : 

200 400 600 800 1000 
N u m b e r o f Genera t i ons 

1200 

Figure 9.2: The changes in the demand power. 

Figure 9.3 shows the results of simulation for the variable demand. It can be seen that 

because the demand only changes 5 MW (0.5%) in each step, then the GAP has 

difficulty in adjusting itself to this sitiiation and often retiims the same cost after a 

change. 
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The next section considers the performance of the GAP with larger changes in the 

environment. 

8600 

8500 

8400 

8000 

7900 

7800 

GAP: 32 BIT Single Processor 

GAP Minimum Cost 

Actual Minimum Cost 

200 400 600 800 
Number of Generations 

1000 1200 

Figure 9.3: The results of simulations when the demand power is 
varied in small steps. 

9.2 Adaptive GAP 

The operation of the adaptive GAP can be explained with an example. Consider the 

optimisation task shown in Figure 9.4. The load RL changes in time due to unknown 

extemal factors. The Optimisation Part (OP) is required to adjust a resistor RS to 

equalize the voltage drop on RL and RS. In theory this task is achieved by measuring 

RL or the current (I) through the resistors and then adjusting RS. For these systems, an 

adaptive mechanism is needed which changes its intemal parameters to match with the 

system. This example demonstirates the need for a different approach to optimisation. 

We can use a genetic algorithm for the required adaptive mechanism without the need 

for embedding any knowledge ofthe current/resistance relationship inside the GA. 
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RL 

Figure 9.4: A simple optimisation task. 

One way to make the GAP adaptive is to increase the mutation rate thus adding some 

randomness to the population. So when the GAP detects a change in the fitness values 

(either by a signal from the Fitness Unit or by examining the fitness values in 

population) it will change the probability of mutation to 100% for one generation and 

then retum the mutation rate to its normal value. In this case the population can be 

spread out from the current optimum point. There are other ways of making the GAP 

adaptive such as starting with a totally random population or changing the coding of the 

members, but these are complicated and time consuming. Changing the probability of 

mutation is simple and it is easy to change the duration of altered mutation for different 

applications. 

The only problem is informing the GAP that a sudden change has occurred in the fitness 

evaluation unit. This can be done by arranging for the GAP to respond to a signal from 

an extemal detector which is activated by a sudden change in the load (RL). The second 

method involves examining the fitness values of the population to detect the change 

intemally. Whenever a change occurs in the load the fitness values are expected to drop 

suddenly to very low values and this could be detected by an algorithm in the GAP. It 

can be expected that such an algorithm would sometimes falsely report changes and thus 
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decrease the efficiency ofthe GAP. In all simulations in this chapter the first method is 

used because it does not contribute any additional error to the tests. For the tests, the 

fitness fimction was computed from the output power fiinction and can be expressed as: 

F{R„R) = R,*R*V'/{R,+Ry (9.1) 

For the example, the value of V is equal to 32 volts. Figure.9.5 shows the surface of this 

fiinction. The optimum solution is achieved by maintaining RL=RS for RL changing 

randomly in time. 

RS 
15 15 

Figure 9.5: Problem space of a dynamic fitness fimction. 

In the genetic algorithm processor, the following parameters are used: 

mutation rate 
crossover rate 
population size 
generations 
member size 
fitness value 

= 1% 
= 90% 
= 32 
= 128 
= 16 bits 
= 8 bits. 
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The simulations were conducted for 75 random changes in RL and the GAP optimised 

after every change. In the first test a one point crossover algorithm was used. In the 

second one uniform crossover was used and finally in the third test, the coding routine 

was changed to Gray coding [Davis, 1991] with uniform crossover. The results ofthe 

tests averaged over ten mns are shown in Table 9.1. In this table the column marked 

"Search Failed" designates cases where the GAP failed to find a solution in which 

RL=RS. 

Test Number 

1 

2 

3 

Algorithm 

One Point Crossover 

Uniform Crossover 

Gray Code 

Number of 
Changes in 

RL 
75 

75 

75 

^ Search 
Failed 

15.4 

5.2 

4.5 

Error 
Percentage 

20 

7 

6 

Table 9.1: The results of the dynamic fitness fimction simulations. 

The table shows that in tests 2 and 3 the genetic algorithm hardware can find the 

solution with a low percentage of error. It also shows that uniform crossover is better 

than one point crossover and that using Gray coding of member strings increases the 

efficiency ofthe GAP in this example. 

9.3 Adaptive performance of the GAP in engineering applications 

In this section the GAP model is applied to the applications in Chapter 7. In all 

examples changes in the environment are represented by changing one ofthe features of 

the fitness computation with time. In the PID controller the plant tiansfer fimction is 

varied. The demand power is varied in Economic Power Dispatch problem and in the 

filter problem one ofthe filter parameters is varied in time. 
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9.3.1 PID controller 

Genetic Algorithm Processor simulations have been conducted for the PID controller 

system in Figure 7.1. The reference signal (R(t)) is a step signal as shown in Figure 7.2. 

For the purpose of manipulating the environment and evaluating the fitness fiinction we 

provide the following transfer function for the plant: 

P{S) = —, ^, ^ (9.2) 

To test the adaptive behaviour, the 'a' parameter of (9.2)' is varied during the 

simulations in a series of steps as shown in Figure 9.6. In this figure each step occurs 

after 100 generations and increases 'a' by one unit. This gives time for the GAP to settle 

after each change. At each step a signal from the Fitness Unit informs the GAP that a 

change has occurred in the fitness evaluation and the GAP alters the mutation rate to 

100% for one generation. This avoids the necessity for the GAP to recreate a random 

population after each change. A model of the PID controller is provided (as in Chapter 

7) in the form ofthe following transfer fimction: 

U{s) = (Kt/S + Kp + K,*s)E{s) (9.3) 

To handle this problem we used a multiple GAP configuration as depicted in Figure 9.7. 

Each GAP optimises one K value from the PID controller. The following parameters are 

selected for all GAPs: 

generations 
fitness value 
member size 
population size 
crossover rate 
mutation rate 

= 3000 
= 8 bits 
= 24 bits 
= 64 
= 90% 
= 2%. 
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Figure 9.6: The 'a' value changes with the number of generations. 

24 Ixt Member 

8 bit Fitness 

Figure 9.7: The architecture ofthe adaptive Multiple GAP 
used for PID controller system. 
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The fitness function is defined according to Chapter 7 as: 

2000 

Fitness =Y,({kT)*\e(k)'\^ (9.4) 
k=\ 

Figure 9.8 and 9.9 show the results of simulations averaged over ten individual runs. In 

these figures the best of the three K values and the fitness values are shovm after each 

generation. Figure 9.10 shows the best response signal (Y(t)) for a=l and a=30. The 

characteristics ofthe response signal are shown in Table 9.2. 

In the Figure 9.8 and 9.9, Kp changes from about 200 for a=l to 30 for a=30. In the 

same time Kj changes from 130 to 20 and Kj changes from 35 to 5. This shows that 

when the 'a' value is altered in the system, K; and Kp are affected most as the PID 

controller adapts to the plant. The fitness value graph (Figure 9.8) shows that the GAP 

always keeps the response signal within a small error margin during changes in the 'a' 

value. It shows that the PID controller always settles to give a good response. 

Parameters 

Kp 
Ki 

Kd 
Steady State Error 

Overshoot 

Rise Time(S) 

Settling Time(S) 

a=l 
206 

131 
38 

0.000 

0.7676% 

1.150 

1.575 

a=30 

23 

14 
15 

0.000 

1.122% 

1.495 

1.600 

Table 9.2: Characteristics ofthe best member for a=l and a-30. 
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Number of Generations 
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m 
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Figure 9.8: The results ofthe PID controller simulations (normalised 
error value and Kj). 
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500 1000 1500 2000 2500 3000 3500 
Number of Generations 

250 

200 
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m 

150 

100 

"0 600 1000 1500 2000 2500 3000 3500 
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Figure 9.9: The results ofthe PID controller simulations (Kj and Kp). 



Chapter 9. Adaptive behaviour ofthe GAP 176 

1.2 

0.8 

II 

t/1 

o 
§"0.6 
a: 
a. 
a> 
55 0.4 

0.2 

PID Controller : Kl=38 ; Kd=131 ; Kp=206 

4 6 
Tlme(S) 

8 10 

PID Controller : Kl=15 ; Kd=14 ; Kp=23 

4 6 
Time(S) 

8 10 

Figure 9.10: The unit step response ofthe PID controller system for 
a=l and a=30. 
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9.3.2 Economic power dispatch problem 

Genetic Algorithm Processor simulations have been conducted for the optimal 

economic dispatch of the 3 generator power system described in Chapter 7. These 

simulations were conducted with the multiple GAP configuration (Figure 9.11) with the 

following parameters: 

generations 
population size 
crossover rate 
mutation rate 
fitness value 
member size 

= 2048 
= 32 
= 90% 
= 2% 
= 8 bits 
= 32 bits. 

8 bit Fitness 

32 bit Member 

16 bit 

Figure 9.11: The architecture ofthe adaptive multiple GAP 
used for EPD problem. 

The constraints and coefficients are given in Section 7.2.2. The demand power was 

varied in steps according to Figure 9.12 and the loss power is ignored. 

Figure 9.13 shows the result ofthe simulations averaged over ten individual runs. The 

minimum operational costs are shown after each generation. 
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It can be concluded that the GAP is capable of adapting to sudden changes in the 

demand power. In all cases the GAP error in finding the best results is in the range 2%) 

to 5%. 

1000 

200 400 600 800 
Number of Generations 

1000 1200 

Figure 9.12: The demand power is varied with the number of 
generations. 

10000 

7000 0 200 400 600 800 1000 1200 
Number of Generations 

Figure 9.13: Minimum costs versus number of generations when the 
demand is varied as in Figure 9.12. 
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9.3.3 Adaptive IIR filters 

In this experiment the zero location ofthe IIR filter from Section 7.3.2 [Johnson and 

Larimore, 1977] was modified during simulations. The altered transfer fiinction ofthe 

desired system HD(Z) (see Equation 7.16) is given as: 

HoH = 0.05-pz -1 

l-1.1314z-'+0.25z-^ 
(9.5) 

where the value of P (which controls the zero location) has been artificially stepped up 

from 0.2 to 1.0 in increments of 0.2 after every 70 generations (Figure 9.14). 

The configuration ofthe multiple GAP for this example is shown in Figure 9.15. 

0.8 

go.6 

0.4 

0.2 

"0 50 100 150 200 250 300 350 
Number of Generations 

Figure 9.14: The 'p' value changes with the number of generations. 
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16 bit Member 

Figure 9.15: The architecture ofthe adaptive multiple GAP for tiie IIR filter. 

The first GAP optimises the 'a' value and the second one optimises the 'b' value of 

(7.17) in Chapter 7. The following parameters are selected for all GAPs: 

generations 
population size 
crossover rate 
mutation rate 
fitness value 
member size 

= 350 
= 64 
= 90% 
= 2% 
= 8 bits 
= 16 bits 

Note that the number of generations is increased to 350 for this test. 

The results for the simulations are shown in Figures 9.16 to 9.18. For every change in p, 

there is an immediate change in the 'a', 'b' and the MSE values. After about 60 

generations, the MSE stabilises to a value of less than 0.6. Note that there is a limit to 

the rate at which p can be altered in this manner. This depends on the GAP processing 

rate and the fitiiess evaluation rate as the GAP needs to evaluate 30-60 generations to 

settle after each change in p. Assuming the GAP is clocked at 10 MHz for 70 

generations with a population of 64 members then according to Figure 6.12, the total 
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time required to complete one step in Figure 9.14 is around 100ms. Therefore p can be 

varied at a rate of up to 10 Hz. 

1.5 

UJ 

vt 
a> 

CQ 

0.5 

50 100 150 200 250 300 350 
Number of Generations 

Figure 9.16: The minimum MSE for the adaptive IIR filter when p is varied in 
(9.5). 

Number of Generations 

Figure 9.17: The best 'a' value for the adaptive IIR filter when p is varied in (9.5). 
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50 100 150 200 250 
Number of Generations 

300 350 

Figure 9.18: The best 'b' value for the adaptive IIR filter when p is varied in 
(9.5). 

9.4 Conclusions 

This chapter describes experiments to test the adaptive behaviour of the GAP. The 

applications show how multiple configurations ofthe GAP can adapt to sudden changes 

in the plant. One problem is notifying the GAP when changes occur. If the GAP is not 

notified of the change, then it is not possible for it to modify the population for 

adaptation. This notification can be made by an extemal signal or intemally by testing 

for sudden changes in the fitness values. In all simulations here, an extemal signal was 

used. This choice is safe and without error but needs to be provided from the application 

to the GAP. The other method is better but there are chances of errors in detecting 

changes from within the GAP. Further research is needed to design a good algorithm for 

detecting changes in the environment, based on changes in the population's fitness 

values. Such an algorithm could be included in the GAP hardware. 

There are several other constrains and limitations to the application of the GAP to 

adaptive control. These are discussed in more details in the next chapter. 



Chapter 10 

Conclusions and future work 

Prior to this research there has been little reported work on hardware implementations of 

Genetic Algorithms. Most GA research to date has concentrated on the design and 

application of software GAs to search problems with static evaluation functions. It has 

always been assumed that GAs are simple to implement in hardware and that emphasis 

should be placed on software development and testing because of the flexibility and 

versatility of software. 

This thesis has taken a different view. A hardware model of the GA was written in 

VHDL in Chapter 4 and analysed in Chapter 5 and is proposed as a candidate model for 

hardware implementation. However for hardware implementation of GAs to be useful in 

engineering applications there are many problems to be answered. In summary, this 

thesis has addressed a wide range of issues conceming hardware genetic algorithms. 

These range from the obvious, speed advantage over software GAs to the more subtle 

183 
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issues conceming minimal architectures that still operate satisfactorily on engineering 

applications. 

10.1 Hardware implementation issues 

This thesis has addressed the following issues concemed with hardware implementation 

of GAs. 

• What is the speed advantage ofthe hardware GA over software GA's? 

Simple tests demonstrate that the GAP operates about 35 times as fast as a similar 

software GA assuming the same clock speed. Other design ideas are suggested which 

should improve the GAP's performance. These improvements could realistically make 

the GAP 100 times faster than the software-based GA although these speedups ignore 

the time spent in fitness evaluation. 

• Can GAs be implemented on low cost reprogrammable technology and what is the 

minimum hardware configuration required to implement a simple GA? 

It has been shown in Chapter 6 that the GAP can be implemented on FPGA technology. 

The four bit GAP can be downloaded into a single Xilinx XC4013 chip. To constmct a 

GAP with larger member size in current FPGA technology two or more chips are 

required. For a typical configuration ofthe GAP there is a trade off between the number 

of chips and the speed of the hardware. Using more chips results in higher speed but 

also higher costs. 

• What is the performance of the hardware GA configuration on engineering 

problems? 

In Chapter 6 and 7, the GAP is applied to 10 problems. In all cases it found a good 

solution to the defined problem but in most cases was unable to produce the best 

solution. This is due to the limitations of the simple Genetic Algorithm used in the 
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hardware implementation. If more sophisticated GAs are implemented, then we can 

expect better performance but the cost will increase. More discussion about applications 

will be presented in Section 10.2. 

• Is there a simple but effective way of handling large member word length? 

We can expect that with advances in FPGA technology (through the Xilinx XC6200 

chip and beyond), it may soon be possible to fit the 16-bit and 32-bit versions onto a 

single chip. However many applications in engineering and science required a very large 

bit string like 64 to 1024 bits. Using more chips in the implementation is expensive and 

the resulting circuit will be slowed down by intercoimection delays. A mechanism for 

splitting the string among multiple GAPs and using an array of GAPs to solve a 

problem is explained in Chapter 8. The limitations of this approach will be discussed in 

Section 10.3. 

• What is the adaptive performance ofthe GAP? 

Optimisation with a static evaluation fimction is often quite a simple problem for the 

GAP. Of real interest to engineering is its performance in a dynamic enviromnent. 

Considering the stochastic and probabilistic nature of genetic algorithms, it is clear that 

this is going to be a very difficult problem for a long time to come. The research 

described in Chapter 9 demonsfrates some success but only with the application of a 

number of constraints and limitations. The effect of these will be described further in 

Section 10.4. 

10.2 Applications of the GAP 

This thesis covered three applications in engineering. The simulations in Chapter 7 have 

been carried out under the following assumptions. 

• A parameterised model ofthe plant was provided in each case. 
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The model is only required to compute the evaluation function and carry out the 

simulations. In real applications the GAP is directly coimected to the plant and 

performance evaluation is usually carried out by direct measurement. 

• It is assumed that the plant is capable of responding to any input supplied by the 

control system or filter which is being "tuned" by the GAP. 

In many cases there will be some combinations of parameters which, if supplied by the 

GAP, will cause the plant to become unstable. Clearly there is a need for protection 

against instability at various points in the system. 

• Maximum real-time performance can only be achieved if the fitness is always 

computed in a very short time < 1 GAP clock cycle. 

To take full advantage of the GAP speed, it is necessary for the plant to rettun tiie 

fitness value witiun one clock cycle to the GAP. If the plant is slow and forces a wait 

stattis on the GAP Operation then we will lose some ofthe speed advantage ofthe GAP. 

These timing limitations were described in Section 6.2.5. 

The GAP prefers high speed applications where the fitness value can be rettimed in 

microseconds. For a slow application the GAP may not be a good choice, but the low 

cost of implementation should also be considered. 

10.3 Multiple GAP configurations 

By splitting each member string across several GAPs we can handle more complex 

problems while retaining the simplicity of the design. The main problems with the 

multiple GAP architecture can be expressed in the following questions. 

• Is the multiple GAP architecture supported by any theory? 
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It is difficult to verify the operation of the multiple GAP using schema theory. The 

experimental results in Chapter 8 suggest that this configuration operates as well as the 

normal GAP. Further theoretical analysis is required to investigate the limitations of this 

configuration. 

• Does the multiple GAP configuration work for all applications? 

No: the simulations in Chapter 8 suggest the need to test the performance ofthe multiple 

GAP for each application. The performance depends on the fitness landscape of the 

problem and the type of coding used for the member string. 

• What is the optimum configuration needed for any specific application? 

This depends in part on the coding scheme selected for the problem. If we have a model 

ofthe problem then we would normally select the number of GAP's in the multiple 

configuration to match the number of independent variables in the model. 

Using the GAP in the multiple configuration is more restricted by application because of 

the schema theory. However the full power of the GAP can be obtained using this 

configuration. In general, where the numbers of parameters are high or the bit string is 

long, the multiple GAP is the best choice for implementation. 

10.4 Adaptive behaviour 

Before any conclusions can be made about the adaptive behaviour of the GAP, it must 

be stressed that the simulations in Chapter 9 have been carried out under the following 

idealised conditions: 

• Only one parameter of each plant or filter was ever varied in the tests. 

Normally when the adaptive system responds to changes correctly it means that it is 

capable of handling any change in the application. It is possible to change two or more 
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parameters in the application model and it is expected that the GAP would still operate 

correctly. 

• Changes which occurred in the plant or filter were sudden and the GAP model was 

notified immediately of any changes. 

Chapter 9 explains why the adaptive GAP is best suited to the sudden changes in the 

fitness evaluation. Most control systems are not designed for sudden changes in the 

environment and system for handling these situations is thus very useful. Applying the 

GAP in adaptive applications is a little difficult because the GAP somehow must 

recognise changes in the application. A watchdog circuit could be designed inside GAP 

hardware to detect changes and thus make the GAP independent of extemal notification 

but this needs to implemented carefully. If the GAP could detect these changes, then it 

may be applied to many adaptive applications. 

• Changes were always followed by a long period of static behaviour to allow the 

GAP to settle before the next change occurred. 

The GAP requires many generations to find an optimum point after every change. 

During the search it expects the objective function to remain stationary. Adaptive 

performance will decline and fail if further changes occur before the GAP has had time 

to settle. 

10.5 Some potential applications of the GAP 

The three engineering's applications show the robustness of the GAP model in solving 

various problems. These applications are all quite simple for GAs and conventional 

search methods are often more capable of finding solutions than the GAP. It is 

important however to realise that the same generic hardware is capable of handling all 

applications without changing the core model of the GAP. There are many potential 

applications ofthe GAP. Some examples are listed here. 
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• Chemical process control in which the GAP is required to control flows of 

chemicals into a reaction chamber in order to meet some objective criteria such as a 

nominated pH level. 

• Telescope focussing systems in which multiple mirrors are mechanically adjusted to 

focus an image. 

• Vehicle engine management systems in which the GAP could adapt the confrolling 

coefficients (in the existing controller) to match the" individual engine 

characteristics. 

In most of these applications processing speed is not as important as the advantage of 

having a compact stand-alone hardware implementation. 



Appendix A 

A simple Genetic Algorithm 

Given a search problem, with a multi-dimensional space of possible solutions, a 

"genetic code" representation is chosen in a way that each point in the search space is 

represented by a string of symbols, the chromosome. A random number generator 

produces a number of initial random chromosomes, which form the initial population. 

Each of the corresponding points in the search space is evaluated by the appropriate 

evaluation function. This function gives higher scores to the 'fitter' ones, those nearest 

the required solution. 

The next generation of points is created from the present population by selection and 

reproduction. The selection process is based on the scores of the present population, 

such that the fitter chromosomes probabilistically contribute more to the reproductive 

pool. 

190 
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From the reproductive pool of selected chromosomes, a new set of chromosomes for the 

next generation is derived, using such genetic operators as crossover and mutation. The 

crossover operator works by taking parent chromosomes in pairs, selecting a crossover 

point somewhere at random along the length of the chromosomes, taking the left-hand 

section of one parent up to the crossover point and joining it to the right-hand section of 

the other parent, so that offspring inherits genetic material from both parents. The 

mutation operator changes at random a very small proportion of the symbols on the 

offspring chromosomes to some other valid symbol. 

The new population has inherited genetic material selectively, but probabilistically, 

from the parent generation. New points in the search space have been generated 

exploiting the information from the performance of the parents. Thus an improved 

performance can be expected from the new population. Then the cycle of selection and 

reproduction can then be repeated. 

Variations on these genetic operators can be used, and decisions have to be made on 

suitable sizes of populations and the rate at which mutation and other operators are 

applied. In the choice of selection techniques, it is necessary to maintain a balance 

between enough selective pressure for a continued improvement and too much selective 

pressure leading to premature convergence, with loss ofthe diversity needed to escape 

from local optima. However, GAs are a very robust search technique that can operate 

successfully in many varied search domains. Some of these properties can be 

demonstrated theoretically. 

A. 1 Theory of Genetic Algorithms 

An early theoretical result by Holland [1975] was the Schema Theorem which 

demonstrates that subject to certain conditions, schemata, which are the building blocks 

in his representation of above average fitness, will receive exponentially increasing 

numbers of trials in successive generations. A schema is a similarity template which 
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characterises a subset of all possible strings that have identical specified values at 

special positions specified by a template. At other positions often indicated by * in the 

schema template, any values are allowed. Holland also demonstrated the implicit 

parallelism of GAs. In a population of size m, the number of these schemata being 

processed in each generation is of order 0(m ) which indicates that a GA is an efficient 

search algorithm. These factors contribute to the theoretical support to applications of 

GAs. 

A ternary schema alphabet C = {0,1,*} will be used:as an example for a binary string 

alphabet C = {0,1}. For example, a schema H = 01*1 will represent strings 0111 and 

0101. For a given schema H, its "order" o(H) is the number of its fixed positions (e.g. if 

H = 0* 1 * then o(H) = 2). Finally, for a given schema H, its "defining lengtii" 5(H) is the 

distance between the first and last specific string positions (e.g. if H = 0*1* then 5(H) = 

3 - 1 = 2 ) . 

Typically, GAs are used on well-defined problems where the search space is so large 

that other approaches are computationally impractical. The problems the user faces are: 

what choice of genetic coding to use, what variations to make on the standard genetic 

operators how to select members for reproduction, and how to set the balance of 

selective pressure. 

A.2 A simple example of a Genetic Algorithm 

As a simple example, imagine a population of four strings, each with five bits. Also 

imagine an objective fiinction f(x) = 4x, which simply retums the integer value of four 

times the binary integer (e.g. f(00000) = 0, f(00001) = 4, f(00010) = 8, etc.). The goal is 

to optimise (in this case maximise) the objective fimction over the domain 0 < x < 31. 

Now imagine a population ofthe four strings in Table A.l, generated at random before 

GA execution. The corresponding fitness values and percentages come from the 

objective function f(x). 
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i 

1 

2 

3 

4 

String 

x(i) 

11100 

01101 

10010 

01000 

Sum 

Avg 

Max 

Fitness 

f(i) 
f(x(i))=4x(i) 

112 

52 

72 

32 

268 

67 

112 

%of 

Total 

f(i)/Zf(i) 

41.8 

19.4 

26.9 

11.9 

100 

25.0 

41.8 

Expected 

Count 

f(i)/Avg 

1.670 

0.776 

1.047 

0,477 

4.000 

1.000 

1.670 

Actual 

Count 

2 

1 

1 

0 

4 

1 

2 

Table A. 1: Four random strings and their fitness values. 

The values in the "% of Total" column provide the probability of each string's selection. 

Initially 11100 has a 41.8% chance of selection, 01101 has 19.4% chance, and so on. 

The selection process can be thought of as spinning a weighted roulette wheel like in 

Figure A.l. The results from the spins are given in the "Actiial Count" column of Table 

A.l. As expected, these values are similar to those in the "Expected Count" column. 

After selecting the strings, the GA randomly pairs the newly selected members and 

looks at each pair individually. For each pair (e.g. A = 11100 and B = 01101), the GA 

decides whether or not to perform crossover. If it does not, then both strings in tiie pair 

are placed into the population with possible mutations as described below. If it does, a 

random crossover point is selected and crossover proceeds as indicated in Figure A.2. 

Then the children A' and B' are placed in the population with possible mutations. The 

GA invokes the mutation operator on the new bit strings. It generates a random number 

for each bit and flips that particular bit only if the random number is less than or equal 

to the mutation probability which is usually less than 0.01 per bit. 
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19.4% 26.9% 

11.9% 

41.8% 

Figure A.T. A weighted roulette wheel. 

Before Crossover 

A B 

1 1 1 00 0 1 1 0 1 

After Crossover 

J 

1 1 
1 i 

A' 

101 

B' 

0 1 

Figure A.2: An example of crossover. 
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After the operations are completed, on the current generation, the new strings are placed 

in a new population, representing the next generation as shown in Table A.2. In this 

example the average fitness increased by approximately 29% in one generation and the 

sum of fitness increased by 30%. This simple process would continue for several 

generations until a stopping criterion is met. 

After 
Reproduction 

111100 
11100 
01101 
100110 
Sum 
Avg. 
Max 

Associate 
Parent 

x3 
x4 
xl 
x2 

Crossover 
Point 

2 
3 
2 
3 

After 
= Crossover 

11101 
11110 
01100 
10000 

Fitness 
f(x(i))=4x(i) 

116 
120 
48 
64 

348 
87 
120 

Table A.2: The population after applying selection and crossover operators. 
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Gray code conversion 

Translation of a decimal number into the Gray code equivalent is carried out by first 

transforming the decimal number into a binary representation. Modulo-2 addition is 

then performed on each bit with its immediate neighbour on the left. Translation of this 

result into decimal notation then gives the Gray code equivalent. Thus lljo become 

10112 and modulo-2 addition of pairs of bits gives 11IO2 or 14io. 

This may be expressed in terms of a binary bit string as follows. A binary number may 

be expressed as 

B={b^,b^_„...,b,\ (B.l) 

where bj gives the position in the binary number. This is given in the Gray code as 

Bg={gm^gm-\^-^go)2 (^-2) 
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where gj^bt+bj+j. 

A (jray code conversation table is given in Table B.l for the first 16 decimal numbers. 

Table B.2 shows the Gray code conversion for 5 bit or the first 32 decimal number. 

Decimal 

0 

1 

2 

3 

4 

5 

6 

7 

Binary code 

OOOO 

0001 

0010 

0011 

0100 

0101 

Olio 

0111 

Gray Code 

OOOO 

0001 

0011 

0010 

Olio 

0111 

0101 

0100 

Decimal 

8 

9 

10 

11 

12 

13 

14 

15 

Binary code 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

nil 

Gray code 

1100 

1101 

nil 

1110 

1010 

1011 

1001 

1000 

Table B. 1: Binary code to Gray code for four bits. 
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Decimal 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Binary code 

OOOOO 

00001 

00010 

00011 

00100 

00101 

00110 

00111 

01000 

01001 

01010 

01011 

01100 

01101 

OHIO 

01111 

Gray Code 

OOOOO 

00001 

00011 

00010 

00110 

00111 

00101 

00100 

01100 

01101 

01111 

OHIO 

01010 

01011 

01001 

01000 

Decimal 

16 

17 

18 

19 

20 : 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

Binary code 

10000 

10001 

. 10010 

1001,1 

101190 

10101 

10110 

10111 

11000 

11001 

11010 

lion 

11100 

11101 

lino 

11111 

Gray code 

11000 

11001 

lion 

11010 

lino 

11111 

11101 

11100 

10100 

10101 

10111 

10110 

10010 

10011 

10001 

10000 

Table B.2: Binary code to Gray code for 5 bits. 
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For converting Gray codes to the binary codes suppose the Gray code is defined as 

^g={gm,gm-l,-,go)2 (B-3) 

where g,- gives the position in the Gray code. This may be expressed in terms of a binary 

bit string as follows. 

^ = (^m.*m-l»-»*o)i (B.4) 

where A = Z?y. 
j=m 

A Gray code conversation to binary table is given in Table B.3 for the first 16 decimal 

numbers. Table B.4 shows the Gray code conversion to binary for 5 bits or the first 32 

decimal numbers. 

Decimal 

0 

1 

2 

3 

4 

5 

6 

7 

Gray code 

OOOO 

0001 

0010 

0011 

0100 

0101 

Olio 

0111 

Binary Code 

OOOO 

0001 

0011 

0010 

0111 

Olio 

0100 

0101 

Decimal 

8 

9 

10 

11 

12 

13 

14 

15 

Gray code 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

nil 

Binary code 

nil 

1110 

1100 

1101 

1000 

1001 

1011 

1010 

Table B.3: Gray code to binary code for four bits. 
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Decimal 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Gray code 

OOOOO 

00001 

00010 

00011 

00100 

00101 

00110 

00111 

01000 

01001 

01010 

01011 

01100 

01101 

OHIO 

01111 

Binary Code 

OOOOO 

00001 

00011 

00010 

00111 

00110 

00100 

00101 

01111 

OHIO 

01100 

01101 

01000 

01001 

01011 

01010 

Decimal 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

Gray code 

10000 

10001 . 

10010 

10011 ^ . 

10100 

10101 

10110 

10111 

11000 

11001 

11010 

lion 

11100 

11101 

lino 

11111 

Binary Code 

11111 

11110 

11100 

11101 

11000 

11001 

lion 

11010 

10000 

10001 

10011 

10010 

10111 

10110 

10100 

10101 

Table B.4: Gray code to Binary code for 5 bits. 



Appendix C 

VHDL code 

This appendix presents a sample of the VHDL code for the basic GAP design and was 

used for implementation and most GAP simulations. The functionality of each module 

is described in Chapter 4. The code was written and compiled using the Design 

Architect and QuickVHDL programs from Mentor Graphics and then synthesized using 

the AutoLogic VHDL synthesiser. 

This VHDL code is the intellectual property of the Victoria University of Technology 

and will be available for use under licence. For fiirther details contact: 

The Secretary, 
Faculty of Engineering, 
Victoria University of Technology, 
PO BOX 14428, MCMC, 
Melboume VIC, 3001 
Australia 
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C.l Random Number Generator Module 

LIBRARY mgc_portable; 
USE mgc_portable.qsim_logic.all; 
USE work.sizing.all; 

ENTITY random IS 
PORT ( 

init 
done 
elk 
reqmem 
ackmem 
domut 

mutation 
doxover: 
mutpt 
xoverpt : 
addr 

parameter 
param 
randsell 

module 
randsel2 

); 
END random; 

IN qsimstate; 
;OUT qsimstate; 
:IN qsim_state; 
OUT qsimstate; 
;IN qsim_state; 
:OUT " 

~ Initial signal 
— finish signal 
~ clock signal 
~ bus request to memory controller 
~ bus ack from memory controller simstate; ~ bus ack from memory controller 

qsim_state_vector(p-l DOWNTO 0); -- random numbers of xover and 

OUT qsim_state_vector(p-l DOWNTO 0); 
:OUT qsim_state_vector(logn-l DOWNTO 0); 
OUT qsim_state_vector(logn-l DOWNTO 0); 
:OUT qsim_state_vector(lognumparam-l DOWNTO 0);-- address of initial 

•.IN qsim_state_vector(valw-l DOAVNTO 0);-- value of RNG seed 
:OUT qsim_state_vector(r-l DOWNTO 0); -- random nos. to selection 

:OUT qsim_state_vector(r-l DOWNTO 0) 

ARCHITECTURE behave OF random IS 
TYPE states IS (idle, awaitackmeml, awaitackmem2, active); 
SIGNAL state:states:=idle; 
BEGIN 
randomprocess:PROCESS(clk,init) 
VARIABLE m,m2 : qsim_state_vector(casize-1 DOWNTO 0); 
VARIABLE evenodd : qsim_state; 
BEGIN 
IF init='0' THEN 

state<=idle; 
reqmem<='0'; 
done<='0'; 

ELSIF(clk'EVENT and clk='l' and clk'LAST_VALUE='0') THEN 
CASE state IS 

WHEN idle => 
reqmem<='r; 
state<=awaitackmem 1; 

WHEN awaitackmem 1 => 

http://mgc_portable.qsim_logic.all
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IFackmem='rTHEN 
addr<=mgseeda; 
reqmem<='0'; 
state<=awaitackmem2; 

END IF; 
WHEN awaitackmem2 => 

IF ackmem='0' THEN 
m:=param(valw-l DOWNTO 0) & param(valw-l DOWNTO 0) & 

param(valw-l DOWNTO 0) & param(valw-l DOWNTO 0); 
done<='r; 
state<=active; 

END IF; 
WHEN active => 

domut <= m(casize-l DOWNTO casize-p); 
doxover <= m(casize-4 DOWNTO casize-p-3); 
mutpt <= m(casize-6 DOWNTO casize-logn-5); 
xoverpt <= m(casize-5 DOWNTO casize-logn-4); 
randsell <= m(casize-3 DOWNTO casize-2-r); 
randsel2 <= m(casize-6 DOWNTO casize-5-r); 
m2(casize-l) -.='0' XORm(casize-l) XOR m(casize-2); 
evenodd —'1'; 
FOR i IN casize-2 DOWNTO 1 loop 

m2(i) :=m(i+I) XOR m(i-l); 
IFevenodd='rTHEN 

m2(i):=m2(i)XORm(i); 
END IF; 

evenodd:= NOT evenodd; 
END LOOP; 

m2(0):=m(l)XOR'0'; 
IFevenodd='l'THEN 

m2(0):=m2(0) XOR m(0); 
END IF; 
m:=m2; 

END CASE; 
END IF; 
END PROCESS randomprocess; 
END behave; 

C.2 Memory Interface Module 

LIBRARY mgc_portable; 
USE mgc_portable.qsim_logic.all; 
USE work.sizing.all; 

ENTITY memory IS 
PORT ( 

go 
done 
reset 

IN qsim_state; - go ahead signal 
:OUT qsim_state; - completion signal 
IN qsim_state; - asynchronous reset 

http://mgc_portable.qsim_logic.all
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init 
elk 
address 
datain 
dataout 
rw 
cs 
oe 
memacc 

memory 
toggle 

memory sequencer 
toggleout 
reqmg 

generator 
ackrag 
addrmg 
reqxov 
ackxov 
addrxov 
reqseq 
ackseq 
addrseq 
reqfit 
ackfit 
addrfit 
valfitin 
valout 
fitdone 
flag 
); 

END memory; 

•.OUT qsim_state; — initialize signal 
.IN qsimstate; - clock signal 
:OUT qsim_state_vector(addrw-l DOWNTO 0); ~ Memory buses 
•.IN qsim_state_vector(valw -1 DOWNTO 0); 
:OUT qsim_state_vector(valw -1 DOWNTO 0); 
:OUT qsimstate; ~ read/write signal to memory 
:OUT qsimstate; ~ chip select signal to memory 
:OUT qsimstate; ~ output enable signal to memory 
OUT qsimstate; - tri-states data data, addr and Ctrl lines to 

:IN qsim_state; 

:OUT qsimstate; 
:IN qsim_state; 

— population access for fitness and 

~ final value of toggle 
Handshake signals with random number 

OUT qsimstate; 
IN qsim_state_vector(Iognumparam-l DOWNTO 0); 
IN qsimstate; ~ Handshake signals with crossover 
OUT qsimstate;--
IN qsim_state_vector(lognumparam-l DOWNTO 0); 
IN qsim_state_vector( 1 DOWNTO 0); -- Handshake signals with read 
OUTqsimstate;--
IN qsim_state_vector(logm-l DOWNTO 0); 
IN qsim_state_vector( 1 DOWNTO 0); - Handshake signals with fitness 
OUT qsimstate;--
IN qsim_state_vector(logm-l DOWNTO 0); 
IN qsim_state_vector(valw-l DOWNTO 0); 
OUT qsim_state_vector(valw-1 DOWNTO 0); 
IN qsimstate; 
IN qsim_state - adaptive signal 

ARCHITECTURE behave OF memory IS 
TYPE states IS (startl, start2, idle, mg, xov, fitO, fitl, seqO, seql, 

donel, done2, writel, write2 , write3 , readl, read2); 
SIGNAL state: states:=startl; 
constant popObase :integer:=numparam; 
constant poplbase •.integer:=numparam+m; 

BEGIN 

memoryprocess:PROCESS (clk,reset) 
VARIABLE runstats : integer RANGE 0 TO 65535 :=0; 
VARIABLE base :integer RANGE 0 TO memsize-1; 
VARIABLE finish :qsim_state:='0'; 
VARIABLE tempflagiqsimstate; 

BEGIN 
lFreset='l'THEN 

init<='0'; 
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done<-l '; 
rw<='l'; 
cs<='l'; 
oe<='l'; 
memacc<='r; 
runstats:=0; 
finish:='0'; 
ackmg<='0'; 
ackxov<='0'; 
ackseq<-0'; 
ackfit<='0'; 
state <=startl; 

ELSIF(clk'EVENT and clk='l' and clk'LAST_VALUE='0') THEN 
CASE state IS 

WHEN startl => 
init<='0'; 
done<='r; 
rw<='I'; 
cs<='l'; 
tempflag:=flag; 
oe<='l'; 
finish:='0'; 
memacc<='r; 
ackmg<='0'; 
ackxov<='0'; 
ackseq<='0'; 
ackfit<='0'; 
IF go='0' THEN 

done<='0'; 
state<=start2; 

END IF; 
WHEN start2 => 

init<='0'; 
done<-0'; 
rw<='l'; 
cs<='l'; 
oe<='l'; 
finish:='0'; 
memacc<='r; 
ackmg<='0'; 
ackxov<-0'; 
ackseq<='0'; 
ackfit<='0'; 
IFgo='l'THEN 

init<='l'; 
memacc<='0'; 
cs<='0'; 
state<=idle; 

END IF; 

WHEN idle => 
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IF flag/=tempflag THEN 
runstats :=0; 
tempflag := NOT tempflag; 

END IF; 
runstats :=runstats+l; 
memacc <='0'; 
fmish:='0'; 
init<='l'; 
cs<='0'; 
IFfitdone='l'THEN 

init<-0'; - shut down GA 
address <= to_qsim_state(numparam+m+m,addrw); 
finish:='l'; 
state <=writel; 

ELSIFreqmg='l'THEN 
ackmg<-1'; 
state<=mg; 

ELSIFreqxov='l'THEN 
ackxov<='r; 
state<=xov; 

ELSIF reqseq(0)='r THEN 
ackseq<='r; 
state<=seqO; 

ELSIF reqfit(0)='l'THEN 
ackfit<='l'; 
state<=fitO; 

ELSIF reqfit(l)='r THEN 
ackfit<='r; 
state<=fitl; 

ELSIF reqseq(l)='r THEN 
ackseq<='I'; 
state<=seql; 

END IF; 

WHEN mg => 
mnstats :=mnstats+I; 
IF reqmg='0' THEN 

address<=to_qsim_state(0,addrw-lognumparam) & addrmg; 
state<=readl; 

END IF; 

WHEN xov => 
mnstats :=mnstats+l; 
IF reqxov='0' THEN 

address<==to_qsim_state(0,addrw-lognumparam) & addrxov; 
state<=readl; 

END IF; 

WHENfitO => 
mnstats •.=runstats+1; 
IF reqfit(0)='0' THEN 
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address<=to_qsim_state(0,addrw-lognumparam)& 
addrfit(lognumparam-l DOWNTO 0); 

state<=readl; 
END IF; 

WHEN fitl => 
mnstats :=mnstats+l; 
IF reqfit(l)='0' THEN 

IF toggle='0' THEN 
base:=poplbase; 

ELSE 
base:=popObase; 

END IF; 
address<=to_qsim_state(base+to_integer('0'&addrfit),addrw); 
dataout <= valfitin; 
state<=writel; 

END IF; 

WHENseqO => 
mnstats :=mnstats+l; 
IF reqseq(0)='0' THEN 

address<=to_qsim_state(0,addrw-lognumparam)& 
addrseq(lognumparam-l DOWNTO 0); 

state<=readl; 
END IF; 

WHEN seql => 
mnstats :=mnstats+l; 
IFreqseq(l)='0'THEN 

IF toggle='0' THEN 
base:=popObase; 

ELSE 
base:=poplbase; 

END IF; 
address<=to_qsim_state(base+to_integer('0' & addrseq),addrw); 
state<=readl; 

END IF; 

WHEN donel => 
rw<='0'; 
state<=done2; 

WHENdone2 => 
toggleout<=NOT toggle; 
init<='0'; 
rw<='l'; 
cs<=T; 
oe<='l'; 
memacc<='r; 
mnstats:=0; 
done<='r; 
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state<=startl; 

WHEN writel => 
mnstats :=mnstats+l; 
rw <='0'; 
state<=write2; 

WHEN write2 => 
mnstats :=mnstats+l; 
rw<='l'; 
state<=write3; 

WHEN write3 => 
IFfmish='l'THEN 

address <= to_qsim_state(numparam+m+m+l,addrw); 
state <= donel; 

ELSE 
ackfit <='0'; 
state<= idle; 

END IF; 
WHEN readl => 

mnstats :=mnstats+l; 
rw<='l'; 
oe<='0'; 
state<=read2; 

WHENread2 => 
mnstats :=mnstats+l; 
valout <= datain; 
ackmg<='0'; 
ackxov<='0'; 
ackseq<='0'; 
ackfit<='0'; 
oe<='l'; 
state<= idle; 

END CASE; 
END IF; 
END PROCESS memoryprocess; 
END behave; 

C.3 Read Module 

LIBRARY mgc_portable; 
USE mgc_portable.qsim_logic.all; 
USE work.sizing.all; 

ENTITY read IS 
PORT ( 

http://mgc_portable.qsim_logic.all
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init :IN qsimstate; — initial signal 
done :OUT qsimstate; 
elk :IN qsimstate; - clock signal 
reqmem :OUT qsim_state_vector(l DOWNTO 0); ~ signal to memory 
addr :OUT qsim_state_vector(logm-1 DOWNTO 0); 
value : IN qsim_state_vector(valw-l DOWNTO 0); 
outputn :OUTqsim_state_vector(n-l DOWNTO 0); 
outputf :OUT qsim_state_vector(f-l DOWNTO 0); 
ackmem :IN qsimstate 

); 
END read; 

ARCHITECTURE behave OF read IS 
TYPE states IS (idle,awaitackmeml,awaitackmem2,getmemberln, 

getmember2n,getmemberlf,getmember2f); 
SIGNAL state : states :=idle; 
BEGIN 
readprocess:PROCESS(clk,init) 

VARIABLE membf: qsim_state_vector(f-l DOWNTO 0); 
VARIABLE membaddr, psize: INTEGER RANGE 0 TO m; 

BEGIN 
IF init='0' THEN - not OK to mn, should be idle 

state <=idle; ~ Make sure idle 
done <= '0'; - tell control unit shut down 
reqmem <= "00"; — reset memory request signal; 
membf := to_qsim_state(0,f); ~ reset current member 
outputn <= to_qsim_state(0,n); ~ output the reset member 
outputf <= to_qsim_state(0,f); ~ output the reset member 

ELSIF(clk'EVENT and clk='l' and clkLAST_VALUE='0') THEN 
CASE state IS 

WHEN idle => -- state is idle, So get the population size 
reqmem(0)<=' 1'; -request memory access 
state<= awaitackmem 1; ~ wait for memory acknoledgement 

WHEN awaitackmem 1 => ~ waiting for memory acknoledgement 
IF ackmem- 1' THEN ~ memory acknoledgement 

addr <=to_qsim_state(to_integer('0' & popsizea),logm); 
— send population size address 

reqmem(0)<='0'; -- address sent 
state<= awaitackmem2; - wait for memory 

acknoledgement for sending population size 
END IF; 

WHEN awaitackmem2 => - waiting for memory 
acknoledgement for sending population size 

IF ackmem='0' THEN 
psize := to_integer('0' & valueOogm-1 DOWNTO 0)); 
membaddr :=0; -- initialize membaddr 
done <= '0'; 
reqmem(l) <='! '; ~ request memory access to get 

member 
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member 

address 

sent 

acknoledgement 

member 

state <= getmemberln;- wait for memory acknoledgement 
END IF; 

WHEN getmember 1 n => -- waiting for memory to offer 

done <='0'; - reset dup acknoledgement 
IF ackmem=' 1' THEN -- got memory acknoledgement 

addr <=to_qsim_state(membaddr,logm);~ send member's 

reqmem(l)<='0'; 

state<= getmember2n; 

END IF; 
WHEN getmember2n => 

IF ackmem='0' THEN 

— tell memory memory's address 

— wait for memory 

— wait for memory to send 

— memory says member sent 

output member to selection module 

memory's address mod popsize 

outputn <= value(n-l DOWNTO 0); 

membaddr :=membaddr+1; -- increment the 

reqmem(l) <='1'; -- request fitness 
state <= getmember 1 f; -- wait for memory to offer 

member 

member 

member's address 

sent 

acknoledgement 

member 

END IF; 
WHEN getmember lf=> — waiting for memory to offer 

IF ackmem=' 1' THEN ~ got memory acknoledgement 
addr <=to_qsim_state(membaddr,logm); - send 

reqmem(l)<='0'; 

state <= getmember2f; 

END IF; 
WHEN getmember2f => 

- tell memory memory's address 

- wait for memory 

- wait for memory to send 

~ memory says member sent 
- start reading values 

membf := value(f-1 DOWNTO 0); -- store member 
outputf <= membf; -- output member to 

IF ackmem='0' THEN 
done <='!'; 

selection module 

memory's address mod popsize 

membaddr :=membaddr+l; increment the 

IF membaddr > psize -1 THEN 
membaddr :=0; 

END IF; 
reqmem(l) < -1 ' ; -- request next member 
state <= getmemberln; -- wait for memory to offer 

member 
END IF; 

END CASE; 
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END IF; 
END PROCESS readprocess; 
END behave; 



Appendix D 

A brief description of Xilinx FPGAs 

A field-programmable gate array is an inexpensive user-programmable component 

which allows for cheap prototyping. FPGAs are generally composed of programmable 

elements including logic blocks, I/O cells which connect the logic blocks to the chip 

pins, and interconnection lines. Programming of these components is allowed with the 

use of static RAM cells, anti-fiises, EPROM transistors or EEPROM transistors. 

Xilinx FPGAs use static RAM technology to implement hardware designs. They are 

reprogrammable and frequently used in prototyping. Commonly used Xilinx FPGAs 

today are from the XC4000 family, which is currently Xilinx's most advanced line of 

FPGAs and includes the devices used in this research. Most of the information in this 

section is from the Xilinx technical literature (e.g. Xilinx, 1994). 

226 
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D.l Architecture of FPGAs 

A Xilinx FPGA consists of a two-dimensional array of configurable logic blocks 

(CLBs), a set of surrounding input/output blocks (lOBs) and programmable inter 

coimections between CLBs and lOBs (Figure D.l). 
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Figure D. 1: Overall view of a Xilinx XC4000 series FPGA. 

Each CLB (Figure D.2) can implement two arbitrary, independent four-input boolean 

fimctions, F and G. The outputs of F and G can be combined with another input in a 

third boolean fimction H. The outputs of F and G can be latched in edge-ttiggered D 

flip-flops. Each CLB also has the capacity to implement fast-carry logic. Altematively, 

a CLB can be used as a 16 x 2 or a 32 x 1 array of memory cells. 
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Coimections between CLBs and the chip pads are provided by lOBs (Figure D.3). The 

lOBs offer many user-programmable options in I/O control, including tri-state logic for 

bidirectional I/O, direct coimection of lines to pads or connection through flip-flops, and 

programmable pull-up or pull-down resistors. The lOBs also provide logic for 

boundary-scan testing and output slew rate control. 

The interconnection between different CLBs and between CLBs and lOBs is also 

programmable. XC4000 interconnections are made through the use of single-length 

lines, double-length lines and longlines. Single-length lines (Figure D.4) intersect at a 

switch matrix between neighbouring CLBs in the horizontal and vertical directions. Any 

input to a switch matrix can be routed to any arbitrary outputs which then feed into 

other CLBs and switch matrices. Single-length lines are normally used to conduct 

signals within a localised area and to provide branching for nets with fanout greater than 

one. Double-length lines (Figure D.5) are similar to single-length lines except that they 

intersect after every two CLBs. Double-lengtii lines provide the most efficient 

implementation of intermediate length, point-to-point interconnections. Longlines 

(Figure D.6) span the entire array of CLBs and are intended to carry time-critical 

signals. Longlines intersect single-length lines at programmable interconnect points. 

Double-length lines do not connect to other lines. 

Logic densities for the most common XC4000 FPGAs are approximately 2000-10000 

gates per chip. The costs for these FPGAs are approximately $50-$800 per chip. These 

logic densities are lower than those for fully customised VLSI chips and for mask-

programmed gate arrays (MPGAs). FPGAs are also slower than fiilly customised VLSI 

chips and MPGAs. However, the costs per chip for low volumes and the short 

tumaround times make Xilinx FPGAs a better choice for prototyping than MPGAs and 

fiill-custom designs. Additionally, the reprogrammability of XiHnx FPGAs makes them 

more flexible than fiilly customised VLSI chips and MPGAs. Xilinx FPGAs can be 
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applied to systems that utilise reconfigurable hardware as described in Section 2.4 and 

as presented in this thesis. 
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D.2 Comparing FPGAs with other technologies 

Recentiy, field-programmable gate arrays have been used widely due to several 

advantages related to their high gate count, short design cycle, and low prototyping cost. 

They can be used in all digital applications that currentiy use Small-Scale Integration 

(SSI), Medium-Scale Integration (MSI), and PLDs. They also replace mask-

programmable gate arrays in many applications that are limited to 10,000 gates and 

where a high operational speed is not required. 

Among the advantages of FPGAs are: 

• replacement of SSI and MSI chips, 

• availability of parts off the shelf. 

rapid tumaround. 
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• low risk, 

• reprogrammability. 

Compared with SSI and MSI chips, FPGAs offer larger gate counts and more design 

flexibility. If we consider a circuit constmcted solely of NAND gates and its gate count 

is 1,000, we need about 250 Transistor-Transistor Logic (TTL) 7400 SSI chips to build 

it. The same circuit can, however, be replaced by one Xilinx chip (XC2064 or XC3020) 

[Xilinx, 1994]. FPGAs are more flexible because the logic does not have to be mapped 

in terms of standard SSI chips. Wire v^apping and soldering are also not required for a 

single-chip design, thus making it easier to realise appropriate engineering changes. 

While MSI chips have specific functions to which the design has to be mapped, FPGAs 

allow any random logic. 

PLDs, the precursors of FPGAs, have actually been used to replace SSI in fixed logic, 

however, they did not help much in prototyping. In addition, PLDs implement logic in 

AND/OR gates and all the flip-flops are at the periphery of the devices. This type of 

logic arrangement restricts the designer and minimises the flexibility. 

FPGAs combine the versatility of gate arrays and the programmability of PLDs. Unlike 

gate arrays, they do not require custom fabrication and are obtained off the shelf as are 

SSI and MSI chips. Because FPGAs are field programmable, they are definitely more 

suitable for prototyping than SSI and MSI chips. For example, Xilinx devices have been 

used in prototyping Intel's P5 microprocessor [Intel, 1992]. The hardware emulation 

made it possible to simulate the microprocessor at reasonable speed. Thus, the 

development time of the microprocessor was reduced. Reprogrammable FPGAs also 

allow the design to be altered and the chip to be reconfigured quickly. This ease of 

reprogrammability will facilitate design changes. 
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However, FPGAs have their limitations. For the same design implemented with FPGAs 

and PLDs, it is more likely that the PLDs will operate faster than the FPGAs. PLD 

performance is independent of the logic implemented. But for FPGAs, the circuit delay 

depends on the performance of the design implementation tools. The delay parameters 

can be extracted after placement and routing, typically a time-consuming process. Also, 

the mapping of the logic design into the FPGA's architecture requires more 

sophisticated design implementation (CAD) tools than PLDs. Compared with traditional 

gate arrays, FPGAs are less dense and operate at a lower speed: However, the rapid 

advance in FPGA technology is quickly closing the gap between the two realisations. 

The next consideration is cost. 

Cost is an important factor favouring FPGAs. ASIC costs consists of fixed and variable 

components. Fixed costs include the initial cost needed to prepare masks, buy design 

tools, etc. Fixed costs for FPGAs include the development system and the platform 

which can vary from a personal computer to a sophisticated workstation. The 

development system includes the CAD tools (for design entry, simulation, and 

implementation) and a device programmer. The variable costs for FPGAs include the 

component costs which vary according to the number of logic blocks. 

Manufacturing test costs for gate arrays includes of the costs of testing and packaging 

the individual chips. These costs for FPGAs are greatly reduced because test generation 

is done once for the unprogrammed chip. It is left up to the user to test the programmed 

chip in the field. At present, gate densities for FPGAs are on average, lower than those 

of MPGAs. As the chip density is constantiy increasing, FPGAs are becoming more 

competitive with gate arrays. 
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