
A New Architecture for Adaptive
Digital Logic

Mehrdad Salami, M.Sc.

A thesis submitted for the degree of

Doctor of Philosophy

in the

Department of Electrical and Electronic Engineering
Faculty of Engineering

VICTORIA Z
UNIVERSITY

X

z
o
r-

o
o
-<

1996

c:^^

LIDRAPiY --M

f'TS THESIS
006.31 SAL
30007004695393
ja'ami, Mehrdad
A new architecture for
adaptive digital ?og?c

Preface

This work is conducted under guidance of Dr. Greg Cain as supervisor. Some of the

research results presented here were included in the following papers [Salami M. and

Cain G.], published in conference proceedings or currently under review for journal

publication:

[1] "The Quest for a New Computing Architecture Based on Genetic Algorithms",
Proceedings of the Electrical Engineering Congress (EEC94), The Institution of
Engineers Australia, Canberra, Australia, November 1994, pp. 635-640.

[2] "An Adaptive Control System Based on Genetic Algorithms", Proceedings of the
First International Workshop on Intelligent Adaptive System (IAS-95), Melbourne
Beach, Florida, April 1995, pp. 63-77.

[3] "A Genetic Algorithm Processor", Proceedings of the Iranian Conference on
Electrical Engineering (ICEE95), Iran University of Science and Technology,
Tehran, Iran, May 1995, pp. 233-239.

[4] "Adaptive Hardware Optimization Based on Genetic Algorithms", Proceedings of
The Eighth International Conference on Industrial Application of Artificial
Intelligence & Expert Systems (IEA95AIE), Melbourne, Australia, June 1995, pp.
363-371.

[5] "Multiple Genetic Algorithm Processor for the Economic Power Dispatch
Problem", Proceedings of The First lEE/IEEE International Conference on
Genetic Algorithms in Engineering Systems: Innovations and Applications
(GALESIA'95), lEE Conference Publication No. 414, The University of
Sheffield, Sheffield, UK, September 1995, pp. 188-193.

[6] "An Adaptive PID Controller Based on Genetic Algorithm Processor",
Proceedings of The First lEE/IEEE International Conference on Genetic
Algorithms in Engineering Systems: Innovations and Applications

(GALESIA'95), lEE Conference Publication No. 414, The University of
Sheffield, Sheffield, UK, September 1995, pp. 88-93.

[7] "A Multiple Genetic Algorithm Processor for a PID Controller System",
Proceedings of The International Conference on Genetic Algorithms 95
(MENDEL'95), University of Bmo, Brno, Czech Republic, September 1995, pp.
67-71.

[8] "Genetic Algorithms for Solving the Economic Power Dispatch Problem",
Proceedings of The Electrical Engineering Conference 1995 (EEcon95), The
Institution of Engineers Australia, Adelaide, Australia, September 1995, pp. 59-
64.

[9] "A PID Controller Based on a Multiple Genetic Algorithm Processor",
Proceedings of Control 95 Conference (Control'95), The Institution of Engineers
Australia, University of Melbourne, Melbourne, Australia, October 1995, pp. 359-
362.

[10] "Multiple Genetic Algorithms Processor for Engineering Applications", Poster
Proceedings of The Eighth Australian Joint Conference on Artificial Intelligence
(Ar95), The University of New South Wales, Canberra, Australia, November
1995, pp. 79-86.

[11] "Implementation of Genetic Algorithms on Reprogrammable Architectures",
Applications Stream Proceedings of The Eighth Australian Joint Conference on
Artificial Intelligence (Ar95), The University of New South Wales, Canberra,
Australia, November 1995, pp. 121-128.

[12] "Application of Multiple Genetic Algorithm Processor in Complex Systems",
Proceedings of The Second New Zealand International Conference on Artificial
Neural Network and Expert System (ANNES'95), IEEE Computer Society
Publication, University of Otago, Dimedin, New Zealand, November 1995.

[13] "Genetic Algorithm Processor for Adaptive IIR Filters", Proceedings of The
Second IEEE International Conference on Evolutionary Computing (ICEC'95)^
The University of Western Australia, Perth, Australia, December 1995, pp. 423-
428.

[14] "A Robust Genetic Algorithm", Proceedings of The First Aimual CSI (Computer
Society of Iran) Computer Conference (CSICC'95), Sharif University of
Technology, Tehran, Iran, December 1995, pp. 542-548.

Ill

[15] "Genetic Algorithms Processor for Adaptive Engineering Systems", Proceedings
of The First International Conference on Fuzzy Logic and the Management of
Complexity 1996 (FLAMOC'96), The University of Sydney, Sydney, Australia,
pp. 265-269.

[16] "Genetic Algorithms Toolbox for Matlab", Proceedings of The 1996 Australian
MATLAB Conference, CEANET Inc., The University of Melbourne, Melbourne,
Australia, January 1996, pp. 1 -A.

[17] "Genetic Algorithm Processor on Reprogrammable Architectures", Proceedings of
The Fifth Aimual Conference on Evolutionary Programming 1996 (EP96), MIT
Press, San Diego, CA, March 1996.

[18] "Application of Genetic Algorithm Processor in a PID Controller System", to
appear in the Proceedings of The Fourth Iranian Conference on Electrical
Engineering (ICEE96), The University of Tehran, Iran, May 1996.

[19] "Genetic Algorithm Processor for the Frequency Assignment Problem", to appear
in the Proceedings of The Ninth International Conference on Industrial
Application of Artificial Intelligence & Expert Systems (IEA96AIE), Fukuoka
Institute of Technology, Fukuoka, Japan, June 1996.

[20] "Hardware Implementation of Genetic Algorithms", paper submitted to the
Journal of Evolutionary Computing, Reference number EC-KD-9602-0160
January 1996.

[21] "Application of Genetic Algorithm Processor in Engineering", paper submitted to
the IEEE Transactions on Industrial Electronics Magazine, February 1996.

[22] "Hardware Genetic Algorithms and Their Applications", to appear in the
Proceedings of IEEE International Conference on Industrial Technology,
Shanghai, China, 2-6 December 1996.

Research related activities

Member of the program committee in The International Conference on Genetic
Algorithms 95 (MENDEL'95), University of Bmo, Bmo, Czech Republic,
September 1995.

IV

Member of the program committee in The Intemational Conference on Genetic
Algorithms 96 (MENDEL'96), University of Bmo, Bmo, Czech Republic, Jime
1996.

Invited paper for the Special Session on Genetic Algorithms Applications in the
IEEE Intemational Conference on Industrial Technology, Shanghai, China,
December 1996.

Paper review for IEEE Transactions on Industrial Electronics:
Paper Number: 1728 Review A,
Authors: Park J.H. and Choi Y.K.,
Title: "An On-line Control Scheme with Evolution Strategy for Unknovm
Nonlinear Dynamic Systems",
Date sent: Febmary 7, 1996.

Declaration

I hereby declare that this thesis is the result of my ovm research and has not been

submitted for a degree to any other university.

Mehrdad Salami
Department of Electrical and Electronic Engineering
Faculty of Engineering
Victoria University of Technology
Melboume, Australia

VI

Abstract

This thesis reports research into the hardware implementation of Genetic Algorithms

and engineering applications. These algorithms are significant to engineering as a means

of providing additional adaptive capability to known and existing control mechanisms.

The first part of the thesis is concemed with the underlying mechanisms of Genetic

Algorithms and a model of a computing architecture which directly executes these

algorithms in a generic form. The model has been developed and simulated using the

hardware descriptive language VHDL and the Mentor Graphics tools miming on SUN

systems. It has been tested using a standard software test suite and synthesised into Field

Programmable Gate Array (FPGA) technology. Test results demonstrate the

performance of the Genetic Algorithm Processor (GAP) on a number of standard

problems and the speedup achievable in comparison with software Genetic Algorithms.

The second part of the thesis is concemed with the applications of the GAP to

engineering problems including economic power dispatch, PID controllers and adaptive

digital filters. A new hardware configuration based on multiple units of the original

design is introduced as a means of handling applications where long bit strings are

required. Finally, the ability of the GAP to adapt an existing controller or filter to a

dynamically changing environment is investigated.

vu

Acknowledgments

I would like to thank my supervisor Dr. Greg Cain for his constant support and guidance

throughout my thesis work. For his enthusiasm to basic research, willingness to discuss

and challenge ideas at any time as well as his kindness and generosity, I feel indebted to

him and find it hard to imagine a better supervisor.

I also thank my co-supervisor Dr. Roman Malyniak for his great help on several

occasions. I also would like to thank John Chlond for his support in software and

hardware design and for providing the necessary tools.

I would like to thank my following colleagues for their support and help during research

and writing: Adrian Stoica, Reza Berangi, Omar Ghanayem, Mahmood Zonoozi, Nasser

Hossainzadeh and Dr. Osama Ata.

I gratefully acknowledge the financial support from the Ministry of Culture and Higher

Education (MCHE) in Iran throughout the research period.

Finally, I thank my parents for their support and great imderstanding. Above all I am

grateful to my wife, for her continuous support, without which this work would not have

been possible. I dedicate this thesis to her.

vm

Contents

List of Figures xiv

List of Tables xix

List of Abbreviations xxi

List of Symbols xxiv

1 Introduction 1

1.1 Introduction to Genetic Algorithms 2

1.2 Introduction to VHDLA

1.3 Introduction to Field Programmable Gate Arrays 5

1.4 Mapping GAs to FPGAs through VHDL 5

1.5 Thesis outline 6

2 Background and related works 8

2.1 Basicideaof Genetic Algorithms 8

2.2 Applications of GAs 9

2.3 The VHDL language 11

2.4 Previous work in reconfigurable hardware 13

2.5 Hardware implementation of optimisation algorithms 16

2.6 Previous work in hardware Genetic Algorithms 17

3 Principles of Genetic Algorithms 19

3.1 The simple principles 20

3.2 Evaluation 22

3.3 Scaling and selection 25

3.4 Generation and crowding 27

3.5 Reproduction and coding 28

IX

3.5.1 Coding 29

3.5.2 Schemata 30

3.5.3 Gray codes 34

3.5.4 Real value genes 40

3.5.5 Adaptive coding 43

3.5.6 Conclusion 44

3.6 Tuning GAs 44

3.7 Evaluating GAs 47

The GAP model 48

4.1 Justification for the GAP model 48

4.2 Basic Genetic Algorithm Processor design 49

4.2.1 Development environment of the GAP 51

4.2.2 A look at the overall design 52

4.2.3 The modules and their functions 53

4.2.3.1 Pseudorandom Number Generator (PNG) 55

4.2.3.2 Memory Unit (MU) 56

4.2.3.3 Memory Interface Module (MIM) 58

4.2.3.4 Read Module (RM) 59

4.2.3.5 Selection Module (SM) 59

4.2.3.6 Crossover Module (CM) 61

4.2.3.7 Mutation Module (MM) 61

4.2.3.8 Fitness Module (FM) 62

4.2.3.9 Fitness Unit (FU) 63

4.3 Design parameters 64

4.4 Pipelining 64

Design verification and analysis 66

5.1 Verification of correct functionality 66

5.2 Mathematical analysis 70

5.2.1 Read Module analysis 72

5.2.2 Selection Module analysis 73

5.2.3 Crossover Module analysis 75

5.2.4 Mutation Module analysis 76

5.2.5 Fitness Module analysis 76

5.2.6 GAP analysis 77

5.2.7 Comparison between simulation and analysis 79

5.3 Design improvements 82

Implementation ofthe GAP on FPGAs 87

6.1 ASIC design ; 87

6.1.1 Field programmable technology 89

6.1.2 The design cycle 91

6.2 Design implementation cycle 92

6.2.1 Entering the design 93

6.2.2 Simulating the design 93

6.2.3 Mapping the design into FPGAs 95

6.2.4 Programming an FPGA device 100

6.2.5 GAP parameters and timing considerations 103

6.3 Comparison with a software GA 106

6.3.1 Testing the optimisation capability 107

6.3.2 Comparing the speed of hardware and software 108

Application ofthe GAP in engineering 114

7.1 Application in a PID controller 115

7.1.1 The PID controller system 115

7.1.2 Applying the GAP to a PID controller 118

7.1.3 Other GAP configurations for the PID controller 123

7.2 Application of the GAP in Economic Power Dispatch 128

7.2.1 The EPD problem 129

7.2.2 Applying the GAP to the EPD problem 131

7.2.3 Other GAP configurations for the EPD problem 132

XI

7.3 Application in adaptive IIR filters 135

7.3.1 Properties of Infinite Impulse Response Filters 136

7.3.2 Applying the GAP to adaptive IIR filters 142

7.3.3 Other GAP configurations for adaptive IIR filters 144

7.4 Conclusions 147

8 Multiple GAP architectures 148

8.1 Limitation of a single processor 148

8.2 Multiple architectures 149

8.3 Justification for the multiple GAPs 151

8.4 Simulation ofthe multiple GAPs 153

8.4.1 PID controller 153

8.4.2 Economic power dispatch problem 158

8.4.3 Adaptive IIR filters 160

8.5 Conclusions 162

9 Adaptive behaviour of the GAP 164

9.1 Adaptive behaviour 165

9.2 Adaptive GAP 167

9.3 Adaptive performance ofthe GAP in engineering applications 170

9.3.1 PID controller 171

9.3.2 Economic power dispatch problem 173

9.3.3 Adaptive IIR filters 179

9.4 Conclusions 182

10 Conclusions and future work 183

10.1 Hardware implementation issues 184

10.2 Applications ofthe GAP 185

10.3 Multiple GAP configurations 186

10.4 Adaptive behaviour 187

10.5 Some potential applications ofthe GAP 188

Xll

Appendices
A A simple Genetic Algorithm 190

A.l Theory of Genetic Algorithms 191

A.2 A simple example of a Genetic Algorithm 192

B Gray code conversion 196

C VHDL code 201

D A brief description of Xilinx FPGAs 226

D.l Architecture of FPGAs 227

D.2 Comparing FPGAs with other technologies..-, 231

Bibliography 234

Xll l

List of Figures

3.1a Comparison of best performance of Binary coding "-I-" and Gray
coding "*" on DeJong's Fl test functions at a variety of mutation
probabilities 37

3.1b Comparison of best performance of Binary coding "4-" and Gray
coding "*" on DeJong's F2 test functions at a variety of mutation
probabilities 38

3.1c Comparison of best performance of Binary coding "+" and Gray
coding "*" on DeJong's F3 test functions at a variety of mutation
probabilities 38

3. Id Comparison of best performance of Binary coding "+" and Gray
coding "*" on DeJong's F4 test functions at a variety of mutation
probabilities 39

3.1e Comparison of best performance of Binary coding "+" and Gray
coding "*" on DeJong's F5 test functions at a variety of mutation
probabilities '. 39

3.2 Simple crossover with a virtual alphabet. After the first few
generations, the parameter values become restricted to the grey
areas. Crossover can then only explore the intersection of these
areas 41

3.3 Example of a function that might, by Goldberg's analysis, cause
problems for a real-coded GA 42

4.1 Extemal connections to the GAP 50
4.2 Module-level ofthe overall GAP system 53
4.3 The Memory Unit map 57
4.4 Typical Fitness Unit 63

5.1 Problem surface for (5.1) 67
5.2 The results of example 1 68
5.3 Problem surface for (5.4) 69
5.4 The normalised results of example 2 70
5.5 The result of comparison between mathematical analysis and

hardware simulation of total number of cycles (T) needed to
complete a task with different m and g according to Tables 5.3
and 5.5 85

XIV

5.6 The result of comparison between mathematical analysis and
hardware simulation of clock cycle rate (R) with different m and
g according to Tables 5.3 and 5.5 85

6.1 Circuit design methods and target technologies 88
6.2 General stmcture of a PLD 90
6.3 General stmcture of a FPGA 91
6.4 The schematic diagram ofthe GAP 94
6.5 The Read Module for the 24 bit configuration on XC4003 99
6.6 FPGA demo board component layout 101
6.7 A 4-bit GAP implemented on the FPGA XC4013 chip 102
6.8 Total GAP run time versus the fitness delay time when the

number of generations varies for population size equal 16 105
6.9 Total GAP nm time versus the fitness delay time when

population size varies for number of generations equal 16 106
6.10 The error value of the best individual versus number of

generations (A=Sphere, B=Rosenbrock's saddle). 109
6.11 The error value of the best individual versus number of

generations (C=Step, D=Quartic) 110
6.12 Total mn time for the GAP and Software GA (SGA) for

different population sizes and generations. 113

7.1 A typical PID controller system 117
7.2 The reference signal 120
7.3 The results of GAP simulations for PID controller (Kd and Ki) 121
7.4 The results of GAP simulations for PID controller (Kp and

normalised fitness value) 122
7.5 The unit step response ofthe best set of K values 123
7.6 The results ofthe PID controller simulation with 12, 24 and 36

bit configurations (Normalised Error Value) 124
7.7 The results ofthe PID controller simulation with 12, 24 and 36

bit configurations (Kd) 125
7.8 The results ofthe PID controller simulation with 12, 24 and 36

bit configurations (Ki) 126
7.9 The results ofthe PID controller simulation with 12, 24 and 36

bit configurations (Kp) 127
7.10 Cost versus number of generations for the best and worst

individual in the population 132
7.11 Maximum cost and minimum cost versus number of generations

for 8 bit members. 136

XV

7.12 Maximum cost and minimum cost versus number of generations
for 16 bit members 134

7.13 Maximum cost and minimum cost versus number of generations
for 32 bit members 135

7.14 Stmcture of an IIR filter 137
7.15 Stmcture of an adaptive IIR filter 140
7.16 A typical system for the adaptive IIR filter 141
7.17 The architecture of an adaptive Genetic Algorithm IIR filter 142
7.18 The Mean Square Error (MSE) for three different algorithms (*

Results from [Tang and Mars, 1991]) 144
7.19 The best Mean Square Error (MSE) for the adaptive IIR filters

versus number of generations for three GAP configurations (16
bit, 24 bit and 32 bit) 145

7.20 The best 'a' value for the adaptive IIR filters versus number of
generations for three GAP configurations (16 bit, 24 bit and 32
bit) 146

7.21 The best 'b ' value for the adaptive IIR filters versus number of
generations for three GAP configurations (16 bit, 24 bit and 32
bit) 146

8.1 Splitting one member between four GAPs 150
8.2 The results ofthe PID controller simulation with single, 2, 3, 4

and 6 processors (Error Value) 154
8.3 The results ofthe PID controller simulation with single, 2, 3, 4

and 6 processors (Kj Value) 155
8.4 The results ofthe PID controller simulation with single, 2, 3, 4

and 6 processors (Kj Value) 156
8.5 The results ofthe PID controller simulation with single, 2, 3, 4

and 6 processors (Kp Value) 157
8.6 Maximum cost and minimum cost versus number of generations

for single processor 159
8.7 Maximum cost and minimum cost versus number of generations

for the 4 processors 159
8.8 Maximum cost and minimum cost versus number of generations

for the 8 processors 160
5.9 The best adaptive IIR characteristics (Mean Square Error

(MSE)) versus number of generations with multiple processors
(single, 2 and 4 processors) 161

8.10 The best adaptive IIR characteristics ('a' value) versus number
of generations with multiple processors (single, 2 and 4
processors) 161

XVI

8.11 The best adaptive IIR characteristics ('b 'value) versus number
of generations with multiple processors (single, 2 and 4
processors) 162

9.1 An adaptive system based on the adaptive GAP 165
9.2 The changes in the demand power 166
9.3 The results of simulations when the demand power is varied in

small steps 167
9.4 A simple optimisation task 168
9.5 Problem space of adynamic fitness function 169
9.6 The 'a' value changes with the number of generations 172
9.7 The architecture of the adaptive multiple GAP used for PID

controller system 172
9.8 The results ofthe PID controller simulation (normalised fitness

value and Kj) 174
9.9 The results of the PID controller simulation. (Kj and Kp) 175
9.10 The imit step response ofthe PID controller system for a=l and

a=30 176
9.11 The architecture of the adaptive multiple GAP used for EPD

problem 177
9.12 The demand power is varied with the number of generations. 178
9.13 Minimimi costs versus number of generations when the demand

is varied as in Figure 9.12 178
9.14 The 'P' value changes with the nimiber of generations 179
9.15 The architecture ofthe adaptive multiple GAP for the IIR filter 180
9.16 The minimum MSE for the adaptive IIR filter when p is varied

in (9.5) 181
9.17 The best 'a' value for the adaptive IIR filter when p is varied in

(9.5) 181
9.18 The best 'b ' value for the adaptive IIR filter when p is varied in

(9.5) 182

A.l A weighted roulette wheel 194
A.2 An example of crossover 194

D.l Overall view of a Xilinx XC4000 series FPGA 227
D.2 Simplified schematic of a CLB 228
D.3 An XC4000 lOB 228

XVll

D.4 CLB connections to single-length lines 230
D.5 Double-length lines 230
D.6 Longlines with CLB connections 231

XVlll

List of Tables

3.1 DeJong's five test functions 36

5.1 Each stage number is matched with one module of the GAP 70
5.2 Analysis ofthe service times in clock cycles for the GAP model

(Sn^Snorn,) 8 0

5.3 Performance estimation based on the GAP analysis in Table 5.2 81
5.4 Simulation results of GAP tests 83
5.5 Performance simulations ofthe GAP tests 84

6.1 Examples of FPGAs 97
6.2 Features ofthe Xilinx devices (1994) 98
6.3 The processing time for mapping VHDL source code of GAP to

an FPGA bitmap file on a SUN Sparc 10 workstation 100
6.4 Maximumattainablefi-equency of the GAP for different member

bit lengths 104
6.5 Number of clock cycles needed by the GAP for processing a

task and the corresponding real time (based on working clock
frequency of 10 MHz) 104

6.6 Timing results of the software GA and the GAP on different
fitness functions. The GAP was clocked at 10 MHz, the software
GA at 66 MHz 112

6.7 Overall speed improvement 112

7.1 The simulation results for different configurations 128
7.2 Coefficients for generators in the simulations 131
7.3 The best ever minimum costs and the average minimum costs 133
7.4 IIR filter results for three GAP configurations 145

8.1 A simple example for the multiple GAP configuration 151
8.2 The best final values for the five configurations 153
8.3 The best ever minimum costs and the average minimum costs 158
8.4 The final results of .each configuration 160

XIX

9.1 The results ofthe dynamic fitness function simulations 170
9.2 Characteristics ofthe best member for a=l and a=30 173

A.l Four random strings and their fitness values 193
A.2 The population after applying selection and crossover operators.... 195

B.l Binary code to Gray code for four bits 197
B.2 Binary code to Gray code for 5 bits 198
B.3 Gray code to binary code for four bits 199
B.4 Gray code to binary code for 5 bits 200

XX

List of Abbreviations

The following definitions ofthe abbreviation are applied throughout this thesis.

Abbreviation

ADC

ASIC

CA

CLB

CM

CMOS

CUPL

DAC

DAP

DPE

EEPROM

EPD

EPROM

FIR

FM

FPGA

FPID

FU

Description

Analog to Digital Converter

Application Specific IC

Cellular Automata

Configurable Logic Block

Crossover Module

Complementary Metal-Oxide Semiconductors

Compiler for Universal Programmable Logic

Digital to Analog Converter

Distributed Array Processor

Dynamic Parameter Encoding

Electrically EPROM

Economic Power Dispatch

Erasable Programmable ROM

Finite Impulse Response

Fitness Module

Field Programmable Gate Array

Filed Programmable Interconnect Device

Fitness Unit'

Defined in
Section

4.2.3.9

2.3

4.2.3.1

6.2.3

4.2.3

6.1.1

1.4

4.2.3.9

2.6

3.5.5

1.3

2.2

1.3

2.2

4.2.3

1

2.4

4.2

XXI

GAP Genetic Algorithm Processor 1

GAs Genetic Algorithms 1

IIR Infinite Impulse Response 2.2

lOB Input Output Block App. D.l

LCA Logic Cell Array 6.2.3

LFSR Linear Feedback Shift Register 4.2.3.1

LMS Least Mean Squares 7.3.1

MIM Memory Interface Module 4.2.3

MIMD Multiple Instmction Multiple Data 2.6

MM Mutation Module 4.2.3

MPGA Mask-Programmed Gate Array 1.3

MSE Mean Square Error 7.3

MSI Medium-Scale Integration App. D.2

MU Memory Unit 4.2

NP Non Polynomial 1

nP nano-Processor 2.4

PAM Programmable Active Memory 2.4

PID Proportional Integrator Differentiator 2.2

PLA Programmable Logic Array 6.2.3

PLD Programmable Logic Device 1.4

PNG Pseudorandom Number Generator 4.2.3

RAM Random Access Memory 1.3

RM Read Module 4.2.3

ROM Read Only Memory 1.3

RTL Register Transfer Language 1 4

XXll

sGA simple Genetic Algorithm 4.2.3

SGA Software Genetic Algorithms 6.3.2

SIMD Single Instmction Multiple Data 2.6

SLA Stochastic Leaming Automata 7.3.1

SM Selection Module 4.2.3

SRAM Static RAM 2.4

SSI Small-Scale Integration App. D.2

SU Setup Unit 4.2

SUS Stochastic Universal Sampling 3.3

TTL Transistor-Transistor Logic App. D.2

UUT Unit Under Test 4.2.3.9

VHDL VHSIC Hardware Description Language 1.2

VHSIC Very High Speed IC 1.2

VLSI Very Large Scale IC 1.1

XXUl

List of Symbols

The following definitions ofthe symbol are applied throughout this thesis.

Symbol Description Defined in
Section

addressm

Bi

C

C/g)

d

d(n)

ds

e(n)

E(S)

F,

F, out

f

fs

FT<P)

g

geneparam

h(n)

Width of address line for Memory Unit 4.3

The transmission loss coefficient 7.2.1

Crowding factor 3.4

Number of copies of schema s in the population at 3.5.2

generation g

The number of delay cycles in the Fitness Unit 5.2

Desired response for the plant in IIR filter 7.3.1

Defining length of schema s 3.5.2

Prediction error in IIR filter 7.3.1

Error signal function in PID controller 7.1.1

The flow rate of stage / 5.2

The flow rate out ofthe pipeline 5.2

Average fitness ofthe whole population 3.5.2

Fitness of schema 5 3.5.2

The total fuel cost for all generators 7.2.1

Number of generations 3.5.2

Package file name for the GAP model 4.3

The impulse response of IIR filter 7.3.1

XXIV

H^ (z) Rational transfer fiinction for IIR filter 7.3.1

H[)(z) Desired response function for the plant in IIR filter 7.3.1

k Number of GA parameters in GAP memory 4.2.3.2

Kj Derivative term in PID controller 7.1.1

Kj Integration term in PID controller 7.1.1

Kp Proportional term in PID controller 7.1.1

/ Length of schema 3.5.2

/̂ Maximum useful schema length 3.5.2

m Population size 3.5.2

M Nominator degree of IIR filter 7.3.1

N Denominator degree of IIR filter 7.3.1

ngen Maximum number of generations 4.3

n^ Number ofusefiilly processed schemata 3.5.2

Og Order of schema s 3.5.2

p(s) Probability that the schema s survives the 3.5.2

reproduction operators

P(S) Plant transfer function in PID controller 7.1.1

P Problem space dimension 1

PO Population at bottom of memory 4.2.3.3

PI Population at top of memory 4.2.3.3

Pc Probability of crossover 3.5.2

Pj The power generated by the unit i 7.2.1

Pi_ The upper limits of permitted power generation for 7.2.1

un i t /•
max

XXV

p>
mm

Pm

PR

P,

PT

r

R

R(S)

randomsize

norm I

T

U(S)

v(n)

V(n)

valuem

w

w(n)

x(n)

y(n)

The lower limits of permitted power generation for 7.2.1

unit /

The total transmission loss 7.2.1

Probability of mutation 3.5.2

The total load demand 7.2.1

Population at generation ? 4.2.3.3

The total power generation 7.2.1

The total number of cycles to read from the memory 5.2

Clock cycle rate per generation per population 5.2.6

member

Reference signal in PID controller 7.1.1

Actual clock cycle rate per generation per population 5.2.7

member

Size of maximum random number 4.3

The actual service time of pipeline stage / 5.2

The normalised service time of stage / 5.2

The total number of clock cycles 5.2

Output of the PID controller 7.1.1

Nominator factors for IIR filter 7.3.1

Additive noise 7.3.1

Width of data line for Memory Unit 4.3

The total number of cycles to write to the memory 5.2

Denominator factors for IIR filter 7.3.1

Input to IIR filter 7.3.1

Output of IIR filter 7.3.1

XXVI

Y(S) Output of the plant in PID controller 7.1.1

XXVll

Chapter 1

Introduction

In recent times some new classes of probabilistic search algorithms have been

developed to handle difficult or intractable problems. Principal among these

developments are Genetic Algorithms [Holland, 1992; Goldberg, 1989b] and the

method of Simulated Annealing [Kirkpatrick et al., 1983]. The search method used in

Genetic Algorithms (GAs) mimics some of the mechanisms and principles of natural

evolution in biological systems. They have exhibited an almost unique ability to solve

difficult problems in discrete configuration spaces where solutions are found as

unconnected points in a P-dimensional space rather than as points on differentiable

surfaces. Examples include adaptive game-playing, biological cell simulation, machine

leaming, pattern recognition, VLSI microchip layout and job scheduling. These discrete

configuration problems usually have an enormous set of candidate solutions that

expands in a non-polynomial fashion with the problem dimension (P). Such problems

Chapter 1. Introduction

are thus known as NP Hard and algorithms which seek exact solutions are generally

only used when P is small.

GAs handle large configuration spaces by sampling and processing randomly selected

points in the space. The nature of GAs and their wide applicability make them excellent

candidates for hardware implementations, thus obtaining a great speedup over software

implementations. This speedup would allow hardware GAs to be applied to much more

complex problems.

Because a general-purpose GA engine requires certain parts of its design to be easily

changed (e.g. the operators), a Genetic Algorithm Processor (GAP) was not feasible

until Field-Programmable Gate Arrays (FPGAs) were developed. FPGAs aUow for

reprogrammability which is an essential concept behind the development ofthe GAP

model.

This thesis describes the GAP, an implementation of a hardware genetic algorithm.

Because ofthe reprogrammability of FPGAs, the GAP is a general purpose GA engine

which is useful in many applications where conventional GA implementations are too

slow and expensive. The GAP works as a optimiser with the system imder test and gives

its user the ability to specify many ofthe GA parameters.

1.1 Introduction to Genetic Algorithms

The Darwinian theory of evolution depicts biological systems as the product of ongoing

process of natural selection. During the 1950s researchers became interested in genetic

processes and the possibility of emulating them in computer systems. The foundations

of Genetic Algorithms theory were initially developed by John Holland and his students

and in recent years have been applied to problems as diverse as pattem recognition and

optimisation. GAs are probabilistic algorithms and their behaviour is still in many ways

not well understood. It can be said that genetic algorithms are probabilistic algorithms

Chapter 1. Introduction

which start with an initial population of likely problem solutions, and then evolve

towards better solution version. New solutions are generated with the use of genetic

operators pattemed upon the reproductive processes observed in nature. Also from the

area of genetics come the names of the concepts we use. Each element of a current

solution space (population) is called a chromosome, and its components are called

genes. Genetic operators also have names originating in genetics: cross-over, mutation

and inversion. Genetic algorithms allow engineers to use a computer to evolve solutions

over time, instead of designing them by hand. Because almost any method, theory, or

technique can be encoded on a computer, this implies an approach to problem solving

that can be automated by a computer. More specifically, computer science has long been

interested in how the design, development, and debugging of computer programs could

be automated, and genetic algorithms provide one avenue toward this goal.

There are four major differences between GA-based approaches and conventional

problem solving methods.

1. GAs use probabilistic transition mles, not deterministic mles.

2. GAs use payoff (objective function) information. Other supplementary knowledge of

the problem may be useful but is not essential.

3. GAs search from a population of points, not a single point.

4. GAs work with a coding ofthe parameter set, not the parameters themselves.

These four properties make GAs robust, powerfiil, and data-independent [Goldberg,

1989b]. The GA operations, selection, crossover and mutation, primarily involve

random number generation, copying, and partial string exchange. Thus they are

powerful tools which are simple to implement. They have been applied to many areas,

including VLSI layout optimisation, job shop scheduling, function optimisation and the

travelling salesman problem.

Chapter 1. Introduction

1.2 Introduction to VHDL

VHDL is an acronym for VHSIC Hardware Description Language (VHSIC is an

acronym for Very High Speed Integrated Circuit). It is a hardware description language

that can be used to model a digital system at many levels of abstraction ranging from the

algorithmic level to the gate level. The complexity ofthe digital system being modelled

could vary from that of a simple gate to a complete digital electronic system, or

anything in between. The digital system can also be described hierarchically. Timing

can also be explicitly modelled in the same description.

The language not only defines the syntiax but also defines very clear simulation

semantics for each language constmct. Therefore, models written in this language can

be verified using a VHDL simulator. It is a strongly typed language and is often verbose

to write. It inherits many of its features, especially the sequential language part, from the

Ada programming language. Because VHDL provides an extensive range of modeling

capabilities, it is often difficult to imderstand. Fortimately, it is possible to quickly

assimilate a core subset ofthe language that is simple to understand without leaming the

more complex features. This subset is usually sufficient to model most applications. The

complete language, however, has sufficient power to capture the descriptions of the

most complex chips to a complete electronic system.

VHDL is a hardware description language and, therefore, VHDL descriptions are

generally used to model hardware components and system (i.e. gates, chips, boards, etc).

However, VHDL provides an abstract framework for describing hardware which is

easily extended into other domains. A VHDL digital device can range from a gate to a

microprocessor, to a complete system and beyond. The guiding factor is that the

underlying system be based on a general stimulus-response model that uses discrete (i.e.

non-continuous) values.

Chapter 1. Introduction

1.3 Introduction to Field Programmable Gate Arrays

A field-programmable gate array (FPGA) is an inexpensive hardware component,

usually costing on the order of $100, which allows the user to program its functionality

quickly and inexpensively. This allows for cheaper prototyping and shorter time-to-

market of hardware designs. FPGAs are slower and have a lower gate density than full-

custom (customised VLSI chips) and semi-custom (Mask-Programmed Gate Arrays

(MPGAs)) design methodologies. However, FPGA costs per chip and tumaroimd times

for low-volume designs and prototypes are much better than for MPGAs and fiill

custom designs [Xilinx, 1994].

In general, FPGAs consist of logic blocks, I/O cells and interconnection lines. The logic

blocks implement the actual logic of the FPGA using primitives such as NAND gates,

multiplexers or lookup tables. The I/O cells allow the FPGA's logic blocks to connect to

the pins. The interconnection lines comiect logic blocks to each other and to the I/O

cells. The routing done by these lines is implemented with wire segments and a system

of programmable switches. The switching technology can be any one of pass-transistors

controlled by static RAM cells, anti-fuses, EPROM transistors or EEPROM transistors.

FPGAs were first created by Xilinx Incorporated in 1984. Since that time, many other

companies have marketed FPGAs, the major ones being Xilinx, Actel and Altera. Actel

FPGAs use an anti-fuse technology which is programmable only once. Reprogrammable

FPGAs use EPROM, EEPROM or static RAM technology. Xilinx FPGAs, using static

RAM technology, are used in this thesis and in many other design projects which

require hardware reprogrammability.

1.4 IVIapping GAs to FPGAs through VHDL

Genetic algorithms are currently used in many applications as a robust general-purpose

optimisation technique. For optimisation problems in which a solution must be

computed quickly by genetic algorithms a hardware implementation may be necessary.

Chapter 1. Introduction

The nature of GA operators is such that GAs lend themselves well to pipelining and

parallelisation. This capability for parallelisation and pipelining makes a GA an

excellent candidate for mapping to hardware.

There are many ways to map a GA to an FPGA device, including Register Transfer

Language (RTL), CUPL (for PLD devices) and VHDL. Synthesis tools are available for

each method to create a PLD or FPGA device file from a source file. However, the basic

operations of a GA require addition and multiplication that make it difficult to use RTL

or CUPL as language tools or PLDs as a device for implementation. Fortunately in

VHDL it is possible to use integer arithmetic without being concemed with the

hardware implementation details. VHDL is an excellent environment for algorithmic

implementation as long as there is not too much arithmetic in the design.

1.5 Thesis outline

The remainder of this thesis is organised as follows. Chapter 2 reviews the background

for this work and methods of using reconfigurable hardware to speed up general

applications. Chapter 3 explains the theory behind GAs and different types of GAs and

genetic operators. For those who are not familiar with Genetic Algorithms, Appendix A

explains GAs with a simple example. Chapter 4 describes the GAP model, hardware

prototype and verification ofthe design and its performance analysis. In Chapter 5, the

GAP will be analysed mathematically to find out the bottlenecks of the model. Chapter

6 explains the implementation ofthe GAP on FPGA devices including discussion about

functionality and limitations ofthe design. Appendix D demonstrates a brief explanation

of the Xilinx FPGAs and their internal stmcture. Chapter 7 deals with applications

including a PID control system, dynamic power dispatch and an adaptive IIR filter.

Several GAP configurations are tested to find the best configuration for each

application. Chapter 8 demonstrates the multiple GAP, a parallel configuration for

handling more complicated applications. Chapter 9 describes the adaptive capabilities of

Chapter 1. Introduction

the GAP and its application in the three problems. Chapter 10 presents conclusions and

possible avenues for future work. Appendix A describes Genetic algorithms with a

simple example. Appendix B shows Gray code tables and the VHDL code for the GAP

modules is given in Appendix C. Appendix D describes Xilinx FPGAs and their intemal

stmctures.

Chapter 2

Background and related works

This chapter continues the basic description of genetic algorithms that was provided in

Chapter 1. A much more detailed description is provided in Chapter 3. Next, VHDL is

described and the advantages and disadvantages of using VHDL are discussed. This is

followed by a review of related work in mapping frequently used software routines into

configurable hardware and finally a brief review of research into previous hardware GA

models.

2.1 Basic idea of Genetic Algorithms

Genetic Algorithms were developed initially by John Holland in the 1960's [Holland,

1975] as a form of search technique modelled on Darwinian evolution. The most

accessible introduction is by Goldberg [1989b]. Other sources are Davis [1991b], Fogel

[1995] and the Proceedings of the GA and PPSN conferences [Grefenstette, 1985;

Chapter 2. Background and related works

Grefenstette, 1987; Schaffer, 1989; Belew and Booker, 1991; Forrest, 1993; Schwefel

and Maimer, 1990; Manner and Manderick, 1992].

GAs are relatively a new class of search algorithms in which good solutions to a

problem are sought using an objective function. The search process in GAs is based on

the natural evolution of biological organisms in which successive generations are given

birth and are raised until they themselves are able to reproduce. GAs are becoming

increasingly important mathematical tools for nonlinear optimisation problems.

For a genetic algorithm to improve a solution, it is necessary to reject the poor solutions

and only allow reproduction from the best ones. This is analogous to the so called law of

survival in which only organisms that adapt best to the natural environment tend to

survive. In this case, the role of environment is played by a so called evaluating

function, measuring the degree of fitness of an attempted solution to problem

requirements. This function is equivalent to testing whether a given state is close to

optimal. The use of a population of trial solutions helps the GA avoid converging to

false peaks (local optima) in the search space.

A detailed description of different GAs will be discussed in Chapter 3 and a simple

genetic algorithm definition with one example is included in Appendix A.

2.2 Applications of GAs

Genetic Algorithms have been employed in a wide variety of combinatorial optimisation

and job scheduling problems including

1 - Travelling salesman problem [Homaifar et al., 1993].

2 - Job shop scheduling, rescheduling and open shop scheduling [Fang et al., 1993].

3 - Vehicle routing to service a set of customers with demands and least time for

servicing [Thangiah et al., 1993].

Chapter 2. Background and related works 10

4 - Pallet loading which involves the optimal packing of a predetermined number of

cartons onto pallets [Jullif, 1993].

A complete list of applications can be found in the proceedings of the genetic

algorithms conferences [Belew and Booker, 1991], [Forrest, 1993] and [Eschelman,

1995]. The use of GAs in this research has been inspired by a number of specialised

applications of GAs in electronic engineering design including

1 - PID controller widely used in industry. In a PID (Pfoportional-Integrator-

Differentiator) controller we attempt to drive a plant accordance to a given reference

signal. The design objective is to determine a set of gains for the controller to match the

set of roots of the closed loop control equation chosen by designer. PID controller

design is often carried out by an experienced operator using a trial and error procedure.

In applying GAs to a PID controller, a GA tries to estimate the three gain parameters of

the PID controller while ensuring that transient response specifications are met [Hwang

and Thompson, 1993].

2 - Economic Power Dispatch (EPD) which is used in power stations to schedule the

supply of fuel to meet the system load demand at minimal cost. Conventional

optimisation techniques become very complicated when dealing with complex dispatch

problems and are limited by their lack of robustness and efficiency in practical

applications. In this problem GAs are used to minimise an objective fimction, usually

the total cost of generators, while satisfying both equality and inequality constraints

[Walters and Sheble, 1993].

3 - Adaptive communication filtering in which the objective is to determine the

optimum setting of parameters defining the system to minimise a suitably defined error

function. There are two types of adaptive filters: adaptive FIR filters and adaptive IIR

filters [Willsky, 1985]. Algorithms relating to the adaptation of FIR filters are well

established. The role of GAs in adaptive IIR filter design is in the approximation of a

Chapter 2. Background and related works

desired function (HI) by a rational transfer function (H2) for different values. This

approximation is achieved by minimising an error surface between HI and H2 [Roberts

and Mullis, 1987].

4 - Channel Assignment in Cellular Mobile Networks: Frequency assignment is an

important problem in cellular radio networks. Early methods used algorithms based on

regular hexagonal arrays but as real cellular networks are far from regular, these

algorithms are not suitable. GAs are used to find a good frequency assignment allowing

for frequency reuse by non-adjacent cells which allows the number of communication

channels over the network to be maximised with a limited number of frequencies [Kunz,

1991].

i:

5 - Genetic Synthesis of Neural Networks: Neural networks are a technology in which

computers leam directly from data, thereby assisting in classification, function

estimation and similar tasks. Most classical leaming algorithms for neural networks aim

at finding weights for a neural network whose architecture is frozen. On the other hand a

GA generates and tests a population of different architectures on a specific problem

[Gmau, 1993]. The objective is to discover an optimal network for the problem [Davis,

1991b].

The above research has demonstrated that genetic algorithms can be used to produce

near optimal solutions without regard to the complexity of the algorithms or the

computing resources required. The approach in this thesis is to investigate whether a

simple genetic algorithm embedded in hardware is effective on problems like these.

This research also considers the real-time performance of these hardware devices.

2.3 The VHDL language

VHDL was developed to address a number of recurrent problems in the development,

exchange and documentation of digital hardware. For instance, a typical microprocessor

Chapter 2. Background and related works 12

would include thousands of pages of documentation to be sorted through during design

and testing and referred to throughout the maintenance life of the component. When the

component needs to be replaced, it takes substantial effort to reconstmct its intended

behaviour. A good HDL design solves this problem because the documentation is

executable and all elements are tied into a single model.

While there have been many hardware description languages, before VHDL, there was

no accepted industry standard. Many of the existing languages have been developed to

serve the simulators that mn them, and are often proprietary developments of particular

companies. Others target a particular technology, design level, or design methodology.

VHDL is technology independent, is not tied to a particular simulator or value set, and

does not enforce a strict design methodology. It allows the designer the freedom to

choose technologies and methodologies while remaining within a single language. No

one can foresee the changes that will take place in digital hardware technology.

Therefore, VHDL provides abstraction capabilities that facilitate the insertion of new

technologies into existing designs.

VHDL is used to describe a model for a digital hardware device. This model specifies

the extemal view of the device and one or more intemal views. The intemal view

specifies the functionality or stmcture of the device, while the extemal view specifies

the interface of the device through which it commimicates with the other models in its

environment.

The following are the major capabilities that the language provides along with the

features that differentiate it from other hardware description languages [Coelho, 1989]:

1 - VHDL supports hierarchical design. A digital system can be modelled as a set of

interconnected components. Each component can then be modelled as a set of

interconnected subcomponents.

Chapter 2. Background and related works 13

2 - VHDL can be used for various digital modeling techniques such as finite-state

machine descriptions, algorithmic descriptions, and boolean equations.

3 - VHDL is an IEEE and ANSI standard, and therefore, models described using this

language are portable. There is a strong interest in maintaining this as a standard so that

re-procurement and second-sourcing may become easier.

4 - The language is publicly available, easy to understand, readable, and above all, it is

not proprietary.

5 - VHDL supports a behavioural description of hardware from the digital level to the

gate level. One of the primary advantages of VHDL lies in its ability to capture the

operation of a digital system on a number of descriptive levels at once, using a coherent

syntax and semantics across these levels, and to simulate this system using any mixture

of these levels of description. It is therefore possible to simulate designs that mix high-

level behavioural descriptions of some subsystems with detailed implementations of

other subsystems in the model.

6 - VHDL is not technology-specific, but is capable of supporting technology-specific

features. It can also support various hardware technologies, for example, it may define

new logic types and new components, it specifies technology-specific attributes. By

being technology independent, the same behaviour model written in VHDL can be

synthesised to utilise different vendor libraries (Such as PLDs, FPGAs or ASICs).

7 - VHDL is modelled on a philosophy similar to that of many modem programming

languages that design decomposition aids are just as important as detailed descriptive

capabilities. Packages, configuration declarations and the concept of multiple bodies

exhibiting different implementations of an entity are all present in this language to

support design sharing, experimentation and design management.

Chapter 6 explains how a VHDL model can be implemented on FPGA architectures.

Chapter 2. Background and related works 14

2.4 Previous work in reconfigurable hardware

Recently there has been a sharp increase in work with reconfigurable hardware systems

based on Field Programmable Gate Arrays (FPGAs) technology (see Chapter 6).

Gokhale et. al. [1991] developed a programmable linear logic array called SPLASH

with several documented applications including one-dimensional pattem matching

between a DNA sequence and a library of such sequences. SPLASH consisted of 32

Xilinx XC3090 FPGAs and 32 memory chips and greatly outperformed several

supercomputers including a CM-2 and CRAY-2.

Athanas [1992] has been researching a series of reconfigurable computing architectures

based on Xilinx FPGA technology. He developed the PLADO hardware platform which

includes an array of Xilinx XC3090 FPGAs to assist in computation. The PLADO

hardware platform worked in conjunction with the PLADO configuration compiler

designed to analyse candidate hardware segments of a C program, choose the best

segments for hardware implementation, and map these segments to the files necessary

for programming Xilinx FPGAs. Candidate hardware segments were marked by the

programmer and analysed by the compiler for feasibility of execution in a single clock

cycle when implemented on the FPGA array.

At Digital Equipment Corporation's Paris Research Lab, Bertin et al. [1993] worked

with a Programmable Active Memory (PAM) architecture which is a 5 x 5 array of

Xilinx XC3090 FPGAs and supporting hardware, all combined to act as a coprocessor

to a host system. Compiling and mnning an application on the PAM architecture

consists of

• identifying the critical computations best suited for hardware implementation,

• implementing and optimising the hardware part on the PAM,

Chapter 2. Background and related works 15

• implementing and optimising the software part on the host system.

The PAM was tested on ten applications including data compression, string matching

and binary 2D convolution. In each ofthe ten applications, the performance ofthe PAM

implementation was competitive with a supercomputer implementation but was up to

100 times cheaper in cost per operation per second. The key, according to Bertin et al.,

is to choose an application with a single inner loop which isimplementable on the PAM

and which accounts for a vast percentage of the software nm time. Thus many complex

supercomputer applications are beyond the reach of current PAM. technology.

The above research has inspired the production of commercial prototyping boards for

implementing and testing FPGA designs. Virtual Computer Corporation [Casselman,

1993] now markets the line of Virtual Computers which consist of arrays of Xilinx

XC4010 FPGAs and ICUBE IQ160 Filed Programmable Interconnect Device (FPID).

XC4010s do the processing for the Virtual Computer while the IQ160s allow the user to

program the interconnect between the XC4010s. The number of XC4010s ranges from

22 to 52. While other FPGA-based boards exist on the market today as prototyping

boards, the Virtual Computer is intended to act as a reconfigurable coprocessor.

Another line of commercial products is from National Technologies Incorporated (NTI)

[McLeod, 1994]. Their X-12 system uses a dozen XC3000 FPGAs, each with a 32K x 8

Static RAM (SRAM) at its disposal. Like the products from Virtual Computer

Corporation, the X-12 system is intended for reconfigurable hardware use rather than

prototyping.

As an example of an application, Eldredge and Hutchings [1994] used an NTI X-12

board to develop an FPGA based neural network which utilised mn-time

reconfiguration. To save the FPGA space, evaluation of different stages of the neural

network (feed-forward, back propagation and updating) occupied the same FPGAs at

different times during the mn. When a new stage of the run was to be made, a master

Chapter 2. Background and related works

system reconfigured FPGAs as needed and started the next stage. FPGA requirements

were reduced to one fifth.

Another example of a reconfigurable system is given by Gilson [1993] who used an X-

12 reprogrammable logic board from NTI to build a Nano-Processor (nP). The nP is a

customisable stored-program processor which occupies less area than a fully customised

reconfigurable hardware system still retaining a significant speed advantage over a

conventional microprocessor due to the nP's customisable instmction set. The small size

of the nP allows for some application-specific hardware to also occupy valuable FPGA

space.

2.5 Hardware implementation of optimisation algorithms

Optimisation algorithms involve either a search for an optimum path through a network

of discrete points or a search along a performance surface for a point of minimum error

or maximum performance. This task is often time consuming and expensive for

computers and can be addressed by specialised hardware. Algorithms like simulated

annealing or genetic algorithms can be implemented on special hardware to improve the

optimisation speed.

Aimealing is a term borrowed from metallurgy to describe how nature can produce

ordered stmctures in discrete systems of interacting particles by slow and carefiil

cooling. As the system cools the small interaction between particles can lead to an

ordered configuration representing the minimum energy state. Rapid cooling causes

'quenching' in which irregularities become frozen in and the system remains disordered.

Simulated annealing models this process on a computer in an attempt to solve some

large scale optimisation problems. The method of simulated annealing can be applied to

many problems of combinatorial optimisation. Such problems involve a search through

a data stmcture for a path which optimises some property of the data. In many

Chapter 2. Background and related works 17

mathematical problems we are not dealing with 'energy' levels or forces between

particles but we can still employ the same principles to achieve optimum minimisation

[Kirkpatrick et al., 1983].

Abramson [1992] described a special purpose machine for solving an integer

programming problem using simulated annealing. The hardware executed the code

about 100 times faster than the same program mnning on a workstation and cost less

than a personal computer to build. Interestingly, this machine gained its performance

from two main sources. First, it utilised very low level concurrency which cannot be

extracted by vector and parallel computers. Second, it avoided all address arithmetic

normally required for matrix manipulation. The board was implemented using

conventional logic devices and was hosted by a PC or workstation. It was controlled by

a simple finite state machine which implemented the annealing algorithm, and contained

no fast logic or pipelined stages.

Abramson et al. [1995] are now working on a project called Guess to develop a class of

computer architectures which deliver very high performance on solving integer

optimisation problems. These architectures will be designed to support both simulated

annealing and branch-and-bound algorithms through system reconfiguration. Guess

makes use of an Aptix AP4 reconfigurable logic board which contains up to 16 Xilinx

4010 Field Programmable Gate Arrays, plus a number of Aptyx switch chips. The

switches make it possible to connect the pins of the Xilinx parts together, and thus the

board is totally reconfigurable.

2.6 Previous work in hardware Genetic Algorithms

So far little work has been done in implementing a hardware-based GA. Husband and

Mill [1991] have implemented a version of a GA on a transputer based parallel machine

to optimise a manufacturing scheduling problem.

Chapter 2. Background and related works

Spiessens and Manderick [1991] implemented a genetic algorithm on a Distributed

Array of Processors (DAP). The DAP from Active Memory Technology Ltd is a fine

grain massively parallel Single Instmction Multiple Data (SIMD) computer. The

processors are arranged in a 2- dimensional cyclic mesh. The size of the dimensions is

32*32 for the DAP-510 and 64*64 for the DAP-610. Each processor has a direct

connection to its own local memory. The DAP attaches to a host computer which is

used for program development, debugging, loading and controlling DAP program. The

DAP is mainly programmed in a version of the FORTRAN language which includes

extensions for dealing with vectors and arrays as single objects. ' .

DCP Research Corporation in Edmonton, Alberta has implemented a suite of

proprietary GAs in a text compression chip [Wirbel, 1992].

Chen et al. [1993] have implemented a GA for diversity minimisation on a Thinking

Machines Corporation Connection Machine CM-5 in the Computer Science Department

at the University of Wisconsin-Madison. This machine consists of 64 SPARC

processors each with 32 megabytes of local memory connected by a "fat free" network.

In Multiple Instmction Multiple Data (MIMD) mode, the processors run asynchronously

and communicate via calls to the routines in a message passing library.

Tetsuya Higuchi et al. [1994] at the Electrotechnical Laboratory in Tsukuba are

developing self-adapting hardware which uses a GA to modify hardware configuration

bit strings that control the connections in programmable logic devices. The evaluation

function in this case is a string's performance in particular tasks, e.g. controlling a robot

arm.

Chapter 3

Principles of Genetic Algorithms

This chapter is provided as an introduction to genetic algorithms, a class of optimisation

algorithms that draw their inspiration from evolution and natural selection. The

intension is to describe the features and variations of GAs and to give the reader an idea

of the sophistication that may be employed to enhance performance. In the design of

hardware GAs, there is a need to avoid complexity and some ofthe features described in

this chapter are very difficult to implement in hardware.

GAs were defined by John Holland in his 1975 book: "Adaptation in Natural and

Artificial Systems" [Holland, 1975]. Since then the GA community has gradually

grovm, mostiy in the USA, with a series of intemational conferences starting in 1985.

However, Holland's book is rather theoretical, and a more accessible book is Goldberg's

"Genetic Algorithms in Search, Optimisation and Machine Leaming" [Goldberg,

1989b]. With the arrival of this and Davis's "Handbook of Genetic Algorithms" [Davis,

19

Chapters. Principles of Genetic Algorithms 20

1991b], interest in GAs looks set to increase further. What follows is a review ofthe art

of GAs, recovered both from the literature and experimentation.

3.1 The simple principles

A GA operates on a problem that is specified in terms of a number of parameters. For a

function optimisation, these may be the values of coefficients for the real time operation

of an industrial plant, the control settings for a neural network, the numbers of imits or

the leaming rates. One key feature of GAs is that they hold a population of such

parameters, so that many points in the problem space are sampled simultaneously. The

population is generated either at random or by some heuristic. The former is usual when

the aim is to compare different algorithms. The latter may be more appropriate if the

object is to solve a real problem. Each set of parameters may be regarded as a vector,

but the traditional name is a string. Another key feature of Holland's GA is that these

parameters are bit strings, with real or integer valued problem parameters being coded

by an appropriate number of bits. The nature of this coding is functionally extremely

important and is discussed further in Section 3.5.1. Each string is rated, by miming the

system that is specified. In the case of a function evaluation, this may be very quick. For

an aircraft simulation [Bramlette and Bouchard, 1991] or a neural network, the

evaluation might take minutes or even hours. A new population is then generated, by

choosing the best strings preferentially. A simple way of doing this is to allocate

children in proportion to the test performance (or rather, in proportion to the ratio of a

string's test performance to the average of all the strings). With no other operators

affecting the population, the result of this is that the best string increases in number

exponentially, and hence rapidly takes over the whole population.

Novel stmctures are generated by a process resembling sexual reproduction. Two

members of the new population are chosen at random, and new offspring are produced

by mixing parameters from the parents. In the earliest work [DeJong, 1975], a single

Chapter 3. Principles of Genetic Algorithms 21

crossover was used, where parameters were copied from one parent up to some

randomly chosen point, and then taken from the other. Thus the strings ABCD and

EFGH might be crossed to produce AFGH and EBCD. Much subsequent work on GAs

has studied the relative merits of different recombination algorithms. The preferred form

of recombination is problem and coding-dependent and some other possibilities will be

discussed further below.

A second operator that introduces diversity is mutation in which the value of a

parameter is changed arbitrarily. This process is not the major source of new stmctures,

that is the role of recombination, but it serves to produce occasional new "ideas", and to

replace combinations that might be lost in the stochastic selection processes. The precise

role of mutation depends on the coding used in the genes and is also discussed further

below.

The cycle for a basic genetic algorithm is as follows. Generate a population of parameter

sets, test them against the problem, select for reproduction on the basis of performance,

recombine pairs of parameter sets and mutate a few to generate the new population and

restart the cycle. We shall now look at each aspect ofthe algorithm in more detail.

First a note about terminology. GAs are inspired by biological evolution, and exponents

often borrow terms from the study of natural genetics. Some workers refer to strings as

chromosomes, their natural analogue. Genotype and phenotype may be used to describe

the genetic string and the decoded parameter set respectively. We need to distinguish

between the parameters of the target problem and the components of the genetic string.

The term gene is often used for the components. This is an inaccurate interpretation,

since in biology a gene is usually taken to be something that codes for a whole trait,

such as blue eyes. However, the application of GAs has not advanced to the point where

this meaning of gene would be usefiil. Therefore the term will be adopted here to mean

the individual components of a string, while parameter refers to tiie target problem. A

Chapters. Principles of Genetic Algorithms 22

real-valued parameter might be coded directly by a real-valued gene, or by a number of

binary genes. Possible values of a gene are commonly knovm as alleles: 0 and 1 for a bit

string. The set of possible alleles is known as the alphabet. Finally, a distinction will be

made between crossover and the more general recombination. Crossover is the

traditional form of recombination, simply selecting between the parent strings and not

affecting gene values. The simplest form of crossover changes from one parent to the

other at a single point.

3.2 Evaluation

There may not seem much to discuss about evaluation of the parameter set. If the task is

an artificial one, such as a function evaluation that is being used to test the GA, then

there should indeed be no problem, provided the function is deterministic. Where the

function is stochastic, as many real-world processes are, there is the issue of how much

to try and reduce the noise. GAs are relatively immune to noisy evaluations, compared

with, for instance, gradient ascent methods that may be throvm right off course by an

odd result. However, it is still naturally the case that accurate evaluations are to be

preferred to noisy ones. The accuracy can be improved by doing q evaluations and

averaging, the noise decreasing with 7^ . However this may not be the best approach,

particularly if the evaluation takes a long time. There is evidence [Grefenstette and

Fitzpatrick, 1985; Fitzpatrick and Grefenstette, 1988] tiiat it is better to do a fast, noisy

evaluation and get on to the next generation, rather than spend time accurately assessing

each individual.

Another important aspect ofthe evaluation procedure is that it should reflect the desired

target problem. One part of this is simple accuracy. Suppose the aim is to improve the

design of a jet engine. The parameters might be values such as the angle and size of fan

blades. Clearly the real engines will not be tested as specified, it would be done by

computer simulation. However, the end product can only be as good as the simulation.

Chapters. Principles of Genetic Algorithms 23

A rather more subtle aspect of the simulation has to do with constraining it sufficiently.

This became apparent in some work on tuning neural network parameters [Spears,

1989]. The only information the GA gets is the evaluation result, usually a simple scalar

value. When, for reasons of evaluation time, the test is a reduced version ofthe real task,

it must be very carefully constmcted.

One difficulty is the need to optimise more than one aspect of performance

simultaneously, or to optimise one subject to some constraints. For instance a neural

network may be required to do as well as possible, but quickly, or without exceeding

some size. It may be possible to build such constraints into the operators that produce

new strings. This is usually to be preferred, since it both avoids the problem at

evaluation time and concentrates search in fruitful areas. However, such operators may

not be feasible, either because it is simply very difficult to satisfy all the constraints, or

because the various factors, test score and mn time in the neural network case, only

become available after evaluation.

The standard GA requires a scalar evaluation value for the parent selection process, so

the various test values and constraints need to be combined. The easiest method is some

linear combination. If the balance between the components is not good, the GA will

surely optimise the easiest one at the expense ofthe others. It may be that the only way

to discover the correct combination is by trial and error. A possibility that might merit

investigation is to alter the balance dynamically. For instance if, during the GA mn, the

evaluation time dropped below some limit, the time element in the evaluation function

could be reduced.

Richardson [1989] has looked at various ways of handling penalty functions for

constraint satisfaction. It might be thought that violation of constraints should be

harshly penalised. However, Richardson argues that this may cause the GA to fail,

especially if it is difficult to satisfy the constraints. His suggested solution is to try and

Chapters. Principles of Genetic Algorithms 24

constmct a penalty function that is proportional to the distance of the string from

feasibility, rather than simply counting the number of constraints that have been

violated.

In some cases there is more than one potential measure of the same aspect of a string's

performance. In the application of GAs to leaming the weights for a neural network, the

error of a network may be measured in a number of ways,-for instance the sum squared

error across all the training set, or the worst individual bit error. While the aim of

training is usually taken to be minimising the squared error, th^ real target for a binary

training set is to get each individual bit the correct side of 0.5. However, if this was set

as an evaluation target when using the traditional sigmoidal output function, the GA

always become stuck with all the values just above 0.5. If the squared error alone was

used, the GA tended to minimise it quickly by solving the easy bits, and letting the hard

ones go to 1.0 error. It was then imable to correct the remaining bits and a combination

had to be used.

GAs are by no means reliable, and sometimes no progress is made on a problem.

Perhaps there are too many constraints, or the area of the possible search space that

gives scores significantly better than zero, is too small. A possible approach, used in

some work on parameter tuning [Hancock, 1989], is to alter the evaluation fimction

during the GA mn. The problem is initially made easier, perhaps by relaxing some of

the constraints, so that the GA is able to make some progress. When some performance

level is achieved, the task is gradually made harder. This approach makes strong

assumptions about the presence of a fairly continuous path in the search space as the

task changes, which may be unjustified. While a GA may be expected to do a

reasonable job of finding a way past some discontinuities there can be no guarantees.

In some optimisation procedures, it is natural to talk about the optima being small

values. Others are more naturally described as hill-climbing algorithms. It makes no real

Chapters. Principles of Genetic Algorithms 25

difference to a GA whether it is aiming to go up or down. However, descriptions of

strings as being high-ranking, or having high fitness, suggest that hill-climbing is the

natural target. Except where stated otherwise, this will be the case in this work.

3.3 Scaling and selection

Having evaluated the strings, the best need to be selected in some way to form the new

population. There are two aspects to this process: how to decide what proportion ofthe

new population should come from each string, and, how to cope with the reality of a

finite population size.

The simplest means of allocating strings to the new population is in proportion to the

ratio of their evaluated fitness to the average of the whole population. Thus if a

particular string has twice the average fitness, it would be expected to be chosen twdce

to act as a parent. This was the method used in the first thorough experimental work on

GAs, reported in DeJong's thesis [DeJong, 1975]. While it works well enough for nicely

behaved functions, it can cause problems if the function has large areas of poor

performance, with localised good spots. Once one string finds a good area, its fitness

will be far above the average. It will dominate the next generation, with consequent loss

of diversity, a phenomenon known as premature convergence. Conversely, towards the

end of an optimisation, most of the population should be highly rated. Those that are

slightiy better than average get little selective advantage, and the search stagnates.

The traditional approach to this, implemented in Grefenstette's public domain GA

program Genesis [Grefenstette, 1987], is to use a movable baseline for the evaluation.

This is typically set to the evaluation score of the worst string, either in the current

generation or within some small (5-10) window of recent generations. The baseline may

be set somewhat below the worst value, to ensure that even the worst string gets some

chance to reproduce. This can be important, both as a general guard against premature

convergence and because poor sfrings may be poor because they are on the shoulder

Chapters. Principles of Genetic Algorithms 26

between different maxima. Indeed allowing poor individuals to reproduce entitles the

evolutionary system to escape local maxima. The baseline re-expands the fitness scale

such that, for instance, the ratio between 0 and 1 is the same as that between 99 and 100.

The problem of exceptionally good strings is handled by using a scaling algorithm that

ensures a constant fitness ratio, typically about 2, between the best and the worst.

A more radical approach suggested by Baker [1985] is to use the fitness scores only to

give a ranking and then assign a fixed hierarchy of selection probabilities. It is possible

to use a geometric scaling [Montana and Davis, 1989], such, that the best string is

assigned a fitness of say 0.9, the second, 0.9 , the third, 0.9 and so on. The scaling

factor can be varied during the mn so as gradually to increase the selection pressure,

perhaps starting at 0.95 and ending at 0.85. One potential advantage of this method is

that the evaluation no longer needs to retum a single scalar value.

A disadvantage ofthe method is that the selection pressure, in terms ofthe ratio of

selection probability of best to worst, is dependent on the population size. This must be

remembered when comparing different GA nms. Whitley [1989] has suggested an

alternative algorithm for use in Genitor that avoids this effect. However, this

implements a linear scaling rather than the geometric scale proposed in [Montana and

Davis, 1989]. The latter gives relatively more reproductive opportunities to the better

strings.

Having decided the ideal proportions, some finite number of copies of each string must

be chosen for reproduction. The simplest method of doing this is to add up the total

fitness (whether scaled or not). Then, for each string to be selected, pick a random

number between 0 and that total and work through the list of strings, summing their

fitness values until a number bigger than the random one is reached. Each string will

then be chosen with a probability that reflects its share ofthe total fitness. The process is

known as roulette wheel selection, it being equivalent to spinning a wheel where the

Chapters. Principles of Genetic Algorithms 27

sectors are allocated according to each string's fitness. However, Baker [1987] showed

that the random nature of the algorithm can result in significant inaccuracies in the

selection process. He suggested a more accurate algorithm, called Stochastic Universal

Sampling (SUS) that guarantees the correct whole number of offspring for each string.

Fractional numbers of expected offspring are allocated proportional, so if 1.7 are

expected, 1 will be obtained with probability 0.3 and 2 with probability 0.7. Another

way of looking at the algorithm is as a modified roulette wheel, with as many, equally

spaced pointers as strings to be selected and only one spin is required. This algorithm

can make a remarkable difference in performance, particularly in small populations. In

some cases it has produced an order of magnitude improvement in solution time.

3.4 Generation and crowding

The simplest method of mnning a GA is to replace the whole population each

generation. In this case, therefore, the generation size (the number of strings evaluated

in each generation) is equal to the population size. This was the method used for most of

DeJong's main work [DeJong, 1975]. A more conservative method is to ensure that the

best string from the previous generation survives, by simply adding it to the pool ofthe

new generation if necessary. DeJong calls this the elitist strategy, and he showed that it

generally improves performance on unimodal functions. The elitist strategy ensures the

best string survives the whole generation procedure. On multimodal fimctions the

strategy may be less beneficial, since it can make escape from a local maximum more

difficult. A compromise that has been used by many people is to keep the best for a few,

perhaps 5, generations, but then delete it if no further progress has been made.

The generation size may be smaller than the population, in which case some method

must be used to decide which of the old population to delete. This may be done at

random, or weighted to make the worst number most likely or even certain to go. An

interesting altemative, intended to reduce premature convergence, was introduced by

Chapters. Principles of Genetic Algorithms 28

DeJong when tackling a function designed to have multiple local maxima. For each

member of the new generation, a small number C (the crowding factor) of the old

population are chosen at random. The one with the highest number of bits in common is

replaced by the new string. This effectively introduces competition between strings that

are close together in the parameter space, discouraging convergence on one good spot.

The strategy gave significantiy enhanced performance on the multi-modal function. The

required value of the crowding factor C is surprisingly small - 2 or 3 for a population of

100. If it is much larger then the system will have difficulty converging on any

maximum.

A significantly different GA model uses a generation size of just one. This was

introduced by Whitley with his Genitor system [Whitley and Kauth, 1988], and termed

steady-state reproduction by Syswerda [1989]. Genitor is very conservative, the

offspring is only added to the population if its performance exceeds the current worst,

which is then deleted. An apparent drawback of this method is that the one-at-a-time

selection procedure inevitably suffers from the same kind of sampling error as roulette

wheel selection. This is tmlikely to affect good strings, since they will in any case

survive for many evaluations (until they become the worst), but may result in the weak

strings getting less chance to breed than they should. This potential loss of diversity is

moderated by ensuring that there are no duplicate strings. However, the potential

sampling error on poor strings combined with the very conservative memory of the

good ones suggests that the system may have difficulty in escaping from local minima.

This is supported by Whitiey's results on DeJong's original test set [Whitley, 1989].

3.5 Reproduction and coding

This section discusses the various operators used to create a new generation from the

strings selected to be parents. The key to the explorative power of GAs is held to be

recombination. The numerical arguments in favour of recombination are easy to see

Chapters. Principles of Genetic Algorithms 29

[Davis, 1991b]. Suppose two new alleles are required to cause a big fitness

improvement in a population. Such new alleles can only come from mutation, which

happens infrequently, say with a probability of 10"̂ per reproduction. If each new allele

presents some advantage, then without recombination, strings containing one or other

will eventually appear and prosper, but still have to wait for another rare mutation to

acquire both. With recombination it requires only that two strings each with one of the

alleles interbreed.

Despite this, there have been claims that recombination contributes nothing to the

optimisation process [Fogel and Atmar, 1990]. Whether or not it does contribute

usefully depends very much on how it interacts with the underlying coding of the

strings.

3.5.1 Coding

One ofthe important differences between the other methods in evolution strategies and

Holland's GA is the form of coding of the parameters. Other approaches hold the

parameters as normal computer variables: integer or real as appropriate. While some

work on GAs also uses this form of coding, Holland specified a bit-string coding. Some

problems contain boolean parameters for which such a coding is ideal. However, real or

integer parameters may be coded with arbitrary precision by using sufficient bits. Any

digital computer will have such a bit coding in any case, but the details are usually

hidden from high-level languages.

Whether or not to use bit coding is a contentious issue. GA-purists tend to regard real-

coded algorithms as not being proper GAs. Meanwhile more pragmatic experimenters

have produced good results with real coding. We shall first consider the advantages

claimed for bit coding.

Chapters. Principles of Genetic Algorithms 30

Access to the bit level gives the crossover operator the ability to explore the whole

search space. Given just the strings containing all ones and all zeros, repeated

application of simple crossover can in principle produce any desired bit pattem, and

therefore any parameter values. If the parameters held directly as real values, then

crossover can only explore new combinations of the values existent in the population.

Actually the same is tme of bit-coded GAs, crossover cannot affect a bit that has the

same value in every member ofthe population. It is the role of mutation to replace bit

values that may have been lost so that crossover may form new combinations. Real-

coded algorithms depend more heavily on mutation to provide new values. Since

mutation is random, it will desttoy good parameter values as well as improving bad

ones.

A possibly more important reason for using bit coding has to do with the way the search

space is sampled. It maximises the. effect knovm as intrinsic parallelism, a prediction of

schema theory, to which we now turn.

3.5.2 Schemata

A problem with any optimisation procedure is credit assignment. Suppose we have a

good result: which ofthe parameters caused it? Most likely several in combination. A

similarity template or schema, in this context, specifies some of the parameters, leaving

others as "don't care" (usually shovm as "*"). Schemata provide a way of describing the

underlying similarities between successful strings. There are many such schemata

contained within even a short binary stiring. For instance 1101 contains 11**, *10*,

*1*1: 16 (2"̂) in all. All 16 of these schemata are selected and evaluated when the

complete string is. The reproduction operators are processing not only the basic strings

but also all the constituent schemata. Each schema is likely to be represented by many

strings, so it is possible to work out an average score for each. Such explicit calculation

is unnecessary, however, as the process is automatically handled by the selection of

whole strings, good schemata will thus tend to increase in numbers. Using f, as the

Chapters. Principles of Genetic Algorithms 31

fitness of schema s, C/g) as the number of copies in the population at generation g and

/ as the average fitness of the whole population, we can write an expression for the

expected number of copies in the next generation:

E(c,{g+\))=C,{g)^p{s) (3.1)

The unexplained term p(s) is the probability that the schema survives the reproduction

operators. The likelihood that a schema is affected by mutation depends on the number

of defined bits in the schema, known as the order ofthe schema. The likelihood that a

schema of order % survives mutation is {\-p^)°\ where p„ is the probability of

mutation at each bit. For the typically small values of p„ that are used, this may be

approximated by (1 - Osp^)- Note that some users takep^ to be the probability that a bit

is randomly reset, so that the chance of it being changed is actually half p„. This is

implemented in Grefenstette's public domain Genesis package [Grefenstette, 1987],

though it has been changed back to the more natural use in Schraudolph's GAucsd

development of Genesis [Grefenstette and Schraudolph, 1992].

The probability that a schema survives crossover is a function of its defining length d,.

This is the distance between the first and last defined bits. Thus the schema 1* 1** has d,

= 2. There are two possible positions where a crossover could come between the

defining bits. Short schemata have a proportionately better chance of surviving

crossover than longer ones. For a string of total length /, the chance of a schema

surviving a single point crossover with paobabilty p^ is

p{s)>l-p,-^^ (3.2)

because there are (/ - 1) possible positions for the cross site. The inequality exists

because, unlike mutation, crossover does not imply loss of the schema. In the limit.

Chapters. Principles of Genetic Algorithms 32

crossing two identical strings will have no effect on any schemata. So the calculated loss

is a worst case.

/ / E(c,{g+l))>C,{g) ds
(/-I) ^^"'" ^-PcTri\-(^sPi (3.3)

This is the schema theorem, originally from 'T/ze fundamental algorithm of Genetic

Algorithms" by Goldberg [1989b]. If the fitness of a schema is sufficiently above

average to outweigh the loss terms, its proportion in the population will grow

exponentially. This is most likely for short defining length, low order schemata.

One source of the power of GAs is that many schemata are being processed

simultaneously. The number may be estimated [Holland, 1975; Goldberg, 1989b] as the

order of m\ where m is the size of the population. This phenomenon is known as

intrinsic parallelism, and has been described as the only case where an exponential

explosion works to our advantage.

The order of m^ estimate hides an assumption as to the value of m, which is chosen to

expect one copy of each schema being processed. The derivation of tiie estimate is given

by Goldberg [1989b]. The chance that a schema survives crossover is related to its

defining length. Depending on the selection pressure within our GA, we may set a

required survival probability for schema that will be processed usefully. By using the

survival probability equations from above, we may calculate a maximum useful schema

length 4. The estimate for the number of usefiilly processed schemata n, is then

[Goldberg, 1989b]:

n,>m{l-h + l)2'^-^ (3.4)

Chapters. Principles of Genetic Algorithms 33

The order of w estimate arises from assuming a population size of 2^^'^. This is done

to prevent over estimating the total number of schemata by having many copies of each

in a large population.

For a given small population, clearly n^ is highly dependent on l^. This is the origin of

the desire for a low cardinality alphabet, i.e. a coding where each gene has few possible

alleles, preferably 2, since then the length ofthe string, and therefore the value of/̂ will

be maximal.

Unfortunately, the success of this parallel search is not guaranteed. It requires that two

good genes in combination will produce a better result than either alone. This is known

as the building block hypothesis. It rates lots of schemata in parallel, but how does the

performance of a given schema, say 1****, relate to the performance of more defined

schemata that incorporate it, such as 1***1? For an extremely simple optimisation

problem such as maximising the number coded by. the binary sfring, the combination is

straightforward. 1**** will be highly rated, ****! much less so, but higher on average

than ****0, so its numbers should increase. If it does not already exist, crossover will

soon produce 1***1, which will be better than either parent.

Although tasks like that have been used for testing GAs, it is not immediately clear that

the hypothesis applies so well in other problems. It is possible to test the behaviour of

GAs under such circumstances by designing problems that are deliberately deceptive

and thus might be expected to mislead the algorithm [Goldberg, 1987; Vose, 1990].

Suppose that an integer parameter happens to have a maximum at 8. If the function is

smooth, then 7 will also get a good score, but its binary coding will be very different.

The schema **111 may be quite highly rated, but it is unlikely to reach 01000. The use

of Gray codes is one possible solution for this "Hamming cliff problem that we turn to

that in the following section.

Chapters. Principles of Genetic Algorithms 34

3.5.3 Gray codes

Gray codes have the property that the binary codings of adjacent integers differ in only

one bit, see Appendix B. For instance, the Gray code for 7 is 0100, for 8 it is 1100. This

means that such changes can always be made by a single mutation. The use of Gray

coding might therefore be expected to improve the hill-climbing ability of a GA. Its use

was suggested by Hollstien [1971], who reported tentative benefits, and by Bethke

[1981], who also reported empirical success. Camana and Shaffer [1988] report that it

improves performance on DeJong's classic 5 problem test suite [DeJong, 1975]. Some

authors have therefore adopted Gray coding as standard, while it is an option on the

Genesis package.

There are also arguments against the use of Gray codes, to do with the schema theorem.

Goldberg [1989a] hints at a problem in his analysis of the use of Walsh codes in

deception, but it is quite easy to demonstrate. With simple binary coding, a given bit

always makes the same contribution to the value ofthe extemal parameter. With Gray

coding, this is not the case. Thus, coding integers from 0 - 1 5 in normal binary, the

schema ***0 has an average value of 7, while ***1 has an average of 8, reflecting the

value of the least significant bit. With Gray coding, both schemata have the same

average, 7.5. There is no longer any information about the merits of setting this bit from

the overall averages, which suggests that the degree of implicit parallelism will be

reduced. Such interdependence between bits is commonly knovm as epistasis, another

term borrowed from biology.

The effects of a single bit mutation clearly differ between the two coding strategies.

Mutating the most significant bit in a standard binary coding causes a big change in the

number being represented. In Gray coding, adjacent numbers differ in only one bit, so it

might appear that a single bit mutation will cause less dramatic effects. However, there

are still highly significant bits in a Gray code. For instance, the Gray code for 0 is 0000,

as with ordinary binary, but 15 is 1000. The possible big changes balance out the small

Chapters. Principles of Genetic Algorithms 35

ones, so that the expected average change caused by a single mutation is the same for

both codings 3.75 over the range 0-15.

If the use of Gray coding interferes with the parallel search, but makes mutation-driven

improvement easier, a Gray coded GA should be more sensitive to the mutation rate.

This prediction was tested by looking at DeJong's test set, using the Genesis package

[Grefenstette and Schraudolph, 1992].

The test set, although quite carefully constmcted to include a variety of problems, is

now showing its age. The five functions are given in Table 3.1. They have been heavily

criticised by Davis [1991a], who shows that a simple bit climbing algorithm out-

perfonns standard GAs on all but one of them. This is because they are rather regular,

for instance the optima are conveniently placed at zero in Fl and F4 and at one end of

the range in F3. F5 looks frightful, being a plane with 25 sixth order fox-holes, differing

only slightly in depth. However, the holes are laid out on a regular grid, that actually

makes solution rather easy since a change in only one parameter can cause the move to

the adjacent hole. It seems clear from Davis's results that these functions should no

longer be used for comparison of new algorithms. They are used here simply to

demonstrate some of the differences caused by changes in coding strategy.

Except for F4, all the mns used a population and generation size of 100, the elitist

strategy and a two-point crossover probability of 0.6 (if not selected for crossover, a

string is passed to the next generation unaltered except for possible mutation). They

were run for 4000 evaluations, or, since strings that were simply duplicates of a parent

were not re-evaluated, until two generations had passed with no evaluations. F4 has a

much longer string than the others, and showed a tendency to premature convergence

with a population of 100. It was run with a population of 400, for 20000 evaluations, but

with duplicates being re-evaluated, since the function has noise added. The results are

shown in Figure 3.1a to 3.1 e. The graphs give the best value obtained, averaged over 10

Chapter 3. Principles of Genetic A Igorithms 36

experiments, at a variety of mutation rates. Note that DeJong's functions are defined as

minimisation tasks, so low values are good.

Function Number

Fl

F2

F3

F4

F5

Fimction

3

100(xl-X2f+{l-Xif

5

^int eger{xi)

30

y^/jc, +Gauss{0,\)

n nn7+y '

1=1

Range

-5 < jĉ < 5

"̂ .-2 <Xi<2

-5 <x^<5

-1.3<x,. <1.3

-65 < X; < 65

Table 3.1: DeJong's five test fimctions.

The most remarkable result is given by the simplest unimodal task, Fl. The Gray coded

algorithm showed a very marked dependence on mutation rate, being significantiy better

than normal binary coding only over a fairly narrow band, and much worse if the

mutation rate was too low. This fits with the hypothesis that Gray coding is more

dependent on mutation for progress, but is potentially better at hill climbing. The results

for F2 and F3 show a similar mutation-dependency for Gray coding, for which the

results are somewhat worse than simple binary coding. Gray coding appears better for

F4 and F5. Note that the optimum of F4 is undefined, because of the Gaussian noise

tenn, which accounts for the negative values shovm on the graph. In F4, mutation

appears to have no beneficial effect at all.

Chapter 3. Principles of Genetic Algorithms 37

These results have been includes to show a number of effects:

• Even when averaging over 10 mns, there is a fair amount of noise in the data. GAs are

stochastic algorithms, and any paper claiming comparative results based on just one mn,

of which there are a surprising number, should be treated with suspicion.

• Mutation, on the whole, has the expected effect, too little or too much being harmful.

Too little usually results in premature convergence, too much is dismptive. However,

the ideal rate varies between different problems. It is related to string length /, a

reasonable first approximation being 1//.

• Gray coding is certainly not a universal solution. Even in the simple hill-climbing case

of Fl, precisely the sort of problem it is intended to address, its relative sensitivity to

mutation rate means that its advantage over simple binary coding is not consistent.

10"

^ 10"^

>

UJ

O . 4

10"'
10"

• I I 11 "
lO"'* 10"^ 10"

Mutation Probability
10'

Figure 3.1a: Comparison of best performance of Binary coding "+"
and Gray Coding "*" on DeJong's Fl function at a variety of mutation

probabilities.

Chapter 3. Principles of Genetic Algorithms 38

10'

10- r
CO

>
o
m

CD 10

10-
10

F2
1 ' — ' — I 1—I I I I i i r ; 1—I—r

* Gray Code

+ Binary Code

-I I 11111 I I I i i I • ' '

10 10"̂ 10"
Mutation Probability

10"-

Figure 3.1b: Comparison of best performance of Binary coding "+"
and Gray Coding "*" on DeJong's F2 function at a variety of mutation

probabilities.

F3
2.5

1 1.5

Hi
•K 1
CQ

0.5

- 1 — r I I I 11 r-

* Gray Code

+ Binary Code

10"= 10"
Mutation Probability

10'

Figure 3.1c: Comparison of best performance of Binary coding "+"
and Gray Coding "*" on DeJong's F3 function at a variety of mutation

probabilities.

Chapter 3. Principles of Genetic A Igorithms 39

0.5

^ - 0 . 5

>
o

UJ
CO

m -1.5

- 2 -

-2.5

-1 -

10""

• • I • L L i i i i l d_
-•-5

10"^ 10"" 10"
Mutation Probability

10"

Figure 3. Id: Comparison of best performance of Binary coding "+"
and Gray Coding "*" on DeJong's F4 function at a variety of mutation

probabilities.

1.2

0.95
10

I I I

_ l • • • • '

F5
—I—I—I I I 111

• Gray Code

+ Binary Code -

in ^ ^ -

L L

10 10
Mutation Probability

10"

Figure 3.1 e: Comparison of best performance of Binary coding "+"
and Gray Coding "*" on DeJong's F5 function at a variety of mutation

probabilities.

Chapters. Principles of Genetic Algorithms 40

It is not surprising that Gray codes are not consistently better. It can be shovm that all

fixed coding schemes of a given length work out equally well when all functions are

averaged over [Camana and Schaffer, 1988]. However, this result depends on averaging

over literally all functions, including those which are random look-up tables. Any given

coding then simply reshuffles the entries in the table. Attempting to optimise such

functions is rather fmitless, real-world problems usually have at least some continuity.

The relative empirical success of Gray coding suggests that it matches the GA to the

continuities of such problems, at least better than the inherently discontinuous binary

coding.

3.5.4 Real value genes

Goldberg [1990] has discussed arguments for and against real coding. He argues that

selection by the GA rapidly reduces the range of parameter values present in the

population, to form a virtual alphabet, which is then used for further processing. His

reasoning may be summarised as follows. In the early generations of a GA, each

parameter can be treated individually, since there has not been time to collect much

information about combinations of parameter values. An average fitness can be

calculated (in principle) for all values of each parameter, by integrating over all values

of all the other parameters. Goldberg calls this a mean slice. Unless the parameter has

no effect on the function, some parts of its range will be better than others.

Goldberg and Deb [1991] show that these above-average regions will come to dominate

the population very quickly, in the order of log(log(m)) generations, where m is the

population size and log is in base 2. Thus for a typical population of 100, only above-

average alleles are left after 3 or 4 generations. Note that an allele in this case may be a

sizeable region of the parameter's range, and that there may be several disconnected

regions within the range. After the initial selection has taken place, the action of

crossover is limited to exploring combinations of these sub-ranges. Figure 3.2. Goldberg

argues that, presented with a high (infinite) cardinality alphabet, the system effectively

Chapter 3. Principles of Genetic Algorithms 41

produces its own lower-cardinality virtual alphabet, one specifically tailored to the

problem in hand. This may explain the empirical success of real-coded GAs.

Range of

parameter B

Range of parameter A

Figure 3.2: Simple crossover with a virtual alphabet. After the first few
generations, the parameter values become restricted to the grey areas.
Crossover can then only explore the intersection of these areas.

Goldberg then goes on to point out that for some functions, the initial, individual

parameter fitness averages may not hold the global solution. Figure 3.3 is an example of

a function that is designed to confuse such a real-coded GA. The central maximum is

too small to have much effect on the global averages, so in the initial few generations

the population settles into the two broad humps. Thereafter, no amount of crossover will

reach the central peak. Goldberg describes such functions as being blocked, and argues

that this is a potentially serious shortcoming of real-coded GAs.

Chapter 3. Principles of Genetic Algorithms 42

Figure 3.3: Example of a function that might, by Goldberg's analysis, cause
problems for a real-coded GA.

However, this blocking presupposes the traditional form of crossover, that cuts strings

between genes. Just as for mutation, we may ask what is an appropriate form of

recombination for real-coded genes. Again, an obvious possibility works quite

differently, cross the gene values to produce a new value somewhere in between those

ofthe parents. Such a recombination works extremely well on the function shovm in

Figure 3.3, because the global maximum is convenientiy situated in the centre of the

range, between the two broad local maxima. Radcliffe [1990] reports that this

recombination, that he calls flat crossover, along with a mutation operator that

introduces new alleles at the end of a gene's range, works better than binary coding on

the first four of DeJong's fimctions. Again this is not surprising, given their

convenientiy sittiated maxima. However, it should be clear that the form of

recombination operator can dramatically affect the behaviour of the GA and has the

potential to overcome Goldberg's concem about blocking.

Chapters. Principles of Genetic Algorithms 43

3.5.5 Adaptive coding

A problem with coding real variables in a fixed number of bits is the limit on result's

precision. When coding a problem for a GA, a sensible designer will restrict each

parameter to a reasonable range, but there will still be some compromise between

covering this range, and sufficient precision in whatever tums out to be the important

part of it. Schraudolph and Belew [1990] have suggested a solution, which they call

Dynamic Parameter Encoding (DPE). Genes initially code for the whole of the

parameter range. However, when a gene converges sufficiently on one part ofthe range,

the coding automatically "zooms in" on this area. The allocated number of bits is thus

brought to bear on a reduced parameter range, increasing the available precision. The

process may be iterated as the GA residences in on the best area of each parameter. This

method means that each gene can use fewer bits, resulting in faster operation and

convergence ofthe GA. Schraudolph and Belew report encouraging results, again using

DeJong's test set, but there are attendant risks, since it is possible to narrow the search

too quickly and miss something important. Thus, their performance on the multi-modal

F5 was worse than without DPE, because there was insufficient resolution to find the

correct hill to climb.

A more complex adaptive coding strategy has been suggested by Shaefer [1987]. His

system, knovm as ARGOT, dynamically adjusts the parameter range coded by each

gene. If the population clusters in a small part ofthe range, the boundaries are drawn in,

much as in DPE. However, they may also move out if the population is widely

distributed. If the population approaches one end ofthe range, the boundaries are shifted

to re-centre it. The boundaries may also be "dithered", moved randomly by small

amounts to effect a general mutation. Finally, the number of bits used may be changed,

depending on the degree of convergence. Shaefer's results, for a number of fimction

optimisations, indicate that the adaptive strategy compares well with a simple GA

approach. However, it is obvious that there are many parameters associated with

Chapters. Principles of Genetic Algorithms 44

decisions about changing the coding, and these are not specified. It seems likely that

different adaptive strategies would be necessary for different problems. Referring to the

range expansion, Schraudolph and Belew [1990] comment that they "believe it would be

impossible to establish a well-founded, general trigger criterion for this operator".

Nevertheless, such adaptive methods clearly have potential.

3.5.6 Conclusion

In this section we have looked at some possible codings and reproduction operators for

numeric parameters. Many optimisation problems can be expressed purely in numerical

terms, but there are also many that cannot, particularly order-based tasks such as the

travelling salesman problem, while the coding for all examples used in this thesis is

largely boolean. It is necessary that the reproduction operators can process similarities

in the task in such a way as to combine useful building blocks. The real art of applying a

GA to a task is therefore:

1. To identify the potential building blocks in a problem.

2. To design operators, principally recombination, that can process these building

blocks.

Davidor [1991] has counted 56 different recombination operators in the literature. It

may seem unfortunate that so much design effort is needed for each new application of a

GA. It may also be difficult to identify what the suitable building blocks are.

3.6 Tuning GAs

Optimisation tasks ofthe sort considered in this thesis consist essentially of two parts: a

search ofthe parameter space and hill climbing. There are numerous techniques for the

second job (see Schwefel [1981] for a comparative review), one approach to the first is

to restart repeatedly from different positions. The two phases are traditionally called

Chapters. Principles of Genetic Algorithms 45

exploration and exploitation. GAs have the ability to do both. Some researchers seek to

advance on the Holy Grail of a universal optimisation algorithm, that will cope with any

fitness surface. DeJong's work aimed to provide a set of parameters for a GA that are

reasonably robust, but such general algorithms will inevitably be beaten on any one

problem by an algorithm that is tuned to the task.

The effect on the balance of exploration and exploitation of a number of GA parameters

may be summarised:

Population size: A small population will tend to converge more rapidly.

Generation size: Changing only a fraction of the population each generation increases

inertia, preventing convergence.

Mutation rate: Depends on the size of mutation. Big mutations encourage exploration,

small mutations can be a means of hill climbing.

Recombination rate: Higher recombination rate encourages exploration while the

population is diverse, but reduces it when the population has converged.

Selection pressure: If selection pressure is increased, either by scaling fitness values or

by a high value for the scaling factor in rank-selection, hill-climbing will be encouraged.

Crowding: Maintains diversity, thus promoting exploration.

Elitist strategy: If the best individual from the previous population always survives, hill

climbing is encouraged.

One possible method of matching these parameters to a given problem is to use a meta-

level GA to tune them. The meta-GA specifies a population of GAs that act on the target

problem. These are evaluated and the information used to improve the match of

parameters to the task. CPU demand rather mles out this approach for any real-worid

Chapters. Principles of Genetic Algorithms 46

task, but Grefenstette [1986] was able to provide an improvement on DeJong's

parameter set for his 5 functions.

Other workers have attempted introducing controls within the GA, which monitor

convergence of the population and adjust control parameters accordingly [Shaefer,

1987; Whitley, 1990]. Goldberg argues against such "central authority" in his "Zen and

the art of Genetic Algorithms" [Goldberg, 1989a], based on. that it is not easy to

establish robust criteria for making any adjustments. However, Ackley [1987] reports

empirical success with an ingenious system he calls "Stochastic iterated genetic

hillclimbing". This implements a kind of voting system, such that the algorithm climbs

a hill until it effectively becomes bored with it, whereupon it goes off to find another

hill to climb.

Tanese [1987] has suggested a multiple population GA, intended for miming on

separate processors, where the different populations have different parameter settings,

the hope being that one will be near the ideal for the problem in hand.

An altemative approach to the tuning problem, mentioned in Section 3.5.6 is to adapt

operator probabilities while the GA is running. One approach to this is to code, say, the

mutation rate on the genetic string, where it will be selected along with the target

parameters. Another, suggested by Davis [1989] takes a rather more interventionist

approach of keeping a record ofthe improvement in fitness caused by each operator, and

using this score periodically to adapt the probability of applying each operator. Montana

and Davis [1989] use this method to good effect in evaluating potential operators for use

in training neural network weights. It has the advantage that different operators may be

of value at different stages of the search, the adaptive procedure allows those that are

contributing most at any point to be selected. It also allows different operators to be

compared.

Chapters. Principles of Genetic Algorithms 47

3.7 Evaluating GAs

Traditionally the performance of GAs, and other optimisation techniques, has been

reported in terms of online and offline performance. The latter is the average of the best

individuals in each generation, the former refers to the average performance of all the

strings since the start of mn. This is of particular relevance when the system being

optimised is a real-time one, like mnning a plant, and where getting it wrong costs

something. Another measure is best-yet, simply the best performance so far seen. An

altemative is the number of evaluations to achieve a given performance. That means

evaluations, not generations, is important, since for any complex problem evaluations

are expensive. Herdy [1991] reports results for a system with a variety of population

sizes, from 1 to 40. The size 40 system requires 134 generations to completion, which is

claimed to be better than the single string system, which takes 3072. The single string

system requires fewer evaluations than any ofthe others, the result of a very simple hill-

climbing task.

A complication arises because ofthe inherent noisiness of GAs. As has been noted, it is

important to average over a mmiber of runs. Even then, comparison is complicated by

the typically non-normal disttibution of results, especially with multi-modal functions.

It seems that an algorithm that consistentiy finds the global maximum will be better than

one that does so on average more rapidly, but sometimes fails altogether. In the end, it is

important to specify the test conditions fully.

Chapter 4

The GAP model

This chapter describes the Genetic Algorithm Processor (GAP) model and its behaviour.

Firstly the motivation for developing the GAP model, then a description ofthe basic

GAP design and finally, a description ofthe pipelining in the design.

4.1 Justification for the GAP model

Genetic algorithms have been applied to many problems and have been recognised as a

robust general-purpose optimisation technique. However in many optimisation problems

in engineering software implementations are too slow to be useful.

Simple empirical analysis of many basic GAs indicates that a small number of simple

operations and the fitness fimction occupy 80-90% of the total execution time. If m is

the population size and g is the number of generations, a typical GA executes each of its

operations mg times. For complex problems, large values of m and g are required, so it

48

Chapter 4. The GAP model 49

is essential to make the operations as efficient as possible. Pipelining aids the efficient

use of all of the hardware resources with maximum speed but it has its limitations and

we cannot expect a very large speed improvement.

The stmcture and simplicity of a GA's computations provide a good basis for hardware

implementation. Pipelining of a GA's operations is straightforward. For example, the

selection, crossover, mutation and fitness operators can be easily chained together to

form a coarse-grained pipeline. Section 4.4 provides a more detailed description of the

pipelining available to the GAP.

Although the basic GA's operators are simple to implement in hardware, each problem

needs some adjustments to the design. To use a general-purpose GA engine would

require some special changes in the GAP hardware characteristics for a new application.

The inflexibility of conventional hardware inhibits implementation and use of a general-

purpose hardware-based GA. This is a major reason why hardware-based GAs have not

been widely implemented to date.

The reprogrammability and low cost of FPGAs circumvent the problem of hardware

inflexibility, while still maintaining a great speedup over software. The GAP design is

implemented on FPGA technology and the extemal unit for evaluating the performance

of each member is separate from the GAP. It will allow the user to apply the GAP

model to a variety of different applications.

4.2 Basic Genetic Algorithm Processor design

Primarily there should be three connections between the GAP and the rest of the model

(Figure 4.1).

1 - A Setup Unit (SU) which is implemented in software on a host computer. This unit

is responsible for generating an intial population which, in the absence of precise

information about the problem, is made up of random strings. It also assigns a low

Chapter 4. The GAP model 50

fitness value to each of these strings and downloads this data to the GAP along with the

starting parameters.

2 - A Memory Unit (MU) that stores genetic strings and fitness values. The GAP

provides all necessary control signals to control the Memory Unit. It must be considered

that the bit length of memory will vary with the application. For the experiments in

Chapter seven, 8 bit, 16 bit, 24 bit, 32 bit and 48 bit length for memory are considered.

The GAP was recompiled for each different bit length.

3 - A Fitness Unit (FU) which is extemal to the GAP and must be designed specially for

the problem at hand. It accepts a string from the GAP as a controlling input then applies

this to the problem, measures the performance (e.g. from the error signal) and retums a

fitness value to the GAP. The rate of fitness evaluation is also problem dependent. High

speed signal processing technology is normally required to evaluate and retum each

fitness value at a rate to match the presentation of strings from the GAP.

Fitness

Unit

String

Fitness

Genetic

Algorithm

Processor

I Data

IVlemory

Unit

Start End

Setup Unit

for downloading

Initial values

and reading

final values

Figure 4.1: Extemal coimections to the GAP.

Chapter 4. The GAP model 51

The process starts by filling the Memory Unit with the random population and other GA

parameters from the Setup Unit. Then the Setup Unit sends a "Start" signal to the GAP.

The GAP detects this signal and mns the GA using the parameters already in memory.

After the set number of generations, the GAP sends an "End" signal to the Setup Unit

which then reads the final population from the shared memory.

4.2.1 Development environment of the GAP

The GAP, like other hardware design projects, could have been developed at four

different general levels: the behavioural level, the Register Transfer Level (RTL) the

stmctural (gate or transistor) level, and the physical (mask) level [Weste and

Eshraghian, 1993]. The GAP hardware was designed at the behavioural level using a

Hardware Description Language (HDL), a high-level language used to specify hardware

designs. The reasons for this choice are as follows.

• A HDL allows the designer to specify the behaviour of a complex system in terms of

the actions performed by different modules and the connections between these modules.

Contrast this with specifying the gate-level stmcture ofthe modules.

• A HDL allows for general (parameter-independent) designs to be created. The specific

designs implemented from the general designs depend upon designer-specified

parameters provided at implementation time. For example, many aspects of the GAP

such as I/O bus size, storage facility size and pseudorandom number generator size

depend on the size of each population member (m). Thus, some of the general design

aspects can be declared as a function of m, which is provided at implementation time.

This allows for quick reimplementation ofthe system if m changes.

The HDL chosen for this thesis is VHDL. VHDL was selected because of its

widespread use and standardisation. The following additional tools were used in the

development ofthe GAP.

Chapter 4. The GAP model 52

• Design Architect from Mentor Graphics was used to define the behaviour of the GAP

in VHDL code and compile the code.

• QuickSim II and QuickVHDL from Mentor Graphics was used to simulate the

compiled VHDL code. The simulations were used to verify the design's correctness

(Section 5.1) and analyse its performance (Section 5.2).

• AutoLogic from Mentor Graphics was used to synthesise the VHDL code to gate-level

schematics composed of Xilinx components.

• FPGA Foundry from NeoCAD was used to map the Xilinx schematics to a file

suitable for programming the Xilinx FPGAs.

4.2.2 A look at the overall design

A VHDL model of a general Genetic Algorithm was created. The model allows the

GAP'S user to choose several parameters which are a subset of the general GA

parameters described in Appendix A. These user-controlled parameters are:

• the initial population size and its members,

• the number of generations in the GAP nm,

• the initial seed for the pseudorandom number generator,

• the mutation and crossover probabilities.

Values for these parameters would be selected by the user in Setup Unit which would

then pass them to the Memory Unit to initialise and start the GAP.

Other GA parameters, such as the length ofthe member strings and the coding scheme,

would be indirectiy specified according to the fitness function. These parameters are

determined by the way the fitness function decodes and evaluates the population

Chapter 4. The GAP model 53

members. Note that other stopping criteria, other than fixed number of generations, can

be easily implemented. After a certain number of generations, which will be specified

by a GAP parameter, the GAP looks at the final population and determines if the

stopping criteria are met. If so, the GAP halts and reports the final population to the

user. Otherwise the GAP continues from where it stopped. Thus, nearly all the general

GA parameters listed in Appendix A can be directly or indirectly specified in the GAP.

4.2.3 The modules and their functions

The modules in Figure 4.2 are based on the GA operators defined in Goldberg's simple

genetic algorithm (sGA) [Goldberg, 1989b]. Many other GA models exist, but the GAP

was based on the sGA because the sGA is simple to understand and implement. The

sGA is also a well-known GA implementation. The basic stmcture ofthe sGA is similar

to description in Section 3.1. More detail conceming the fiinctionality of the GAP

modules and their sGA cotmterparts is given below.

Fitness Unit

Mutation

Module

T
Crossover

Module

Figure 4.2: Module-level ofthe overall GAP model.

Chapter 4. The GAP model 54

The GAP modules operate concurrently and together form a coarse-grained pipeline. All

modules are written in VHDL and are independent of the operating environment and

implementation technology (e.g. Xilinx FPGAs or fabricated chips) except for the

Memory Interface Module. The functionality of this module varies according to the

physical memory attached to it and the desired interface between the GAP and the user.

The basic functionality ofthe GAP design in Figure 4.2 is as follows.

1. After all the parameters have been loaded into the shared hiemory, the Memory

Interface Module (MIM) receives a "Start" signal from^ the Setup'Unit. The MIM acts as

the main control tmit ofthe GAP and is the GAP's interface to the memory.

2. The MIM informs the Fitness Module (FM), Mutation Module (MM), Crossover

Module (CM), Selection Module (SM), Read Module (RM), and the Pseudorandom

Number Generator (PNG) that the GAP is to begin execution. Each of these modules

requests necessary parameters from the MIM, which fetches them from the appropriate

places of the shared memory.

3. The Read Module starts the pipeline by requesting population members and their

fitness values from the MIM and passing them along to the Selection Module.

4. Whenever the Selection Module receives a new candidate A from the RM, it

determines if A is to be selected (the selection process is described in more detail

below). If not, it waits for a new member to be sent by the RM. Otherwise, it stores A

and proceeds to select a second member B in the same manner. After B has been

selected, the pair (A and B) are sent to the Crossover Module for further processing.

Once the pair is sent, the SM resets itself and restarts the process to select another pair.

5. When the Crossover Module receives the pair of members A and B, it decides, using a

random value from the PNG, whether to perform crossover. When completed, the new

members ̂ ' and B' formed by crossover of ̂ and B, are sent to the next module.

Chapter 4. The GAP model 55

6. When the Mutation Module receives A' and B', it decides, using a random value,

whether to perform mutation. When completed, the new mutated members A" and B"

aie sent to the Fitness Module for evaluation.

7. The Fitness Module accepts ^4" and B" and evaluates them in an extemal Fitness Unit.

Ideally the FU completes its evaluation in only one clock cycle. After evaluation, the

FM writes the new members to memory through the MIM. The FM also maintains some

records conceming the current state of the GAP such as the sum of fitness values in the

current population and the number of generations. These records are used by the SM to

select new members and by the FM to determine when the GAP mn is completed.

8. At the end of the GAP nm the FM informs the MIM of completion which in tum

stops the GAP modules and sends the "End" signal to the Setup Unit.

Each ofthe GAP modules is described in more detail below.

4.2.3.1 Pseudorandom Number Generator (PNG)

The Pseudorandom Number Generator generates a sequence of pseudorandom bit

strings based on the theory of linear Cellular Automata (CA). CA was shovm by Serra

[1990] to generate better random sequences than Linear Feedback Shift Registers

(LFSRs) which are commonly used as pseudorandom number generators. The CA used

in the PNG consists of 16 altemating cells that change their states according to mles 90

and 150 as described in [Wolfram, 1984]:

Rule 90: s(i)+ = s(i-l) 0 s(i+l)

Rule 150: s(i)+ = s(i-l) 0 s(i) 0 s(i+l).

Here s(i) is the current state of site (cell) i in the linear array, s(i)+ is the next state for

s(i), and © is the exclusive OR operator. Thus in Rule 90 a cell is updated according to

the inputs from its neighbours while in Rule 150 each cell also considers its state when

Chapter 4. The GAP model 56

Updating. It has been shovm that a 16-cell CA whose cells are updated by the mle

sequence 150-150-90-150...90-150 produces a maximum-length cycle. It cycles through

all possible 2 bit patterns except the all Os pattem, and has more randomness than an

LFSR of corresponding length. This scheme is implemented in the PNG.

The PNG is a key component of the GAP model and its output is used by three GAP

modules. The PNG supplies pseudorandom bit strings to the Selection Module for

scaling dovm the sum of fitness values. This scaled sum is used when selecting pairs of

members from the population. The PNG also supplies pseudorandom bit strings to the

Crossover Module and Mutation Module for determining whether to perform crossover

and/or mutation and for choosing the crossover and mutation points.

4.2.3.2 Memory Unit (MU)

The memory is not tmly part of the GAP model, but it is presented here for

completeness. It is assumed that some memory is available to the GAP model and that

its specifications are knovm to the Memory Interface Module. The memory is shared by

the MIM and Setup Unit (Figure 4.1) and acts as the communication medium between

them. Before the GAP mn, the Setup Unit writes the GA parameters specified in Section

4.2.2 into the memory and signals the MIM. After receiving the signal, the MIM

distributes the parameters to the appropriate modules. During the GAP run, the

population members are read from and written to the memory by the MIM. When the

GAP run is finished, the memory holds the final population which is then read by the

Setup Unit.

The important thing about memory is the word size (bit length) of memory and the

capacity. For simple operation ofthe GAP the memory capacity is not very important.

Most GA algorithms are operate with a population of less than 200 and the

recommended population is about 100 members. On the other hand the bit length of

memory is very important and affects the overall performance ofthe model. Memory bit

Chapter 4. The GAP model 57

length will be discussed fiirther in Chapter 7 and 8. For the GAP model, experiments

were conducted with 8, 16, 24, 32 and 48 bit memories.

k + 4m

k + 2m

0

F i t n e s s 1
M em ber 1
F i t n e s s 0

M em b e r 0

F i t n e s s 1
M em ber 1
F i t n e s s 0

M em b e r 0

G A P a r a m e t e r

S e c t i o n

P o p u l a t i o n 1

— P o p u l a t i o n 0

P a r a m e t e r s

M em ory M ap

Figure 4.3: The Memory Unit map.

Figure 4.3 shows the contents of the Memory Unit during GAP processing. In the

memory there are k GA parameters and two populations each with m members. The GA

parameters are located in the bottom of the memory. They are initialised by the Setup

Unit in the beginning. The next section is the first population which will be initialised

with random member strings by the Setup Unit. The top section, the second population,

will be filled during operation of the GAP. Each member has two data items: the

member bit sfring and the fitness value ofthe member. For example, for a population of

32 members a total of, ^+2*(32+32)= ^+128 locations are required.

Chapter 4. The GAP model 58

4.2.3.3 Memory Interface Module (MIM)

The Memory Interface Module is the only module in the GAP model which has

knowledge of the GAP's environment. It provides a transparent interface to the memory

for the rest of the model. At startup, the MIM acts as a control module and instmcts the

other modules to initialise. During initialisation, the other modules send requests to the

MIM for user-specified GAP parameters. These requests involve a simple handshaking

protocol initiated by the requesting modules providing a coded address to the MIM. The

MIM then converts this coded address to a physical memory address. The parameter

received from memory is then passed on to the requesting module. When the GA mn is

complete, (as signalled by the Fitness Module), the MIM stops the system and informs

the Setup Unit of completion.

As described in Section 4.2.3.2, two copies ofthe population are maintained. One copy

Pt represents the population at time t and the other copy P,+i represents the population at

time t + 1. During a run the RM reads from P, and the FM writes to P,+/. In memory, P,

and Pt+i are stored in separate memory blocks, labelled PO and PI (for population 0 and

population 1 in Figure 4.3). For ease of implementation, the mapping h: {P,, P,+i } -)•

{PO, PI } altemates between generations by the MIM, e.g. if h(P,) = PO in the current

generation, then h(P,) = PI in the next generation. At any given time the FM knows (by

MIM) which of P, and P,+j is located in PO and PI.

To make the GAP independent of its operating environment, the RM and FM only know

the indexes ofthe population members they want to read or write rather than the actual

addresses. Not requiring knowledge ofthe actual addresses simplifies porting the GAP

to other operating environments. Therefore, it is up to the MIM to translate the indexes

from the RM and FM to the correct addresses by adding the appropriate base address

(i.e. PO's base address or Pi's base address) to the indexes. A signal line from the FM

specifies which population is being read from and which is being written to. This signal

value is toggled by the FM after every generation.

Chapter 4. The GAP model 59

The MIM was designed to be the only GAP module required to be aware ofthe system's

execution environment (e.g. population index). Thus design and technology changes are

easier to accommodate and only the MIM need be modified to meet changed

specifications.

4.2.3.4 Read Module (RM)

The Read Module constantly cycles through the current'population and passes the

members on to the Selection Module. The roulette wheel selection process used by the

sGA [Goldberg, 1989b] (Section 4.2.3.5) is independent ofthe olrder that the population

members are searched. So constant cycling through the population works as well as the

sGA implementation. The Read Module sends the index of a population member to the

MIM, reads in the member, then increments the index and reads in the fitness value. The

member and fitness value are then passed to the Selection Module. The index is then

incremented modulo the population size so the next population member will be

requested from the MIM. This process continues until the GA run is complete when the

MIM stops all the modules.

4.2.3.5 Selection Module (SM)

The GAP'S selection method is similar to the implementation of roulette wheel selection

fotmd in the sGA. Each time a new population member is required, the following

process is executed by the Selection Module.

1. Using a uniform real random number rand G [0,1], scale down the sum ofthe fitness

values ofthe current population to get a fitness threshold:

FitThreshold = rand * E (all fitness values) (4.1)

2. Starting at population member 0, examine the members in the order they appear in the

population.

Chapter 4. The GAP model 60

3. Each time a new member is examined, accumulate its sum in a mnning sum of fitness

values Fit_Sum. As soon as Fit_Sum > Fit_Threshold the member under examination is

selected. Otherwise the next member is examined (Step 2).

The Selection Module executes the roulette wheel selection process similar to the sGA,

but it selects a pair of population members A and B simultaneously rather than one

member at a time. It receives the sum of the fitness values of the current population

members from the Fitness Module and scales dovm this sum by two random values

provided by the Pseudorandom Number Generator. These two scaled sums, SumA and

SumB, are stored for future use. Upon receipt of a population member M and its fitness

from the Read Module, Ms fitness is accumulated in a running sum SumR. If SumR

surpasses SumA at this time, then M is latched as the selected member A. Selected

member B is chosen in the same fashion. Since the values SumA and SumB are

determined by independent random numbers, selection of A and B are independent,

concurrent processes.

Once A and B are selected, they are sent to the Crossover Module for further processing.

After sending A and B, the Selection Module resets SumR and scales dovm the sum of

fitness values by two new random values to generate new values for SumA and SumB.

When an entire generation has been selected, the FM resets the Selection Module so that

it can use the new sum of fitness values in its calculations. This process repeats until the

Selection Module is halted by the MIM at the end ofthe GAP run.

4.2.3.6 Crossover Module (CM)

The Crossover Module waits for a new pair of members A and B from the Selection

Module. It then reads a pseudorandom unsigned binary integer randl from the PNG and

compares it to the crossover probability Pc (also interpreted as an unsigned binary

integer) that it received from the MIM as a user-specified parameter. If randl < Pc then

crossover is performed between A and B forming two new members A' and 5 ' . A new

Chapter 4. The GAP model 61

pseudorandom bit string rand2 is used as an index of A and B which indicates the

crossover point. If randl > Pc then crossover is not performed and A'= A and B'= B.

Because of this implementation, the crossover step takes only one clock cycle and arrays

of multiplexers and inverters are essentially all that are required for doing the job. In

contrast, the sGA has to cycle through each bit of the new member and copy the result

to a new location that forces it to spend more time in the crossover operation.

4.2.3.7 Mutation Module (MM)

The Mutation Module waits for two new members A' and B' from the Crossover

Module. It then reads a pseudorandom unsigned binary integer rand3 from the PNG and

compares it to the mutation probability Pm that it received from the MIM as a user-

specified parameter. If rand3 < Pm then mutation is performed on a single bit in A'. The

mutated bit is selected by another pseudorandom bit string rand4 which acts as a pointer

into the bit string A'. The final new member is A ". The same steps are repeated for the B'

member to produce B" and the new members are sent to the Fitness Module. Here the

GAP differs from the sGA in that the sGA makes a decision about mutating each bit in

A', effectively increasing the mutation probability. The GAP makes only one mutation

decision for each new member and chooses the mutation point at random. This

implementation decision was based on simplifying the design and speeding up the

operation.

The mutation step takes only one clock cycle in this implementation. In the sGA,

mutation is slower because it is carried out bit by bit. On the other hand, in the GAP

mutation will be decided for a new member and finally only one bit per member will be

changed.

Chapter 4. The GAP model 62

4.2.3.8 Fitness Module (FM)

The purpose of the Fitness Module is to evaluate the population members mated by the

Crossover Module and Mutation Module and insert them into the new population.

Although there are control signals for asynchronous evaluation ofthe fitness value, ideal

performance is only achieved if the fitness value can be computed in one clock cycle per

member.

When the FM receives a pair of members from the Mutation Module, it evaluates their

fitness using the Fitness Unit and then writes the new members-fmd their fitness values

to the appropriate memory location with the help of the Memory Interface Module. The

FM then waits for the MM to send two more members.

The FM also maintains a mnning sum ofthe fitness values for reporting to the Selection

Module after each generation. The Selection Module will then scale down that sum with

a random value and use the scaled sum in the selection process. Additionally, the

Fitness Module maintains a record of how many generations remain to be tested and

how many members still need to be chosen in the current generation. When the last

generation is complete, the FM notifies the Memory Interface Module of GAP

completion.

4.2.3.9 Fitness Unit (FU)

The Fitness Unit accepts a genetic string, calculates the fitness value and retums the

result to the Fitness Module. The actual process of evaluation of the fitness for each

string will depend on the problem. One possible configuration which would suit the

application of a GAP to some engineering problem such as instrument tuning is shovm

in Figure 4.4. The Transducer (e.g. a Digital to Analog Converter (DAC) or a state

machine) converts the genetic string into suitable signals for the Unit Under Test (UUT)

which is the system to be optimised. A Fitness Measurement (e.g. an Analog to Digital

Chapter 4. The GAP model 63

Converter (ADC) or signal processor) converts and evaluates the responses of the UUT

and delivers the result as a digital fitness value.

Fitness,
Digital
Signals

M Fitness

Measuement

Is/lenben,
Digital
Signals

Unit :

km Under i H T r a n s d u c a M | | ^ i H

Figure 4.4: Typical Fitness Unit.

Ideally the Fitness Unit should complete the fitness evaluation within one clock cycle

after setting up the input value. This becomes quite difficult to achieve in most practical

situations (see Chapter 10). It is possible to extend this time, but it will decrease the

overall performance of the GAP. This means the GAP is best suited to fast response

environments. There are some control signals between the Fitness Unit and FM to

synchronise the GAP with a slower Fitness Unit.

4.3 Design parameters

Since the modules ofthe GAP model were written entirely in VHDL, specific aspects of

the design such as I/O bus size or storage facility size can be specified in terms of

parameters which can be easily changed when the need arises (Section 4.2.1). The

interesting parameters ofthe GAP are n: the bit length ofthe population members,/, the

bit length of the fitness values, m: the size of the population and ngen: the maximum

number of generations. Other parameters affect the GAP, but they address particular

Chapter 4. The GAP model 64

implementation details and are not as interesting as those listed above. These parameters

are specified at VHDL compile time and should not be confiised with the GA run time

parameters. They include addressm: width of address bus for the Memory Unit, valuem:

width of data bus for Memory Unit and randomsize: size of the maximum random

number in the GAP.

All of these parameters are defined in a single package file called a geneparam in the

VHDL code. When the need arises for changing the design for a special purpose (e.g.

new limitations are applied by the Fitness Unit), all that is necessary is to change the

appropriate values in the geneparam package and recompile the VHDL code. Although

some facilities exist for parameterising and scaling of designs at lower levels of design

entry (e.g. at the gate level), they are not as easy to use or as intuitive as using the

VHDL packages. It should be noted, however, those design entry methods are only

feasible if HDL synthesis tools are available. If one wants to go beyond design

simulation to implementation without using HDL synthesis tools are available, then a

lower level of design entry is necessary.

4.4 Pipelining

As mentioned in Section 4.1, GA operations can be easily pipelined and parallelled.

This offers the GAP a great advantage over sequential software GA implementations.

The design in Figure 4.1 is a coarse-grained pipeline. The Read Module gets a new

population member from the Memory Interface Module and passes it to the Selection

Module. When the SM has received a pair of members it passes the pair to the CM

through a handshaking protocol and immediately restarts the selection process. After

crossover and mutation are complete (in CM and MM), the MM passes the new

members to the Fitness Module by a hand-shaking protocol and CM looks to the

Selection Module for the next pair. Finally, when the FM receives the new members, it

Chapter 4. The GAP model 65

evaluates them and sends the new members and their fitness values to the MIM for

writing to memory.

Thus GA operations are executed in a pipelined fashion and a significant speedup over

software implementations is expected.

Chapter 5

Design verification and analysis

This chapter starts with tests to verify the functionality of the model. The GAP is

applied to find an optimum point on each of two different mathematical fimction

surfaces. This is followed by a mathematical analysis of the design using techniques

described by Kenyon et al. [1993]. This includes an analysis ofthe pipelines to identify

the bottlenecks which concludes with a series of tables and graphs comparing the

number of clock cycles consumed in GAP simulations with that predicted from the

analysis.

5.1 Verification of correct functionality

Two levels of functional verification were used. First each module was tested to confirm

correct operation under all conceivable conditions. For each module a set of test input

vectors is selected and the output vector is examined carefiilly to confirm correct

66

Chapter 5. Design verification and analysis 67

functionality. The second level of functional verification involved simulating the GAP

on different fitness functions to see how well the functions were optimised. The

modules were connected in the configurations of Figures 4.1 and simulated on the two

fitness functions. During these simulations each module was closely examined to

confirm correct functionality. Completion of these simulations verified the correctness

of the operation of the modules and their intercommunication. In both examples, the

population size was 32, the size of each member was 16 bits and the maximum width of

the fitness values was 8 bits.

In the first example, the GAP was tested with the following mathematical fitness

fimction [Davis, 1990].

F (X , Y) = 0 . 5 -

[sinJ(x^+Y^) j -0.5

(l.0 + 0.001*(x^+Y^))
(5.1)

Figure 5.1: Problem surface for (5.1).

This is typical of functions used in testing genetic algorithms and other hill climbing

strategies. This function is represented by the surface shovm in Figure 5.1 (i.e. the

Chapter 5. Design verification and analysis 68

fitness landscape). This function has a global maximum at the point (0,0) and a series of

maxima which are located on the ridges and peaks ofthe surface near:

R = ^ (x ' + Y ') = 7 t , 2 7 t , . (5.2)

These kinds of problems are very difficult for conventional gradient ascent methods

such as the Newton-Raphson method. The search for the global maximum usually ends

in becoming trapped in one of the local maxima. Because genetic algorithms use a

population of attempted solutions which are randomly generated, a (nearly) correct

solution can be obtained in most cases. The results of simulation are shovm in Figure

5.2. The fitness functions were optimised over the discrete domain

D = { x | - 1 0 < x < 1 0 } , { y | - 1 0 < y < 1 0 } . (5.3)

The fitness value varies between 0 and 1. These results are averaged over 10 nms for

each test.

C/2

X
CO

100 200 300 400

Number of Function Evaluations

500

Figure 5.2: The results of example 1.

Chapter 5. Design verification and analysis 69

In the second example, another mathematical fitness fimction (5.4) was used. This is

also a typical function used as benchmark for quasi-discrete problem surfaces for

comparing genetic algorithms.

Fix Y)= (-''•^''•l^'*^')*^''^Cos{2*x)^Cos{2''y))) (5.4)

The surface of this fimction is shown in Figure 5.3.

Figure 5.3: Problem surface for (5.4).

This fimction has a global maximum at the point (0,0) with the value about 400 and a

series of maxima which are located near

X = 7 t , 27 t , . . . Y = 7C,27t, . . . (5.5)

This fimction has peaks at (7t,0), (0,7t), (0,-7t), (-7t,0) and GAs may become trapped on

them. The results of simulation are shown in Figure 5.4. These results are average over

10 runs and the fitness function was optimised over the discrete domain

Chapter 5. Design verification and analysis 70

D = { x | - 1 0 < x < 1 0 } , { y | - 1 0 < y < 1 0 } . (5.6)

These two examples show that the GAP is capable of optimising some difficult

fimctions.

1 J
0.9
0.8
0.7
0.6
0.5 ii
0.4
0.3
0.2^^
0.1

0 -

C/2

QJ

B
• > <

CO

1000 2000 3000
Number of Function Evaluations

Figure 5.4: The normalised results of example 2>

5.2 Mathematical analysis

The modules in Figures 4.1 were analysed to determine the parameters which impact on

asynchronous pipeline performance. These parameters are defined in [Kenyon et al.,

1993] as follows.

1. i: The stage number. Each stage corresponds to the operation of one of the GAP

modules (Table 5.1).

Stage niunber (0

Module

0

Read

1

Selection

2

Crossover

3

Mutation

4

Fitness

Table 5.1: Each stage number is matched with one module ofthe GAP.

Chapter 5. Design verification and analysis 71

2. Sj: The actual service time of pipeline stage (module) / is the amoimt of time stage i

takes to receive a message at its inputs, process it and send the output to the next stage.

3. F,: The flow rate of stage i is the number of messages arriving at stage i during the

entire run.

s • F •

A. Sfjormi- The normalised service time of stage / is defined.as •S'̂ orw/ = "TT '~~ where
^ out

Fgui acts as a normalising factor.

5. Fgut'- The flow rate out ofthe pipeline.

The analysis is designed to calculate tiie flow rate (Fd, defining service time (s,) and the

normaUsed service time (Snormi) for each module and hence finds the bottleneck ofthe

system. The other parameters in the analysis are:

6. g: The number of generations in the GAP nm.

7. m: The population size.

8. T: The total number of clock cycles in the entire GAP mn.

9. r: The total number of cycles to read from the memory.

10. w: The total number of cycles to write to tiie memory.

11. c?: The number of delay cycles in the Fitness Unit.

To retain technological independence, all formulae and simulation results are given in

terms of clock cycles. In this analysis, F„„, = mg/2 because mg members are selected in

the GA mn a pair at a time. Once S„ormi was detemiined for each stage, all the S^ormfs

were compared. The stage with the highest S^^^^. will be the pipeline bottleneck.

Chapters. Design verification and analysis 72

Although not expUcitly mentioned, the analysis ofthe Read Module (Section 5.2.1) and

the Fitness Module (Section 5.2.4) involve the Memory Interface Module. This is

because the Read Module and the Fitness Module's service times partially depend on

communication overhead with the MIM and the MIM's time to read from and write to

the memory. Thus, the MIM can be thought of as partially merged with the Read

Module and partially merged with the Fitness Module.

After analysing each module, the GAP will be simulated to determine the values of 5,-

and Fj for each module in practice. The following sections present the results of the

analyses and simulations ofthe GAP modules.

5.2.1 Read Module analysis

The simple request-acknowledge handshaking protocol between the Read Module and

the Memory Interface Module requires 6 clock cycles to communicate a request for a

new population member and to receive that member. It also requires r cycles for the

Memory Interface Module to read the member from memory. Thus, it typically takes

(6+r) cycles to fetch a member from memory. For each member the GAP needs to read

the next location for fitness value as well, therefore the total number of cycles is

(12+2r). However, if the Fitness Module requests access to the MIM to write a new

population member to the memory, it will receive priority.

To keep the GAP simple no pre-emption is supported, so if the FM has a lock on the

MIM, the RM is blocked. The FM's access to the MIM could block the RM between 1

and (4+w) clock cycles, all equally probable. To find a weighted average of these

delays, first note that the FM will make exactly 2mg write requests during the entire

GAP mn. In each generation the GAP writes every pair (member+fitness) back to the

memory. Then the probability of an FM write request at a given clock cycle is 2mg/T.

This means that at the time of a RM read request, there is a 2mg/T probability of an

Chapters. Design verification and analysis 73

additional delay of (4+w) cycles, a 2mg/T probability of an additional delay of (3+w)

cycles, etc. The weighted average of these possible delays is:

4+vc

2_.2img
j=\ _{5 + w){A + w)mg

The delay should be multiplied by two because the Read Module needs to read two

values from memory. Therefore the average service time ofthe RM is:

(w^ +9w + 20jmg
So = 12 + 2r + 2- '— (5.8)

The flow rate of the RM is the number of messages it generates. This can be

approximated by multiplying the nmnber of pairs of members that must be selected

(mg/2) by the average number of members that the Selection Modules must receive to

select one pair (m/2):

Fo = ^ (5.9)

The normalised service time for the RM (S) is the product of SQFO to the
ftOf/TlQ

normalising factor Fo„„ the total flow out ofthe pipeline, which is equal (mg/2). So

(5.10)
"'"'"^ Fout ° 2 2

*" (w^+9w + 2o)mg^
12 + 2r + 2

V

5.2.2 Selection Module analysis

Since the input flow differs from the output flow, the service time Sj for the Selection

Module is a weighted average of the service time per input (5, ,„) and the service time

per output (5'io„,). Accumulation of fitness values and the necessary comparisons to

check for selection are easily done in one clock step, so S^ ,„= 1. However, 5, „„, is more

Chapter 5. Design verification and analysis 74

complex. In the best case, the handshaking and transmission between the Selection

Module and the Crossover Module is 7 cycles.

If the GAP is operating at maximum efficiency, the FM would be always busy. But if

the Fitness Module is blocked by the Read Module, then the FM blocks the CM, which

in tum blocks the Selection Module which is ready to send output. The Fitness Module

has a probability of

l-SoFo= 1
AT

(5.11)

of being busy. If the Selection Module is ready, it will take an average of
(54 -A-Id) cycles (Section 5.2.5) to be served by the Fitness Module (S4 is the

service time for FM). So the total additional delay is:

(54-4-2J)
AT

(5.12)

which leads to the following formula for the service time per output:

•̂ 1 o«/ - "7 +

(54-4-2^) f 2 \

m gSQ

AT

(5.13)

Since one output message is generated for approximately every m input messages,

averaging 5, ;„ and S^ „„, yields the actual service time for the Selection Module as:

^1 =

OT5I,„ + 1X5',O„,

m
-Sii„ +

^\out

m
(5.14)

The Selection Module's flow rate is:

^1 =
m^g (5.15)

Chapter 5. Design verification and analysis 75

which is the total number of messages expected to activate the Selection Module during

the GAP mn. Finally, the Selection Module's normalised service time is given by

norm] f ' 9
^ nut ^ out

(5.16)

Applying (5.14), it produces:

m m
norm\ -~Z^iin '^^\out-~Z + ^-^

{$4-A-2d) I m gSp (5.17)

5.2.3 Crossover Module analysis

The Crossover Module normally takes 7 cycles to process input and transmits the result

to the Mutation Module. If however, the MM is blocked while waiting to send to the

FM (see Section 5.2.2 for more detail), then an added delay is incurred because the GAP

has no buffering in its modules. Due to the nature ofthe GAP, the added delay is:

(5 4 - 4 - 2 0 ?) (^ m^gSQ

AT
(5.18)

This is because over the entire run (T cycles long), the Fitness Module will delay all

(54-4-2c/)
previous modules with a delay of cycles with the probabifity of

^ 2 A
m gSQ

AT

Using the above probability, the service time for the CM is:

^2=7 +
(54-4-2c/) ^^_/nVo^

V AT
(5.19)

The CM's flow rate is:

Chapter 5. Design verification and analysis 76̂

F , = ^ (5.20)

and the CM's normalised service time is:

, ^s^^ gm2^^ (5 21)
««'-'«2 F,„, ^ 2 gm ^

5.2.4 Mutation Module analysis

The Mutation Module normally takes 7 cycles to process input and transmits it to the

Fitness Module. If the FM is blocked while waiting to send to the MIM, then an added

delay is incurred. The delay for this module is exactiy equal to that of the Crossover

Module:

53 = 7 +
{s^-A-2d){^ ff^Vol (522)

V AT

and the normalised time is:

norm^ F„„, 2 mg

5.2.5 Fitness Module analysis

When the Fitness Module receives input in the fomi of strings A" and B", the following

events occiu: diuing processing.

1. Evaluate A" and B", accumulate their fitness values and request access to the

Memory Interface Module. The delay time for this step is (4+2d) cycles where d is the

delay cycle in the Fitness Unit.

2. Wait for the MIM to acknowledge the request. For this step the delay time is between

1 and (6+r). The potential additional delay is due to the lock that the RM may have on

Chapter 5. Design verification and analysis 77

the MIM. In the worst case, the FM requests MIM access immediately after the RM

locked the MIM. This worst case would cause a delay of (6+r). The average delay is:

r+6

(5.24)
r + 6 2

3. Receive the MIM's acknowledgment, send A", wait for the MIM to write A", notify

the FM and issue the next request: (4+w) cycles.

4. Steps 2 and 3 will be repeated 4 times. Two times for writing the actual member and

two more times for writing their fitness values. This makes the service time for the

Fitness Module equal to:

S4=A + 2d + A(A + w + (^^)) = 3A + 2d+Aw + 2r (5.25)

The flow rate for the Fitness Module is the total number of pairs of members that must

be written to the memory, which is:

F,=^ (5.26)
^ 2

and the normalised service time for the Fitness Module is:

S =^i^ = s.=3A+2d+Aw + 2r (5.27)
nor/M4 p ^

'• out

5.2.6 GAP analysis

To detemiine the bottleneck ofthe GAP model in Figure 4.1, substittite the appropriate

parameters into the equations for S^^^^, {0 < i < 4} and find the maximum. The fixed

parameters substitiited were w = r = 0 and J=0. The value of T can be detemiined by

Chapter 5. Design verification and analysis 78

estimating how many messages the Read Module will have to generate, multiplying it

by its service time SQ, and then adding the service times for the remaining pipeline

modules to process the RM's final message (earlier messages would have been

processed concurrentiy while the RM generated more messages):

r = - ^ ^ ^ + 5i+52+53 + 54 (5.28)

Because ofthe m g component in (5.28), the first term easily dominates the remaining

four terms. Equation (5.28) can be simplified by dropping Sj+}2+S3+S4 and leaving an

approximation of J as:

- ^ (5.29)

Since the right hand side of (5.29) is in terms of 7, convert it to a quadratic equation and

find its roots:

T^-Am^gT-2lm^g^=0 (5.30)

which gives

T = 2m^g + yJAm'^g^ + 2 Ig^ m^ (5.31)

and produces

T=m^g[2±-J A+ 21 Im] (5.32)

The positive root fotmd from evaluating (5.32) was used to evaluate (5.7-5.32). The

results of these evaluations are given in Table 5.2 which shows the service time and the

normalised service time for each stage in clock cycles.

Chapters. Design verification and analysis 79

Since the Read Module has the maximum value of S^om^ it was identified as the

bottleneck of the GAP. To evaluate the performance of the GAP, the information in

Table 5.2 was analysed to determine the number of clock cycles per generation per

population member. Here g is the number of generations, m is the population size, T is

the estimated time for completion, and R is the rate in clock cycles at which that test

executed per generation per population member. Values for R were calculated by:

R = — (5.33)
^g

Table 5.3 presents the results which indicate roughly 4m clock cycles per generation per

member.

5.2.7 Comparison between simulation and analysis

During the GAP simulations, statistics of number of clock cycles and the total service

times were generated for all modules (Table 5.4). These values approximate the

evaluations of the analysis fimctions given in Section 5.2.5 (Table 5.2). The Read

Module is obviously the bottleneck ofthe GAP model.

Along with the above analysis, simulation statistics were generated to determine the

actual number of clock cycles per generation per population member. Here T^ is the

actual time for completion, and R^ is the actual rate in clock cycles at which that test

executed per generation per population member. R^ was calculated by:

R,=^ (5.34)
mg

Table 5.5 presents the results ofthe simulations which indicate that R^ is roughly 4m

clock cycles per generation per member.

Chapter 5. Design verification and analysis 80

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

m

16

16

16

16

32

32

32

32

64

64

64

64

128

128

128

128

g

16

32

64

128

16

32

64

128

16

32

64

128

16

32

64

128

So

17.216

17.219

17.219

17.219

16.6309

16.631

16.631

16.633

16.321

16.322

16.322

16.322

16.162

16.162

16.162

16.162

SnO

137.73

137.74

137.75

137.75

266.09

266.1

266.1

266.1

522.29

522.29

522.29

522.29

1034.4

1034.4

1034.4

1034.4

Sl

2.7490

2.7500

2.7509

2.7512

1.6642

1.6643

1.6643

1.6643

1.2765

1.2765

1.2765

1.2765

1.1239

1.124

1.124

1.124

s„i

21.992

22.002

22.007

22.009

26.627

26.629

26.629

26.63

40.849

40.849

40.85

40.85

71.934

71.934

71.934

71.934

S2» S3,

Sn2» Sn3

7.1327

7.0663

7.0332

7.0166

7.0337

7.0168

7.0084

7.004

7.0085

7.0043

7.0021

7.0011

7.0022

7.0011

7.0005

7.0003

S4, Sn4

46

46

46

46

46

46

46

46

46

46

46

46

46

46

46

46

T

17685

35318

70583

141115

68175

136297

272540

545028

267467

534881

1069709

2139365

1059273

2118493

4236933

8473813

Table 5.2: Analysis ofthe service times in clock cycles for the GAP model (Sn=Snorm)-

Chapter 5. Design verification and analysis 81

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

m

16

16

16

16

32

32

32

32

64

64

64

64

128

128

128

128

g

16

32

64

128

16

32

64

128

16

32

64

128

16

32

64

128

T

17685

35318

70583

141115

68175

136297

272540

545028

267467

534881

1069709

2139365

1059273

2118493

4236933

8473813

R

69.0821

68.98

68.929

68.9036

133.154

133.102

133.076

133.064

261.198

261.172

261.16

261.153

517.223

517.21

517.204

517.2

Table 5.3: Perforaiance estimation based on the GAP analysis in Table 5.2.

Chapter 5. Design verification and analysis g2

Figure 5.5 compares the total number of cycles to complete a task in the case of both

simulation and mathematical analysis. The analysis line and simulation line are very

close which lends confidence to the mathematical analysis. There is a mismatch for both

small and large m values. This mismatch is a result of simplification in the mathematical

analysis.

Figure 5.6 compares the results of simulation and mathematic analysis for actual time

completion. It shows that these two results are very similar and the difference is

produced by the simplification in the mathematical analysis.

5.3 Design improvements

The above analysis and simulations ofthe GAP suggest that design improvements could

be made in the following ways.

• Increase parallelisation of the Selection Modules which is the bottleneck of the GAP

model. Parallelise the Selection-Crossover-Mutation-Fitness pipelines.

• Parallelise the intemal stmctm-e of each module. For example, rather than selecting

one pair at a time, ,the Selection Module can select two independent pairs. Then the SM

can pass both pairs to the Crossover Module. The CM can then perform two

independent crossovers in parallel and send them to MM, where two pairs can be

mutated in parallel and sent to the Fitness Module for evaluation. This stmcture reduces

inter-module communication overhead, requires increased communication bandwidth,

and reduces the modularity ofthe design.

• Modify the Fitness Module to evaluate both new members in parallel. The current

design evaluates them sequentially. Concurrent evaluation could save at least two clock

cycles per pair of members. This would be most useful if the delay in the Fitness

Module is large and affects the overall performance.

Chapter 5. Design verification and analysis 83

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

m

16

16

16

16

32

32

32

32

64

64

64

64

128

128

128

128

g

16

32

64

128

16

32

64

128

16

32

64

128

16

32

64

128

So

19.3975

19.7261

19.4114

19.4523

16.2439

16.4684

16.5604

16.9103

15.9955

16.1872

16.0987

16.1079

15.4788

15.3877

15.4796

15.5151

SnO

155.18

157.81

155.29

155.62

259.90

263.49

264.97

270.56

511.86

517.99

515.16

515.45

990.64

984.82

990.69

992.96

Sl

2.459

2.4844

2.457

2.4629

1.7603

1.7794

1.7878

1.8168

1.5336

1.5497

1.5423

1.5432

1.3895

1.382

1.3896

1.3926

s„i

19.6719

19.875

19.6562

19.7031

28.1641

28.4707

28.6045

29.0688

49.0742

49.5889

49.3545

49.3838

88.9297

88.4458

88.9365

89.1285

S2J S3,

Sn2? Sn3

7.9543

7.4727

7.5059

1.311

7.3.125

7.2891

7.3643

7.4102

7.2422

7.2539

7.3096

7.2827

7.1543

7.2266

7.2387

7.219

S4, Sn4

46.5938

46.4219

46.3242

46.2832

46.2969

46.207

46.1582

46.1343

46.1504

46.1025

46.0771

46.0664

46.0742

46.0483

46.0361

46.0306

T
* a

19807

40344

79453

159300

66485

134850

271270

554060

262015

530370

1054990

2111235

1014360

2016845

4057825

8134315

Table 5.4: Simulation results of GAP tests.

Chapter 5. Design verification and analysis 84

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

m

16

16

16

16

32

32

32

32

64

64

64

64

128

128

128

128

g

16

32

64

128

16

32

64

128

16

32

64

128

16

32

64

128

T
^ a

19807

40344

79453

159300

66485 ^

134850

271270

554060

262015

530370

1054990

2111235

1014360

2016845

4057825

8134315

Ra

77.3711

78.7969

77.5908

77.7832

129.8535

131.6895

132.4561

135.2686

255.874

258.9697

257.5659

257.7191

495.293

492.3938

495.34

496.4792

Table 5.5: Performance simulations ofthe GAP tests.

Chapter 5. Design verification and analysis 85

10'

o
O
(0

10

Cycle Comparison

Analysis (T)
Simulation (1^)

5 10
Experiment Number

15

Figure 5.5: The result of comparison between mathematical analysis and
hardware simulation of total number of cycles (T) needed to complete a task
with different m and g according to Tables 5.3 and 5.5.

Rate Comparison

550'

S 500
0)450
o

2̂ 400
•g350
O

Q 300

"S250
"Jo 200

fe-150

"^ 100

50

Analysis (R)
Simulation (Rg)

5 10
Experiment Number

15

Figure 5.6: The result of comparison between mathematical analysis and
hardware simulation of clock cycle rate (R) with different m and ^
according to Tables 5.3 and 5.5.

chapter 5. Design verification and analysis 86

• Modify the Memory Interface Module's interaction with the Fitness Module. In the

cunent GAP design the MIM services one request and then immediately looks for a new

request. So after the FM sends one member, it has to wait for the RM to receive service

before the FM has a chance to send the second member. Modifying the MIM to always

service the FM twice in a row would reduce some blocking delays for the FM.

However, this could also increase some blocking delays for the RM.

• Make the inter-module communication protocol more efficient. The current

handshaking protocol requires six clock cycles per data transfer. If these delays were

reduced, the entire GAP would nm much faster.

• Buffer the outputs of all the modules. This should reduce the delays associated with

some modules waiting for service and blocking others that are waiting upstream in the

pipeline.

• Use a memory configuration which supports reads and writes of population members

in parallel. Coupled with effective buffering, this could significantiy reduce delays due

to modules blocking each other. Additionally, an ability to read from one population

while concurrentiy writing to another would eliminate the blocking that occurs between

the Read Module and the Fitness Module.

• When implementing the aforementioned improvements, design the GAP from scratch.

The original VHDL implementation ofthe GAP could be redesigned to be much more

space and time efficient. Throwing away the old design while retaining the lessons

leamed from it is the best way to attain this goal. Some modules could even be designed

at the gate level if even more speedup were desired. The improved space and time

efficiency would allow faster clocking.

Chapter 6

Implementation of the GAP on FPGAs

This section starts with an explanation of programmable technologies particularly

FPGAs. This is followed by a description of the GAP implementation on FPGAs and

preliminary hardware tests. Finally the GAP is compared with a software model to find

how much speed advantage can be achieved.

6.1 ASIC design

Integrated circuits consist of cormected transistors fabricated on a single semiconductor

chip. The locations and cormectivity of the transistors are defined by several masks. A

mask corresponds to one of the silicon compoimd layers that form transistors and

intercoimect layers.

Digital integrated circuit implementations may be grouped into two main categories,

fully custom and semicustom designs, as illustrated in the hierarchy shown in Figure

87

Chapter 6. Implementation ofthe GAP on FPGAs 88

6.1. These approaches have facilitated the design and manufacturing of Application-

Specific-Integrated Circuits (ASICs) for digital applications.

Design Methods _

Semi-Custmn
Design

JVfesk Programmable Gate Arrays

Programmable
Devices

FPGAs

PLDs

_ Custran Design

Figure 6.1: Circuit design methods and target technologies.

1. Custom design: Custom ICs are created using unique masks for each layer during the

manufacturing process. Since the designer confrols all stages of the chip layout,

maximum design flexibility and high perfonnance are possible. Consequentiy, only

highly skilled designers are engaged in tiiis design methodology. Also, the development

time is long, and its costs are extremely high. For high volume applications, the high

cost of design and testing custom ICs can be ignored.

2. Mask-Programmable Gate Arrays (MPGAs): Gate array implementations use

generic masks for all but the metalUsation layers, which are customised to the user's

specifications [Hollis, 1987]. The generic masks create an array of modular fimctional

blocks. Modules of transistors are arranged in rows that are separated by fixed-width

channels. User logic is implemented by patterning these fransistors into logic functions

and connecting the different modules. The design is usually facilitated by a cell library.

Chapter 6. Implementation ofthe GAP on FPGAs g9

making the designer's expertise less critical than in the case of the full custom

methodology. For the same reasons, MPGAs offer shorter development time and lower

development costs than do custom ICs.

6.1.1 Field programmable technology

Field-programmable devices are prefabricated in a variety of architectures based on an

array of logic cells. The logic is implemented by personalising the basic cells and

electrically programming the interconnects. This is usually done in the user's laboratory

rather than the factory.

Implementing the design in programmable logic devices has the advantage of fast

tumaround but it limits the design flexibility. Development time and costs are

significantly lower than for any other IC implementation methodology but the cost per

gate is high for voltmie production. According to their architectures, two main

categories of user programmable logic devices can be distinguished: Programmable

Logic Devices (PLDs) and Field-Programmable Gate Arrays (FPGAs).

1. PLDs consist of programmable AND arrays (product terms) and fixed fan-in

programmable OR gates that are followed by flip-flops, as shown in Figure 6.2. The

outputs ofthe flip-flops can be fed back as input lines in the product terms. The product

line can be connected to any combination of inputs. The connections are indicated by an

"o" and are programmed by users to implement their designs. The connecting device

may be a fuse as in the case of bipolar chips, or a transistor. The transistor can be chosen

to act as an open connection or to fimction normally as a switch [Monolithic Memories,

1986]. PLDs are at the low-density end of field programmable logic devices. Their

densities range from 1,000 up to 10,000 gates. Their utilisation varies with applications,

but it is typically very low because of the rigid AND/OR architecture. Initially, PLDs

used to be fabricated in bipolar technology but Complementary Metal-Oxide

Semiconductors (CMOS) devices are now more popular.

Chapter 6. Implementation ofthe GAP on FPGAs 90

Product terms(0-15)

Input lines(0-19)

< •

CLK Enable

Inl — i — O -
Preset

In2
• > -

^ ^
Outl

Out2

Figure 6.2: General stmcture of a PLD.

2. FPGAs combine the architecture of gate arrays with the programmability of PLDs.

Some of the FPGA real estate is occupied by vendor logic to. implement the field

programmability feature ofthe FPGA, and a large portion of the die area is allocated for

programmable routing. The number of gates typically available to the user in current

(1995) designs varies from 3,000 to 40,000. An FPGA normally consists of an array of

uncommitted logic blocks in which the design is to be encoded (Figure 6.3). A logic

block consists of universal gates that can be programmed to represent any function:

multiplexers (MUXs), Random-Access Memories (RAMs), NAND gates, transistors,

etc. The connectivity between blocks is programmed by different types of devices.

Static Random-Access Memory (SRAM), Electrically Erasable Programmable Read

only Memory (EEPROM), or antifiises. Further description of FPGA architectiires is

given in Appendix D.

Chapter 6. Implementation ofthe GAP on FPGAs 91

lOB lOB JOB lOB

Horizontal
Routing
Channel

lOB

CLB

Long
Line

lOB

CLB

CLB

Switch
Matrix

CLB

Switch
Matrix

CLB

Switch
Matrix

CLB

Switch
Matrix

CLB

Switdi
Nbtrix

CLB

Switch
Matrix

Switch
Matrix

Switdi-
Matrix

Switch
Matrix

JOB lOB lOB lOB

lOB

Vertical
Routing
Channel

lOB

lOB

lOB

Figure 6.3: General Stmcture of a FPGA.

6.1.2 The design cycle

The design process for using FPGAs generally requires six steps [Chan and Mourad,

1994]:

1. Entering the design in the form of schematics, logic expressions and hardware

description language statements.

2. Simulating the design for functional verification.

3. Mapping the design into the selected FPGA architecttire.

4. Placing and routing the FPGA design.

5. Extracting delay parameters and maximum frequency.

6. Configuring or programming the device.

Chapter 6. Implementation of the GAP on FPGAs 92

Most FPGA vendors allow the entry ofthe design in a schematic form though, it is also

possible to enter the design in boolean expressions. The most flexible design entry is via

a hardware description language. The most popular languages are Verilog HDL and

VHDL. Such languages require logic synthesis tools before mapping into FPGAs.

Skipping the simulation steps enables the designer to obtain the end product faster, but

can weaken the product quality. Usually, the design goes through several iterations of

simulation.

For every FPGA, the vendor provides design implementation tools to perform steps 3 to

5. The front-end design entry (schematic capture or other methods) and simulators may

also be part ofthe tools. Most vendors configure their package with different front-end

tools to allow the user more choice and flexibility.

Steps 3 and 4 involve several processes: logic minimisation, technology mapping,

placement, and routing. Technology mapping binds the technology independent

description of the circuits to the basic entities of the target technology. Placement

allocates these entities to a specific physical block on the device and routing establishes

the connections between the different blocks, and is usually done in two stages: global

routing and detailed routing. All FPGA vendors have an automatic placement and

routing tool. The placement and routing algorithms have a strong effect on the

performance ofthe design.

6.2 Design implementation cycle

The GAP was implemented on FPGA technology using the VHDL language [Coelho,

1989] and Mentor Graphics tools. These tools facilitate modelling the behaviour and

design of the architecture. QuickVHDL was used to compile the design and the

NeoCAD FPGA Foundry software converted the GAP modules to Xilinx files to

implement the design into field programmable gate arrays.

Chapter 6. Implementation ofthe GAP on FPGAs 93

6.2.1 Entering the design

There are many advantages in using VHDL. Firstiy, it is accepted intemationally for

hardware implementation and there are many vendors that provide simulators for

VHDL. Secondly, it is a high level language and the programmer does not need to

specify all details of the design. For instance the add and multiply operators, and in

some cases division operators, are automatically expressed in hardware and the designer

can use them in any design. Third, VHDL is the generic language for hardware

implementation. If in the next decade new technology arrives and replaces existing

hardware technologies, then by using a mapping tool we will be able to map our design

to the new technology.

The design is written in a hierarchical configuration. The main core ofthe GAP consists

of the Memory Interface Module, Read Module, Selection Module, Crossover Module,

Mutation Module, and Fitness Module (Figure 4.1). Each module is written in a separate

block and one main block (GAP Module) handles coimectivity between the modules.

This block is used for synthesis and hardware implementation. For the simulation

purposes, two more modules (Memory Unit and Fitness Unit) are included with the

GAP Module to form the main design (Main Module).

After designing the GAP modules in VHDL, they are compiled to generate a schematic

diagram. Figure 6.4 shows the schematic diagram of the GAP module, created

automatically using the Autologic tools in Mentor Graphics Software. The six blocks

inside the schematic are the same six blocks in the Figure 4.1. The input and output

signals are necessary to connect the GAP to the Memory Unit and Fitness Unit.

6.2.2 Simulating the design

Computer-aided design tools have greatiy facilitated the design implementation process.

These tools have replaced many of the heavy design tasks such as design entiy.

Chapter 6. Implementation ofthe GAP on FPGAs 94

verification and synthesis (logic minimisation, technology mapping, state reduction, and

state assignment). These tasks are time consuming and often error-prone.

Figure 6.4: The schematic diagram ofthe GAP.

Simulation is a process that imitates the fiinctionality or behaviour of the digital design

on a computer. It is used to identify design enors or timing problems in a circuit.

Simulation was originally used for prototyping and employs models that represent

system attributes. These may include behavioural or timing models. Now it is often used

to debug a prototype. FPGAs have also been used to prototype designs before their

actual fabrication in other technologies.

Chapter 6. Implementation of the GAP on FPGAs 95

There are several aspects of a digital circuit that need to be verified before

implementation: functionality, timing, effect of certain parameters, etc. There are also a

variety of simulation types that are dictated by circuit-level representations. For

example, the functionality of a circuit may be simulated at the behaviom-al level, the

gate or logic level, or the circuit level. In the case of FPGAs, the functional simulation

can be performed at the behavioural level or the gate level. This simulation may be run

with zero (no) delays, or one-unit delays. In the case of timing simulation, several

approaches can be taken. Timing can be checked with nominal delays for the technology

or with worst case scenarios. More importantly, timing can be verified using the actual

layout ofthe design on the FPGA. The actual delays ofthe placed and routed design can

be extracted and used in a timing simulation.

Initially the behaviour of the model was simulated without regard to synthesis in

hardware. It is possible to mix and test a combination of synthesisable and

unsynthesisable modules. For the test examples the simulation studies were conducted

with the memory and fitness units in an imsynthesised form.

The Memory Unit in the design is based on the MCM6164 static 8K x 8bit RAM chip.

Two or more memory chips operate in parallel to give 16 to 32 bit member sfrings in the

population. The GAP module provides the necessary read, write and chip-enable signals

for memory operation.

QuickVHDL version 8.2 was used for compiling and simulating the GAP Module and

the whole design. The simulation of modules for correct functionality was shovm in

Section 5.1.

6.2.3 Mapping the design into FPGAs

There is a wide variety of Field-Programmable Gate Arrays as shown in Table 6.1.

Some of these devices are actually Programmable Logic Devices with specific

Chapter 6. Implementation ofthe GAP on FPGAs 96

enhancements that make them larger and more flexible than traditional PLDs. The

products can be compared by focussing on four factors that can influence the design and

the selection ofthe device for a given application:

1 - architecture,

2 - gate density or capacity,

3 - routing resources or basic cells,

4 - programming method.

For each vendor listed in the first column in Table 6.1, the range of capacities for

different devices is given. The effective capacities are usually lower since high

utilisation ofthe logic modules would generally decrease routability. The architecture is

identified in the third column as gate array (or row-based FPGAs), matrix form, sea-of-

gates, or Programmable Logic Array (PLA). The next colunm is the logic unit in which

the user logicis implemented. The last column lists the programming method.

The Xilinx logic cell array family was introduced in 1983. Since then the product has

passed through three generations: series XC2000, XC3000, and more recently the

XC4000.

Table 6.2 summarises the main features of the three generations of Xilinx devices. The

number of equivalent gates capacity (two-input NANDs) serves as a guide for a designer

to select the appropriate part type.

User logic is implemented by configm-ing the logic components. The Xilinx chip

incorporates SRAM technology and is reprogrammable. The number of Configiu-able

Logic Blocks (CLBs) in an Logic Cell Array (LCA) ranges from 64 in the XC2064, the

low end ofthe 2000 series, to 576 in the XC4013, the largest device presentiy available

ofthe 4000 series (1994).

Chapter 6. Implementation ofthe GAP on FPGAs 97

A Xilinx 4000 series component (XC4013) was selected to implement the design

because of its high capacity and large number of Input/Output pins.

The following steps are followed in transfening the VHDL models into FPGA

technology. First the model (GAP Module) is synthesised using Autologic version 8.2

from the Mentor Graphics Software. Then the synthesized model is transferred to a

netiist file format using Mentor Graphics Software.

Manufacturer

Actel

Altera

Algotronics

Concurrent

Crosspoint

Plessey

QuickLogic

Xilinx

Capacity

(Number

of gates)

2K-8K

1K-5K

5K

3K-5K

5K

2K-40K

1.2K-1.8K

2K-10K

Architecture

Gate Array

Extended

PLA

Sea-of-gates

Matrix

Gate Array

Sea-of-gates

Matrix

Matrix

Basic Cell

MUX

PLA

Functional

XOR, AND

Transistors

NAND

MUX

RAM block

Programming

Method

Antifuse

EPROM

SRAM

SRAM

Antifuse

SRAM

Antifuse

SRAM

Table 6.1: Examples of FPGAs.

Chapter 6. Implementation ofthe GAP on FPGAs 98

Feature

Number of

chips in family

Equivalent

gates

MAXI/Os

Flip-Flops

MAX CLBs

Number of

package PINs

XC2000

2

1K-1.5K

58-74

122-174

64-100

34-74

XC3000

6

2K-9K

64-176

256-1320

64-484

34-176

XC4000

11

2K-13K

^ 64-192

256-1536

64-576

61-193

Table 6.2: Features ofthe Xilinx devices (up to year 1994).

Then the NeoCAD FPGA Foundry tools are used to map the netiist file to an FPGA

device. The result is a mapped model ofthe design for a specific family (XC4000). The

mapped model is then placed and routed on the selected device type (i.e. XC4013).

Finally the model is transferred to bitmap format for downloading to the chip. If the

design is small enough to fit in one chip then the place and route phase and

downloading is straightforward. On the other hand if the design is large (which occurs

in most cases of the GAP implementation) then it must be partitioned across multiple

chips. There are special tools in the NeoCAD software for partitioning. Figure 6.5

shows an FPGA XC4003 chip containing the Read Module. The black boxes inside the

chip are the CLBs with defined logic.

Chapter 6. Implementation ofthe GAP on FPGAs 99

Script plst^sek ootnpleted
InltializstJon coB|>ietsd.
Copyri^t,lffll-i394 b>4 ftecCRO Jm. mi rights

Figure 6.5: The Read Module for the 24 bit configuration on XC4003.

Converting the VHDL code to a bitmap file normally takes hours and depends on the

memory bit length in the GAP Module. The steps in the process were timed for GAPs

with 4, 8,16, 24 and 32 bit members. The time for each step in the conversion process is

summarised in the Table 6.3. All timing is based on mnning the process steps on a SUN

Sparc 10 workstation.

Table 6.3 shows that most of the processing time is spent in the synthesise, partitioning

and place and route phases.

Chapter 6. Implementation ofthe GAP on FPGAs 100

Configuration

Number of Chips

Compile

(Minutes)

Synthesise

(Minutes)

Netiist Format

(Minutes)

Partitioning

(Minutes)

Mapping

(Minutes)

Place and Route

(Minutes)

Bit Generation

(Minutes)

Total Time

(Minutes)

4 BIT

1

10

60

10

—

30

40

3

153

8 BIT

2

10

72

14

60

40

54

5

255

16 BIT

2

10

120

18

90

50

115

7

410

24 BIT

2

10

150

20

150

60

150

15

555

32 BIT

3

10

180

30

180

70

210

20

700

Table 6.3: The processing time for mapping VHDL source code of GAP to an FPGA
bitmap file on a SUN Sparc 10 workstation.

6.2.4 Programming an FPGA device

The bitmap file contains information which should be downloaded into an FPGA

device. A commercially available demonsfration board (Figure 6.6) can be used to

download the design in the simplest form into a single FPGA. Because of lunitations of

the board, it is not possible to download a model of the GAP with more than 4 bit

memory length.

Chapter 6. Implementation ofthe GAP on FPGAs 101

l O O O O
• o o o o
>oooo
tOOOO
tOOOO
lOOOO
lOOOO
IQOOO
iOOOO
)0000
>oooo
>oooo
JOOOO

>odoo
JOOOO
iOOOO
>oooo
iOOOO
>oooo
>oooo
> O D O O
>oooo

ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo

oooCDo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oocCDo

ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo
ooooo

oooCDo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
oooooo
•oooCDo

oooo
oooo
oooo
oo oo
oooo
oooo
oo OQ
ooon
oooM
oooo
oooo
oooo
oooo
oooo
oooo
oooo
OJDOQ
ooofl
oooU
oooo
oo-oo
oooo
oooo

S 5

X46S9

Figure 6.6: FPGA demo board component layout.

Chapter 6. Implementation ofthe GAP on FPGAs 102

The FPGA demo board is a stand-alone board for experimenting and prototyping with

FPGAs using Xilinx FPGA device families. The board comes with an XC3020-68 PFN

and an XC4003-84 PIN part.

The board coimects to the output port of the SUN workstation. There is a prototyping

area on the board for adding the memory chips and coimection to the Fitness Unit. The

program for downloading a bitmap is called BITGEN and is part ofthe NeoCAD tools.

The bitmap file can be downloaded into an on-board serial EPROM and then the board

can use the contents of the EPROM at start up for dovmloading to the FPGA chip. An

altemative way of programming the FPGA is by downloading directly to the FPGA

using BITGEN and then testing the model.

Figure 6.7: A 4-bit GAP implemented on the FPGA XC4013 chip.

Chapter 6. Implementation of the GAP on FPGAs 103

The simplest configuration for the GAP (i.e. 4 bit for memory data and 4 bit for memory

address) can be implemented on a smaller device ofthe 4000 series such as 4010. Figure

6.7 shows the layout ofthe 4-bit GAP design on an XC4013 chip.

6.2.5 GAP parameters and timing considerations

There are many potential applications for Genetic Algorithms and the GAP in

engineering. For best performance, each application requires a different set of

parameters including memory bit length, memory size, population size and probability

of crossover and mutation. Some of these parameters (population size and probability of

crossover and mutation) will be stored in the memory before operation ofthe GAP. The

size and bit length of memory are critical stmctural features of the GAP and must be

specified in the VHDL code.

There are several timing issues which must be resolved before the GAP can be used in a

real-time engineering application. These include the maximum clock frequency of the

GAP, the number of clock cycles required to complete a task and the response time of

the fitness calculation.

Table 6.4 shows the maximum clock frequency of the GAP varying the member's bit

length. For these results, 8 bits is chosen for the fitness value and the Fitness Unit is

assumed to retum the fitness value within one clock cycle. The table shows that if more

XC4013 chips are used in the implementation, then the maximmn attainable frequency

will be increased. In the first row, the maximum frequency for 4 bits is similar to the 8

bit configuration because the fitness length is also 8 bits. If 4 bits is selected for the

fitness value then it is possible to implement the GAP on a single FPGA chip and the

maximum frequency falls to 5.55 MHz.

Chapter 6. Implementation ofthe GAP on FPGAs 104

Member Bit Length

4 bit

8 bit

16 bit

32 bit

32 bit

Number of XC4013

2

2

3

4

5

Maximum Clock
Frequency (MHz)

6.26

6.53

8.20

9.67

11.2

Table 6.4: Maximum attainable frequency ofthe GAP for different member bit
lengths.

Table 6.5 shows the number of clock cycles to process a given number of generations

for different configurations. The table shows that the number of clock cycles required to

complete a task increases dramatically with the population size (m) and the number of

generations (g) as expected from the analysis in Chapter 5. The fourth row ofthe table

shows the real time for processing the task assuming a 10 MHz clock frequency. Note

that the Fitness Unit is assumed to retum the fitness value within one clock cycle which

in this case is 100 nS. The real time for processing the task is between 4 and 400

milliseconds.

Population
size

Number of
generations

Number of
clock cycles

Total GAP
time (mS)

16

32

40344

4.03

16

64

79453

7.9

32

32

134850

13.5

32

64

271270

27.1

64

32

530370

53.03

64

64

1054990

105.5

128

32

2016845

201.7

128

64

4057825

405.8

Table 6.5: Niunber of clock cycles needed by the GAP for processing a task and the
corresponding real time (based on working clock frequency of 10 MHz).

chapter 6. Implementation ofthe GAP on FPGAs 105

The next issue is the relationship between the response time of an application and the

processing capability ofthe GAP. Figure 6.8 shows the results of simulation based on a

10 MHz clock frequency for the GAP. The figure shows the total GAP time to process a

given number of generations versus the Fitness Unit delay time when the population

size is 16. There are four curves, one for each number of generations (G). If the delay

time is small then the GAP needs a fixed amoimt of time to complete the task which

depends on the number of generations. On the other hand if delay time is high then the

GAP is waiting for responses from the fitness system. Note that the delay break time

(which marks the transition from full processing to mostly waiting by the GAP) is

similar for all numbers of generations (i.e. about 5[iS).

Figure 6.9 shows the same information when the number of generations is fixed at 16

and the population size (P) is varied. The graph shows the delay break time is

proportional to the size of population.

10

^10"=
'en'

<D

E

Q_ 1 0 '

CD
"ca
•t—I o

1 0

1 0 '

10

Population=16

G=128

- G=64

G=32

G=16

10^ 10^ 10^ 10'
Fitness System Delay (ns)

10

Figure 6.8: Total GAP mn time versus the fitness delay time when the number of
generations varies for population size equal 16.

Chapter 6. Implementation ofthe GAP on FPGAs 106

10 11

<x>

10

10^

i o

Q_

TO
J—•

o

10 '

10"=
10^

Generati

P=128

P=64

P=32

P=16
' * • • ' • • ' !

^0^ 10 10^
Fitness System Delay (ns)

10"= 10^

Figure 6.9: Total GAP nm time versus the fitness delay time when population
size varies for number of generations equal 16.

This break point is very.importdnt for the GAP model and fitness system or application.

Indeed before the break point, GAP processing is responsible for 100% ofthe time to

complete a task, but after that point the percentage falls towards zero. So to take fiill

advantage of processing speed of the GAP then the delay time of the Fitness Uiut (i.e.

the application) must be less than the break point; The break point depends only on the

clock frequency ofthe GAP and the size ofthe population.

6.3 Comparison with a software GA

The whole model was tested for performance and comparison with standard genetic

algorithm models. Firstiy the model was tested with four standard static problems and

the result of optimisation was compared with software GAs. Later the VHDL models

were compared with the software approach to compare the speed performance in real

time processing.

Chapter 6. Implementation ofthe GAP on FPGAs 107

6.3.1 Testing the optimisation capability

The GAP model was tested for fiinctionality using a set of four standard fitness

fimctions from the DeJong test suites [DeJong, 1975]. These tests include searches for

an optimum point on flat, curving or noisy surfaces and they are considered to be

difficult for conventional search algorithms. In each case the equation for the surface

provides the fitness function for the test and each member string represents a point on

that surface. The test fimctions are defined as follows.

1 Sphere: A unimodal function that is three dimensional and has one minimum at

(0,0,0):

FXX) = Tx: (6.1)
1=1

2 Rosenbrock's saddle: A two-dimensional fimction that has a curving valley that

fools many optimisation algorithms into halting prematurely and returning a point that is

not the global optimum:

F^(X) = (100*(x, -x ,)^ -t-(x, - l y) (6.2)

3 Step: A five-dimensional function that has long, flat surfaces surrounded by

discontinuities. Simple hill-climbing algorithms often become stuck on these flat

surfaces:

^ 5

F^(X) = 2_,''nteger(xi) (6.3)

1=1

4 Quartic: A 30-dimensional fimction in which evaluation is modified by Gaussian

noise. Thus, successive evaluations ofthe same point retum different values:

^. (^) = I i^- + Gauss (0,1) (6-4)

Chapter 6. Implementation of the GAP on FPGAs 108

The results of these hardware simulations were compared with those from a software

implementation using the package SUGAL V2.0 [Hunter, 1995]. A population of 64

individuals and a mutation rate of 2% and crossover rate of 90% were used for all tests.

The software GA employs floating point arithmetic and advanced methods of selection,

normalisation, crossover, mutation and replacement. These methods are generally

difficult to implement in a hardware algorithm and therefore the. GAP was not expected

to perform to the same precision.

The results of comparisons are given in Figure 6.10 to 6.11, which shows the evaluation

ofthe error value of the best point averaged over 10 runs as a function ofthe number of

evaluations. One caimot expect the hardware approach to outperform the software

algorithm in any way. However these tests indicate that the hardware is capable of

reaching a similar optimum point in the same number of generations.

6.3.2 Comparing the speed of hardware and software

The GAP was compared with the Software-based GA (SGA) miming on a 66 MHz

Pentium. The SGA is fimctionally similar to the GAP. To make the software GA even

more similar to the GAP, the software GA was changed in the following ways.

• The SGA's population maintenance was changed from copying population Pt+i into

population Pt at the end of each generation to using the mapping h:{Pt, Pt+i}-^{Po, Pi)

as described in Chapter 4. lfh(P,)=Po in the current generation, then h(P^=Pj in the next

generation. This mapping was controlled by a value that was toggled after every

generation, just like the GAP's implementation. Thus, all the software GA's copying

overhead was removed.

Chapter 6. Implementation ofthe GAP on FPGAs 109

0.08

o

>
o

0.06

LU 0.04 -

0.02-

0 20 40 60 80 100 120 140
Number of Genera t ions

x lO '
B

Ha rdwa re -

Sof tware -

40 60 80 100 120 140
Number of Genera t ions

Figure 6.10: The error value ofthe best individual versus number of generations
(A =Sphere, B =Rosenbrock's saddle).

Chapter 6. Implementation ofthe GAP on FPGAs 10

0.14

40 60 80 100
Number of Generations

140

Hardware

Software

20 40 60 80 100
Number of Generations

120 140

Figure 6.11: The error value ofthe best individual versus number of generations
(C =Step, D =Quartic).

Chapter 6. Implementation of the GAP on FPGAs 111

• The software GA's selection procedure was altered to choose two new members per

function call instead of one member per call. Thus the software GA's selection

procedure more closely resembles the GAP's selection module described in Section

4.2.3.6.

• The software GA's mutation procedure was changed to more closely resembles

mutation in the GAP. The GAP's mutation probability of P^ means that there is a P^

probability that between the two crossed members, one bit will be flipped. In the

original software GA this probability applies to each bit of the, crossed members. The

software GA's mutation procedure was altered to reflect the GAP's mutation operation.

The GAP was compared with the software GA when optimising the fitness fimctions

f(x)=x° over the discrete domain Z>=/3S;|-(§<JC<7;. The GAP and software GA both ran

with 8 bit members and 8 bit fitness values.

Both the software GA and GAP are started with the same initial population, so the only

variations in the runs were in the pseudorandom number generation.

The results ofthe runs are shown in the Figure .6.12 and Table 6.6. The table presents

the average execution times ofthe software GA and GAP in milliseconds. All I/O times

are removed from the comparisons. The GAP prototype, clocked at 10 MHz, ran an

average 5.2 times faster than the software GA. The range of speed improvements varies

from 3.5 to 7.6. Considering the difference between clock frequencies (66/10=6.6), the

speed improvements are now range from 23 to 50 with the average of 35 (Table 6.7).

Chapter 6. Implementation ofthe GAP on FPGAs 112

Populations

16(SGA)

16(GAP)

32(SGA)

32(GAP)

64(SGA)

64(GAP)

128(SCTA)

128(GAP)

Generations

16

15.38ms

2.00ms

38.79ms

7.05ms

109.62ms

26.20ms

347.86ms

101.44ms

Generations

32

30.77ms

3.99ms

77.53ms

14.10ms

219.29ms

52.40ms

695.71ms

202.05ms

Generations

64

61.48ms

8.06ms

155.06ms

28.2ms '

438.46ms

104.95ms

1390.66ms

405.07ms

Generations

128

122.97ms

16.11ms

310.39ms

56.4tns

876.92ms

210.00ms

2834.48ms

809.85ms

Hardware speed

improvement

—

7.63

—

5.5

—

4.18

—

3.5

Table 6.6: Timing results ofthe software GA and the GAP on different fitness fimctions.
The GAP was clocked at 10 MHz, the software GA at 66 MHz.

Populations

Hardware speed

improvement

Overall speed

improvement

16

7.63

50.4

32

5.5

36.3

64

4.18

27.6

128

3.5

23.1

Average

5.2

35

Table 6.7: Overall speed improvements.

Chapter 6. Implementation ofthe GAP on FPGAs 113

10^

10"̂

e

< o
"TO
^ — I

o

10̂

10^

10̂
10'

_.SGA,128

-,SGA.64
_,GAP.128
_.SGA,32
-.GAP.64
-_,SGA.16

_,GAP.32

-_.GAR.16

Generations

10^
Population Size

10"=

Figure 6.12: Total mn time for the GAP and Software GA (SGA) for different
population sizes and generations.

Chapter 7

Application of the GAP in engineering

This chapter describes investigations into the potential use ofthe GAP in three different

applications all of which involve "parameter tuning". In each case the process being

controlled is approximated by either a polynomial equation or the ratio of two

polynomials. The role of the GAP is to update the confrol coefficients in the face of

non-linearities or changes in the plant or process behaviour.

The first application is a Proportional-Integral-Differential (PID) controller system

which can be optimised with the GAP. The second application is the Economic Power

Dispatch problem where the GAP optimises load distribution between generators. The

third is an Adaptive IIR Filter tuned by the GAP. In all applications various bit length

configurations are tested to examine the effect of member length in solving problems.

114

Chapter 7. Application ofthe GAP in engineering 115

7.1 Application in a PID controller

The conventional PID regulator, because of its remarkable effectiveness, simplicity of

implementation and broad applicability, is the most widely used digital control strategy

in use today [Ogata, 1990].

In practice, designing PID controllers is often carried out by an experienced operator

using a 'trial and error' procedure and applying some practical mles. This is a time

consuming and difficult activity when the dynamic process is slow, partly nonlinear,

contains significant dead-time, or is subjected to random disturbances. Once designed,

the control performance may later deteriorate because of nonlinear or time-varying

characteristics of the process under control. Although PID controllers are common and

well known, they are often poorly tuned [Dorf, 1991].

Modem adaptive control algorithms can be a good solution to such problems. They are

. able to self-time the controller and to adapt it to changes in the process, provided certain

conditions are fiilfiUed [Paraskevopoulos, 1988]. The inttoduction of these confrollers in

industiy may cause some resistance and difficulties, mostiy related to the lack of

knowledge by the operating personnel about their intemal mechanisms. An attractive

altemative is to try to combine the well-known PID controller with algorithms which are

able to provide on-line a set of optimal PID parameters, using input/output data from the

system.

7.1.1 The PID controller system

One fomi of controller widely used in industrial process is called a three-term or process

controller. This controller has a transfer function

0(S)=^^-K,.^^K,S (7.1)

Chapter 7. Application ofthe GAP in engineering 116^

The controller provides a proportional term Kp, an integration term Kj, and a derivative

term Kj and is also called a PID controller. The equation for the output in the time

domain is

u(t) = Kp e(t) + Kt \e(t) dt + K , ^ (7.2)

If we set Kd=0, then we have the familiar PI controller. When Ki=0, we have

G(S)=Kp+KoS "^ • (7.3)

which is called a proportional plus derivative (PD) controller.

Many industrial processes are confrolled usmg PID controllers. The popularity of PID

controllers can be-attributed partly to their robust perfonnance in a wide range of

. operating conditions and partly to their fimctional simplicity, which allows engineers to

operate them in a simple, straightforward manner. To implement such a controller the

three parameters must be determined for a given process.

In PID control we attempt to derive a plant in accordance with a given reference signal

(Figure 7.1). If a mathematical model of the plant can be derived, then it is possible to

apply various design techniques for detemiining parameters ofthe controller that will

meet the transient and steady state specifications ofthe closed loop system. However, if

the plant is so complicated that its mathematical model cannot be easily obtained, then

an analytical approach to the design of a PID controller is not possible and we must

resort to experimental approaches. The process of selecting the controller parameters to

meet given performance specifications is known as controller tuning.

Chapter 7. Application ofthe GAP in engineering 117

R(S)

+
E(S)

U(S)

I ^
PID

Controller
Plant
P(S)

Y(S)

- •

Figure 7.1: A typical PID controller system.

The three gain parameters (Ki, Kp, Kd) of the PID control law interact with the plant

parameters P(S) in a complex fashion when the designer attempts to derive the specified

roots of the closed loop equation. These roots are chosen in order to obtain the desired

transient response ofthe closed loop, while taking the resultant zeros into account.

The controller introduces a new pole at the origin of the s-plane and shifts the original

roots ofthe closed loop system to new positions. PID controllers increase the order of

the closed loop equation by one. In addition to these effects, PID controllers introduce a

pair of zeros, usually a complex conjugate pair, which will normally have a significant

effect on the transient behaviour ofthe compensated system.

Designing PID controllers, even for low order plants such as a robot arm, can be a

difficult problem. Consider the system illustrated in Figure 7.1 where the PID confroller

obeys the following control law:

U{s) = (KirS + Kp+Kj*s)E{s) (7.4)

where Y(S) is the output of the plant system, R(S) is the reference signal, E(S) is the

en-or signal equal to Y(S) - R(S) and U(S) is the output ofthe PID controller. Using tiie

equality S=(l-Z''), (7.4) can be expressed in the Z domain as:

Chapter 7. Application ofthe GAP in engineering 118

U{z) = {Kt/{l-Z-') + Kp + KA^-Z-'))E{z). (7.5)

The goal of PID controller design is to determine a set of gains, (Kj, Kp, Kj), of the

control law such that the set of roots ofthe closed loop equation chosen by the designer

are obtained.

The efficiency of the system can be measured by calculating the integral of the time

multiplied by the error for the unit step response during [0,T]:

T

error = jt\e(t)\dt (7.6)
1=0

The problem confronting the designer, therefore, is to calculate the three gains of the

PID controller while ensuring that transient response specifications (minimum error,

overshoot, rising time, settling time and steady-state error) are met.

7.1.2 Applying the GAP to a PID controller

The selection ofthe three coefficients of PID controllers is basically a search problem in

a three dimensional space. Points in the search space correspond to different selections

of a PID controller's three parameters. By choosing different points of the parameter

space, different step responses can be produced for a step input. A PID confroller can be

tuned by moving in this search space on a trial and error basis.

The main problem in the selection of the three coefficients is that they do not readily

translate into the desired performance and robustness characteristics that the control

system designer has in mind.

Genetic Algorithm Processor simulations have been conducted for the PID controller

system in Figure 7.1. The simulations measured the response Y(t) to the reference signal

R(t) which is a unit step fimction as shown in Figure 7.2. In order to represent a typical

Chapter 7. Application ofthe GAP in engineering 119

plant to be controlled we use the transfer function described by Hwang and Thompson

[1993] as:

To calculate the fitness value, the transfer function must be converted from the S

domain to the Z domain, and to the discrete values (K domain). Then 2000 points are

selected between 0 and 10 seconds (T = 10/2000 = 0.005). The fitness value is taken as

the integral of time, multiplied by the absolute error values.

2000

Fimess=Y,{{kT)*\e(k)\) 7=0.005 (7.8)
/t=i

The following parameters have been selected for the GAP model:

population size
generations
fitness value
crossover rate
mutation rate
member size

= 64
= 128
= 8 bits
= 90%
= 2%
= 24 bits

Each K value is allocated 8 bits in each member string (or chromosome) which makes a

total length of 24 bits. So the memory must have at least 256*24 bit locations. Figure

7.3 and Figure 7.4 demonstrate the result of simulations averaged over ten individual

runs. The minimum and maximum K values and the normalised error values are shown

after each generation. Figure 7.5 displays the unit step response signal Y(t) when the

best set of K values (from the final generation) are applied to the PID controller. The

measured characteristics ofthe response signal are as follows:

Steady State Enor =0.000
Overshoot =1.66%
Rise Time = 0.975 Second

Chapter 7. Application ofthe GAP in engineering 120

Settling Time = 1.455 Second.

The results show that the GAP is able to find good K values very quickly (generally in

20 generations) and the resulting unit step response is acceptable for a PID controller.

Unit Step Input Signal

Figure 7.2: The reference signal.

Chapter 7. Application ofthe GAP in engineering 121

5 30

20

10

0

-10

-20

WorstK

Best K

'0 20 40 60 80 100
Number of Generations

120 140'

5 0

'O 20 40 60 80 100 120 140
Number of Generations

Figure 7.3: The results of GAP simulations for PID controller
(Kd and Ki).

Chapter 7. Application ofthe GAP in engineering 122

Q.

40 60 80 100 120
Number of Generations

140

10̂

CO

E 10
o

-2

10
-3

Worst Error

Best Error

0 20 40 60 80 100 120 140
Number of Generations

Figure 7.4: The results of GAP simulations for PID controller
(Kp and normalised error value).

Chapter 7. Application ofthe GAP in engineering 123

1.2

1

Vi

o0.8
Q.
M
(I>
tXL

75 0.6

CO

55

0.2

PID Controller: Ki=3 ; Kd=63 ; Kp= 95

) 2 4 6 8 10
Tlme(S)

Figure 7.5: The unit step response ofthe best set of K values.

7.1.3 Other GAP configurations for the PID controller

This section compares the results of simulations for different GAP configurations. Three

configurations were tested with member bit lengths of 12, 24 and 36 bits. The following

parameters were selected for all GAP configurations:

generations
population size
fitness value
crossover rate
mutation rate

= 128
= 64
= 8 bits
= 90%
= 2%.

In all configurations, one third of the memory bit length in each member is used for

each K value. Figures 7.6 to 7.9 show the results of simulations for the GAP averaged

over ten individual runs. Ki, Kd, Kp and the normalised error values are shown after

each generation.

Chapter 7. Application ofthe GAP in engineering 124

1 0
G A P : 1 2 b i t s

10"-

1 0 "

1 0 " F

I p 1 0 '

1 0 "

1 0 "

2 0 4 0 6 0 SO 1 0 a
N u m b e r o f G e n e r a t i o n s

G A P : 2 4 B i t s

1 2 0

H i g h e s t P e r f o r m a n c e
L o w e s t P e r f o r m a n c e

2 0 4 0 e o SO 1 0 0
N u m b e r o f G e n e r a t i o n s

G A P : 3 6 b i t s

1 2 0

Ao eo SO 1 0 0
N u m b e r o f G e n e r a t i o n s

1 2 0

1 4 0

1 4 0

1 4 0

Figure 7.6: The results ofthe PID confroller simulation with 12,24 and 36 bit
configurations (Normalised Error Value).

Chapter 7. Application ofthe GAP in engineering 125

1 0 0
G A P ; 1 2 B i t s

9 0 -

SO

TO

6 0

5 0

4 0

3 0

2 0

1 0

O

O 2 0

H i g h e s t P e r f o r m a n c e

L o w e s t P e r f o r m a n c e

2 0 4 0 6 0 SO.. 1 0 0 ^
N u m b e r o f G e n e r a t i o n s

G A P : 2 4 B i t s

1 2 0

4 0 6 0 S O 1 0 0
N u m b e r o f G e n e r a t i o n s

G A P : 3 6 B i t s

1 2 0

iLW

H i g h e s t P e r f o r m a n c e

L o w e s t P e r f o r m a n c e

4 0 6 0 S O 1 0 0
N u m b e r o f G e n e r a t i o n s

1 2 0

1 4 0

1 4 0

1 4 0

Figure 7.7: The results ofthe PID controller simulation with 12, 24 and 36 bit
configurations (Kd).

Chapter 7. Application ofthe GAP in engineering
126

5 0

4 0

3 0

2 0

1 0

O

- 1 0

- 2 0

- 3 0

- 4 0

- 5 0 .

G A P : 1 2 B i t s

^^'•<i^'q;7^!A^^ ^ v W ' V V ^

2 0

Highest Performance

Lowest P,erformance

-40 6 0 SO 100-
N u m b e r Of G e n e r a t i o n s

G A P ; 2 4 B i t s

1 2 0 1 4 0

Highest Performance

Lowest Performance

4 0 6 0 SO 1 0 0
N u m b e r o f G e n e r a t i o n s

G A P ; 3 6 B i t s

1 2 0 1 4 0

2 0

Highest Performance

Lowest Performance

4 0 6 0 SO 1 0 0
N u m b e r o f G e n e r a t i o n s

1 2 0 1 4 0

Figure 7.8: The results ofthe PID confroller simulation with 12,24 and 36 bit
configurations (Ki).

Chapter 7. Application ofthe GAP in engineering 127

G A P ; 1 2 B i t

- 2 0
O

H i g h e s t P e r f o r m a n c e

L o w e s t P e r f o r m a n c e

2 0 4 0 6 0 SO 1 0 0
N u m b e r o f G e n e r a t i o n s ^

G A P ; 2 4 B i t

1 2 0 1 4 0

H i g h e s t P e r f o r m a n c e
L o w e s t P e r f o r m a n c e

4 0 6 0 SO 1 0 0
N u m b e r o f G e n e r a t i o n s

G A P ; 3 6 B i t

1 2 0 1 4 0

H i g h e s t P e r f o r m a n c e
L o w e s t P e r f o r m a n c e

4 0 6 0 SO 1 0 0
N u m b e r o f G e n e r a t i o n s

1 2 0 1 4 0

Figure 7.9: The results ofthe PID controller simulation with 12, 24 and 36 bit
configurations (Kp).

Chapter 7. Application ofthe GAP in engineering 128

Table 7.1 shows the results of comparison ofthe three different configurations.

Best values in

the final

generations

Normalised

error value

Kd

Ki

Kp

12 bits

le-2

12

2

13

24 bits

7e-3

62

5

90

36 bits

8e-3

81

-13

110

Table 7.1: The simulation results for different configurations.

From the Figure 7.6, it can be concluded that the 36 and 24 bit processors outperform

the 12 bit configuration. In the 12 bit configuration the GAP does not have enough

resolution to converge to the best result. There is not much difference between 36 bit

and 24 bit configurations, but the 24 bit configuration delivers sHghtly better

performance than the 36 bit configuration. Considering the lower cost for 24 bits, it can

be concluded that there is no advantage in using a higher bit length. The speed of

convergence in 24 bits is also faster than the 36 bit configuration.

7.2 Application of the GAP in Economic Power Dispatch

With the development of modem power systems the optimal Economic Power Dispatch

(EPD) problem has received increasing attention. EPD aims to minimise the fuel cost

while providing consumers with adequate and secure electiicity. The issue is concemed

with economically dividing the loads among the generators when the total capacity

Chapter 7. Application ofthe GAP in engineering 129

exceeds load demands [Happ, 1977]. This is a typical constrained nonlinear dynamic

problem made difficult by an uncertain demand environment.

7.2.1 The EPD problem

Two directions have been pursued in the study of optimal operation of power systems.

One is towards an effective computational algorithm and the other is towards the

development and formulation of a rigorous theory [El-Hawary and Christensen, 1979].

However, it is realised that conventional optimisation techniques become very

complicated when dealing with increasingly complex dispatch problems and are further

limited by their lack of robustness and efficiency in a number of practical applications.

Thus developing a reliable, fast and efficient algorithm is still an active area of research.

Economic dispatch is mainly concemed with the minimisation of an objective fimction,

usually the total fiiel cost FyfP), while satisfying both the equality and inequality

constraints as follows

p -P +P and Pt , <Pt<Pi (7.9)
' « i. 'mm max

where

•F-p{p)=YjF{Pi) is the total fiiel cost of generation for A/" plants.
(= 1

•Pj is the power generated by the unit /.

•Pf is the total power generation.

•PR is the total load demand.

N
2 •Pi is the total transmission loss PL=^^iPi

Chapter 7. Application of the GAP in engineering 130

• Pj and Pj are the lower and upper limits ofpermitted power generation for unit/.

•Bj is the transmission loss coefficient.

The total fuel cost for power generation is given by the equation

F(Pj)=at+btPj+CtPt^+et sin f R, ^ -Pj (7.10)

where a,-, bj, Cj, e, ,fj are the constants ofthe input-output loadxurve for the generators.

In most of the conventional methods, the complexity of the problem and its solution

procedure are dependent largely on the configuration of the power generators and the

number and type of constraints involved. Conventional optimisation techniques are

application-dependent and in certain situations, a combination of different

methodologies has to be employed for an efficient solution [Sasson and Merrill, 1974].

There is a large and ever increasing number of specific methods in each of these

categories and many of these methods have been tried on various issues of economic

power dispatch and optimal power flow in different combinations. As a mle, the most

powerfiil optimisation methods are unacceptably slow on problems of large dimensions.

Conversely, the faster methods tend to be less reliable in convergence and/or require

restiictive application formulations and modeling assumptions [Cohen and Sherkat,

1987].

No practical methods are guaranteed to solve real problems or find a globally optimal

solution. The limitations ofthe optimisation techniques have been a major obstacle to

the development of production quality economic dispatch and optimal power flow

programs for industiial applications and practical problem formulations. The situation

has recentiy improved with the development of several promising methods [Choudhury

and Rahman, 1990], although there are still many obstacles to be overcome.

Chapter 7. Application ofthe GAP in engineering 131

7.2.2 Applying the GAP to the EPD problem

Genetic Algorithm Processor simulations have been conducted for the optimal

economic dispatch of a 3 generator power system described in [Walters and Sheble,

1993]. The constraints and coefficients are shown in Table 7.2.

Parameter

Maximum

Minimum

a

b

c

e

f

Unitl

600 MW

100 MW

0.001562

7.92

561

300

0.0315

Unit 2

450 MW

150 MW

0.00194

7.85

310

200

0.042

Unit 3

250 MW

100 MW

0.00482

7.97

78

150

0.063

Table 7.2: Coefficients for generators in the simulations.

The loss power is ignored in all simulations and the following parameters were selected

for the GAP:

generations
population size
fitness value
crossover rate
mutation rate
member size

= 128
= 32
= 8 bits
= 90%
= 2%
= 32 bits

The demand power is fixed at 850 MW. Half of each member is assigned to the power

generated from generator one and two (PI and P2). The power for generator 3 (P3) can

be calculated as P3=850-P1-P2. Each member is 32 bits wide thus PI and P2 are

allocated 16 bits each. Figure 7.10 plots the minimum and maximum cost after each

generation averaged over ten individual mns. The actual minimum cost achievable is

about 8200 MBtii/hr. The GAP needs about 20 generations to find a reasonably good

Chapter 7. Application ofthe GAP in engineering 132

answer and after that it tries to optimise the answer. On average, in the final generation,

the GAP was able to find the minimum of 8343 which is about 2% off the optimum.

The best minimum cost in all generations for this configuration was 8212.30 MBtu/hr.

8900

8800-

8700
CQ

8600

O8500
O
"§8400
LL

8300

8200

Max Cost

\J^^^ • /MA^^AA^,^^AJ\^^4^•
Min Cost

20 40 60 80 100 120

Number of Generations

Figure 7.10: Cost versus number of generations for the best and worst
individual in the population.

7.2.3 Other GAP configurations for the EPD problem

The simulation in this section was repeated for three different member sizes in the GAP.

The constraints and coefficients are shown in Table 7.2. For all cases the demand power

is 850 MW and the loss power is ignored. The following parameters were selected for

all GAPs:

generations
population size
fitness value
crossover rate
mutation rate

= 128
= 64
= 8 bits
= 90%
= 2%.

Chapter 7. Application ofthe GAP in engineering 133

Figures 7.11 to 7.13 show the result of simulations for configurations of 32, 16 and 8 bit

members averaged over ten individual mns. In the figures the minimum and maximum

costs are shovm after each generation. In all configurations half of the member string

represents PI and the other half represents P2. Table 7.3 shows the best results and tiie

average results for the three configurations after the final generation.

Costs

Best ever
minimum

Average
minimum

32 bit GAP

8212.30

8343

16 bit GAP

8211.96

8271

8 bit GAP

8248.23

8333

Table 7.3: The best ever minimum costs and the average minimum costs.

From Figures 7.11, 7.12 and 7.13 and Table 7.3, it can be concluded that the 16 bit

processor converges to the best result. The 8 bit GAP does not have enough resolution

to converge to a good result. The 32 bit configuration converges quickly but to a poor

result. It is evident that the intermediate configuration of 16 bits produces better results

than the 32 bit configuration.

Chapter 7. Application ofthe GAP in engineering 134

GAP: 8 Bit
8900

8800

8700
CQ

8600

O8500
O
"^8400
LL

8300

8200

Max Cost

Min Cost

20 40 60 80 100 120
Number of Generations

Figure 7.11: Maximum cost and minimum cost versus number of
generations for 8 bit members.

GAP: 16 Bit
8900

8800

0 20 40 60 80 100 120

Number of Generations

Figure 7.12: Maximum cost and minimum cost versus number of
generations for 16 bit members.

Chapter 7. Application ofthe GAP in engineering 135

GAP: 32 Bit

8200

Max Cost

Min Cost

20 40 60 80 100
Number of Generations

120

Figure 7.13: Maximum cost and minimum cost versus number of
generations for 32 bit members.

7.3 Application in adaptive IIR filters

In recent years there has been a growing interest within the communications industry in

using adaptive filters. Applications of adaptive filters have been reported for chaimel

equalisation, noise cancellation and echo cancellation [Willsky, 1985]. In each

application the task of adaptation is essentially the same: the adaptive filter is adjusted

to match a desired system transfer fiinction and hence may be regarded as a variant of

the system identification problem. The common objective is to minimise a performance

criterion, usually the Mean Square Error (MSE) between the adaptive filter output and a

desired response. Thus, one ofthe fundamental problems in adaptive filter research is to

devise suitable algorithms to alter the filter coefficients to minimise the MSE.

Chapter 7. Application ofthe GAP in engineering 136

7.3.1 Properties of Infinite Impulse Response Filters

Digital filters with an Infinite-duration Impulse Response (IIR) have characteristics that

make them usefiil in many applications. This section develops and discusses the

properties and characteristics of these filters.

Because of its feedback architecture, the IIR filter is also called a recursive filter. In

contrast to the Finite Impulse Response (FIR) filter with a polynomial transfer function,

the IIR filter has a rational transfer fimction consisting of a ratio of two polynomials.

This means it has fiiute poles as well as zeros, and the fifequency-domain design

problem becomes a rational function approximation problem. This contrasts with the

polynomial approximation of an FIR filter and gives considerably more flexibility and

power, but brings with it certain problems in both design and implementation [Roberts

and Mullis, 1987].

The defining relationship between the input and output variables for the IIR filter is

given by (Figure 7.14)

Â M

y(n) = -J] (̂̂ ^y(̂ -k)-̂ Y, ^(^^^(^-^^ ^^-^^"^
k=\ k=Q

The first summation is a weighted sum ofthe previous Â output values and the second

summation is the average of the present plus past M values of the input x(n). The

calculation of each output term y(n) from (7.11) requires N+M+1 multiplications and

//+M additions.

The output of an IIR filter can also be calculated by convolution.

y(n) = Y, h(k)x(n-k) (7.12)
Jfc=0

Chapter 7. Application ofthe GAP in engineering 137

Figm-e 7.14: Stmcture of an IIR filter.

In this case the duration of the impulse response h(n) is infinite, and therefore, the

number of terms in (7.12) is infinite. The N+M+1 operations required in (7.11) are

clearly preferable to the infirute number required by (7.12).

The transfer fimction of a filter is defined as the ratio Y(z)/X(z), where Y(z) and X(z) are

the z transforms ofthe output >»(«) and input x(n), respectively. It is also the Z transform

ofthe impulse response. Using the definition ofthe z transform, the transfer function of

the IIR filter defined in (7.11) can be obtained as:

H(z) = £ h(n)z" (7.13)
n=0

This transfer function is also the ratio ofthe z transforms ofthe v(n) and w(n) terms.

Chapter 7. Application ofthe GAP in engineering 138

M

2]v(«)z-"
H(z) = ^ (7.14)

f^w(n)z-"

The frequency response ofthe filter is found by setting z = e'", which gives (7.13) the

form

H(&) = Ya h(n) €•''"'" • (7.15)

This frequency-response function is complex valued and consists of a magnitude and a

phase. Even though the impulse response is a fimction of the discrete variable n, the

frequency response is a fimction of the continuous frequency variable co and is periodic

with period 27t.

The FIR linear-phase filter permits removal of the phase from the design process. The

resulting problem is a real-valued approximation problem requiring the solution of

linear equations. The IIR filter design problem is more complicated. Linear phase is not

possible, and the equations to be solved are generally nonlinear. The most common

technique is to approximate the magnitude ofthe tiansfer fimction and let the phase take

care of itself. If the phase is important, it becomes part of the approximation problem,

which then is often difficult to solve.

The design of a digital filter is usually specified in terms of the characteristics of the

signals to be passed through the filter. In many cases the signals are described in terms

of their frequency content. For example, even though it cannot be predicted just what a

person may say, it can be predicted that the speech will have frequencies between 300

and 4000 Hz. Therefore, a filter can be designed to pass speech without knowing what

the speech is. This frequency-domain description is tme of many types of signals and

noise or interference. For these reasons, among others, specifications for filters are

Chapter 7. Application ofthe GAP in engineering I39

generally given in terms of the frequency response of the filter. The basic IIR filter

design process is:

1. Choose a desired response, usually in the frequency domain.

2. Choose an allowed class of filters—in this case, the A/th-order IIR filters.

3. Establish a measure of distance between the desired response and the actual

response of a member ofthe allowed class.

4. Develop a method to find the best allowed filter as measured by being closest

to the desired response.

The mathematical problem inherent in the frequency-domain filter design problem is the

approximation of a desired complex frequency-response fimction H0(z) by a rational

transfer fimction H^(z) with an Mth-degree numerator and an Mh-degree denominator

for values ofthe complex variable z along the unit circle of z = ^'^. This approximation

is achieved by minimising an error measure between HJ)(G)) and H^(G)).

Figure 7.15 illustrates the general stmcture and the components of an adaptive Infinite

Impulse Response filter with input x(n) and output >-(«). The IIR filter is characterised

by the adjustable coefficients w(n) and v(n), and a recursive algorithm that adjusts these

coefficients so that y(n) approximates some desired response d(n), which is determined

by the particular application. Figure 7.16 shows the adaptive filter in a system

identification configuration, where D is the set of desired system parameters, and d(n) is

simply the measured output of the system, which usually includes an additive noise

process V(n). The objective of the algorithm is to minimise a performance criterion

which is based on the prediction error e(n) (sometimes called the estimation error),

defined by e(n) = d(n) - y(n). One commonly used criterion is the mean-square error,

^=E[e (n)], where E is statistical expectation. Another criterion is based on the method

Chapter 7. Application of the GAP in engineering 140

of least squares, and the resulting algorithms are known as recursive Least Mean

Squares (LMS) [Widrow and Steams, 1985].

x(n)

rr^zl

[m

*FTo)] >(z\

»p(T)] ..(j

-« l^ (M- i) |—.r j^

-H v(M) f-

d(n)

I I R
F i l t e r

A d a p t i v e
A Igorithm

Figure 7.15: Stmcture of an adaptive IIR filter.

y (n)

The problem here is to calculate the w(n) and vfw) coefficients ofthe filter so that the

filter delivers the signal y(n) to match the desired response d(n). A novel approach has

been suggested to overcome this problem. Instead of applying a deterministic algorithm

to search for the minimum of the MSE surface, it was suggested that an intelligent

leaming algorithm is used [Tang and Mars, 1989]. Specifically, Stochastic Leaming

Automata (SLA) were considered. This type of automaton is known to have a well-

established mathematical foundation and global optimisation capability [Narendra and

Thathachar, 1989]. It has been found that this latter capability can be used firuitftilly to

search a multimodal performance surface [Shapiro and Narendra, 1969]. In this

approach the MSE surface is partitioned into a number of hyperspaces and a global

search is conducted to find the minimum. Global convergence has been demonstrated in

Chapter 7. Application ofthe GAP in engineering 141

a well-known reduced-order system identification example where other methods failed

to work [Tang and Mars, 1989].

(n)

/

Desired
System D

;

Adaptive
IIR

Filter

/

V(n)
+

+ "•

1 -1
y(n)

d(n)

D —

e(n)

Figure 7.16: A typical system for the adaptive IIR filter.

Since then significant developments have taken place in leaming systems. Etter and

Masukawa investigated the use of genetic optimisers and linear search algorithms for

adaptive delay estimation [Etter and Masukawa, 1981]. They found that when the

performance surface is multimodal, or when noise is present, random search algorithms

have a better performance than the LMS. Although both genetic optimisers and random

search are capable of performing global optimisation, little is known about their use in

adaptive IIR filters.

Chapter 7. Application ofthe GAP in engineering 142

7.3.2 Applying the GAP to adaptive IIR filters

In using a GA for adaptive filtering as in Figure 7.17, the desired system is defined as a

fixed IIR filter while the adaptive system is an adaptive IIR filter whose coefficients are

updated dynamically by a genetic algorithm.

V(n)

Desired
System D

x(n)

—>©—I
d(n)

- A
y(n)

Genetic
Algorithm
Processor

e(n)

Figure 7.17: The architecture of an adaptive Genetic Algorithm IIR filter.

Tests were conducted to compare the performance of the GAP with the known results

for the LMS and SLA algorithms described in the previous section. A reduced-order

modelling example is considered, in which a second-order system vdth a transfer

ftinction of:

Ho(^-')-
0.05-0.4Z -1

l-1.1314z-^+0.25z~2
(7.16)

is modelled by the following first-order filter

Chapter 7. Application of the GAP in engineering 143

H,{^-')=-^ (7.17)
1-oz

This well-known example was first proposed by Johnson and Larimore [1977] and since

then has been considered by others to show that recursive LMS carmot achieve global

convergence [Tang and Mars, 1991].

In applying a GA to this problem the fitness value is calculated by converting all

transfer functions from the Z domain to discrete values (K domain). The input signal

x(n) is white noise consisting of a window of 1000 random normal samples with the

standard deviation (sd) equal to one where the additive noise is ignored (y(n)= 0). The

fitness value is calculated by the Fitness Unit as:

1000

«=i

Fimess= MSE = Y, (yin)" d{n)) (7.19)

The following parameters are selected for the GAP:

generations
population size
fitness value
crossover rate
mutation rate
member size

= 128
= 64
= 8 bits
= 90%
= 2%
= 16 bits.

All simulations are averaged over ten individual mns started with different initial

values. Figure 7.18 compares the result of simulations of the genetic algorithm

processor with the LMS and Stochastic Leaming Automata. The length of each member

is 16 bits and the 'a' and 'b' values are each allocated 8 bits in each member.

This figure shows that the GAP model is much faster than other two algorithms but the

SLA is more accurate than the GAP.

Chapter 7. Application ofthe GAP in engineering 144

20 40 60 80 100 120
Number of Generations (X 64 = Iterations)

Figure 7.18: The Mean Square Error (MSE) for three algorithms
(* Results from [Tang and Mars, 1991]).

7.3.3 Other GAP configurations for adaptive IIR filters

This section demonsfrates the results of simulations for the three different member

string lengths in the GAP. The following parameters are selected for the GAP:

generations =128
population size = 64
fitness value = 8 bits
crossover rate = 90%
mutation rate = 2%.

Figures 7.19 to 7.21 show the result of simulations averaged over ten individual mns for

GAP configurations of 32, 24 and 16 bits. The figures show the best 'a' and 'b' values

and MSE after each generation. In all configurations, half of each member stiing

contains the 'a' value and the other half represents the 'b' value. Table 7.4 summarises

the performance ofthe three configurations. It is apparent that the best results were

produced by the 24 bit configuration.

Chapter 7. Application ofthe GAP in engineering 145

Best values

MSE

'a' value

'b' value

16 bits

0.39

0.79

-0.58

24 bits

0.36

0.815

-0.54

32 bits

0.38

0.81

-0.57

Table 7.4: IIR filter results for three GAP configurations.

From figures 7.19 - 7.21 and Table 7.4, it can be concluded that the 24 bit processor

produced consistently better results than the two other configurations. In the 32 bit

processor the convergence is faster but the final error is higher than for the 24 bit

processor. In the case of the 24 bit processor, there are some oscillations that slow the

convergence. The difference in performance is not very large and if the cost of

implementing the 32 bit GAP is taken into account then the 16 bit configuration has

performed relatively well.

GAP: Single Processor

40 60 80 100
Number of Generations

Figure 7.19: The best Mean Square Error (MSE) for the adaptive IIR filters versus
number of generations for three GAP configurations (16 bit, 24 bit and 32 bit).

Chapter 7. Application ofthe GAP in engineering 146

GAP: Single Processor

40 60 80 100
Number of Generations

120

Figure 7.20: The best 'a' value for the adaptive IIR filters versus number of
generations for three GAP configurations (16 bit, 24 bit and 32 bit).

GAP: Single Processor

0.3

16 BIT
24 BIT
32 BIT

20 40 60 80 100
Number of Generations

120

Figure 7.21: The best 'b ' value for the adaptive IIR filters versus number of
generations for three GAP configurations (16 bit, 24 bit and 32 bit).

Chapter 7. Application ofthe GAP in engineering 147

7.4 Conclusions

The GAP is capable of handling difficult control and filtering problems without detailed

specialised knowledge. A parameter tuning approach is used to adapt a simple linear

model to non-linear problems. This appears to avoid the need to have a deep theoretical

understanding of the problem and is thus an attractive engineering approach. Further

research is required to see how far this approach can be taken.

The GAP does not necessarily need a large member string length to solve a problem. In

some applications, the larger bit length configurations seem to have more difficulty in

tuning and finding good solutions than the moderate configurations. The small

configurations have the additional advantages of higher speed and lower implementation

cost. In the next chapter a new configuration ofthe GAP will be introduced to eliminate

the need for implementing large member strings on a single GAP device.

Chapter 8

Multiple GAP architectures

There are technical problems in implementing the GAP with a long member bit string.

But the single configuration with small bit string has limited application. This chapter

describes the limitations of the single GAP and introduces a new configuration which

provides for long member strings while retaining the simplicity ofthe basic architecture.

8.1 Limitation of a single processor

It was shown in Chapter 6 that as the length of the bit string is increased more FPGA

chips are required to implement the design. As the design becomes distributed over

several FPGA chips then there is a need for a large number of intemal connections

between chips. Unfortunately FPGA's have a fixed and limited number of I/O blocks in

proportion to the number of CLE's. This means that as the bit length increases we

148

Chapters. Multiple GAP 149

eventually reach a point where the I/O resources of individual FPGA chips are

exhausted and the design carmot be synthesised.

Two problems result from the high levels of coimectivity in distributed designs. These

are the board layout costs and the additional I/O delays which complicate the design.

Interconnection between chips is expensive and increases the board cost.

The delays in FPGAs are mostly due to routing. In most GAP designs about 70% ofthe

critical path delay is due to the routing delay and only 30% to the logic delay. So

routing is the major cause of the low processing speed of the GAP. Implementing the

GAP with long bit strings means more intercoimections and thus greater routing delays

and lower speed.

The ideal solution for these hardware limitations is to implement the GAP on a single

FPGA chip to minimise the connectivity problem. On the other hand implementing the

GAP on one chip means working with small bit strings. However even 8 or 16 bit

configurations are not practical for the GAs in real applications.

One way to handle this problem is to connect a linear array of GAPs each handling a

small bit string of 8 or 16 bits. This design delivers a large bit stiing to the problem.

Thus eliminating most of the hardware limitations. The performance of this model is

investigated in the following sections.

8.2 Multiple architectures

For real applications of the GAP, a means of splitting the bit string of a member

between multiple GAPs is needed. One practical way of doing this is by dividing the

fiill member into bit slices. Figure 8.1 shows how a 32 bit member string can be

distiibuted over four GAPs. Each 8-bit slice is assigned to a separate GAP which can be

implemented on one FPGA chip. The Fitness Unit operates on a ftill 32 bit member and

delivers an 8 bit fitness value to all GAPs.

Chapters. Multiple GAP
150

All GAPs in Figure 8.1 operate concurrentiy but at any time only one of them is waiting

for a response from the Fitness Unit. Each GAP produces new members and tries to

access the FU to calculate the fitness value. Whenever one new member (bit slice) is

ready in one ofthe GAPs (say GAP_A) then GAP_A tests the FU to see if it is free. If

so then the G A P A provides a new member slice on its output.

Fi tness

Uni t

32 b i t Member

8 b i t F i tness
Return

^GAPJVUGAP.BUGAPCLJ

1 1 1

8 b i t

GAPD

iVfanwy IVfenwy Mmwy

I
Mtnay

Figure 8.1: Splitting one member between four GAPs.

The FU receives the new member which is made up of the new slice from the GAP_A

and the current (unchanged) slices from the other GAPs. The FU calculates the fitness

value and retums the 8-bit result on the buss where it is received by GAP_A. This

configuration splits the bit string and enables the GAP to handle large bit strings.

The operation of the multiple GAP architecture can be demonstrated with an example.

Suppose the fitness function is F(x,y)=x+y. The x value is represented with 4 bits and

the y value is also represented in 4 bits. Two GAPs can be used to solve this problem.

One of them contains the x values (GAP_X) and the other one contains the y values

(GAP_Y). The fitness value is represented in 5 bits. If there is a change to be made in x

then GAP_X delivers its new string. The string for 7 remains unchanged at the last value

Chapters. Multiple GAP 151

delivered by GAPY. Table 8.1 demonstrates how the changes in x and jj; values affect

the fitness values.

Action

Initial values

Change in x value

Respond to GAP_X

Change in j ; value

Respond to GAP_Y

Change in x value

Respond to GAP_X

Change in y value

Respond to GAP_Y

X (4 bits)

0

2

2

2

2

7

7

7

7

y (4 bits)

0

0

0

10

10

10

10

14

14

Fitness value (5 bits)

0

—

2

—

12

—

17

—

21

Fitness Unit

busy signal

' 1 ' = busy

'0 '

' 1 '

'0 '

' 1 '

'0 '

' 1 '

'0 '

' 1 '

'0 '

Table 8.1: A simple example for the multiple GAP configuration.

It is worth considering how this method relates to the current theory of genetic

algorithms.

8.3 Justification for the multiple GAPs

According to the schema theory of genetic algorithms from Chapter 3, schema of above

average fitness will increase in the new population according to its fitness value. If a

similar GA process maintains the schema in the population, then the process should be

able to increase the schema number in the new population accordingly. Then

distributing a member between multiple GAPs is reasonable as long as the schemata

Chapters. Multiple GAP 152

remain unchanged in the population. For example suppose members of 16 bits are split

between two 8 bit GAPs and the following schema has a high fitness in the population:

***********jj**Q ^ ******** (pirstQAP) + ***ii**0 (Second GAP).

This implies that the second 8 bit schema must have a high fitness in the second GAP as

well. While generating a new population, the second GAP should increase the

occurrence of strings matching the schema in the next population. It is unimportant

whether the first part ofthe member comes from the first GAP or the second GAP. Thus

the multiple genetic algorithm processor should be able to increase the occurrence of

strings matching the total schema according to the schema theorem.

On the other hand if the high fitness schema for the same configuration of two GAPs is:

******Oioi****** = ******01 (First GAP) + 01****** (Second GAP).

The active part is divided between two GAPs. Under this schema we cannot guarantee

that either part of the schema (i.e. ******oi or oi******) has high fitness in the

population. It is still possible to apply this configuration to see how it works, but we

cannot explain the process with the GA schema theory.

It is apparent that under the schema theory, the multiple GAP configuration is not

expected to work in all cases. Let's assume we know nothing about the problem and

choose an unsuitable representing schema for the member strings. If we then arbitrarily

partition the members across several GAPs, there is a good chance that correlations will

occur between the different sections and this will adversely affect the optimising

capability ofthe system. The test examples in this chapter avoid this problem mainly by

using some knowledge of the environment to partition the member strings over the

multiple GAPs.

Chapters. Multiple GAP 153

8.4 Simulation ofthe multiple GAPs

To simulate the operation of multiple GAPs we need a concurrent programming

environment. Simulation programs can be handwritten in a concurrent programming

language like Parallel Pascal or Parallel C to compare how the single and multiple

GAPs solve problems. Fortunately the VHDL simulation tools can handle concurrent

processes and it is possible to directly test models of the multiple GAPs. The three

examples in Chapter 7 were simulated using multiple configurations and the results are

compared with the single configuration.

8.4.1 PID controller

Figures 8.2 to 8.5 show the result of simulations for configurations of two, tluee, four

and six GAPs averaged over ten individual runs for the PID controller system.- The same

parameters in Section 7.1.2 are used for all GAPs during simulations. In Figure 8.2 the

normalised error value is shovm after each generation. All three configurations deliver

24 bits to the objective fimction; Table 8.2 shows the best final values for the multiple

configurations. Note that the final error values are close, but the K values are very

different. This suggests that the problem surface has many local optimum points and

each configuration merges to one of them.

Best Values

Normalised
error value

Ki

Kd

Kp

Single GAP

7e-2

5

63

95

Two GAPs

5.8e-2

3

42

83

Three GAPs

4.8e-2

13

105

185

Four GAPs

5.7e-2

3

45

95

Six GAPs

6e-2

-40

45

103

Table 8.2: The best final values for the five configurations.

Chapters. Multiple GAP 154

1 0

4 0 6 0 8 0 . lOQ^
N u m b e r o f G e n e r a t i o n s

1 2 0 1 4 0

1 0
2 0 AO 6 0 8 0 1 0 0

N u m b e r o f G e n e r a t i o n s
1 2 0 1 4 0

AG 6 0 SO 1 0 0
N u m b e r o f G e n e r a t i o n s

1 2 0 1 4 0

Figure 8.2: The results ofthe PID controller simulation with single, 2, 3, 4 and 6
processors (Error Value).

Chapters. Multiple GAP 155

2 0 4 0 6 0 8 0 1 0 0
N u m b e r o f G e n e r a t i o n s ^ .

1 2 0 1 4 0

6 Processor . 6 '*4=24 Bit

2 Processor . 2 * 1 2 = 2 4 Bit

AO 6 0 SO
N u m b e r o f G e n e r a t i o n s

1 0 0 1 2 0

2 0 AO 6 0 SO 1 0 0
N u m b e r o f G e n e r a t i o n s

1 2 0 1 4 0

Figure 8.3: The results ofthe PID controller simulation with single, 2, 3, 4 and 6
processors (Kj Value).

Chapter 8. Multiple GAP 156

I S O

1 0 0

so

o

-SO

- 1 0 0

- 1 5 0
I

1SO

1 0 0

SO

o

-SO

- 1 0 0

- 1 5 0

2 0 -40 6 0 SO. l O O ^
N u m b e r o f G e n e r a t i o n s

6 P r o c e s s o r . 6 ' ' 4=24 B i t

2 P r o c e s s o r . 2 * 1 2 = 2 4 B i t

2 0 AO eo SO 1 0 0
N u m b e r o f G e n e r a t i o n s

1 2 0 1 4 0

'fkf^»oM:iC^^

3 P r o c e s s o r , 3 * 8 = 2 4 Bi t

4 P r o c e s s o r , 4 * 6 = 2 4 Bi t

O 2 0 4 0 6 0 8 0 100
N u m b e r of Gene ra t i ons

1 2 0 1 4 0

1 2 0 1 4 0

Figure 8.4: The results ofthe PID controller simulation v^th single, 2, 3,4 and 6
processors (Kj Value).

Chapters. Multiple GAP
157

2 0 4 0 6 0 s o 1 0 a
N u m b e r o f G e n e r a t i o n s

1 2 0 1 4 0

2 0 4 0 6 0 SO 1 0 0
N u m b e r o f G e n e r a t i o n s

1 2 0 1 4 0

2 0 4 0 6 0 8 0 1 0 0
N u m b e r o f G e n e r a t i o n s

1 2 0 1 4 0

Figure 8.5: The results ofthe PID controller simulation with single, 2, 3,4 and 6
processors (Kp Value).

Chapters. Multiple GAP 158

The normalised error value column in Table 8.2 shows that all multiple processor

configurations perform better than the single processor. This is because they work on a

smaller search space with the same resolution for the objective fimction. On the other

hand single processor configurations give a smoother curve than the multiple

configurations. The graphs show that the 2 and 6 GAP configurations converge faster

than the 3 and 4 GAP configurations and the curves are smoother but the error result in

the final generation is higher. In the 3 GAP configuration there are no correlations

between bit strings as each GAP is optimising one K value. This may be the reason why

the 3 GAP configuration achieves the best error result.

8.4.2 Economic power dispatch problem

Figures 8.6 to 8.8 show the result of simulations for configurations of one, four and

eight GAPs averaged over ten individual mns for the EPD problem. The same GAP

parameters as in Section 7.2.2 are used for all GAPs during simulations. In the figures

the minimum and maximum costs are shown after each generation. All three

configurations deliver 32 bits to the objective fimction. Table 8.3 shows the best results

and the average result for three configurations after the final generation.

Costs

The best
minimum

ever
Average

One GAP
32 bit

8212.30

8343

4 GAP
4*8=32
8211.47

8243

8 GAP
8*4=32

8211.56

8242

Table 8.3: The best ever minimum costs and the average minimum costs.

Figures 8.6 to 8.8 and Table 8.3 show that the 4 and 8 processor configurations both

outperform the single processor. This is mainly because they are working on a smaller

search space with the same resolution for the objective fimction. The only major

Chapters. Multiple GAP 159

difference between the 4 and 8 processor configurations is the maximum cost curve

which for 4 processors, is lower and smoother than for 8 processors.

GAP : Single Processor, 32 Bit
8900

8800-

8300

8200

Max Cost

/A-VAA^AA^KM^A^^.^^-

Min Cost

20 40 60 80 100

Number of Generations
120

Figure 8.6: Maximum cost and minimum cost versus number of
generations for the single processor.

8900

8800

GAP: 4 Processors , 4*8=32 Bit

20 40 60 80 100

Number of Generations
120

Figure 8.7: Maximum cost and minimum cost versus number of
generations for the 4 processors.

Chapter 8. Multiple GAP 160

8900

8800

GAP: 8 Processors , 8*4=32 Bit

20 40 60 80 100

Number of Generations
120

Figure 8.8: Maximum cost and minimum cost versus number of
generations for the 8 processors.

8.4.3 Adaptive IIR filters

The multiple GAP configuration has been simulated on the adaptive IIR filter problem

of Section 7.3. Figures 8.9 to 8.11 show the result of simulations for configurations of

one, two and four GAPs averaged over ten individual mns. The GA parameters are the

same as in Section 7.3.2 except that the member size is 32 bits. The graphs show the

best values from the population for the 'a' and 'b ' parameters of (7.17) and the MSE

after each generation. We have shown only 50 generations because after that point there

are no changes in the values. Table 8.4 shows the best final values from each

configuration.

Best values

MSE

'a' value

*b' value

Single Processor

0.38

-0.57

0.81

Two Processors

0.46

-0.54

0.75

Four Processors

0.42

-0.58

0.74

Table 8.4: The final results of each configuration.

Chapter 8. Multiple GAP 161

1.4

1.2

1
o~)

S 0.8
OQ

0.6

0.4

0.2

GAP: Multiple Processors

Single Processor

2 Processors

4 Processors

10 20 30
Number of Generations

40 50

Figure 8.9: The best adaptive IIR characteristics (Mean Square Error (MSE))
versus number of generations v^th multiple processors (single, 2 and 4 processors)

-0.7

-0.8

-0.9

-1
0

GAP: Multiple Processors

Single Processor

2 Processors

4 Processors

10 20 30
Number of Generations

40 50

Figure 8.10: The best adaptive IIR characteristics ('a' value) versus number of
generations with multiple processors (single, 2 and 4 processors).

Chapter S. Multiple GAP 162

GAP: Multiple Processors

Single-Processor

2 Prdcessors

4 Processors

10 20 30
Number of Generations

40 50

Figure 8.11: The best adaptive IIR characteristics ('b' value) versus number of
generations with multiple processors (single, 2 and 4 processors)

The figures (8.9 to 8.11) and Table 8.4 show that the 2 and 4 processor configurations

both minimise the MSE in a reasonable number of generations. Indeed the 2 processor

configuration settles faster than the single processor but the final error value (MSE) and

oscillation is higher than for the single processor. The 4 processor configuration takes

longer to settle than the single configuration but the final error value is less than for the

2 processor configuration. The oscillation in the values for 4 processors is greater than

for the other two configurations. It appears that the multiple configurations are capable

of finding stable values, but the accuracy is not as good as for the single processor.

8.5 Conclusions

This research shows that the multiple GAP configurations have potential to be used in

real applications. The multiple GAP has been applied to the three applications in

Chapter 7 and all simulations show this configuration is capable of competing with the

Chapter 8. Multiple GAP 163

single GAP. In two of the applications the multiple GAP appeared to optimise the

application better than the single GAP but it has not been proven that the multiple GAP

is always better than the single GAP. For example in the filter application, performance

of the multiple processors appears to be worse than for the single GAP. To investigate

the operation of the multiple configurations further mathematical analysis is required

but this is outside the scope of this thesis

There are two issues conceming multiple GAP configurations. The first one is the high

oscillation observed during search and the second pne is selection of the optimum

number of GAPs for a particular problem. The oscillation problem may be advantageous

to the operation of the multiple GAP. Oscillation suggest a wider search in the problem

space and thus a higher chance of finding the global optimum. The second problem, the

number of GAPs required to solve a particular problem, depends on the coding of the

problem and this will affect the performance of the search. In selecting a suitable

configuration of GAP's it is desirable to utilise some problem-specific knowledge. A

good place to start is with a model which can be used to approximate a solution. If the

GAP is operating in a parameter tuning role then it is appropriate to select the number of

GAPs to be equal to the number of model parameters to be tuned. If this fails then the

model may be inappropriate.

Chapter 9

Adaptive behaviour of the GAP

In the previous chapters the performance of the GAP has been examined in a static

environment in which the Fitness Unit responses for the same inputs are similar. This

chapter considers how a GAP might be applied to a dynamic system. For static fitness

fimctions all members ofthe population eventually converge to the optimum point at the

end of a successful search cycle. If the optimum point then moves as a function of time,

the GAP caimot respond efficiently if there is insufficient genetic diversity left in the

population. We v^ll apply our GAP model to the same applications as in Chapter 7, but

this time the environment (and thus the fitness evaluation) is to be varied in time. The

objective is to test the performance ofthe GAP model in dynamic situations.

164

Chapter 9. Adaptive behaviour ofthe GAP 165

9.1 Adaptive behaviour

A system is adaptive if during changes in the extemal environment, at least one intemal

control variable in the system changes to produce better behaviour. If a system is

adaptive then any larger system based on that system can be adaptive. Figure 9.1 shows

how an adaptive GAP can be applied to a system and produce adaptive behaviour.

OUT i 1 IN

It
System under control

OUT IN

Adaptive
GAP for
control

s 1

Figure 9.1: An adaptive system based on the adaptive GAP.

Suppose the system being made adaptive is a PID contt-oller and a GAP is used to

optimise the K parameters of (7.5). Whenever changes due to extemal causes occur in

the plant, these changes affect the output of the system and thus eventually affect the

response to the GAP. If the GAP is adaptive, then it will respond to these changes and

vary the K values. The new K values change the behaviour of the plant and finally

change tiie output of the system. If the process works then the whole system has become

adaptive.

There are two ways in which the behaviour of a system might change. The first is a

slight change in the operating point due to changes in environmental factors such as

Chapter 9. Adaptive behaviour ofthe GAP 166

temperature or pressure. The second is a sudden change in a key parameter that affects

the whole operation ofthe system.

The GAP has difficulty in keeping track of small changes in the environment. If it is

necessary to use the GAP in such situations then it should be periodically restarted with

a population of random members. Recognising that the environment has drifted is

difficult and restarting from an initialised population slows down the optimisation.

As an example to show how the GAP operates in a slowly varying environment, it has

been simulated on the Economic Power Dispatch problem when the demand power is

varied between 800 and 850 according to the Figure 9.2.

850

845

840

g^835

^ 8 3 0
•o

ro 825
E

S 820

815

810

805

800 0

^ 1 :

200 400 600 800 1000
N u m b e r o f Genera t i ons

1200

Figure 9.2: The changes in the demand power.

Figure 9.3 shows the results of simulation for the variable demand. It can be seen that

because the demand only changes 5 MW (0.5%) in each step, then the GAP has

difficulty in adjusting itself to this sitiiation and often retiims the same cost after a

change.

Chapter 9. Adaptive behaviour of the GAP 167

The next section considers the performance of the GAP with larger changes in the

environment.

8600

8500

8400

8000

7900

7800

GAP: 32 BIT Single Processor

GAP Minimum Cost

Actual Minimum Cost

200 400 600 800
Number of Generations

1000 1200

Figure 9.3: The results of simulations when the demand power is
varied in small steps.

9.2 Adaptive GAP

The operation of the adaptive GAP can be explained with an example. Consider the

optimisation task shown in Figure 9.4. The load RL changes in time due to unknown

extemal factors. The Optimisation Part (OP) is required to adjust a resistor RS to

equalize the voltage drop on RL and RS. In theory this task is achieved by measuring

RL or the current (I) through the resistors and then adjusting RS. For these systems, an

adaptive mechanism is needed which changes its intemal parameters to match with the

system. This example demonstirates the need for a different approach to optimisation.

We can use a genetic algorithm for the required adaptive mechanism without the need

for embedding any knowledge ofthe current/resistance relationship inside the GA.

Chapter 9. Adaptive behaviour of the GAP 168

RL

Figure 9.4: A simple optimisation task.

One way to make the GAP adaptive is to increase the mutation rate thus adding some

randomness to the population. So when the GAP detects a change in the fitness values

(either by a signal from the Fitness Unit or by examining the fitness values in

population) it will change the probability of mutation to 100% for one generation and

then retum the mutation rate to its normal value. In this case the population can be

spread out from the current optimum point. There are other ways of making the GAP

adaptive such as starting with a totally random population or changing the coding of the

members, but these are complicated and time consuming. Changing the probability of

mutation is simple and it is easy to change the duration of altered mutation for different

applications.

The only problem is informing the GAP that a sudden change has occurred in the fitness

evaluation unit. This can be done by arranging for the GAP to respond to a signal from

an extemal detector which is activated by a sudden change in the load (RL). The second

method involves examining the fitness values of the population to detect the change

intemally. Whenever a change occurs in the load the fitness values are expected to drop

suddenly to very low values and this could be detected by an algorithm in the GAP. It

can be expected that such an algorithm would sometimes falsely report changes and thus

Chapter 9. Adaptive behaviour of the GAP 169

decrease the efficiency ofthe GAP. In all simulations in this chapter the first method is

used because it does not contribute any additional error to the tests. For the tests, the

fitness fimction was computed from the output power fiinction and can be expressed as:

F{R„R) = R,*R*V'/{R,+Ry (9.1)

For the example, the value of V is equal to 32 volts. Figure.9.5 shows the surface of this

fiinction. The optimum solution is achieved by maintaining RL=RS for RL changing

randomly in time.

RS
15 15

Figure 9.5: Problem space of a dynamic fitness fimction.

In the genetic algorithm processor, the following parameters are used:

mutation rate
crossover rate
population size
generations
member size
fitness value

= 1%
= 90%
= 32
= 128
= 16 bits
= 8 bits.

Chapter 9. Adaptive behaviour ofthe GAP 170

The simulations were conducted for 75 random changes in RL and the GAP optimised

after every change. In the first test a one point crossover algorithm was used. In the

second one uniform crossover was used and finally in the third test, the coding routine

was changed to Gray coding [Davis, 1991] with uniform crossover. The results ofthe

tests averaged over ten mns are shown in Table 9.1. In this table the column marked

"Search Failed" designates cases where the GAP failed to find a solution in which

RL=RS.

Test Number

1

2

3

Algorithm

One Point Crossover

Uniform Crossover

Gray Code

Number of
Changes in

RL
75

75

75

^ Search
Failed

15.4

5.2

4.5

Error
Percentage

20

7

6

Table 9.1: The results of the dynamic fitness fimction simulations.

The table shows that in tests 2 and 3 the genetic algorithm hardware can find the

solution with a low percentage of error. It also shows that uniform crossover is better

than one point crossover and that using Gray coding of member strings increases the

efficiency ofthe GAP in this example.

9.3 Adaptive performance of the GAP in engineering applications

In this section the GAP model is applied to the applications in Chapter 7. In all

examples changes in the environment are represented by changing one ofthe features of

the fitness computation with time. In the PID controller the plant tiansfer fimction is

varied. The demand power is varied in Economic Power Dispatch problem and in the

filter problem one ofthe filter parameters is varied in time.

Chapter 9. Adaptive behaviour of the GAP 171

9.3.1 PID controller

Genetic Algorithm Processor simulations have been conducted for the PID controller

system in Figure 7.1. The reference signal (R(t)) is a step signal as shown in Figure 7.2.

For the purpose of manipulating the environment and evaluating the fitness fiinction we

provide the following transfer function for the plant:

P{S) = —, ^, ^ (9.2)

To test the adaptive behaviour, the 'a' parameter of (9.2)' is varied during the

simulations in a series of steps as shown in Figure 9.6. In this figure each step occurs

after 100 generations and increases 'a' by one unit. This gives time for the GAP to settle

after each change. At each step a signal from the Fitness Unit informs the GAP that a

change has occurred in the fitness evaluation and the GAP alters the mutation rate to

100% for one generation. This avoids the necessity for the GAP to recreate a random

population after each change. A model of the PID controller is provided (as in Chapter

7) in the form ofthe following transfer fimction:

U{s) = (Kt/S + Kp + K,*s)E{s) (9.3)

To handle this problem we used a multiple GAP configuration as depicted in Figure 9.7.

Each GAP optimises one K value from the PID controller. The following parameters are

selected for all GAPs:

generations
fitness value
member size
population size
crossover rate
mutation rate

= 3000
= 8 bits
= 24 bits
= 64
= 90%
= 2%.

Chapter 9. Adaptive behaviour of the GAP 172

30

25

20

:3

>15
(0

10

5

.

.

-

I — '

) 500

1

1000 1500 2000 2500

1—

-

.

.

-

t

3000
Number of Generations

Figure 9.6: The 'a' value changes with the number of generations.

24 Ixt Member

8 bit Fitness

Figure 9.7: The architecture ofthe adaptive Multiple GAP
used for PID controller system.

Chapter 9. Adaptive behaviour ofthe GAP 173

The fitness function is defined according to Chapter 7 as:

2000

Fitness =Y,({kT)*\e(k)'\^ (9.4)
k=\

Figure 9.8 and 9.9 show the results of simulations averaged over ten individual runs. In

these figures the best of the three K values and the fitness values are shovm after each

generation. Figure 9.10 shows the best response signal (Y(t)) for a=l and a=30. The

characteristics ofthe response signal are shown in Table 9.2.

In the Figure 9.8 and 9.9, Kp changes from about 200 for a=l to 30 for a=30. In the

same time Kj changes from 130 to 20 and Kj changes from 35 to 5. This shows that

when the 'a' value is altered in the system, K; and Kp are affected most as the PID

controller adapts to the plant. The fitness value graph (Figure 9.8) shows that the GAP

always keeps the response signal within a small error margin during changes in the 'a'

value. It shows that the PID controller always settles to give a good response.

Parameters

Kp
Ki

Kd
Steady State Error

Overshoot

Rise Time(S)

Settling Time(S)

a=l
206

131
38

0.000

0.7676%

1.150

1.575

a=30

23

14
15

0.000

1.122%

1.495

1.600

Table 9.2: Characteristics ofthe best member for a=l and a-30.

Chapter 9. Adaptive behaviour of the GAP 174

500 1000 1500 2000 2500 3000 3500
Number of Generations

150

100

T3

"55
m

0 500 1000 1500 2000 2500 3000 3500
Number of Generations

Figure 9.8: The results ofthe PID controller simulations (normalised
error value and Kj).

Chapter 9. Adaptive behaviour of the GAP 175

500 1000 1500 2000 2500 3000 3500
Number of Generations

250

200

"G3

m

150

100

"0 600 1000 1500 2000 2500 3000 3500
Number of Generations

Figure 9.9: The results ofthe PID controller simulations (Kj and Kp).

Chapter 9. Adaptive behaviour ofthe GAP 176

1.2

0.8

II

t/1

o
§"0.6
a:
a.
a>
55 0.4

0.2

PID Controller : Kl=38 ; Kd=131 ; Kp=206

4 6
Tlme(S)

8 10

PID Controller : Kl=15 ; Kd=14 ; Kp=23

4 6
Time(S)

8 10

Figure 9.10: The unit step response ofthe PID controller system for
a=l and a=30.

Chapter 9. Adaptive behaviour of the GAP 177

9.3.2 Economic power dispatch problem

Genetic Algorithm Processor simulations have been conducted for the optimal

economic dispatch of the 3 generator power system described in Chapter 7. These

simulations were conducted with the multiple GAP configuration (Figure 9.11) with the

following parameters:

generations
population size
crossover rate
mutation rate
fitness value
member size

= 2048
= 32
= 90%
= 2%
= 8 bits
= 32 bits.

8 bit Fitness

32 bit Member

16 bit

Figure 9.11: The architecture ofthe adaptive multiple GAP
used for EPD problem.

The constraints and coefficients are given in Section 7.2.2. The demand power was

varied in steps according to Figure 9.12 and the loss power is ignored.

Figure 9.13 shows the result ofthe simulations averaged over ten individual runs. The

minimum operational costs are shown after each generation.

Chapter 9. Adaptive behaviour ofthe GAP 178

It can be concluded that the GAP is capable of adapting to sudden changes in the

demand power. In all cases the GAP error in finding the best results is in the range 2%)

to 5%.

1000

200 400 600 800
Number of Generations

1000 1200

Figure 9.12: The demand power is varied with the number of
generations.

10000

7000 0 200 400 600 800 1000 1200
Number of Generations

Figure 9.13: Minimum costs versus number of generations when the
demand is varied as in Figure 9.12.

Chapter 9. Adaptive behaviour ofthe GAP 179

9.3.3 Adaptive IIR filters

In this experiment the zero location ofthe IIR filter from Section 7.3.2 [Johnson and

Larimore, 1977] was modified during simulations. The altered transfer fiinction ofthe

desired system HD(Z) (see Equation 7.16) is given as:

HoH = 0.05-pz -1

l-1.1314z-'+0.25z-^
(9.5)

where the value of P (which controls the zero location) has been artificially stepped up

from 0.2 to 1.0 in increments of 0.2 after every 70 generations (Figure 9.14).

The configuration ofthe multiple GAP for this example is shown in Figure 9.15.

0.8

go.6

0.4

0.2

"0 50 100 150 200 250 300 350
Number of Generations

Figure 9.14: The 'p' value changes with the number of generations.

Chapter 9. Adaptive behaviour of the GAP 180

16 bit Member

Figure 9.15: The architecture ofthe adaptive multiple GAP for tiie IIR filter.

The first GAP optimises the 'a' value and the second one optimises the 'b' value of

(7.17) in Chapter 7. The following parameters are selected for all GAPs:

generations
population size
crossover rate
mutation rate
fitness value
member size

= 350
= 64
= 90%
= 2%
= 8 bits
= 16 bits

Note that the number of generations is increased to 350 for this test.

The results for the simulations are shown in Figures 9.16 to 9.18. For every change in p,

there is an immediate change in the 'a', 'b' and the MSE values. After about 60

generations, the MSE stabilises to a value of less than 0.6. Note that there is a limit to

the rate at which p can be altered in this manner. This depends on the GAP processing

rate and the fitiiess evaluation rate as the GAP needs to evaluate 30-60 generations to

settle after each change in p. Assuming the GAP is clocked at 10 MHz for 70

generations with a population of 64 members then according to Figure 6.12, the total

Chapter 9. Adaptive behaviour ofthe GAP 181

time required to complete one step in Figure 9.14 is around 100ms. Therefore p can be

varied at a rate of up to 10 Hz.

1.5

UJ

vt
a>

CQ

0.5

50 100 150 200 250 300 350
Number of Generations

Figure 9.16: The minimum MSE for the adaptive IIR filter when p is varied in
(9.5).

Number of Generations

Figure 9.17: The best 'a' value for the adaptive IIR filter when p is varied in (9.5).

Chapter 9. Adaptive behaviour of the GAP 182

50 100 150 200 250
Number of Generations

300 350

Figure 9.18: The best 'b' value for the adaptive IIR filter when p is varied in
(9.5).

9.4 Conclusions

This chapter describes experiments to test the adaptive behaviour of the GAP. The

applications show how multiple configurations ofthe GAP can adapt to sudden changes

in the plant. One problem is notifying the GAP when changes occur. If the GAP is not

notified of the change, then it is not possible for it to modify the population for

adaptation. This notification can be made by an extemal signal or intemally by testing

for sudden changes in the fitness values. In all simulations here, an extemal signal was

used. This choice is safe and without error but needs to be provided from the application

to the GAP. The other method is better but there are chances of errors in detecting

changes from within the GAP. Further research is needed to design a good algorithm for

detecting changes in the environment, based on changes in the population's fitness

values. Such an algorithm could be included in the GAP hardware.

There are several other constrains and limitations to the application of the GAP to

adaptive control. These are discussed in more details in the next chapter.

Chapter 10

Conclusions and future work

Prior to this research there has been little reported work on hardware implementations of

Genetic Algorithms. Most GA research to date has concentrated on the design and

application of software GAs to search problems with static evaluation functions. It has

always been assumed that GAs are simple to implement in hardware and that emphasis

should be placed on software development and testing because of the flexibility and

versatility of software.

This thesis has taken a different view. A hardware model of the GA was written in

VHDL in Chapter 4 and analysed in Chapter 5 and is proposed as a candidate model for

hardware implementation. However for hardware implementation of GAs to be useful in

engineering applications there are many problems to be answered. In summary, this

thesis has addressed a wide range of issues conceming hardware genetic algorithms.

These range from the obvious, speed advantage over software GAs to the more subtle

183

Chapter 10. Conclusions and future work 184

issues conceming minimal architectures that still operate satisfactorily on engineering

applications.

10.1 Hardware implementation issues

This thesis has addressed the following issues concemed with hardware implementation

of GAs.

• What is the speed advantage ofthe hardware GA over software GA's?

Simple tests demonstrate that the GAP operates about 35 times as fast as a similar

software GA assuming the same clock speed. Other design ideas are suggested which

should improve the GAP's performance. These improvements could realistically make

the GAP 100 times faster than the software-based GA although these speedups ignore

the time spent in fitness evaluation.

• Can GAs be implemented on low cost reprogrammable technology and what is the

minimum hardware configuration required to implement a simple GA?

It has been shown in Chapter 6 that the GAP can be implemented on FPGA technology.

The four bit GAP can be downloaded into a single Xilinx XC4013 chip. To constmct a

GAP with larger member size in current FPGA technology two or more chips are

required. For a typical configuration ofthe GAP there is a trade off between the number

of chips and the speed of the hardware. Using more chips results in higher speed but

also higher costs.

• What is the performance of the hardware GA configuration on engineering

problems?

In Chapter 6 and 7, the GAP is applied to 10 problems. In all cases it found a good

solution to the defined problem but in most cases was unable to produce the best

solution. This is due to the limitations of the simple Genetic Algorithm used in the

Chapter 10. Conclusions and future work 185

hardware implementation. If more sophisticated GAs are implemented, then we can

expect better performance but the cost will increase. More discussion about applications

will be presented in Section 10.2.

• Is there a simple but effective way of handling large member word length?

We can expect that with advances in FPGA technology (through the Xilinx XC6200

chip and beyond), it may soon be possible to fit the 16-bit and 32-bit versions onto a

single chip. However many applications in engineering and science required a very large

bit string like 64 to 1024 bits. Using more chips in the implementation is expensive and

the resulting circuit will be slowed down by intercoimection delays. A mechanism for

splitting the string among multiple GAPs and using an array of GAPs to solve a

problem is explained in Chapter 8. The limitations of this approach will be discussed in

Section 10.3.

• What is the adaptive performance ofthe GAP?

Optimisation with a static evaluation fimction is often quite a simple problem for the

GAP. Of real interest to engineering is its performance in a dynamic enviromnent.

Considering the stochastic and probabilistic nature of genetic algorithms, it is clear that

this is going to be a very difficult problem for a long time to come. The research

described in Chapter 9 demonsfrates some success but only with the application of a

number of constraints and limitations. The effect of these will be described further in

Section 10.4.

10.2 Applications of the GAP

This thesis covered three applications in engineering. The simulations in Chapter 7 have

been carried out under the following assumptions.

• A parameterised model ofthe plant was provided in each case.

Chapter 10. Conclusions and future work 186

The model is only required to compute the evaluation function and carry out the

simulations. In real applications the GAP is directly coimected to the plant and

performance evaluation is usually carried out by direct measurement.

• It is assumed that the plant is capable of responding to any input supplied by the

control system or filter which is being "tuned" by the GAP.

In many cases there will be some combinations of parameters which, if supplied by the

GAP, will cause the plant to become unstable. Clearly there is a need for protection

against instability at various points in the system.

• Maximum real-time performance can only be achieved if the fitness is always

computed in a very short time < 1 GAP clock cycle.

To take full advantage of the GAP speed, it is necessary for the plant to rettun tiie

fitness value witiun one clock cycle to the GAP. If the plant is slow and forces a wait

stattis on the GAP Operation then we will lose some ofthe speed advantage ofthe GAP.

These timing limitations were described in Section 6.2.5.

The GAP prefers high speed applications where the fitness value can be rettimed in

microseconds. For a slow application the GAP may not be a good choice, but the low

cost of implementation should also be considered.

10.3 Multiple GAP configurations

By splitting each member string across several GAPs we can handle more complex

problems while retaining the simplicity of the design. The main problems with the

multiple GAP architecture can be expressed in the following questions.

• Is the multiple GAP architecture supported by any theory?

Chapter 10. Conclusions and future work 187

It is difficult to verify the operation of the multiple GAP using schema theory. The

experimental results in Chapter 8 suggest that this configuration operates as well as the

normal GAP. Further theoretical analysis is required to investigate the limitations of this

configuration.

• Does the multiple GAP configuration work for all applications?

No: the simulations in Chapter 8 suggest the need to test the performance ofthe multiple

GAP for each application. The performance depends on the fitness landscape of the

problem and the type of coding used for the member string.

• What is the optimum configuration needed for any specific application?

This depends in part on the coding scheme selected for the problem. If we have a model

ofthe problem then we would normally select the number of GAP's in the multiple

configuration to match the number of independent variables in the model.

Using the GAP in the multiple configuration is more restricted by application because of

the schema theory. However the full power of the GAP can be obtained using this

configuration. In general, where the numbers of parameters are high or the bit string is

long, the multiple GAP is the best choice for implementation.

10.4 Adaptive behaviour

Before any conclusions can be made about the adaptive behaviour of the GAP, it must

be stressed that the simulations in Chapter 9 have been carried out under the following

idealised conditions:

• Only one parameter of each plant or filter was ever varied in the tests.

Normally when the adaptive system responds to changes correctly it means that it is

capable of handling any change in the application. It is possible to change two or more

Chapter 10. Conclusions and future work 188

parameters in the application model and it is expected that the GAP would still operate

correctly.

• Changes which occurred in the plant or filter were sudden and the GAP model was

notified immediately of any changes.

Chapter 9 explains why the adaptive GAP is best suited to the sudden changes in the

fitness evaluation. Most control systems are not designed for sudden changes in the

environment and system for handling these situations is thus very useful. Applying the

GAP in adaptive applications is a little difficult because the GAP somehow must

recognise changes in the application. A watchdog circuit could be designed inside GAP

hardware to detect changes and thus make the GAP independent of extemal notification

but this needs to implemented carefully. If the GAP could detect these changes, then it

may be applied to many adaptive applications.

• Changes were always followed by a long period of static behaviour to allow the

GAP to settle before the next change occurred.

The GAP requires many generations to find an optimum point after every change.

During the search it expects the objective function to remain stationary. Adaptive

performance will decline and fail if further changes occur before the GAP has had time

to settle.

10.5 Some potential applications of the GAP

The three engineering's applications show the robustness of the GAP model in solving

various problems. These applications are all quite simple for GAs and conventional

search methods are often more capable of finding solutions than the GAP. It is

important however to realise that the same generic hardware is capable of handling all

applications without changing the core model of the GAP. There are many potential

applications ofthe GAP. Some examples are listed here.

Chapter 10. Conclusions and future work 189

• Chemical process control in which the GAP is required to control flows of

chemicals into a reaction chamber in order to meet some objective criteria such as a

nominated pH level.

• Telescope focussing systems in which multiple mirrors are mechanically adjusted to

focus an image.

• Vehicle engine management systems in which the GAP could adapt the confrolling

coefficients (in the existing controller) to match the" individual engine

characteristics.

In most of these applications processing speed is not as important as the advantage of

having a compact stand-alone hardware implementation.

Appendix A

A simple Genetic Algorithm

Given a search problem, with a multi-dimensional space of possible solutions, a

"genetic code" representation is chosen in a way that each point in the search space is

represented by a string of symbols, the chromosome. A random number generator

produces a number of initial random chromosomes, which form the initial population.

Each of the corresponding points in the search space is evaluated by the appropriate

evaluation function. This function gives higher scores to the 'fitter' ones, those nearest

the required solution.

The next generation of points is created from the present population by selection and

reproduction. The selection process is based on the scores of the present population,

such that the fitter chromosomes probabilistically contribute more to the reproductive

pool.

190

Appendix A. A simple Genetic Algorithm 191

From the reproductive pool of selected chromosomes, a new set of chromosomes for the

next generation is derived, using such genetic operators as crossover and mutation. The

crossover operator works by taking parent chromosomes in pairs, selecting a crossover

point somewhere at random along the length of the chromosomes, taking the left-hand

section of one parent up to the crossover point and joining it to the right-hand section of

the other parent, so that offspring inherits genetic material from both parents. The

mutation operator changes at random a very small proportion of the symbols on the

offspring chromosomes to some other valid symbol.

The new population has inherited genetic material selectively, but probabilistically,

from the parent generation. New points in the search space have been generated

exploiting the information from the performance of the parents. Thus an improved

performance can be expected from the new population. Then the cycle of selection and

reproduction can then be repeated.

Variations on these genetic operators can be used, and decisions have to be made on

suitable sizes of populations and the rate at which mutation and other operators are

applied. In the choice of selection techniques, it is necessary to maintain a balance

between enough selective pressure for a continued improvement and too much selective

pressure leading to premature convergence, with loss ofthe diversity needed to escape

from local optima. However, GAs are a very robust search technique that can operate

successfully in many varied search domains. Some of these properties can be

demonstrated theoretically.

A. 1 Theory of Genetic Algorithms

An early theoretical result by Holland [1975] was the Schema Theorem which

demonstrates that subject to certain conditions, schemata, which are the building blocks

in his representation of above average fitness, will receive exponentially increasing

numbers of trials in successive generations. A schema is a similarity template which

Appendix A. A simple Genetic Algorithm 192

characterises a subset of all possible strings that have identical specified values at

special positions specified by a template. At other positions often indicated by * in the

schema template, any values are allowed. Holland also demonstrated the implicit

parallelism of GAs. In a population of size m, the number of these schemata being

processed in each generation is of order 0(m) which indicates that a GA is an efficient

search algorithm. These factors contribute to the theoretical support to applications of

GAs.

A ternary schema alphabet C = {0,1,*} will be used:as an example for a binary string

alphabet C = {0,1}. For example, a schema H = 01*1 will represent strings 0111 and

0101. For a given schema H, its "order" o(H) is the number of its fixed positions (e.g. if

H = 0* 1 * then o(H) = 2). Finally, for a given schema H, its "defining lengtii" 5(H) is the

distance between the first and last specific string positions (e.g. if H = 0*1* then 5(H) =

3 - 1 = 2) .

Typically, GAs are used on well-defined problems where the search space is so large

that other approaches are computationally impractical. The problems the user faces are:

what choice of genetic coding to use, what variations to make on the standard genetic

operators how to select members for reproduction, and how to set the balance of

selective pressure.

A.2 A simple example of a Genetic Algorithm

As a simple example, imagine a population of four strings, each with five bits. Also

imagine an objective fiinction f(x) = 4x, which simply retums the integer value of four

times the binary integer (e.g. f(00000) = 0, f(00001) = 4, f(00010) = 8, etc.). The goal is

to optimise (in this case maximise) the objective fimction over the domain 0 < x < 31.

Now imagine a population ofthe four strings in Table A.l, generated at random before

GA execution. The corresponding fitness values and percentages come from the

objective function f(x).

Appendix A. A simple Genetic Algorithm 193

i

1

2

3

4

String

x(i)

11100

01101

10010

01000

Sum

Avg

Max

Fitness

f(i)
f(x(i))=4x(i)

112

52

72

32

268

67

112

%of

Total

f(i)/Zf(i)

41.8

19.4

26.9

11.9

100

25.0

41.8

Expected

Count

f(i)/Avg

1.670

0.776

1.047

0,477

4.000

1.000

1.670

Actual

Count

2

1

1

0

4

1

2

Table A. 1: Four random strings and their fitness values.

The values in the "% of Total" column provide the probability of each string's selection.

Initially 11100 has a 41.8% chance of selection, 01101 has 19.4% chance, and so on.

The selection process can be thought of as spinning a weighted roulette wheel like in

Figure A.l. The results from the spins are given in the "Actiial Count" column of Table

A.l. As expected, these values are similar to those in the "Expected Count" column.

After selecting the strings, the GA randomly pairs the newly selected members and

looks at each pair individually. For each pair (e.g. A = 11100 and B = 01101), the GA

decides whether or not to perform crossover. If it does not, then both strings in tiie pair

are placed into the population with possible mutations as described below. If it does, a

random crossover point is selected and crossover proceeds as indicated in Figure A.2.

Then the children A' and B' are placed in the population with possible mutations. The

GA invokes the mutation operator on the new bit strings. It generates a random number

for each bit and flips that particular bit only if the random number is less than or equal

to the mutation probability which is usually less than 0.01 per bit.

Appendix A. A simple Genetic Algorithm 194

19.4% 26.9%

11.9%

41.8%

Figure A.T. A weighted roulette wheel.

Before Crossover

A B

1 1 1 00 0 1 1 0 1

After Crossover

J

1 1
1 i

A'

101

B'

0 1

Figure A.2: An example of crossover.

Appendix A. A simple Genetic Algorithm 195

After the operations are completed, on the current generation, the new strings are placed

in a new population, representing the next generation as shown in Table A.2. In this

example the average fitness increased by approximately 29% in one generation and the

sum of fitness increased by 30%. This simple process would continue for several

generations until a stopping criterion is met.

After
Reproduction

111100
11100
01101
100110
Sum
Avg.
Max

Associate
Parent

x3
x4
xl
x2

Crossover
Point

2
3
2
3

After
= Crossover

11101
11110
01100
10000

Fitness
f(x(i))=4x(i)

116
120
48
64

348
87
120

Table A.2: The population after applying selection and crossover operators.

Appendix B

Gray code conversion

Translation of a decimal number into the Gray code equivalent is carried out by first

transforming the decimal number into a binary representation. Modulo-2 addition is

then performed on each bit with its immediate neighbour on the left. Translation of this

result into decimal notation then gives the Gray code equivalent. Thus lljo become

10112 and modulo-2 addition of pairs of bits gives 11IO2 or 14io.

This may be expressed in terms of a binary bit string as follows. A binary number may

be expressed as

B={b^,b^_„...,b,\ (B.l)

where bj gives the position in the binary number. This is given in the Gray code as

Bg={gm^gm-\^-^go)2 (^-2)

196

Appendix B. Gray code conversion 197

where gj^bt+bj+j.

A (jray code conversation table is given in Table B.l for the first 16 decimal numbers.

Table B.2 shows the Gray code conversion for 5 bit or the first 32 decimal number.

Decimal

0

1

2

3

4

5

6

7

Binary code

OOOO

0001

0010

0011

0100

0101

Olio

0111

Gray Code

OOOO

0001

0011

0010

Olio

0111

0101

0100

Decimal

8

9

10

11

12

13

14

15

Binary code

1000

1001

1010

1011

1100

1101

1110

nil

Gray code

1100

1101

nil

1110

1010

1011

1001

1000

Table B. 1: Binary code to Gray code for four bits.

Appendix B. Gray code conversion 198

Decimal

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Binary code

OOOOO

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

OHIO

01111

Gray Code

OOOOO

00001

00011

00010

00110

00111

00101

00100

01100

01101

01111

OHIO

01010

01011

01001

01000

Decimal

16

17

18

19

20 :

21

22

23

24

25

26

27

28

29

30

31

Binary code

10000

10001

. 10010

1001,1

101190

10101

10110

10111

11000

11001

11010

lion

11100

11101

lino

11111

Gray code

11000

11001

lion

11010

lino

11111

11101

11100

10100

10101

10111

10110

10010

10011

10001

10000

Table B.2: Binary code to Gray code for 5 bits.

Appendix B. Gray code conversion 199

For converting Gray codes to the binary codes suppose the Gray code is defined as

^g={gm,gm-l,-,go)2 (B-3)

where g,- gives the position in the Gray code. This may be expressed in terms of a binary

bit string as follows.

^ = (^m.*m-l»-»*o)i (B.4)

where A = Z?y.
j=m

A Gray code conversation to binary table is given in Table B.3 for the first 16 decimal

numbers. Table B.4 shows the Gray code conversion to binary for 5 bits or the first 32

decimal numbers.

Decimal

0

1

2

3

4

5

6

7

Gray code

OOOO

0001

0010

0011

0100

0101

Olio

0111

Binary Code

OOOO

0001

0011

0010

0111

Olio

0100

0101

Decimal

8

9

10

11

12

13

14

15

Gray code

1000

1001

1010

1011

1100

1101

1110

nil

Binary code

nil

1110

1100

1101

1000

1001

1011

1010

Table B.3: Gray code to binary code for four bits.

Appendix B. Gray code conversion 200

Decimal

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Gray code

OOOOO

00001

00010

00011

00100

00101

00110

00111

01000

01001

01010

01011

01100

01101

OHIO

01111

Binary Code

OOOOO

00001

00011

00010

00111

00110

00100

00101

01111

OHIO

01100

01101

01000

01001

01011

01010

Decimal

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Gray code

10000

10001 .

10010

10011 ^ .

10100

10101

10110

10111

11000

11001

11010

lion

11100

11101

lino

11111

Binary Code

11111

11110

11100

11101

11000

11001

lion

11010

10000

10001

10011

10010

10111

10110

10100

10101

Table B.4: Gray code to Binary code for 5 bits.

Appendix C

VHDL code

This appendix presents a sample of the VHDL code for the basic GAP design and was

used for implementation and most GAP simulations. The functionality of each module

is described in Chapter 4. The code was written and compiled using the Design

Architect and QuickVHDL programs from Mentor Graphics and then synthesized using

the AutoLogic VHDL synthesiser.

This VHDL code is the intellectual property of the Victoria University of Technology

and will be available for use under licence. For fiirther details contact:

The Secretary,
Faculty of Engineering,
Victoria University of Technology,
PO BOX 14428, MCMC,
Melboume VIC, 3001
Australia

201

Appendix C. VHDL code 202

C.l Random Number Generator Module

LIBRARY mgc_portable;
USE mgc_portable.qsim_logic.all;
USE work.sizing.all;

ENTITY random IS
PORT (

init
done
elk
reqmem
ackmem
domut

mutation
doxover:
mutpt
xoverpt :
addr

parameter
param
randsell

module
randsel2

);
END random;

IN qsimstate;
;OUT qsimstate;
:IN qsim_state;
OUT qsimstate;
;IN qsim_state;
:OUT "

~ Initial signal
— finish signal
~ clock signal
~ bus request to memory controller
~ bus ack from memory controller simstate; ~ bus ack from memory controller

qsim_state_vector(p-l DOWNTO 0); -- random numbers of xover and

OUT qsim_state_vector(p-l DOWNTO 0);
:OUT qsim_state_vector(logn-l DOWNTO 0);
OUT qsim_state_vector(logn-l DOWNTO 0);
:OUT qsim_state_vector(lognumparam-l DOWNTO 0);-- address of initial

•.IN qsim_state_vector(valw-l DOAVNTO 0);-- value of RNG seed
:OUT qsim_state_vector(r-l DOWNTO 0); -- random nos. to selection

:OUT qsim_state_vector(r-l DOWNTO 0)

ARCHITECTURE behave OF random IS
TYPE states IS (idle, awaitackmeml, awaitackmem2, active);
SIGNAL state:states:=idle;
BEGIN
randomprocess:PROCESS(clk,init)
VARIABLE m,m2 : qsim_state_vector(casize-1 DOWNTO 0);
VARIABLE evenodd : qsim_state;
BEGIN
IF init='0' THEN

state<=idle;
reqmem<='0';
done<='0';

ELSIF(clk'EVENT and clk='l' and clk'LAST_VALUE='0') THEN
CASE state IS

WHEN idle =>
reqmem<='r;
state<=awaitackmem 1;

WHEN awaitackmem 1 =>

http://mgc_portable.qsim_logic.all

Appendix C. VHDL code 203

IFackmem='rTHEN
addr<=mgseeda;
reqmem<='0';
state<=awaitackmem2;

END IF;
WHEN awaitackmem2 =>

IF ackmem='0' THEN
m:=param(valw-l DOWNTO 0) & param(valw-l DOWNTO 0) &

param(valw-l DOWNTO 0) & param(valw-l DOWNTO 0);
done<='r;
state<=active;

END IF;
WHEN active =>

domut <= m(casize-l DOWNTO casize-p);
doxover <= m(casize-4 DOWNTO casize-p-3);
mutpt <= m(casize-6 DOWNTO casize-logn-5);
xoverpt <= m(casize-5 DOWNTO casize-logn-4);
randsell <= m(casize-3 DOWNTO casize-2-r);
randsel2 <= m(casize-6 DOWNTO casize-5-r);
m2(casize-l) -.='0' XORm(casize-l) XOR m(casize-2);
evenodd —'1';
FOR i IN casize-2 DOWNTO 1 loop

m2(i) :=m(i+I) XOR m(i-l);
IFevenodd='rTHEN

m2(i):=m2(i)XORm(i);
END IF;

evenodd:= NOT evenodd;
END LOOP;

m2(0):=m(l)XOR'0';
IFevenodd='l'THEN

m2(0):=m2(0) XOR m(0);
END IF;
m:=m2;

END CASE;
END IF;
END PROCESS randomprocess;
END behave;

C.2 Memory Interface Module

LIBRARY mgc_portable;
USE mgc_portable.qsim_logic.all;
USE work.sizing.all;

ENTITY memory IS
PORT (

go
done
reset

IN qsim_state; - go ahead signal
:OUT qsim_state; - completion signal
IN qsim_state; - asynchronous reset

http://mgc_portable.qsim_logic.all

Appendix C. VHDL code 204

init
elk
address
datain
dataout
rw
cs
oe
memacc

memory
toggle

memory sequencer
toggleout
reqmg

generator
ackrag
addrmg
reqxov
ackxov
addrxov
reqseq
ackseq
addrseq
reqfit
ackfit
addrfit
valfitin
valout
fitdone
flag
);

END memory;

•.OUT qsim_state; — initialize signal
.IN qsimstate; - clock signal
:OUT qsim_state_vector(addrw-l DOWNTO 0); ~ Memory buses
•.IN qsim_state_vector(valw -1 DOWNTO 0);
:OUT qsim_state_vector(valw -1 DOWNTO 0);
:OUT qsimstate; ~ read/write signal to memory
:OUT qsimstate; ~ chip select signal to memory
:OUT qsimstate; ~ output enable signal to memory
OUT qsimstate; - tri-states data data, addr and Ctrl lines to

:IN qsim_state;

:OUT qsimstate;
:IN qsim_state;

— population access for fitness and

~ final value of toggle
Handshake signals with random number

OUT qsimstate;
IN qsim_state_vector(Iognumparam-l DOWNTO 0);
IN qsimstate; ~ Handshake signals with crossover
OUT qsimstate;--
IN qsim_state_vector(lognumparam-l DOWNTO 0);
IN qsim_state_vector(1 DOWNTO 0); -- Handshake signals with read
OUTqsimstate;--
IN qsim_state_vector(logm-l DOWNTO 0);
IN qsim_state_vector(1 DOWNTO 0); - Handshake signals with fitness
OUT qsimstate;--
IN qsim_state_vector(logm-l DOWNTO 0);
IN qsim_state_vector(valw-l DOWNTO 0);
OUT qsim_state_vector(valw-1 DOWNTO 0);
IN qsimstate;
IN qsim_state - adaptive signal

ARCHITECTURE behave OF memory IS
TYPE states IS (startl, start2, idle, mg, xov, fitO, fitl, seqO, seql,

donel, done2, writel, write2 , write3 , readl, read2);
SIGNAL state: states:=startl;
constant popObase :integer:=numparam;
constant poplbase •.integer:=numparam+m;

BEGIN

memoryprocess:PROCESS (clk,reset)
VARIABLE runstats : integer RANGE 0 TO 65535 :=0;
VARIABLE base :integer RANGE 0 TO memsize-1;
VARIABLE finish :qsim_state:='0';
VARIABLE tempflagiqsimstate;

BEGIN
lFreset='l'THEN

init<='0';

Appendix C. VHDL code 205

done<-l ';
rw<='l';
cs<='l';
oe<='l';
memacc<='r;
runstats:=0;
finish:='0';
ackmg<='0';
ackxov<='0';
ackseq<-0';
ackfit<='0';
state <=startl;

ELSIF(clk'EVENT and clk='l' and clk'LAST_VALUE='0') THEN
CASE state IS

WHEN startl =>
init<='0';
done<='r;
rw<='I';
cs<='l';
tempflag:=flag;
oe<='l';
finish:='0';
memacc<='r;
ackmg<='0';
ackxov<='0';
ackseq<='0';
ackfit<='0';
IF go='0' THEN

done<='0';
state<=start2;

END IF;
WHEN start2 =>

init<='0';
done<-0';
rw<='l';
cs<='l';
oe<='l';
finish:='0';
memacc<='r;
ackmg<='0';
ackxov<-0';
ackseq<='0';
ackfit<='0';
IFgo='l'THEN

init<='l';
memacc<='0';
cs<='0';
state<=idle;

END IF;

WHEN idle =>

Appendix C. VHDL code 206

IF flag/=tempflag THEN
runstats :=0;
tempflag := NOT tempflag;

END IF;
runstats :=runstats+l;
memacc <='0';
fmish:='0';
init<='l';
cs<='0';
IFfitdone='l'THEN

init<-0'; - shut down GA
address <= to_qsim_state(numparam+m+m,addrw);
finish:='l';
state <=writel;

ELSIFreqmg='l'THEN
ackmg<-1';
state<=mg;

ELSIFreqxov='l'THEN
ackxov<='r;
state<=xov;

ELSIF reqseq(0)='r THEN
ackseq<='r;
state<=seqO;

ELSIF reqfit(0)='l'THEN
ackfit<='l';
state<=fitO;

ELSIF reqfit(l)='r THEN
ackfit<='r;
state<=fitl;

ELSIF reqseq(l)='r THEN
ackseq<='I';
state<=seql;

END IF;

WHEN mg =>
mnstats :=mnstats+I;
IF reqmg='0' THEN

address<=to_qsim_state(0,addrw-lognumparam) & addrmg;
state<=readl;

END IF;

WHEN xov =>
mnstats :=mnstats+l;
IF reqxov='0' THEN

address<==to_qsim_state(0,addrw-lognumparam) & addrxov;
state<=readl;

END IF;

WHENfitO =>
mnstats •.=runstats+1;
IF reqfit(0)='0' THEN

Appendix C. VHDL code 207

address<=to_qsim_state(0,addrw-lognumparam)&
addrfit(lognumparam-l DOWNTO 0);

state<=readl;
END IF;

WHEN fitl =>
mnstats :=mnstats+l;
IF reqfit(l)='0' THEN

IF toggle='0' THEN
base:=poplbase;

ELSE
base:=popObase;

END IF;
address<=to_qsim_state(base+to_integer('0'&addrfit),addrw);
dataout <= valfitin;
state<=writel;

END IF;

WHENseqO =>
mnstats :=mnstats+l;
IF reqseq(0)='0' THEN

address<=to_qsim_state(0,addrw-lognumparam)&
addrseq(lognumparam-l DOWNTO 0);

state<=readl;
END IF;

WHEN seql =>
mnstats :=mnstats+l;
IFreqseq(l)='0'THEN

IF toggle='0' THEN
base:=popObase;

ELSE
base:=poplbase;

END IF;
address<=to_qsim_state(base+to_integer('0' & addrseq),addrw);
state<=readl;

END IF;

WHEN donel =>
rw<='0';
state<=done2;

WHENdone2 =>
toggleout<=NOT toggle;
init<='0';
rw<='l';
cs<=T;
oe<='l';
memacc<='r;
mnstats:=0;
done<='r;

Appendix C. VHDL code 208

state<=startl;

WHEN writel =>
mnstats :=mnstats+l;
rw <='0';
state<=write2;

WHEN write2 =>
mnstats :=mnstats+l;
rw<='l';
state<=write3;

WHEN write3 =>
IFfmish='l'THEN

address <= to_qsim_state(numparam+m+m+l,addrw);
state <= donel;

ELSE
ackfit <='0';
state<= idle;

END IF;
WHEN readl =>

mnstats :=mnstats+l;
rw<='l';
oe<='0';
state<=read2;

WHENread2 =>
mnstats :=mnstats+l;
valout <= datain;
ackmg<='0';
ackxov<='0';
ackseq<='0';
ackfit<='0';
oe<='l';
state<= idle;

END CASE;
END IF;
END PROCESS memoryprocess;
END behave;

C.3 Read Module

LIBRARY mgc_portable;
USE mgc_portable.qsim_logic.all;
USE work.sizing.all;

ENTITY read IS
PORT (

http://mgc_portable.qsim_logic.all

Appendix C. VHDL code 209

init :IN qsimstate; — initial signal
done :OUT qsimstate;
elk :IN qsimstate; - clock signal
reqmem :OUT qsim_state_vector(l DOWNTO 0); ~ signal to memory
addr :OUT qsim_state_vector(logm-1 DOWNTO 0);
value : IN qsim_state_vector(valw-l DOWNTO 0);
outputn :OUTqsim_state_vector(n-l DOWNTO 0);
outputf :OUT qsim_state_vector(f-l DOWNTO 0);
ackmem :IN qsimstate

);
END read;

ARCHITECTURE behave OF read IS
TYPE states IS (idle,awaitackmeml,awaitackmem2,getmemberln,

getmember2n,getmemberlf,getmember2f);
SIGNAL state : states :=idle;
BEGIN
readprocess:PROCESS(clk,init)

VARIABLE membf: qsim_state_vector(f-l DOWNTO 0);
VARIABLE membaddr, psize: INTEGER RANGE 0 TO m;

BEGIN
IF init='0' THEN - not OK to mn, should be idle

state <=idle; ~ Make sure idle
done <= '0'; - tell control unit shut down
reqmem <= "00"; — reset memory request signal;
membf := to_qsim_state(0,f); ~ reset current member
outputn <= to_qsim_state(0,n); ~ output the reset member
outputf <= to_qsim_state(0,f); ~ output the reset member

ELSIF(clk'EVENT and clk='l' and clkLAST_VALUE='0') THEN
CASE state IS

WHEN idle => -- state is idle, So get the population size
reqmem(0)<=' 1'; -request memory access
state<= awaitackmem 1; ~ wait for memory acknoledgement

WHEN awaitackmem 1 => ~ waiting for memory acknoledgement
IF ackmem- 1' THEN ~ memory acknoledgement

addr <=to_qsim_state(to_integer('0' & popsizea),logm);
— send population size address

reqmem(0)<='0'; -- address sent
state<= awaitackmem2; - wait for memory

acknoledgement for sending population size
END IF;

WHEN awaitackmem2 => - waiting for memory
acknoledgement for sending population size

IF ackmem='0' THEN
psize := to_integer('0' & valueOogm-1 DOWNTO 0));
membaddr :=0; -- initialize membaddr
done <= '0';
reqmem(l) <='! '; ~ request memory access to get

member

Appendix C. VHDL code 210

member

address

sent

acknoledgement

member

state <= getmemberln;- wait for memory acknoledgement
END IF;

WHEN getmember 1 n => -- waiting for memory to offer

done <='0'; - reset dup acknoledgement
IF ackmem=' 1' THEN -- got memory acknoledgement

addr <=to_qsim_state(membaddr,logm);~ send member's

reqmem(l)<='0';

state<= getmember2n;

END IF;
WHEN getmember2n =>

IF ackmem='0' THEN

— tell memory memory's address

— wait for memory

— wait for memory to send

— memory says member sent

output member to selection module

memory's address mod popsize

outputn <= value(n-l DOWNTO 0);

membaddr :=membaddr+1; -- increment the

reqmem(l) <='1'; -- request fitness
state <= getmember 1 f; -- wait for memory to offer

member

member

member's address

sent

acknoledgement

member

END IF;
WHEN getmember lf=> — waiting for memory to offer

IF ackmem=' 1' THEN ~ got memory acknoledgement
addr <=to_qsim_state(membaddr,logm); - send

reqmem(l)<='0';

state <= getmember2f;

END IF;
WHEN getmember2f =>

- tell memory memory's address

- wait for memory

- wait for memory to send

~ memory says member sent
- start reading values

membf := value(f-1 DOWNTO 0); -- store member
outputf <= membf; -- output member to

IF ackmem='0' THEN
done <='!';

selection module

memory's address mod popsize

membaddr :=membaddr+l; increment the

IF membaddr > psize -1 THEN
membaddr :=0;

END IF;
reqmem(l) < -1 ' ; -- request next member
state <= getmemberln; -- wait for memory to offer

member
END IF;

END CASE;

Appendix C. VHDL code 21]

END IF;
END PROCESS readprocess;
END behave;

Appendix D

A brief description of Xilinx FPGAs

A field-programmable gate array is an inexpensive user-programmable component

which allows for cheap prototyping. FPGAs are generally composed of programmable

elements including logic blocks, I/O cells which connect the logic blocks to the chip

pins, and interconnection lines. Programming of these components is allowed with the

use of static RAM cells, anti-fiises, EPROM transistors or EEPROM transistors.

Xilinx FPGAs use static RAM technology to implement hardware designs. They are

reprogrammable and frequently used in prototyping. Commonly used Xilinx FPGAs

today are from the XC4000 family, which is currently Xilinx's most advanced line of

FPGAs and includes the devices used in this research. Most of the information in this

section is from the Xilinx technical literature (e.g. Xilinx, 1994).

226

Appendix D. A brief description of Xilinx FPGAs 227

D.l Architecture of FPGAs

A Xilinx FPGA consists of a two-dimensional array of configurable logic blocks

(CLBs), a set of surrounding input/output blocks (lOBs) and programmable inter

coimections between CLBs and lOBs (Figure D.l).

Configurable Logic
Block

I/O Block
• • D

D

D
a
D
a

D

n D

D

D

D

D

a D

D

a

n

D

D D

D

D

D

D

D D

rf
D

D

D

f-
• -

1 b
D
D

D
D

— J

D

Horizontal Routing
Channel

Vertical Routing J ^ n D D n D D D D
Channel

Figure D. 1: Overall view of a Xilinx XC4000 series FPGA.

Each CLB (Figure D.2) can implement two arbitrary, independent four-input boolean

fimctions, F and G. The outputs of F and G can be combined with another input in a

third boolean fimction H. The outputs of F and G can be latched in edge-ttiggered D

flip-flops. Each CLB also has the capacity to implement fast-carry logic. Altematively,

a CLB can be used as a 16 x 2 or a 32 x 1 array of memory cells.

Appendix D. A brief description of Xilinx FPGAs 228

G4

G3

G2

Gl

Log ic
Funct ion
of
G 1 - G 4

F4

F3

F2

Fl

Clock

Logic
Funct ion
of
F1-F4

Cl

Hi

Logic
Funct ion
of
G ' F' H I

H

C2

i L
DIN

- ^

C4

S/R EC

D-

D-

0

SIR
Control

' ^
n

S/R
Control

n 0

>SD

> S D

YQ

XQ

Figure D.2: Simplified schematic of a CLB.

v c c

OE

O U T

II

12

I -CLK

i±=D
r^n^

O-CLK I J

i^=D-

D Q

FF

D

F F / L

' S l e w R a t e
C o ntro 1

P U L L - U P /
P U L L - D O W N

[>
0 - B U F

Ô l-l

i:;

I - B U F

P A D

Figure D.3: An XC4000 lOB.

Appendix D. A brief description of Xilinx FPGAs 229

Coimections between CLBs and the chip pads are provided by lOBs (Figure D.3). The

lOBs offer many user-programmable options in I/O control, including tri-state logic for

bidirectional I/O, direct coimection of lines to pads or connection through flip-flops, and

programmable pull-up or pull-down resistors. The lOBs also provide logic for

boundary-scan testing and output slew rate control.

The interconnection between different CLBs and between CLBs and lOBs is also

programmable. XC4000 interconnections are made through the use of single-length

lines, double-length lines and longlines. Single-length lines (Figure D.4) intersect at a

switch matrix between neighbouring CLBs in the horizontal and vertical directions. Any

input to a switch matrix can be routed to any arbitrary outputs which then feed into

other CLBs and switch matrices. Single-length lines are normally used to conduct

signals within a localised area and to provide branching for nets with fanout greater than

one. Double-length lines (Figure D.5) are similar to single-length lines except that they

intersect after every two CLBs. Double-lengtii lines provide the most efficient

implementation of intermediate length, point-to-point interconnections. Longlines

(Figure D.6) span the entire array of CLBs and are intended to carry time-critical

signals. Longlines intersect single-length lines at programmable interconnect points.

Double-length lines do not connect to other lines.

Logic densities for the most common XC4000 FPGAs are approximately 2000-10000

gates per chip. The costs for these FPGAs are approximately $50-$800 per chip. These

logic densities are lower than those for fully customised VLSI chips and for mask-

programmed gate arrays (MPGAs). FPGAs are also slower than fiilly customised VLSI

chips and MPGAs. However, the costs per chip for low volumes and the short

tumaround times make Xilinx FPGAs a better choice for prototyping than MPGAs and

fiill-custom designs. Additionally, the reprogrammability of XiHnx FPGAs makes them

more flexible than fiilly customised VLSI chips and MPGAs. Xilinx FPGAs can be

Appendix D. A brief description of Xilinx FPGAs 230

applied to systems that utilise reconfigurable hardware as described in Section 2.4 and

as presented in this thesis.

= -

1 1 1 1 1 1
Sw itch

N 4 at r X

S w itch
M atrix

n 1 1 1 1

—
— • 1

' — — «
. __,
» — 1

' i

,

F4 04 0 4 VO
Gl Y

Cl 0 3

K C L B

Fl C3

X F3

XQ F2 C2 G2

1 M 1 1 1 M

1 Switch
M atrix

V

Switch
Matrix

T 1 II II 1

—

^ =

Figure D.4: CLB connections to single-length lines.

X

X
x :

^ x :
x :

CLB

X

X

C L B

2S
>c
x :

CLB

X

C L B

^

Figure D.5: Double-length lines.

Appendix D. A brief description of Xilinx FPGAs 231

G 1

C l

Y

0 3

C L B

C2 0 2

G l o b a l
L o n g L in e s

G l o b a l
L o n g L i n e s

Figure D.6: Longlines with CLB coimections.

D.2 Comparing FPGAs with other technologies

Recentiy, field-programmable gate arrays have been used widely due to several

advantages related to their high gate count, short design cycle, and low prototyping cost.

They can be used in all digital applications that currentiy use Small-Scale Integration

(SSI), Medium-Scale Integration (MSI), and PLDs. They also replace mask-

programmable gate arrays in many applications that are limited to 10,000 gates and

where a high operational speed is not required.

Among the advantages of FPGAs are:

• replacement of SSI and MSI chips,

• availability of parts off the shelf.

rapid tumaround.

Appendix D. A brief description of Xilinx FPGAs 232

• low risk,

• reprogrammability.

Compared with SSI and MSI chips, FPGAs offer larger gate counts and more design

flexibility. If we consider a circuit constmcted solely of NAND gates and its gate count

is 1,000, we need about 250 Transistor-Transistor Logic (TTL) 7400 SSI chips to build

it. The same circuit can, however, be replaced by one Xilinx chip (XC2064 or XC3020)

[Xilinx, 1994]. FPGAs are more flexible because the logic does not have to be mapped

in terms of standard SSI chips. Wire v^apping and soldering are also not required for a

single-chip design, thus making it easier to realise appropriate engineering changes.

While MSI chips have specific functions to which the design has to be mapped, FPGAs

allow any random logic.

PLDs, the precursors of FPGAs, have actually been used to replace SSI in fixed logic,

however, they did not help much in prototyping. In addition, PLDs implement logic in

AND/OR gates and all the flip-flops are at the periphery of the devices. This type of

logic arrangement restricts the designer and minimises the flexibility.

FPGAs combine the versatility of gate arrays and the programmability of PLDs. Unlike

gate arrays, they do not require custom fabrication and are obtained off the shelf as are

SSI and MSI chips. Because FPGAs are field programmable, they are definitely more

suitable for prototyping than SSI and MSI chips. For example, Xilinx devices have been

used in prototyping Intel's P5 microprocessor [Intel, 1992]. The hardware emulation

made it possible to simulate the microprocessor at reasonable speed. Thus, the

development time of the microprocessor was reduced. Reprogrammable FPGAs also

allow the design to be altered and the chip to be reconfigured quickly. This ease of

reprogrammability will facilitate design changes.

Appendix D. A brief description of Xilinx FPGAs 233

However, FPGAs have their limitations. For the same design implemented with FPGAs

and PLDs, it is more likely that the PLDs will operate faster than the FPGAs. PLD

performance is independent of the logic implemented. But for FPGAs, the circuit delay

depends on the performance of the design implementation tools. The delay parameters

can be extracted after placement and routing, typically a time-consuming process. Also,

the mapping of the logic design into the FPGA's architecture requires more

sophisticated design implementation (CAD) tools than PLDs. Compared with traditional

gate arrays, FPGAs are less dense and operate at a lower speed: However, the rapid

advance in FPGA technology is quickly closing the gap between the two realisations.

The next consideration is cost.

Cost is an important factor favouring FPGAs. ASIC costs consists of fixed and variable

components. Fixed costs include the initial cost needed to prepare masks, buy design

tools, etc. Fixed costs for FPGAs include the development system and the platform

which can vary from a personal computer to a sophisticated workstation. The

development system includes the CAD tools (for design entry, simulation, and

implementation) and a device programmer. The variable costs for FPGAs include the

component costs which vary according to the number of logic blocks.

Manufacturing test costs for gate arrays includes of the costs of testing and packaging

the individual chips. These costs for FPGAs are greatly reduced because test generation

is done once for the unprogrammed chip. It is left up to the user to test the programmed

chip in the field. At present, gate densities for FPGAs are on average, lower than those

of MPGAs. As the chip density is constantiy increasing, FPGAs are becoming more

competitive with gate arrays.

Bibliography

Abramson D.A., (1992), "^ Very High Speed Architecture to Support Simulated

Annealing", IEEE Computer, Vol. 25, No. 5, pp. 27-38.

Abramson D.A., de Silva A., Randall M. and Postula A., (1995), ''Special Purpose

Computer Architectures for High Speed Optimisation", Proceedings ofthe Parallel and

Real Time Computing Conference (PART-95), Perth, September 1995.

Ackley D.H., (1987), "Stochastic Iterated Genetic Hillclimbing", Ph.D. Thesis,

Computer Science Department, Camegie Mellon University, Pittsburge, PA.

Actel Co., (1991), ''Actel Family Field Programmable Gate Array Databool^\ Actel

Corporation, Santa Clara, CA.

Athanas P.M. and Silverman H.F., (1993), "Processor Reconfiguration through

Instruction-Set Metamorphosis", IEEE Computer, Vol. 26, No. 3, pp. 11-18.

Athanas P.M., (1992), "An Adaptive Machine Architecture and Compiler for Dynamic

Processor Reconfiguration", Ph.D. Thesis, Brown University, Providence, Rhode

Island, USA.

Baeck T., (1992), "A User's Guide to Genesys 1.0", Software Package Documentation,

Computer Science Department, University of Dortmond, Germany.

234

Bibliography 235

Baker J.E., editor, (1985), "Adaptive Selection Methods for Genetic Algorithms",

Proceedings of an Intemational Conference on Genetic Algorithms, Lawrence

Earlbaum, Hillsdale, NJ.

Belew R.K. and Booker L.B., editors, (1991), "Proceedings ofthe Fourth International

Conference on Genetic Algorithms", Morgan Kaufinann, San Mateo, CA.

Bertin P., Roncin D. and Vuillemin J., (1993), "Programmable Active Memories: A

Performance Assessment", PRL Research Report, No. 24, Technical Report, Digital

Equipment Corporation, Paris Research Laboratory, Cedex, France.

Bethke A.D., (1981), "Genetic Algorithms as Function Optimisers", Ph.D. Thesis,

Department of Computer and Communication Sciences, University of Michigan, Ann

Arbor, MI.

Bramlette M.B. and Bouchard E.E., (1991), "Genetic Algorithms in Parametric Design

of Aircraft", Chapter 10, pp. 109-123 of Davis L., editor, "Handbook of Genetic

Algorithms ", Van Nostrand Reinhold, New York.

Camana R.A. and Shaffer J.D., (1988), "Representation and Hidden Bias: Gray vs

Binary Coding for Genetic Algorithms", Proceedings of the 5th Intemational

Conference on Machine Leaming, Morgan Kaufmann, Los Altos CA, pp. 153-161.

Casselman S., (1993), "Virtual Computing and the Virtual Computer", Proceedings of

IEEE Workshop on FPGAs for Custom Computing Machines, IEEE Computer Society

Press, Los Alamitos, CA, pp. 43-48.

Chen R.J., Meyer R.R. and Yackel J., (1993), "A Genetic Algorithm for Diversity

Minimization and its Parallel Implementation", Proceedings ofthe Fifth Intemational

Conference on Genetic Algorithms, Morgan Kaufinann, San Mateo CA, pp. 163-170.

Bibliography 236

Choudhury B.H. and Rahman S., (1990), "A Review of Recent Advances in Economic

Dispatch", IEEE Traansaction on Power systems. Vol. 5, No. 4, pp. 1248-1259.

Coelho D.R., (1989), "The VHDL Handbook", Kluwer Academic Publishers, Boston,

MA.

Cohen A.L and Sherkat V.R., (1987), "Optimization Based Methods for Operations

scheduling". Proceedings of IEEE, Vol. 75, No. 12, pp. 1574-91.

Darwen P. and Yao X., (1995), "A Dilemma for Fitness Sharing with a Scaling

Function", Proceedings of The Second IEEE Intemational Conference on Evolutionary

Computing (ICEC'95), The University of Westem Australia, Perth, Australia,

December 1995, pp. 166-171.

Data I/O, (1983), "Programmable Logic: A Basic Guide for Designers", Data I/O

Corporation, Santa Clara, CA.

Davidor Y., (1991), "A Genetic Algorithm Applied to Robot Trajectory Generation"

Chapter 12, pp. 144-165 of: Davis L., editor, "Handbook of Genetic Algorithms". Van

Nostrand Reinhold, New York.

Davis L. and Coombs S., (1987), "Genetic Algorithms and Communication Link Speed

Design: Theoretical Considerations", Proceedings of the Second Intemational

Conference on Genetic Algorithms, Lawrence Earlbaum, Hillsdale NJ, pp. 252-256.

Davis L., (1989), "Adapting Operator Probabilities in Genetic Algorithms",

Proceedings of the Third Intemational Conference on Genetic Algorithms, Morgan

Kaufmann, Hillsdale, NJ, pp. 61-69.

Davis L., (1991a), "Bit Climbing, Representational Bias and Test Suite Design",

Proceedings of the Fourth Intemational Conference on Genetic Algorithms, Morgan

Kaufmann, San Mateo CA, pp. 18-23.

Bibliography 237

Davis L., editor, (1987), "Genetic Algorithms and Simulated Annealing", Pitman Press,

London.

Davis L., editor, (1991b), "Handbook of Genetic Algorithms", Van Nostrand Reinhold,

New York.

DeJong K.A., (1975), "An Analysis ofthe Behaviour of a Class of Genetic Adaptive

Systems", Ph.D. Thesis, Dissertation Abstracts Intemational 36(10), 5MOB University

of Michigan, Ann Arbor, MI.

Dorf R.C., (1991), "Modern Control Systems", Addison-Wesley PubHshing, Reading,

MA, 6th Edition.

Dome R. and Hao J.K., (1995), "An Evolutionary Approach for Frequency Assignment

in Cellular Radio Networks", Proceedings of The IEEE Intemational Conference on

Evolutionary Computing (ICEC'95), The University of Westem Australia, Perth,

Australia, December 1995, pp. 539-545.

El-Hawary M.E. and Christensen G.S., (1979), "Optimal Economic Operation of

Electric Power Systems", Academic Press, New York.

Eldredge J.G. and Hutchings B.L., (1993), "Density Enhancement of a Neural Network

Using FPGAs and Run-Time Reconfiguration", Proceedings of IEEE Workshop on

FPGAs for Custom Computing Machines, IEEE Computer Society Press, Los Alamitos,

CA, pp. 180-188.

Eshhnan L.J., editor, (1995), "Proceeding ofthe Sixth International Conference on

Genetic Algorithms", Morgan Kaufinann, San Fransisco, CA.

Etter D.M. and Masukawa M.M., (1981), "A Comparison of Algorithms for Adaptive

Estimations ofthe Time Delay Between Sampled Signals", Proceedings of ICASSP81:

Bibliography 238

IEEE Intemational Conference on Acoustics, Speech and Signal Processing, The

Institute Press, New York, pp. 1253-1256.

Fang H.L., Ross P. and Come D., (1993), "A Promising Genetic Algorithm Approach to

Job-Shop Scheduling, Rescheduling and Open-Shop Scheduling Problems", Proceedings

of the Fifth Intemational Conference on Genetic Algorithms, Morgan Kaufmann, San

Mateo CA, pp. 375-382.

Fogel D.B. and Atmar J.W., (1990), "Comparing Genetic Operators with Gaussian

Mutations in Simulated Evolutionary Processes Using Linear Systems", Biological

Cybernetics, 63, No. 2, pp. 111 -114.

Fogel D.B., (1995), "Evolutionary Coimputing", IEEE Press, New York, NY.

Forrest S., editor, (1993), "Proceedings of the Fifth International Conference on

Genetic Algorithms", Morgan Kaufinaim, San Mateo, CA.

Gage P. and Kroo I., (1995), "Representation Issues for Design Topological

Optimization by Genetic Methods", Proceedings of The Eighth Intemational Conference

on Industrial Application of Artificial Intelligence & Expert Systems (IEA95AIE),

Melboume, AustraUa, June 1995, pp. 383-388.

Gilson K.L., (1993), "The nano Processor: A Low Resource Reconfigurable Processor",

Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines, IEEE

Computer Society Press, Los Alamitos, CA, pp. 23-30.

Gokhale M., Holmes W., Kosper A., Lucas S., Minnich R., Sweely D. and Lopresti D.,

(1991), "Building and Using a Highly Parallel Programmable Logic Array", IEEE

Computer. Vol. 24, No. 1, pp. 81 -89.

Bibliography 239

Goldberg D.E. and Deb K., (1991), "A Comparative Analysis of Selection Schemes Used

in Genetic Algorithms" In: Rawlins G.J.E., editor, "Foundations of Genetic

Algorithms ", Morgan Kaufmann, San Mateo, CA.

Goldberg D.E. and Smith R.E., (1987), "Nonstationary Function Optimization Using

Genetic Algorithms with Dominance and Diploidy", Proceedings of the Second

Intemational Conference on Genetic Algorithms, Lawrence Earlbaum, Hillsdale, NJ, pp.

59-68.

Goldberg D.E., (1987), "Simple Genetic Algorithms and the Minimal Deceptive

Problem", pp. 74-88 of Davis L., editor, "Genetic Algorithms and Simulated

Annealing", Pitman, London.

Goldberg D^E., (1989a), "Genetic Algorithms and Walsh Functions: Part 2, Deception

and its Analysis", Complex Systems, Vol. 3, pp. 129-152.

Goldberg D.E., (1989b), "Genetic Algorithms in Search Optimization and Machine

Learning" Addison-Wesley, Reading, MA.

Goldberg D.E., (1990), "Real-coded Genetic Algorithms, Virtual Alphabets and

Blocking" Technical Report IlliGAL 90001, The Illinois Genetic Algorithms

Laboratory, IL.

Grefenstette J.J. and Schraudolph N., (1992), "GENESIS 1.4ucsd. GA Software",

Software Documents, Naval Research Laboratory, available by anonymous ftp from

(cs.ucsd.edu/pub/GACUSD).

Grefenstette J.J., (1986), "Optimization of Control Parameters for Genetic Algorithms"

IEEE Transactions on Systems, Man and Cybenetics, SMC16(1), pp. 122-128.

Grefenstette J.J., (1990), "A User Guide to Genesis 5.0", Software Documents,

available from (http://www.aic.ml.navy.mil/galist/src).

http://cs.ucsd.edu/pub/GACUSD
http://www.aic.ml.navy.mil/galist/src

Bibliography 240

Grefenstette J.J., editor, (1985), "Proceedings of an International Conference on

Genetic Algorithms and Their Applications", Lawrence Erlbaum Associates, Hillsdale,

NJ.

Grefenstette J.J., editor, (1987), "Genetic Algorithms and Their Applications:

Proceedings ofthe Second International Conference on Genetic Algorithms ", Lawrence

Erlbaum Associates, Hillsdale, NJ.

Gmau F., (1993), "Genetic Synthesis of Modular Neural Networks", Proceedings ofthe

Fifth Intemational Conference on Genetic Algorithms, Morgan "Kaufmann, San Mateo

CA, pp. 318-325.

Hancock P.J.B., (1989), "Pruning Neural Nets by Genetic Algorithm", Proceedings of

the Intemational Conference of Artificial Neural Networks 1989 (ICANN-89), Elsevier,

Amsterdam, Netherlands, pp. 991-4.

Happ H.H., (1977), "Optimal Power Dispatch - A Comprehensive Survey", IEEE

Transaction on Power Apparatus and Systems, Vol. PAS-96, No. 3, pp. 841-54.

Herdy M., (1991), "Application of. Evolution strategies to Discrete Optimization

Problems", pp. 188-192 of Schwefel H.P., Manner R., editors, "Parallel Problem

Solving from Nature ", Springer Veriag, Beriin.

Higuchi T., Iba H. and Manderick B., (1994), "Applying Evolvable Hardware to

Autonomous Agents " Proceedings ofthe Third Conference on Parallel Problem Solving

from Nature (PPSN III), Spering-Veriag, Beriin, Germany.

Holland J., (1975), "Adaptation in Natural and Artificial Systems", MIT Press,

Cambridge, MA.

Hollis E.E., (1987), "Design of VLSI Gate Arrays ICs", Prentice Hall, Englewood Cllifs,

NJ.

Bibliography 24]

Hollstien R.B., (1971), "/artificial Genetic Adaptation in Computer Control Systems".

Ph.D. Thesis, Department of Computer and Communication Sciences, University of

Michigan, Ann Arbor, MI.

Homaifar A., Guan S. and Liepins G.E., (1993), "A New Approach on the Travelling

Salesman Problem by Genetic Algorithms", Proceedings of the Fifth Intemational

Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo CA, pp. 460-466.

Hunter A., (1995), "SUGAL User Manual V2.0 : Software Package Documentation",

University of Sunderland, UK.

Husband P. and Mill F., (1991), "Simulated Co-Evolution and the Mechanism for

Emerging Planning and Scheduling", Proceedings of the Fourth Intemational

Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo CA, pp. 264-270.

Hwang W.R. and Thompson W.E., (1993), "An Intelligent Controller Design Based on

Genetic Algorithms", FTOcecdings ofthe 32nd Conference on Decision and Control, San

Antonio, Texas, pp. 1266-7.

Johnston C.R. Jr. and Larimore M.G., (1977), "Comments on and Addition to "An

Adaptive Recursive LMS Filter"", Proceedings of IEEE, 65, (9), pp. 1399-1401.

Jullif K., (1993), "A Multi-Chromosome Genetic Algorithm for Pallet Loading",

Proceedings of the Fifth Intemational Conference on Genetic Algorithms, Morgan

Kaufmann, San Mateo CA, pp. 467-473.

Jun C , Fogarty T.C. and Gammack j.G., (1993), "Searching Databases Using Parallel

Genetic Algorithms on a Transputer Computing Surface", Future Generation Computer

Systems, Vol. 9, No. 1, pp. 33-40.

Kacprzyk J., (1995), "Multistage Control of a Fuzzy System Using a Genetic

Algorithm", Proceedings of The, Second IEEE Intemational Conference on Evolutionary

Bibliography 242

Computing (ICEC'95), The University of Westem Australia, Perth, Australia,

December 1995, pp. 842-845.

Kenyon P., Seth S., Agrawal P., Clematis A., Dodero G., Gianuzzi V. and Agraval P.,

(1992), "Programming Pipelined CAD Applications on Message Passing

Architectures", Proceedings of EWPC92, The European Workshop on Parallel

Computing, lOS Press, Amsterdam, Netherlands, pp. 550-3.,

Kirkpatrick S., Gelatt CD. and Vecci M.P., (1983), "Optirhization by Simulated

^n«ea/w^", Science, Vol. 220, May 1983, pp. 671-680.

Kunz D., (1991), "Channel Assignment for Cellular Radio Using Neural Networks",

IEEE Transaction on Vehicular Technology, Vol. 40, pp. 188-193.

Louis S.J. and Murray A., (1995), "Adapting Control Strategies for Situated

Autonomous Agents", Proceedings of the Eight Florida artificial Intelligence Research

Symposium (FLAIRS-95), Melboume Beach, Florida, April 1995, pp. 274-278.

Lucasius C.B. and Kateman G., (1989), "Application of Genetic Algorithm in

Chemometrics", Proceedings of the Third Intemational Conference on Genetic

Algorithms, Morgan Kaufmann, San Mateo, CA, pp. 170-176.

Manner R. and Manderick B., editors, (1992), "Parallel Problem Solving from Nature,

2", Amsterdam, North-Holland.

McLeod J., (1994), "Reconfigurable Computer May Reconfigure Market", Electronics,

Vol. 67, No. 8, page 5.

Mohammadian M. and Stonier R.J., (1994), "Generating Fuzzy Rules by Genetic

Algorithms", Proceedings of the Third Intemational Workshop on Robot and Human

Communication, Nagoya, Japan, pp. 362-367.

Bibliography 243

Mohammadian M. and Stonier R.J., (1995), "Adaptive Two Layer Fuzzy Control of a

Mobile Robot System", Proceedings of The Second IEEE Intemational Conference on

Evolutionary Computing (ICEC'95), The University of Westem Australia, Perth,

Australia, December 1995, pp. 204-208.

Monolithic Memories, (1986), "PAL/PLE Device Programmable Logic Array

Handbook^', Monolithic Memories, Santa Clara, CA.

Montana D.J. and Davis L., (1989), "Training Feedforward Neural Networks Using

Genetic Algorithms", Proceedings of the Eleventh Intemational-Joint Conference on

Artificial Intelligence (IJCAI89), Morgan Kaufmann, Palo Alto, CA, pp. 762-767.

Nakano K., Hiraki H. and Ikeda S., (1995), "A Learning Machine that Evolves",

Proceedings of The Second IEEE Intemational Conference on Evolutionary Computing

(ICEC'95), The University of Westem Australia, Perth, Australia, December 1995, pp.

808-813.

Narendra K.S. and Thathachar M.A.L., (1989), "Learning Automata - An Introduction",

Prentice Hall, Englewood Cliffs, NJ.

Newell S.B., de Geus A.J. and Roher R.A., (1983), "Design Automation for Integrated

Circuits", Science, Vol. 220, No. 4596, pp. 465-474.

Ogata K., (1990), "Modern Control Engineering", 2nd Edition, Prentice-Hall,

Englewood Cliffs, NJ.

Paraskevopoulos P.N., (1988), "On the Design of PID Controller for Linear

Multivariable Systems", IEEE Transactions on Industrial Electronics and Control

Instmmentation, Vol. IECI-27, No. 1,, pp. 19-27.

Petrovic R. and Kralj B., (1993), "Economic and Environmental Power Dispatch",

European Joumal of Operational Research, Vol. 64, No. 1, pp. 2-11.

Bibliography 244

Radcliffe N., (1990), "Genetic Neural Networks on MIMD Computers", Ph.D. Thesis,

Department of Computer and Science, The University of Edinburgh, Edinburgh, UK.

Rawlins G.J.E., (1991), "Foundation of Genetic Algorithms", Morgan Kaufmaim, San

Mateo, CA.

Rayfield J.T. and Silverman H.F., (1988), "System and Application Software for the

Armstrong Multiprocessor", IEEE Computer, 21(6), pp. 38-52.

Reynolds R.G., (1995), "Solving Design Problems Using Cultural Algorithms",

Proceedings of the Eight Florida artificial Intelligence Research Symposium (FLAIRS-

95), Melboume Beach, Florida, April 1995, pp. 279-283.

Richardson J.T., Palmer M.R., Liepens G. and Hilliard M., (1989), "Some guidelines for

Genetic Algorithms with Penalty Functions", Proceedings of the Third Intemational

Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo CA, pp. 191-197.

Roberts R.A. and Mullis C.T., (1987), "Digital Signal Processing", Addison-Wesley,

Reading, MA.

Sasson A.M. and Merrill H.M., (1974), "Some Application of Optimization Techniques

to Power System Problems", Proceedings ofthe IEEE, Vol. 2 , No. 7, pp. 959-971.

Schaffer J.D., editor, (1989), "Proceedings ofthe Third International Conference on

Genetic Algorithms ", Morgan Kaufmann, San Mateo, CA.

Schraudolph N.N. and Belew R.K., (1992), "Dynamic Parameter Encoding for Genetic

Algorithms", Machine Leaming, Vol. 9, No. 1, pp. 9-22.

Schwefel H.P. and Manner R., editors, (1991), "Parallel Problem Solving from Nature",

Springer-Veriag, Berlin, Germany.

Bibliography 245

Schwefel H.P., (1981), "Numerical Optimization of Computer Models", Wiley,

Chichester, New York.

Serra M., Slater T., Muzio J.C. and Miller D.M., (1990), "The Analysis of One-

Dimensional Linear Cellular Automata and their Aliasing Properties", IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 9,

No. 7, pp. 161-11%.

Shaefer C.G,, (1987), "The ARGOT Strategy: Adaptive Representation Genetic

Optimizer Technique", Proceedings of the Second Intemational Conference on Genetic

Algorithms, Lawrence Earlbaum, Hillsdale NJ, pp. 50-58.

Shapiro I.J. and Narendra K.S., (1969), "Use of Stochastic Automata for parameter self-

Optimisation with Multimodal Performance Criteria", IEEE Trans., SSC-5, (4), pp.

352-360.

Song Y.H., Li F., Morgan R. and Williams D., (1995), "Environmentally Constrained

Electric Power Dispatch with Genetic Algorithms", Proceedings of The Second IEEE

Intemational Conference on Evolutionary Computing (ICEC'95), The University of

Westem Australia, Perth, Australia, December 1995, pp. 17-20.

Spears W.M., (1989), "Using Neural Networks and Genetic Algorithms as Heuristics

for NP-Complete Problems", M.S. Thesis, George Mason University.

Spiessens P. and Manderick B., (1991), "A Massively Parallel Genetic Algorithm

Implementation and First Analysis", Proceedings ofthe Fourth Intemational Conference

on Genetic Algorithms, Morgan Kaufmann, San Mateo CA, pp. 279-285.

Syswerda G., (1989), "Uniform Crossover in Genetic Algorithms", Proceedings of tiie

Third Intemational Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo,

CA, pp. 2-9.

Bibliography 246

Tanese R., (1987), "Parallel Genetic Algorithm for a hypercube". Proceedings ofthe

Second International Conference on Genetic Algorithms, Lawrence Earlbaum,

Hillsdale, NJ, pp. 177-183.

Tanese R., (1989), "Distributed Genetic Algorithms", Proceedings of the Third

Intemational Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA,

pp. 434-439.

Tang C.K.K. and Mars P., (1989), "Intelligent Learning Algorithms for Adaptive Digital

Filters", Electronics Letters, 25, (23), pp. 1565-1566.

Tang C.K.K. and Mars P., (1991), "Stochastic Learning Automata and Adaptive IIR

Filters", lEE Proceedings-F, Vol. 138, No. 4, August, pp. 331-340.

Thangiah S.R., Vinayagamoorthy R. and Gubbi A.V., (1993), "Vehicle Routing with

Time Deadlines using Genetic and Local Algorithms", Proceedings of the Fifth

Intemational Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo CA,

pp. 506-513.

Vose M.D., (1991), "Generalizing the Notion of Schema in Genetic Algorithms",

Artificial Intelligence, Vol. 50, No. 3, pp. 385-96.

Walker D.A. and Potter W.D., (1995), "A Genetics-Based Learning Approach to 3-D

Pursuer/Evader Strategies", Proceedings of the Eight Florida artificial Intelligence

Research Symposium (FLAIRS-95), Melboume Beach, Florida, April 1995, pp. 284-

288.

Walters D.C. and Sheble Z.C, (1993), "Genetic Algorithm Solution of Economic

Dispatch With Valve Point Loading", IEEE Transaction on Power Systems, Vol. 8, No.

3, pp. 1325-32.

Bibliography 247

Weste N.H.E. and Eshraghian K., (1993), "Principles of CMOS VLSI Design: A Systems

Perspective", Addison-Wesley Publishing Company, Incorporated Reading, MA, 2nd

edition.

Whitiey D. and Kauth J., (1988), "GENITOR: a Different Genetic Algorithm",

Proceedings of the Rocky Mountain Conference on Artificial Intelligence, Denver,

Colorado, pp. 118-130.

Whitley D., (1989), "The Genitor Algorithm and Selection Pressure: Why Rank-Based

Allocation of Trials is Best", Proceedings of the Third Intemational Conference on

Genetic Algorithms, Morgan Kaufinann, San Mateo CA, pp. 116-121.

Whitiey D., (1991), "Fundamental Principles of Deception in Genetic Search", pp. 221-

241 of Rawlins G.J.E., editor, "Foundations of Genetic Algorithms", Morgan

Kaufmann, San Mateo, CA.

Whitiey D., Starkweather T. and Bogart C , (1990), "Genetic Algorithms and Neural

Networks: Optimizing Connections and Connectivity", Parallel Computing, 14-3, pp.

347-361.

Widrow B. and Steams S.D., (1985), "Adaptive Signal Processing", Prentice-Hall Inc.,

Englewood Cliffs, NJ.

Willsky A.S., (1979), "Digital Signal Processing and Control and Estimation Theory",

The MIT Press, Cambridge, Massachusetts.

Willsky A.S., (1985), "Adaptive Signal Processing", Prentice-Hall Inc., Englewood

Cliffs. NJ.

Wirbel L., (1992), "Compression Chip is First to Use Genetic Algorithms", Electronic

Engineering Times, page 17, December 1992.

Bibliography 248

Wolfram S., (1984), "University and Complexity in Cellular Automata" ?hysica, lOD,

pp.1-35.

Xilinx Inc., (1994), "The Programmable Logic Data Book" Xilinx Incorporated, San

Jose, CA.

Yao X., (1993), "An Empirical Study of Genetic Operators in Genetic Algorithms",

Microprocessing and Microprogramming, 38(1-5), pp. 707-714.

