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0.1 Abstract. 

This thesis deals with the problem of representation of series in closed form, mainly by the use 

of residue theory. Forced differential-difference equations of arbitrary order are considered from 

which infinite sums of the form 

Si(R,k,b,a,t) = ^^y . J (r.k^Rk-.y. ' 

with arbitrary parameters (R, k, b, a, t), are generated. For the most basic case of 

(R, k) = (1,1) the infinite sum ^i (1,1,6, a, t), in different form, has been considered by various 

mathematicians including Euler, Jensen and P6lya and Szego. Their methods of representing 

5"! (1,1, b, a, t) in closed form are different than those developed by the author; moreover the au

thor demonstrates that Si (1,1,6, a, t) has many appUcations in a wide area of study including 

teletraffic theory, neutron behaviour, renewal processes and grazing systems. The author proves 

that for the general case, ^i (R, k, 6, a, t) may be represented in closed form which depends on 

k dominant zeros of an associated transcendental characteristic function. 

In a similar vein, arbitrary order forced difference-delay equations are considered, from 

which infinite sums of the form 

,^ f r-^R-l\ f n-akr \ . „. ^, 
S2(R,k,b,a,n) = J2\ U^-akr-Rk+l^ 

r.=o \ r J \kr-\-Rr-l J 

with arbitrary parameters {R,k,b,a,n) are generated. It is shown that the finite form, 

S2F(R,k,b,a,n), of S2{R,k,b,a,n) is associated with Fibonacci and other related polyno

mials. Many functional forms of 5*2̂  (1,1, b, 1, n) are also proved. For some special cases of the 

finite form, S2F {R,k,b,a,n) may be represented as an identity and residue theory, together 

with automated techniques and recurrences are employed in their proof. By the use of residue 

theory and induction the author proves that the infinite sum 5*2 (R, k, 6, a, n) may be represented 

in closed form, which depends on A; zeros of an associated polynomial characteristic function. 

Moreover, S2 (R, k, 6, a, n) may be represented in hypergeometric form which in some particular 

instances reduce to known identities incorporating, for example, Kummer's form. 
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0.7 Summary. 

This thesis deals with the problem of representation of series in closed form, mainly by the use 

of residue theory. Chapter one is a brief overview of some methods; residue theory, recurrences 

and automated procedures, that are usefully employed in this thesis. Some results given by 

various authors are generalized and extended. Chapter two develops the techniques, mainly 

residue theory, that are useful in this thesis. An identity is proved, which has previously been 

given by Euler and others using different methods than the authors. It it also shown that the 

particular identity has applications in a wide area of study. Chapter three is concerned with 

a proof of Biirmann's theorem and the application of the theorem to the identity obtained in 

chapter two. Some particular finite sums are generated in chapter four and it is proved that 

they may be represented in polynomial forms, moreover they are gainfully utilized in chapter 

five. Forced differential-delay equations of arbitrary order are considered, in chapter five, from 

which infinite sums of the form 

Si(R,k,b,a,t) = Y^\ ink + Rk-iy. ^ 

with arbitrary parameters (R,k,b,a,t), are generated. For the specific case of (R,k) — (1,1), 

Si (1,1,6, a, t) reduces to the identity of chapter two. In the general case, the author proves 

that Si (R, k, 6, a, t) may be represented in closed form which depends on A; dominant zeros of 

an associated transcendental characteristic function. 

Chapter six deals with a first order difference-delay equation, and by the use of residue 

theory generate infinite series which may be represented in closed form and which depend on a 

dominant zero of an associated characteristic function. The finite version of this series is related 

to Fibonacci and other special polynomials. Many functional forms of the finite series are also 

proved. Chapter seven deals with a generalization of a finite version of the sum obtained in 

chapter six, and many identities are proved by the use of recurrences and residue theory. Forced 

difference-delay equations of arbitrary order are considered, in chapter eight, from which infinite 

11 



sums of the form 

^ ^ f r + R-'^\ f n-akr \ ^ „^^, 
S2(R,k,b,a,n) = ^ \ \fJn-akr-m-^-l^ 

r=o\ r j \kr + Rr-l j 

with arbitrary parameters (R,k,b,a,n), are generated. For the special case of {R,k) = (1,1), 

S2{1.Ajb,a,n) reduces to the identity obtained in chapter six. By the use of residue theory 

and induction the author proves that, in general, S'2 (R,k,b,a,n) may be represented in closed 

form, which depends on k dominant zeros of an associated polynomial characteristic function. 

It is also shown that the infinite sums 5*2 (R, k, 6, a, n) may be represented in hypergeometric 

form and in some particular instances of parameter values, Kummer and other identities may 

be recovered. 

12 



Chapter 1 

A review of methods for closed form 

summation 

This chapter consists of two sections. The first section 1.1, is a brief overview of some methods, 

basically ones dealing with residue theory, which are useful for the summation of series and 

their representation in closed form. Some results given by various authors are generalized and 

extended. 

In the second section 1.2, a particular tree search sum, with some variations is considered. 

A number of techniques are utilized, recurrences and automated procedures, that are useful in 

determining its closed form representation. Some related results, which the author believes to 

be new, are also presented. 

13 



1.1 Some Methods 

1.1.1 Introduction. 

Identities play an important role in mathematics and have been a source of inspiration and 

sweat for many mathematicians over a long period of time. Jacques Bernoulli (1654-1705), a 

contemporary of Newton (1642-1722), and Leibniz (1646-1716) discovered the sum of several 

infinite series in closed form, but did not succeed in finding, in closed form, the sum of the 

reciprocals of the squares 

1 " n=l 

"If somebody should succeed", wrote Bernoulli, "in finding what till now withstood our efforts 

and communicate it to us, we shall be obliged to him". The problem came to the attention of 

Euler (1707-1783). He found various expressions for the desired sum, definite integrals and other 

representations, none of which satisfied him. He used the integral representation to compute 

the sum, S, numerically to seven places, yet this is only an approximate value, his goal was to 

find an exact value. Euler succeeded, eventually in writing 

^ = y - (1-1) 

Euler [43], moreover wrote "There are many properties of numbers with which we are well 

acquainted, but which we are not yet able to prove; only observations have led us to their 

knowledge. Hence we see that in the theory of numbers, which is still very imperfect, we can 

place our highest hopes in observations; they will lead us continually to new properties which we 

shall endeavour to prove afterwards. The kind of knowledge which is supported by observations 

and is not yet proved must be carefully distinguished from truth; it is gained by induction as we 

usually say. Yet we have seen cases in which mere induction led to error. Therefore, we shall 

take great care not to accept as true such properties of numbers which we have discovered by 

observation and which are supported by induction alone. Indeed, we shall use such a discovery 

as an opportunity to investigate more exactly the properties discovered and to prove or disprove 

them; in both cases we may learn something useful". One may imagine the excitement and 

14 



sense of achievement when Pythagoras (c.580 B.C.-C.500 B.C.) first wrote that for a right angle 

triangle 

2 , „2 a' = b^ + c', 

Koecher [69] gave 

CO 

c(5) = ^ E 
(-1)^ 

r 

i - l .. oo (-ly 
i=i .5 / 2j 

Ramanujan, see Berggren [8], evaluated 

1 _ 2^v^ y r (4j)!(1103 + 26390J) 

7r 9801 
3=0 

(j!)43964j 

Bailey [4] and coworkers wrote, (originally given by Plouffe [75] ) 

00 ^ 

j = 0 _8j-M 8j + 4 8i + 5 8i + 6, 

Amdeberhan and Zeilberger [2] published 

c(3) = E 
3=0 

(-l)J(i!)^0(205j^-^250j-^77) 
64((2j + l)!)5 

and Clausen [29] gave the result 

2-^1 
a,b 

a-1-6-I-1/2 
re 

N 2 

> = 3^2 
2a, 26, a-h 6 

a + 6 + l /2 ,2a + 26 
X 

where pFq is the hypergeometric function. Some of the main techniques, dealing mainly with 

residue theory, in the investigation of the representation of series in closed form are now dis

cussed. 

15 



1.1.2 Contour Integrat ion. 

Residue theory and contour integration can be gainfully employed to express certain sums in 

closed form. From 

^ ( - l ) " / ( n ) = - ^ R e s j ( 7 r c s c 7 r 2 / ( 2 ) ) 
n=-oo j 

where Resj are the residues at the poles of / (z), we may obtain some classical residts, namely 

^ ^ i i ^ + ^ " 2 ^ [TracothTra - 1] (1.2) 
n = l 

and 

oo ^ 
TT 2 

— coth Tra -f- (TrcosechTra) ^ (n^ -t- a2)2 4a2 a 
1=1 ^ ' •-

The residue evaluation of the integral 

27ri / sin 7tz (z"^ -|- 1) 

leads to the alternating sign identity 

^n^ + l 2 VsinhTT / 

and also we may obtain 

2 

a? 
(1.3) 

n=\ 

A 1 7 r - 3 
• ^ sinh^ mt 67r 
n= l 

Flajolet and Salvy [45] apply contour integral methods to obtain some Euler sums, in particular 

they recover the alternating term identity, without the use of residue theory 

y > ( -1 ) " ^ h-K^ 

£ 'o(2n + l ) ^ ~ 1 5 3 6 -

For another function of the form / (z) = ^̂ °* ĵ̂ ^̂  they recover some results, one of which was 

16 



originally given by Ramanujan 

E coth nvr 197r̂  
, n7 ^ 5 6 7 0 0 ' 

n = l 

The strength of the Flajolet Salvy paper is that it expenses a method and shows many con

nections of identities with the logarithmic derivative of the Gamma function ip (z), the zeta 

function, harmonic numbers and double infinite sums. The residts (1.2) and (1.3) are also 

obtained and extended by Cerone [23] using different methods. The method is described as 

follows. 

1.1.3 Cerone's method and extension. 

Cerone [23] considers an integral equation of the form 

t 

B(t) = ^^f^+ j B(t-u)cj^(u)du (1.4) 

0 

where B (t) is a single sex deterministic model representing births at time t, 0 (t) is a net 

maternity function which is of compact support and I (x) is the survivor function which gives 

the probability of surviving to age a; of a newborn. The Inverse Laplace transform of (1.4) is 

7+ioo 

7—too 

where 

0 0 

T / / N X V{P,X) 

and $(p) is the Laplace transform of (j){x). Assuming that $ (p) = 1 has simple roots, pj, 

which are the only poles in (1.5) then 

B.it)=j:'^spjA^,t>o 
3 ^^' 

17 



where 

M,- = -

oo 

d^ip) 
P=Pi 0 

dp 

By allowing (/> (t) to be exponentially constrained Cerone shows that 

1 0(0+) 

f e-''Pi(l)(u)du. (1.6) 

^ ^ 1 _ MQ + I 

and, in general 

jP>3 

satisfies the recurrence relation 

n M\Q ^ ( - l ) "+ 'M„_fc6 ' fc , ( - l ) " M n - i . _ ,^^, 
( l - M o ) 5 „ = J ^ - — - + ^ - ^ ^ ^ , n = 2,3,4,..., (1.8) ^^^ (n-A;)! ( n - 1 ) ! (1 - Mo)^ 

where 

oo 

Mn= u^cj) (u) du <oo 

0 

oo 

f„=y"ux«), 

are the n*'* moments of (p (t). Now, in particular if (l)(x) = c6 (x — 6) with c, 6 constants and 5 (x) 

is the Dirac delta function, then $ (p) = ce~'^ and M„ = c6". The roots of the characteristic 

equation $ (p) = 1 are given explicitly as 

Inc — 27ri7 . „ , . , „ 
P3 = 1 =^,j = 0 ,± l ,±2 , . . . 

and, from (1.6) Hj = 6. Using (1.7) with a = ^ gives, after some simphfication, the result 

(1.2). Other identities, similar to (1.2), may be evaluated from (1.8) for n=2,3,4,..., or indeed 

by differentiating (1.2) with respect to the parameter a. The following two points are certainly 

worthy of mention. Firstly, replacing o with ia in (1.2) gives the result 

18 



z ^ ; ; 2 — ; 2 = 5: ; ;2l i -^«cot 
n = l 

7ra 

By considering a partial fraction decomposition, such as 

A 1 ^ 1 [f. 1 v ^ _ 
n=l ln=l n=l 

we may obtain, by the use of (1.2) and (1.9), other identities of the form 

°° I 1 
2_\ —4 4 = -7-4 [2 — Tca(cotna + coth7ta)]. 
n=l 

Taking the limit asa—>^0, in(l . lO), confirms the result 

0 0 A 
. - 4 TT* E 

n=l 
n = 90' 

Secondly, (1.2) may also be integrated with respect to the parameter a. From (1.2) 

^Al + a 
n=\ 

2a2/7z2_-

2 /n2 da 
' f sinh a-K 
ln\ 

(̂  ait }\ 

(1.9) 

(1.10) 

(1.11) 

Integrating both sides of (1.11) with respect to the parameter a and interchanging sum and 

integral results in 

E'"(i + ^ ) = ' -
n = l 

sinh aTT 
aTT 

(1.12) 

where the constant of integration in (1.12) is identically zero. The identity (1.12) is also obtained 

by Wheelon [91] using a different technique. Notice that the left hand side of (1.12) may be 

rewritten such that 

n(-S) = sinh a-K 

n=\ 
a-K 

The summation of zeros of other transcendental functions have also been considered by several 
0 0 0 0 

other authors. For instance, Lord Raleigh [79], obtained "^ mj'^ = ^ and ^ m~ 
j = i 3=1 

33 
35(12)''^ 

19 



where the m^ are the zeros of the frequency function 

g (m) = cos ruj cosh mj-\-l (1.13) 

A Taylor series expansion of (1.13) is 

, , ^ m^ 2m8 16mi2 iGm^^ I62m20 iQ^m^^ 
a (m) = 2 ; H 1 
^ ^ 6 7! 3.11! 15! 5.19! 24! 

and since g(m) is an even function in m then -nij and i im^ are also zeros of (1.13). If we 

write 

rr / \ V ^ -n ^ f d' i^) Z~°'dz 

S(a) = '£m,' = -jllj^^,a>l (1.14) 

and choosing a = 4 and a = 8 in (1.14) we recover the two results of Lord Raleigh. From residue 
oo 

calculations and (1.14) we may also give, for example ^ "^7^^ = 6̂41 ^^^ 
j — i *. •' 

oo 

X) ''^j = 200200ofi2)'̂  • -^^o^h^^ operational technique for summing series is that which is 

described by Wheelon and is worthy of a mention here, since we can generalize some of his 

results and also make a connection with the polygamma functions, i/^ (x). 

1.1.4 Wheelon's results. 

Wheelon's method is based on the parametric representation of the general term of a series, so 

as to produce either the geometric or exponential series inside one or more integral signs. The 

fundamental operation is contained in the summation of both sides of a Laplace transform pair 

with respect to a transform variable which is interpreted as the dummy index of summation. 

This operation exhibits the desired sum as an integral of the geometric or exponential series 

each of which may be summed in closed form. Consider the Laplace transform of a function 

oo 

Fip) = Je-'^Pf{x)dx 

20 



and if we identify the transform variable p with a dummy index of summation n, we can write 

oo 

'£F(n) = lY,{e-^)^f(x)dx. (1.15) 

As an illustration choosing f (x) = x in (1.15), leads to Euler's result (1.1). An obvious 

extension is that (1.15) may be generalized to 

E(f:3.=(̂ /̂ '-'-"E(-T/w^ .̂ (n + a) 

The integral representation of (1.15) may be so chosen to allow for denominators with rational 

and irrational algebraic functions and linear factors, and the numerator may be so chosen to 

allow for algebraic, exponential, trigonometric, inverse trigonometric, logarithmic, Bessel and 

Legendre functions. The convolution theorem may be beneficially exploited, so that we may 

write, for j >2 

U V 

aia2as...aj 
= 0-1)!/*/*.../-— dw 

0 0 0 
(̂ ' — 1) times 

V ^ ' 

[ai (l — u)-\- Q!2 (u — v)-^ as {v — w)... + ajwY 

and using the relation 

t-uh^.!'-'^-""^ 
allows a generalization of Wheelon's result as 

sia,j)^j:- = jfrTy. n : ^ ^ ^ " 
"=o n («^+k) --" x=0 

fc=l 

(1.16) 

M 3+1^3 

1 1 2 3 I 
^^ a^ a^ a^ ""•' a 

l + g 2+a S+g .7+0 
a ' a ' a ' • " ' a 

(1.17) 
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for a G 5R and j = 2,3,4,.. . . From(1.16) we can see that 

•^ J l-x" 
x=0 

-dx = j+iR 
1 1 2 3 i 

' a ' o ' a ' •••' a 
l+g 2+g 3+a j + a 

a ' g ' g ' • • • g 

Also, for a and j integers > 1 we have, because of symmetry and known properties of the 

hypergeometric function 

3+1^3 

1 1 2 3 I 
1 a'' ai a'> •"•' a 

l+g 2+g 3+0 j+g 
o ' g ' g ' •'•' g 

= g+l-'^g 
•"•' g ' g ' g ' •"' a 

1+2 2+2 3+2 £±i 
a ' g ' g ' '•'' a 

For specific values of a and j various listings of (1.16) occur in the works of Jolley [64], Hansen 

[54] and Gradshteyn and Ryzhik [47]. We may also obtain some other interesting cases as 

follows. From (1.16) 

S{1,3) = 
a - l ) 0 - - l ) ! j ! 

- — j+\Fj 
1,1,2,3, ...,j 

2 ,3 ,4 , . . . , i -M 

and we have the identity, from Gauss's 2i^i summation 

2i^l 
1,1 

J + 1 J - 1 
; i>2. 

For a = 2, and from(1.16) 

S(2,j) = 
(i-1)! 

2^-ln24-g(-l)^ '^ ' -^^^^""^(2^-^) 
r = l 

= J,3^lF, 
i l i a 2 
-^j 2 ' ' 2 ' • • • ' 2 

3 9 2+2 
2 , ^ , . . . , 2 

3i^2 
ii,i 

1±2 2+2 
2 ' 2 

j2^ 
4 

J - 2 

l n 2 - f ^ ( - l ) 

, and hence 

/ j - 2 \ 1 - 2-

r = l 

22 



Other specific values of (1.16) may be obtained as follows 

5(6,12) = 
15(12!) 

61440 In 2 -h 10935 In 3 + 12257r\/3 - 61251 

Vl\'^' 

1 1 1 1 2 5 -1 
•••' 6 ' 3 ' 2 ' 3 ' fi' -•• 6' 3' 2' 3 ' 6 
13 7 15 8 17 
6 ' 3 ' 6 ' 3 ' 6 ,3 

and hence 

157^6 
1 1 1 1 2 5 1 

' 6 ' 3 ' 2 ' 3 ' 6 ' 

13 7 15 8 17 o 
6 ' 3 ' 6 ' 3 ' 6 '"^ 

= 61440 In 2 + 10935 In 3 + 12257r\/3 - 61251. 

Non integer values of a may also be considered and hence (1.16) may be related to the 

polygamma functions. The following two examples are given; 5 (^,8) = g f n ^ ^'^'^ from (1.17) 

we have 

9-^8 
1,2,4,6,8,10,12,14,16 

3,5,7,9,11,13,15,17 

67864 
45045' 

also 

S (^,^ = 2 ^ I 3455 - 5607r\/3 - 700In3 -H I263F2 

and again from (1.17) we have the identity 

5 9 10 
3 ' " ^ ' 3 

11 13 
3 ' 3 

1 - 363F2 
9 7 8 
'^' 3 ' 3 

11 13 
3 ' 3 

1 

_ 

TT 6F5 
3 

" 1 2 4 9 8 10 
••-' 3 ' 3 ' ' ^ ' 3 ' 3 

5 7 0 11 13 
3 ' 3 ' * ^ ' 3 ' 3 

+ S63F2 
0 I 8 
^ ' 3 ' 3 

11 13 
3 ' 3 

- I263F2 
5 9 10 
3 ' ' ^ ' 3 

11 13 
3 ' 3 

= 3455 - 5607rA/3 - 700 In 3. 

Numerical estimates of the integral (1.16) may be determined for those values of a and j which 

do not permit an analytical solution of the integral; 

5" (.1,9) ~ .00001315 = -^ loFg 
1,10,20,30,40,50,60,70,80,90 

11,21,31,41,51,61,71,81,91 
1 
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Using this procedure Wheelon also sums the double infinite series 

oo oo .. .. 

both of which agree with the results obtained by Bromwich [19]. A similar summation proce

dure, to that given by Wheelon, has been developed by MacFarlane [71], which depends upon 

the properties of the Fourier-Mellin transformation. From Wheelon's work, we may now see a 

connection with (1.16) and the polygamma functions, ^ (x). From (1.16), let j = 2 and a = ^ 

, A; G iV in which case we may write, by partial fraction decomposition 

4A;2 2^-1 v - ^ 4A; v--r 1 

^^ ^ 5 ^ (n + 2fc)(n + 4fc) ^ ^^ | J ^ 

from which, we obtain the very slow converging series 

S'fc = 2A;{V'(4A;)-V(2A;)}. 

If 

5=E Z^ n2 (4n2 + 1) 

we may use partial fraction decomposition with polygamma functions, so that 

S = 8 V ( 1 ) - 8 V ' ( ^ ) + V ' ( 1 ) + V ' ' ( ^ ) 

= 2 + C ( 2 ) - 7 r c o t h ^ . 

A great deal of exciting work has also recently been carried out by Borwein and his coworkers 

[13] on symbolically discovered identities with special and other functions. Flajolet and Salvy 

[45], by the use of residue theory also obtain identities involving special functions. Other 

transform techniques also provide a rich source of possibilities for investigating sums which 

may be represented in closed form; Z transform techniques are widely used and a general 
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method may be seen in the books of Jury [66] and Vich [89]. 

1.1.5 Hypergeometric functions. 

Binomial sums and hypergeometric functions are intrinsically related. It is of fundamental 

importance that binomial sums can be generally written as a terminating hypergeometric series, 

see Roy [80]. The book, A=B, by PetkovSek, Wilf and Zeilberger [74] expertly expounds the 

theory of hypergeometric closed form representation of binomial sums. The following is therefore 

a brief description of the hypergeometric function and some of it's prominent properties. The 

books of Bailey [6], Slater [82] and Caspar and Rahman [46] cover all of the material presented 

here. 

If the ratio of two consecutive terms Tk+i/Tk , in a series, is a constant, then we have 

a geometric series. A hypergeometric series arises when the ratio is a rational function of a 

positive integer A;, 
Tk+i ^ (ai + k)... (ap -{-k)z 
Tk (bi + k)...(b,-^k)(l + k) ^ • ^ 

where ai, ...,ap\bi^...,bq and z are complex and TQ — 1. Pochhammer's function is defined as 

(«)o = 1 

(a) , = a (a + l ) . . . (a + fe-l) = ^ ^ 
(1.19) 

and hence a hypergeometric series may be written as 

pFq 
ai,a2,. 

bi,b2,. 

..,ap 

..,bq 

1 
z 

The hypergeometric series (1.20) is symmetric both in its upper parameters ai, . . . ,ap and its 

lower parameters bi^...,bq. In general it is required that 6i_...,6g ^ 0, — 1, — 2,..., since otherwise 

the denominators in the series will eventually become zero. If for some j , aj = —n then all 

terms with k > n will vanish, so that the series will terminate. In the non-terminating case, 

the ratio test yields the radius of convergence, which is infinite iov p < q -\-1,1 ioi p = q + l 

and 0 ioT p > q -\-1. Moreover, ii p = q-\-l then there will be absolute convergence for [̂ l = 1 

( <] p \ 

^bj — Y^ aj > 0. Hypergeometric functions play an important role in many fields of 
3=1 3=1 J 
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pure and applied mathematics as well as in science. The excellent survey paper of Andrews 

[3] puts basic hypergeometric functions in an applicable setting. More recently hypergeometric 

functions led to the solution of the long standing problem of the Bieberbach conjecture by 
oo 

deBranges [39]; which shows that ii f (z) = z + Y!, ^n^" is a normahzed univalent analytic 
n=2 

function in the unit disc, then for each n > 2 one has |an| < n. Some elementary cases of 

hypergeometric series are 

QFQ 

\.Fo —a 

= e^, and 

= (l-z)r 

Bessel functions may be expressed in the form 

(i)"«^' a-\-l 

z" 

T 
r ( a + l)Ja(a;) 

and the 2-F1 series is the classical Gauss series with Gegenbauer, Chebyshev, Legendre and 

Jacobi polynomials as terminating cases. It is well known in the theory of hypergeometric 

functions that the confluent iFi function can be obtained from the Gaussian 2i^i function by a 

limit process called confluence. The hypergeometric function 

g+l^g 
,ag ao,ai 

6l,62,...,6g 
(1.21) 

is called A;— balanced \i z = \ and A; -j- ao + ai -I- ... -f- a^ = 61 -|- 62 -I- ... + bq\ or just balanced if 

A; = 1; well-poised if 1 -f- ao = ai -|- 61 = ... = aq-\-bq., and very well-poised if it is well-poised and 

oi = 1 -I- ^ . There are a number of cases where (1.21) with argument z = ±1 can be evaluated 

in closed form as a quotient of products of Gamma functions. Five of these cases are: 

1. the Gauss summation formula 

2. Kummer summation formula 

3. the balanced Pfaff-Saalschiitz summation formula 
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4. the well-poised Dixon summation formula, and 

5. the 2-balanced and very well-poised Dougall summation formula. 

The Gauss summation formula is a limit of the Pfaff-SaalschUtz summation formula, Rum

mer's formula is a limit of Dixon's formula and may also be obtained from Dougall's formida. 

The Pfaff-Saalschiitz summation formula can be explicitly written as 

Y ^ (")fc Wfc (-^)fc ^ (C - a)n (C - b)n 

^ ( c ) , ( l + a + 6 - c - n ) , A ; ! ( c ) J c - a - 6 ) „ ' 

in particular ifc = o - f6- | - l we have 

(«)fc (b), _ (1 + a)„ (1 + 6)„ 
. (l + a 
fc=0 

(l + a + b)^k\ (l + a + 6)„n! 

Hypergeometric sums are often met in the form of combinatorial sums with binomial co

efficients. Evidently, one hypergeometric sum may have many representations as a sum with 

binomial coefficients. Saalschiitz's summation, for example, may be written as 

a-l-A; —1 \ / c —a — 6-|-n — A; — 1 

A; / \ c —a — 6—1 

E 
fc=0 

In the next section, rather than detail the theory and practice of summation of binomial series in 

closed form, we will consider a particular sum, with some variations, and investigate its solution 

through various procedures, including the automated approaches described by PetkovSek, Wilf 

and Zeilberger [74]. 
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1.2 A tree sesirch sum and some relations. 

1.2.1 Binomial summation. 

The sum, with some variations and relations, which we shall explore in detail, arises in the work 

of Jonassen and Knuth [65] in an algorithm known as tree search and insertion. In particular 

the sum is 

We shall explore (1.22) and survey several methods of finding a closed form solution. We 

shall compare the analytical techniques of Riordan, Jonassen and Knuth, Gessel, Rousseau, the 

hypergeometric connection, the generatingfunctionology method of Wilf and the automated 

approaches of Sister Celine, Zeilberger and the WZ pairs method. 

1.2.2 Riordan. 

Under the heading of Inverse Relations, Riordan [81] considers the identities 

'-=5(:)ff)'(:)-'-(ti- "" 
'"=s(-r)ff)'(:)=« 

' 2n 
Riordan analyses (1.23) and (1.24) by recurrences. Writing gn = 2 ^ \ ) , then 

n 

2" ' 2n 
hn = Y.\ |(-l)*^yfc = 2 - ^ n a n d 

fc=o V k 

/2n+l = 2 ^ I (-1) Sk = 0. 
fc=o V k 
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Now p„ = (2 - i ) gn-i and also 

^-1 ' n - 1 
/2n = / n - l + X ; ( - i r ^ ^ f c + l , 

fc=o \ fc y 

n ( / n + / n - l ) = E l "" | ( - l ) ' ^ f c : = / l n . 
fc=0 \ fc + 1 / 

Hence 

^ (/n + /n - i ) = /in-1 + fn-1 = ^ /n-1 -l- (n - 1) fn-2, and therefore 

n/n = (n - 1) /n-2, /o = 1, / i = 0. (1.25) 

From (1.25), we have /2n+i = 0 and 

_ 2 n - 1 2 n - 3 2 n - 5 1 .^n /̂  " 1 / 2 \ / n - 1/2 

•̂ "̂ - -^^2^r:r^ 2^^4-2 = ^-^^ [ n ) ^ [ n ' ^^ ^ 

n - l 

= •- ! - . - S - n ( - ^ : 
Riordan expands on these ideas and obtains the additional identities 

s . : . ( - ) • : = ^ r : I -
^ 2n + l \ f-Vs" 2k \ _2n + l / 2n 

h[k+i jK^J [k)- 2- [^ 

Riordan attributes the identities (1.23) and (1.24) to Reed Dawson. Another interesting identity 

related to (1.23) and which may be evaluated by inverse pair relations is 

(-4)^ 

fc=o / 2A; 

A; 
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1.2.3 Method of Jonassen cuid Knuth. 

Jonassen and Knuth [65] consider (1.22) and by algebraic manipidations obtain the recurrence 

(1.25) as follows. From (1.22) 

'• = ' - S ( : : : ) ( T ) " ( : 

= '--s(.:,)(-)'(:)"?' 

- l \ ^ / 2A; 

k 
fn-l - 2fn-l + - y^ 

""toyk+i 
hence 

n(fn + fn-d = ± " U ^ ) ' f ' ' )• (1-28) 
iS V ^ + 1 ' ^ ^ 

Replacing n with n — 1 in (1-28) we get 

(.-l)a-:+/„-,) = E ( j J ( ^ y ( ^ ; )-/„-:. (1.29) 

Subtracting (1.29) from (1.28) we obtain the recurrence relation (1.25) and hence identity (1.26) 

follows. 

1.2.4 M e t h o d of Gesse l . 

This method is given on page 3 of the Greene and Knuth [50] book and is described as follows. 

Replace A; with n — k, that is change the order of summation, in (1.22) such that 

"" ' n \ /-W^-^ I 2n-2k 

k=o\kl\'^/ \ n-k 
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Let [x'^] f (x) denote the coeflacient of x^ in / (x) , hence 

n [rr^ (1 - 2a;)" = | | (-2)' 

y 
n—k (1 + yf-2« = ( 2n 2fc I (_2j . ^ |^„, ̂ k (1 ̂  ^)2„-a 

n — k 

and therefore 

/n = (-2^)^ [y1 / (1 + y) '" E p ] (1 - 2x)- ( ( ^ ) 

But since 

when / (x) is analytic, then 

^\x']fix)g{y)' = f(giy)) 
fc=0 

/„ = ( - 2 ) - [ y - ] ( l + 2 ; ) 2 n | ^ l _ _ ^ y 

(-2)- '^[yT(l+y2)", 

and the solution follows 

n 2 "• I I , for n even 
/n = <( V n/2 

0 , for n odd. 

1.2.5 Method of Rousseau. 

(1.30) 

This method is also described in the book of Greene and Knuth [50] and essentially it identifies 

the coefficient in a polynomial expansion. From 

H ( - + i )" = 
2̂= ' 2k 

k 
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'i_i^±i) /7=E ru^r .̂+ifand 
x 

fn = M (x^ + ^)''=[x«](l- i i ± i l ! j " , hence 

'-mm: 
1.2.6 H y p e r g e o m e t r i c form. 

Here we consider a slightly more general version of (1.22) in terms of hypergeometric notation. 

Let 
^ 6A; n /,(a,6) = E l )(-< 

k=o\kl \ k 

for a real and 6 integer. The ratio of consecutive terms is 

=j:Tk 
ifc=0 

(1.31) 

Tk+i ab^ {k - n) 

6 - 1 . 

7 = 1 ^ 
+ ^ ) 

Tk (*-i)"('=+^)"n(*+a) 
(1.32) 

To = 1, and hence from (1.32) 

fn (a, 6) = 6^6-1 
b - l b - 2 h - 3 1 _ r 7 

6 ' 6 ' 6 ' •••' 6 ' " 

1 6 ^ b^ _±_ 
•L, ft_i, 6 - 1 ) •••7 6 - 1 

06'' 

( 6 - 1 ) 6 - 1 
(1.33) 

moreover, for the relatively simple case of 6 = 1 

/„ (a, 1) = iFo —n 
a = (1 - ay 

Now, we concentrate on the case of 6 = 2 ; from (1.33) 

fn(a,2)= 2F1 
i , - n 

4a (1.34) 
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and a recurrence relation for (1.34) obtained from the Zb algorithm in Mathematica, is 

(n + 2)/n+2 + (2n + 3 ) ( 2 a - l ) / „ + i + (n + l ) ( l - 4 a ) / „ = 0, 

/o(a,2) = l , / i ( a , 2 ) = l - 2 a . 
(1.35) 

We can see from (1.35) that for two special cases of a = 1/2 and a = 1/4 the recurrence relation 

(1.35) becomes manageable. From (1.34) let a = 1/2 such that 

/n ( 2 '2 j = 2-Pl 
i , - n 

(1.36) 

and replacing A; with n — A; we have 

/n(-,2J=To2Fi 
-n, —n 

— n 
>^o=Hr 

IN' ' / 2n 

n 
(1.37) 

There is an identity, due to Gauss, see Graham, Knuth and Patashnik [49], which states 

2-Fi 
Oil,Oi2 

a i -I- a2 + 1 
= 2F1 

2(xi,2oL2 

a i -I- 0:2 + ^ 
(1.38) 

hence from (1.38) and (1.37) 

/n - ( 
2n 

n 
2F1 

- —n —n 
2 ' 2 

\ - n 

-

1 (1.39) 

Similarly by Pfaff's reflection law 

2F1 
Q ! i , a 3 - a 2 

0:3 
2"^ 2i^l 

OCl,OL2 

0:3 
- 1 

we have from (1.37) 

2F1 
-n , —n 

\ - n 
= 2-^2^1 

- n , 

— n 
- 1 
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Using the classical Gauss formula 

2^1 
ai,a2 

Q!3 

_ r (0:3) r (0:3 - Q i -0 :2 ) 

r(Q:3 - 0:2) T (0:3 -ai) 

we obtain from (1.39) 

_ / - l y / 2n \ r(i-n)r(i) (1.40) 
n 

such that when n is odd fn = 0 and when n is even 

_ 4n W / ( 2 n ) ! y £M2n)! _ 2n / 2n 

^ ' " ' ' 2n N-U-nlJ (4n)! " ' I 

Also, from (1.35) for a = 1/2 we have that (n -f- 2) fn+2 — {n-\-l) fn = 0 which is identical to 

(1.25) and hence the Reed Dawson identity follows. For a = 1/4, from (1.34) 

fnh.2 =2Fl 
1 , -n 

and from (1.35) (n -\- 2) fn+2 - l{2n-\- 3) /n+i = 0, hence 

n - l 
f '-'rfP^ + ^\ r ( i + ")_g-2»' 2>. 

n 

also from (1.31) /2n(l /2,2) = / n ( l / 4 , 2 ) . For 6 = 3, a recurrence relation, using the Zb 

algorithm in Mathematica, fn (a, 3) = /n, of (1.31) is 

2 (n -h 3) (2n -t- 5) /n+3 + (n^ (27a - 12) + n (135a - 56) -F 168a - 66) fn+2+ 

2 (n -h 2) (3n (2 - 9a) - M l - 54a) fn+i + (27a - 4) (n + 1) (n -t- 2) / „ = 0, 

/o = l , / i = l - 3 a , / 2 = l - 3 a + 15a2 

(1.41) 
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The recurrence (1.41) does not lend itself to easy closed form evaluations for any special values 

of a. Returning, briefly, to the identity (1.27), we begin with the general form 

gn (a, 6) = E 
fc=0 

n 

k 
(-af 

bk 

k 

(1.42) 

and in hypergeometric notation 

gn (a, 6) = bFb. 
I 6 :̂2 6 ^ _1 
• ^ ' 6 - 1 ' 6 - 1 ' — ' 6 - 1 ' "' 

6-1 6-2 6-3 \ 
b •> b •> b 1 • • • ' 6 

a ( 6 - l ) 
b^ 

6-1 

For 6 = 1, ^„ (a, 1) = fn (a, 1) = (1 - a)^ . For 6 = 2, 

gn (a, 2) = 2^1 
1,—n a 

which has a recurrence relation 

2 (2n + 1) gn+i -F (n + 1) (a - 4) p„ + 2 = 0, ̂ o = 1-

In the speciflc case of a = 4, we obtain the identity (1.27), evaluated by Riordan, and it may 

be easily verifled, utilizing the procedure described by PetkovSek et al. [74], by the rational 

certiflcate function 

A; (1 - 2A;) 
^ ^ " ' ^ ) - ( „ + l _ j t ) ( 2 n - l ) -

For 6 = 3, a recurrence relation of (1.42), using the Zb algorithm in Mathematica, is 

3 (3n + 4) (3n + 5) pn+2 - 2 (n -f 2) (n (27 - 2a) + 27 - 3a) gn+i+ 

(4a - 27) (n + 1) (n + 2) ̂ n - 6 = 0, ̂ 0 = 1,51 = 1 - ^a 

and again it does not lend itself to easy closed form evaluations for any special values of a. 
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1.2.7 Snake oil m e t h o d . 

This method is described on page 126 of the book by Wilf [93]. Let 

/ . ( . ) = E ( ; ) / ( - | 

and define F (x,y) = J2 fn (u) x^- Now replace for fn (y) and interchange the order of sum-
n>0 

mation, such that 

f(-,!/)=Ef*V'Ef'' 1-' 
fc>0 \ k I n>Q \ k 

1 - X ^ I 
fc>0 \ 

2k \ ( xy \^ 

. . _ ^ k I \ 1 - ^ 

2^ ^ . 1 
yk 1 

(1.44) 

Utilizing the identity ^ \ z'^ = , / it follows from(1.44) that 
fc>0 \ A; ' ^ 

F(x,y)^ 
( l _ a ; ) ^ l _ 4 E | ^ ( 1 - ^ ) ( 1 - ^ ( 1 + % ) ) 

If y = - l / 2 , F ( x , - 1 / 2 ) = -j=^ and the Reed Dawson identity follows. If y = - 1 / 4 , 

,2m 
F{x,-l/A) = - ^ = E I ^"^ I (f) '"^ and hence, 

m>o \ rn 

n I i ^ - l V f 2A; \ _ ^_^^ j 2n ] r{n + l/2) 

fc>0 \ k ^ I : 1 ( T ) : - • > . - - V . 

We can generalize (1.43) a little by considering 

"" • n \ , I c 

"̂'̂ "̂ ^SlJnJ ''•''' 
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and define 

F(z,c,b) = Y,fnib,c)z''. (1.46) 
n>0 

Putting (1.45) into (1.46) and interchanging the order of summation, we have 

F(.M = E L h'E, , 
k>0 \ k I n>0 \ k 

n 
z"" 

(1 + ^(6-1))^ 

zb - ^ 

( i - ^ r - ^ ' • 

For c integer (1.45) will always have a closed form solution, For example, with c = 3, we have 

" ' ^Kkin.i ^ ' U N =^(63n3 + 36V(3-6)+6n( l8 -96- | -262) -H6) . 

If c = -1/2 and 6 = 2 , we get F (z, -1/2,2) = (l - z^)~^^^ and from the relationship 

the Reed Dawson identity follows. If 6 = 1, 

•<..-./....=;^=g(:)(i)'. 

which corresponds to the Vandermonde identity 

s : : = "• 
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1.2.8 S o m e relat ions. 

The related sum 
qn 

Sn(p,q)='£{-iy 
r=0 

qn 

r 

for p and q integers is an interesting one, and is briefiy considered here. For q 

(1.47) is identical to (1.31) for a = 1 and 6 = 1 . From (1.47) we have 

(1.47) 

1 and p = I, 

Sn (p, q) = pFp-i 

and some special cases, from (1.48), are 

Sn{l,q)= IFQ 

-qn, —qn, —qn,..., —qn 

1,1,1,...,1 
(-1) 

P+i (1.48) 

-qn 
= < 

Oifqne Z+ 

lifqn = 0 

and 

Sn(p,2) = pFp_i 
-2n, —2n, —2n,..., —2n 

1,1,1, . . . , ! 
(-1) 

P+i (1.49) 

. 2n \ 3n \ 2n 
It is known that Sn(2,2) = ( -1 )" | \, Sn(3,2) = (-1) ' ' I and therefore 

n I \ n ) \ n 

5n(3,2) = 
Sn 

n 
/S'n(2,2); however for p ^ A, deBruijn [38] showed that (1.49) cannot be 

expressed as a ratio of products of factorials, and Graham et al. [48] also showed this by 

an application of the multidimensional saddle point method. We can deduce, from (1.48) the 

identity 

Sn{2,q)= 2F1 
—qn, —qn 

1 
- 1 

2gn+l 

where B (x,y) is the Beta function. From (1.47) and (1.48) we may also deduce that 

(1.50) 

2»i+i / 2 n -I- 1 

52„+i(p,i)=E(-i) 
r=0 

= TiFr p - T p - l 
- 2 n + 1,...,-2n-t-1 

(-1) 
P+i 0, 
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^..(..l)=E(-lrf''')^=(-l^f")^2E(-l)'f-^^ 
and utiUzing (1.50), gives the new result 

yr J nW{l^) 2 ^ „ 

The sum (1.47) may, for specific cases of p and q, be written as a recurrence relation. Another 

related sum is given by Strehl [84], whom in an informative paper shows that, for all natural 

numbers n 

= 4-P3 
n-{-l,n-\- l,—n,—n 

1,1,1 

Strehl offers six different proofs of (1.51) based on: 

• Bailey's bilinear generating function for the Jacobi polynomials in the special case when 

the Jacobi polynomials reduce to Legendre polynomials, 

• A combinatorial approach to the Bailey identity, 

• Legendre inverse pairs, 

• the Pfaff-Saalschiitz identity, 

• Zeilberger's algorithm, and 

• known recurrences for the Franel and Apery numbers. 

From (1.51), after various manipulations Strehl obtains 

s(:)"(^)'=5(:)m§>'(;)' -
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= 2i^l 
—n,—n 

1 
2 + X+\ 

A 
(1.53) 

Given that 2Ai,2 = -S±y/E are the zeros of the quadratic Â  -I- 3A - | - 1 , then from (1.52) 

|:(:y<-)-Ef:V^)Ev., ,. a.M) 
fc=0 k Al, 

j=o J 

Identifying (1.53) with (1.50) for g = 1 we may also give the identity 

n 
E I , i (-1)" = 2« 
fc=o \ A; 

and from (1.54) we can write, the new result 

—n,—n 

1 
- 1 

2n+l 

5(^,lf^) 

'"^''H.{:)('^^)tM'^) 
where a second order recurrence of (1.54) is (n -f 2) Sn+2 (2,1) -I- 4 (n 4-1) Sn (2,1) = 0, with 

5*0 (2,1) = 1 and 5i (2,1) = 0; for n odd Sn (2,1) = 0, hence (n + 1) 5'2„+2 (2,1)-F2 (2n + 1) S2n (2,1) 

0 and by iteration S2n (2,1) = {-2)''Y[ ^ • 
3=0 ^^ 

1.2.9 M e t h o d of Sister Celine. 

Let 

where 

F (n, k) = 

fn = Y,F(n,k) 
k=0 

n \ f-l\^ I 2k 

k k 

(1.55) 

(1.56) 

Since the ratio of two subsequent terms of (1.22) is a rational function in both n and A; then 

(1.56) is a proper hypergeometric function . Following Sister Celine [74] we require non-trivial 
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solutions of the recurrence 

2 2 

E E "^^'J H F(n-j,k-i) = 0. (1.57) 
i=0 j=0 

utilizing the computer package added to "Mathematica", we can generate the recurrence 

2a (n - 1)2 F (n - 2, A; - 2) - (n - 1) {an -2Pn-a)F (n-2,k - 1) 

-/3n (n - 1) F (n - 2, A;) - a (n - 1) (2n - 1) F (n - 1, A; - 2) 

- (2n - 1) (Pn - an - a)F{n - l,k - 1) -hpn(2n - 1 ) F ( n - 1, A;) 

-an (n-l)F (n, k - 1) - fin^F (n, k) = 0. 

Setting a = 0,P = 1 and summing over A;, we obtain a recursion equation for fn, namely 

nfn = in-l) fn-2 , /o = 1, / i = 0 

and the Reed Dawson identity follows. 

1.2.10 Method of creative telescoping. 

The method of creative telescoping is described in the book of PetkovSek, Wilf and Zeilberger 

[74]. It utilizes the Zb algorithm in "Mathematica" so that the input 

Z6[Binoraial[n, A;] ( — „ I Binomial[2A;, A;], k, n, 2] 

responds with a recurrence relation 

(1 -h n) Sum[n] - (n 4- 2) Sum[n -F 2] = 0 

and with initial conditions leads to the Reed Dawson identity. 
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1.2.11 W Z pairs m e t h o d . 

This method certifies a given identity as well as having some spin-offs. Given the identity (1.22) 

we may write 
n 

^F(n,k) = l (1.58) 
fc>0 

where 

2n \ , i,fc / 2A; , 

(4) . 4" 
F(n,k) = ^ ± 2 V k J (4)^(2fe)!n!^4-

' 2n\ (2n-ky.k\^ ' 
(1.59) 

n 

Calling up the WZ package in "Mathematica" we obtain the certificate function 

^ ( - - ^ ) - ( 2 n - . + l K f e - 2 - 2 n ) - ^''''^ 

G(n,k) = R(n. A;)F(n,A:) = , , „ \U,^ \ ', ^,. (1-61) 

Now, we define 

- (-l)^2fc)!n!^ 

A;!(A;-l)2(2n-A;-h2)! 

such that F{n + l,k) — F(n,k) = G(n,k-\-l) — G (n. A;) is true. Sum that equation over all 

integers k, such that the right hand side telescopes to zero and therefore 

J2Firi-hl,k) = Y^F{n,k). (1.62) 
ifc>0 fc>o 

The two discrete functions F{n,k) and G(n,k) are termed the WZ pairs. From (1.62) and 

with initial conditions we obtain the Reed Dawson identity. PetkovSek et al. [74] claim 

that the WZ pairs method provides extra information because of the existence of a dual 

WZ pair. To obtain the dual WZ pair make the substitution (an -|- 6A; -|- c)! by (_̂ _̂'̂ fc_̂ ._;̂ ĵ 

for a -I- 6 7̂  0 in (1.59) and (1.61) to obtain F and G. Next change the variables (n,k) by 

F* (n, k) = G {—k — 1, —n); G* (n, k) = F (—k, - n — 1), (this transformation maps WZ pairs 

to WZ pairs), such that we obtain 

F* (. k\ ( - i r ' - ' 2 " ( n - l ) ! n ! 2 ( 2 f c - l - n ) ! 
^ ("'^) = 4fc+i(2n-l)!A:!2 ^^'^^^ 
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and 
^ * / M ( - i r ^ ^ 2 " + i n ! 3 ( 2 A ; - 2 - n ) ! , , 
^ ( ^ ' ' ) = 4M2n + l ) ! ( fc- l ) !2 • (1-64) 

As previously, we obtain fn — J2 F* (n, k) and because of the (2A; - 1 - n) term in (1.63) we 
fc>0 

shall define 

/ : = E F*(n,k), (1.65) 
fc>[^] 

where [x] represents the integer part of x. Now, we need to sum over A;, the recurrence 

F* (n + l,k)- F* (n,k) = G* {n,k + l)-G* (n, A:); (1.66) 

since the right hand side of (1.66) does not disappear, we sum for A; > 1 -I- [ | ] , this however 

gives us an extra term, and distinguishing for n odd and n even, we obtain 

F* (n + 2,k)- F* (n,k) = G* (n + 1, A; -M) - G* (n + 1, A;) + G* (n,k-\-1) - G* (n,k). 

For n even, let n = 2m, and summing for A; > 2 -|- m, we obtain 

/* (2 -t- 2m) - /* (2m) + F* (2m,m -f 1) = -G* (2m + l ,m + 2) - G* (2m,m -f 2) , 

and from (1.63) and (1.64) substituting for F* and G* we obtain 

r(2 + 2ra)^ri2rn)+^'"^;'^^'X<'^'f";f. (1.67) 
•' ^ / J V / m!(4m-f 3)!(m-M)! 

Iterating the recurrence (1.67) we have 

r ( 2 + 2 m ) - r f 2 ) + V ( 5 a 2 H 2 i ± l ) ! M l ! (1.68) 
/ (2 + 2 m ) - / (2) + ^ j ! ( 4 j + 3) !0 + l)! ^ ' 

and from (1.63) and (1.65) we have 

/•(2) = - | E ^ ^ - (i« )̂ 
fc>2 
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We can put (1.69) in "Mathematica, Algebra, SymboIicSmn" and obtain 

r ( 2 ) = l - l n x / 2 . (1.70) 

(We may also obtain (1.70) by starting with identity 2.5.16 in the book by Wilf [93]). Now 

from (1.70), (1.68), and (1.65) we obtain 

4-(2m-l)!(2m)!2 ^ ( 2 f c - l - 2 m ) ! ^ 1 ^ ^ (3 j+ 2) (2;-fl)! (2j)!^ 
( 4 m - l ) ! ^£^^^ 4fc+iA:!2 ' ^ ^ ' 3 ^ j ! ( 4 j + 3)! (j +1)! " ^ ' ' ' '^ 

Prom (1.67) and (1.70) we also obtain /* (0) = - l n \ ^ and from (1.71) putting k* = k - m 

and renaming A;* we have the new result 

^ (2fc-l)! ^ (4m-1)! [ ' ^ ^ ( 3 j + 2)(2j + l)!(2j)!2| 
4^22fc(m + A;)!2 (2m - 1)! (2m)!2 ] ^ j ! (4j+ 3)! (j-Fl)! f" 
K—1 ^ 3—" J 

In the next chapter we develop and apply our procedure of 'domination of zeros' for the sum

mation of series in closed form. 
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Chapter 2 

Summing series arising from 

int egro- differ ent ial- difference 

equations 

In this chapter a first order differential-difference equation is considered and by the use of 

Laplace transform theory an infinite series is generated, which may be represented in closed 

form. The series, it turns out, arises in a number of areas including teletraffic problems, neutron 

behaviour, renewal processes, risk theory, grazing systems and demographic problems. 

Related works to this area of study are considered, including Euler's and Jensen's investi

gations, Ramanujan's question, Cohen's modification and extension and finally a solution to 

Conolly's problem is given.^ 

^This chapter, in condensed form, is to be published in the Bull. Austral. Math. Soc. 
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2.1 Introduction. 

Differential-difference equations occur in a wide variety of applications including: ship stabiliza

tion and automatic steering [72], the theory of electrical networks containing lossless transmis

sion lines [17], the theory of biological systems [16], and in the study of distribution of primes 

[90]. The equation 

f'(t)+af'(t-a)+Pf(t)+'yf(t-a) + 6f(t-ha) = 0 

is termed a first order linear delay, or retarded, differential-difference equation iov a = 0,6 = 0 

and a > 0. For a = 0,6 = 0 and a < 0 it is termed an advanced equation. In the case 6 = 0 

and a > 0 it is referred to as a neutral equation and when a = 0,/3 = 0 and a > 0, an equation 

of mixed type. A great deal of the studies for the stabihty of differential-difference equations 

necessitate an investigation of its associated characteristic function. Some of the early work in 

this area has been carried out by Pontryagin [77], Wright [96] and more recently by Cooke and 

van den Driessche [36] and Hao and Brauer [55]. In this chapter we will show that, by using 

Laplace transform techniques together with a reliance on asymptotics, series representations for 

the solution of differential-difference equations may be expressed in closed form. The series, in 

its region of convergence, it is conjectured, applies for all values of the delay parameter without 

necessarily relying on its association with the differential-difference equation. Unlike some of 

the series that are listed as high precision fraud by Borwein and Borwein [15] the series in 

this chapter will be shown to be exact by the use of Burmann's theorem. The analysis also 

relies on the exact location of the zeros of the associated transcendental characteristic function. 

The technique developed in this chapter is then applied to particular examples that arise in 

teletraffic problems, neutron behaviour, renewal problems, ruin problems and to a model of 

a grazing system. We also investigate, briefiy, equations with forcing terms, and equations 

with multiple delays, mixed and neutral equations. The fundamental series obtained in this 

chapter has also been investigated, using different methods than the author, by Euler, Jensen 

and Ramanujan. We shall describe their techniques and give in detail, a description of Cohen's 

modification and extension, and a solution to Conolly's problem. 
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2.2 Method . 

Consider the first order hnear homogeneous differential-difference equation with real parameters 

a, 6 and c and real variable t: 

(2.1) 

(2.2) 

(2.3) 

f{t) + bf{t)+cf{t-a)=0, t>a 

f(t)+bf(t)=0, / ( 0 ) = 1, 0<t<a. 

Taking the Laplace transform of (2.1) and using the initial condition, results in 

£(f(t)) = F{p) = ^y^UL^i—^ ^ 
KJKJJ Kf) p^^^^-ap Z . (p-F6)"+l 

The inverse Laplace transform of (2.2) is 

n=0 

where the Heaviside unit function 

f l , f o r a ; > 0 

y 0, for a; < 0. 

The solution to (2.1), by Laplace transform theory may be written as 

7+ioo 

7—too 

for an appropriate choice of 7 such that all the zeros of the characteristic function 

g{p)=p + h + ce-''P (2.4) 

are contained to the left of the line in the Bromwich contour. Now, using the residue theorem 

/ (t) = E residues of (e^^F (p)) 
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which suggests the solution of / (t) may be written in the form 

f{t) = Y^QreP^' 
r 

where the sum is over all the characteristic zeros pr of g (p) and Qr is the residue of F (p) at 

p = pr. The poles of the expression (2.2) depend on the zeros of the characteristic function 

(2.4), namely, the roots of g (p) = 0. The dominant zero po of g (p) has the greatest real part 

and therefore asymptotically f (t) ~ QoeP°* , and so from (2.3), 

^ f _l)"c"e~''(*~"'^) (t - anY' 
f{t) = Yl - ^ ^ - ^ , ^ ^ H(t - an) ~ QoePoK 

n=0 ^ 
(2.5) 

After some experimentation it is conjectured from (2.5) that: 

^ (-l)"c-e-^(^—) (t - an)^ ^ ^^^, 

n\ 
n=0 

(2.6) 

Vf G 5R in the region where the series on the left of (2.6) converges. Biirmann's theorem will be 

used, a little later, to prove the identity (2.6). By the use of the ratio test it can be shown that 

the series on the left of (2.6) converges in the region 

ace^^"^ < 1 . (2.7) 

In a similar fashion, the Laplace transform from (2.2) may be expressed as 

„ , , 1 / 6 + ce-«P\"^ - ^ ^ l ^ \ (-l)"6"-'-c'-e-«'-P 

=0r=0 \ r 

and the inverse Laplace transform may be written as 

/w-EEf''V'""^""r""''^'"^('-)-^°---71' 
n=Or=0 \ r • 
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As previous it is conjectured that 

n ^ ( - i y w ^ - v ; ( t - a r ) " 
n\ E E r"^^"::'-''' =QO'^' (2.8) 

n=Or=0 \ r 

whenever the double series converges. 

Lemma 1 The poles of the expression (2.2) are all simple for the inequality (2.7). 

Proof: Assume on the contrary that there is a repeated root of 

p + 6 + ce-^P = 0 (2.9) 

then by differentiation it is required that 1 — ace~°-P = 0, in which case p = In (ac) /a. Sub

stituting in (2.9) results in In (ac) -|- a6 + 1 = 0 and therefore ace^'^"'^ = 1 which violates the 

inequality (2.7). Hence all the zeros in (2.9) are simple. 

Now, the residue Qo of the dominant simple zero po = ^ is 

-————-, where (-\-b-hce'"^ = 0, 
1 -I- a6 -I- a^ 

and so the expressions (2.6) and (2.8) become 

^ (-l)^c"e-^(*-°^) (t - an)"" _ ^ ^ ( ^ \ (-l)^6"-^c^ (t - ar)"" _ e^' 
^ n\ -2^Z^\ ^ ;;:! - l + ab + a^ ^^'^^^ 
n=0 n=0r=0 \ ^ / i i S 

whenever the single and double series converge in a mutual region. Using the transformation 

oo n oo oo 

EE/(^'^) = EE/(^+^'^) (2.11) 
n=0 r=0 n=0 r=0 

we obtain, from (2.10) 

EE n-\-r \ (-l)"+'-6"c'" (t - ar)'"'^'' ê  

n n \ r I (n + r)! l + a6 + ae 
n=0 r=0 \ ' ' 
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L e m m a 2 

1. The single and double sum in (2.10) are solutions to (2.1) in their region of convergence. 

2. The closed form expression in (2.10) is a solution to (2.1) for t > a. 

3. The single and double sums in (2.10) are equal in their mutual region of convergence, 

which is no larger than that given by (2.7). 

Proof: 1. and 2. can be shown to be solutions of (2.1) by substitution and statement 3 of 

lemma 2 requires that we show 

y > A / n \ ( - l ) " 6 ^ - ' ' c ^ ( t - a r ) ^ ^ ^ ^_l)n^n^-b{t-an) (̂  _ ^^y 

n=Or=0 \ r J ^ ' n=0 n 

so that expanding the left hand side and summing each column from the left hand side results 

in 

cO (t - 0)° 
0! 

c^ (t - a)^ 

1! 

c^ (t - 2a)^ 
2! 

c3 ( i - 3a)^ 

3! 

l^ b(t-0)^ 6̂  (t - 0)^ 63 (t - 0)^ 
0! "̂  1! ^ 2! ^ 3! "^" 

!_ b{t-a)^ 9 (t - a)^ 63 (t - a)^ 

0! ^ 1! ^ 2! "̂  3! "̂  

1^ b(t-2af 6̂  (t - 2a)^ 6̂  (t - 2af 

0\^ 1! ^ 2! ^ 3! ^"' 

\ b{t-2>af 9 [t - 3a)^ 6̂  [t ~ Saf 
0 ! ^ 1! ^ 2! ^ 3 ! ^"' 

+. 
cO(t_o)Oe-''(*-o) c ( t - a )e -^ (*2! l c^ {t - 2af e'^ft-^") c? (t - 3a)^ g-^^^-^a) 

0! 1! 2! 3! 

=E 
(-l^n^n^-bit-an) (j. _ ^„)n 

n=0 n! 

Returning briefly to (2.10), put 6 -|- c = 0, which imphes that ^ = 0, also let t = —ar, so that 

E(^)"Er^^"^'<^"^^"-' 
n=0 r=0 \ r 

n\ l-\-ab 
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The inner sum, which we shall generalise in chapter 4, is (-l)"", and hence we obtain the 

common series 

E(-^r = rh^- (2.12) „ l-l-a6 
n=0 

Biirmann's theorem [92] will now be used to prove the explicit form of relationship (2.6). 

2.3 Burmann's theorem and application. 

Theorem 3 Let (j) be a simple function in a domain D, zero at a point (3 of D, and let 

0(^) ' "̂̂  0'(/3)' 

/ / / (z) is analytic in D then "iz G D 

f{':)'^f ( « + E ^-^^ [f (*) {«(*)ru+fl»+. r! dt 
r=l 

where Rn+i = TT^ dj^ 
2m JT JC 

•<l>(u) in fi /,\ ,1 /'(t)0'(^)_^^_ 
icV^{t)\ (l>{t)-<f>iu) 

The V integral is taken along a contour T in D from P to z, and the t integral along a closed 

contour C in D encircling T once positively. 

We shall prove Biirmann's theorem in chapter three. However next, we shall apply Biir

mann's theorem to equation (2.10). 

The characteristic function (2.4) may be shown to have a simple dominant zero at p = 0 for 

6 -f c = 0 and 1 + a6 > 0. Thus from (2.6) 

^ 6"e-^ft-^") (t - an)"" _ 1 
^ n\ " l + a6- ^^-^^^ 
n=0 

Let t = -ar, ab = —p, and hence from above 

n = 0 • '^ 
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Identity (2.14) is now shown to be true by applying Btirmann's theorem. Let 

/ (-̂ ) = 1 ^ ' ^ (^) = ^ = e^ <̂  (^) = ze-^f (^)^^o = 1, 

and we will show, in chapter three, that Rn+i —> 0 as n —> oo. From / (t) = ^ , 

f(t) = e-l^^ + 
(1 ̂

) - ' ' ( E ( - I + ^ ) ' ' ) . 

and so f'{t){9(t)Y = 6* '̂'+= )̂* (t), where ^ (t) = X) (x + l+j)P. The coefficients in this 
j=o 

expression are the same as those in a Taylor series expansion ^^^^ (0) = {x-\-l-\-j)j\. Now let 

Br(t) = '^^~-^i[f'(t){d{t)Y] 
df 

dt r-l 

- J{r+x) 
= e 

e*^'"+^)*(t) 

(r -I- x) 

(r-^x)'-^ 

r-l I '' M ^(0) (^) ^ (y. + a.)r-2 

0 

r - l 

1 

r - l 
^"( i)-H. . . + (r + a;)̂  

2 / V r - - 2 

* ' (t) + 

*^^-'̂  (i) 

.,0-1) + (r + x)«( "• ^ l*^^-^'(i) 

Hence 

(r + a;)'-^ I "" M (a; + l) + (r4-a;) 

B , (0) = 

' ' - 2 ' "" ^ ' (a; + 2) + 
1 

\ 

(r-\-x) 

\ 

r -3J ^ 1 ^ (^ + 3) + ... + (^ + a;)M "" ^ | (a : + r - l ) ( r - 2 ) ! 

-HI ' ' " I ( a : - F r ) ( r - l ) ! . 
r - l 
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If we now put y = x -\- r we obtain 

Br{0) = y ' ' " ^ (2 / - r + l ) - F / - 2 ( r - l ) ( y - r + 2 ) + y ' - 3 ( r - l ) ( r - 2 ) ( y - r + 3) 

+... + ( r - l ) ! y ( y - l ) + ( r - l ) ! y 

= y ' - i r - l)y'-' + (r - l )y^- i - (r - 1) (r - 2)y^-^ + (r - 1) (r - 2)y^-^ 

-...-{r-l)\y + {r-l)\y 

= y^ = ( x - ^ r ) ^ 

Hence it follows that 
xz "-

1- z ^-^ 
T=\ 

r! 
{x + ' 

A modification of this siun also appears as a problem in the work of Polya and Szego [75]. 

By the ratio test the infinite sum (2.14) converges in the region [pe-"-"̂ ! < l,(or |a6e-'̂ "'"°̂ | < 1 

for (2.13)), and so considering p as a complex variable p = x-\-iy, then (ê -̂*̂ "̂ ) (x^ -f y^)) ^ < 1-

The region is shown in figure 2.1. 

0.4. 

Figure 2 .1 : Convergence region, \pe^ P\ <1. 

On the boundary p = 1, from (2.14), the series 

\ -̂ j — may be shown to diverge. 
n=0 n! 
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oo 

Consider the divergent series J^ J , then by the limit comparison test lim /'e-(^+")(r+n)" \ ^ ^ 
n=l n-^oo \ n. J 

on UtiUzing StirUng's approximation n\ ~ (^ )" y/27m as n -^ oo. The divergence of the above 

series can also be ascertained from the closed form representation of the right hand side in 

(2.14). 

The characteristic function (2.4) may be shown to have a dominant double zero at p = 0 

for 6 -h c = 0 and 1 -I- a6 > 0. From the general theory of linear fimctional differential equations 

[52] it follows that there exists constants a and /3 such that 

lim (f{t)-at) = p. 
t—»oo 

From residue theory, the constants a and /5 can be shown to be ^ and | respectively, in which 

case 

t^oo y ^ ^ a J 3 

From (2.10) and (2.2) it can be seen that 

l i ^ / y . ( - l ) " c - e - K ^ - " " ) ( t - a < \ ^ ^_(,+,), ^^j^f n \ ( - l ) " 6 - - c - t » 

"~* \n=0 ^ ' / n=Or=0 

This result can be ascertained directly from the differential-difference equation (2.1). 

2.4 Differentiation and Integration. 

Rewriting (2.10) we have that 

^ ( - l ) " c " e ° ^ (t - an)"" ^ ê (̂ + )̂ 2̂ 15) 

^ n\ l-\-ab-\-a^' ^ ' ^ 
n=0 ^ 

Differentiating both sides of (2.15) with respect to t, j times we have 

^ ( - l ) " c " e - ^ ( ^ - ° " ) ( t - a n ) ^ - ^ ' ^ (6-hO^e^^ 2̂ 16) 
^ (n-jy l + a6 + a^' ^ ' ^ 
n=j 
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On the left hand side (2.16) put n-j = n* and rename n* = n, also put t + aj = x, then the 

left hand side becomes 

(_^)i y ^ (-l)"c^e-K^-°^) (x - an)^ 

n = 0 

and from (2.15), is equal to 

= {-cy 

n\ 

r,Xi 

l-\-ab-\-a^' 

but from the characteristic function (2.4), since ^ is a zero 

(2.17) 

- c = ( 6 + 0 e ' .a? (2.18) 

and therefore (2.17) is equal to 
(6 + )̂̂ 6=^̂  

1 -I- a6 -F a^ 

which is equivalent to the right hand side of (2.16) after renaming x as t. 

We may also integrate (2.15) j times such that 

E 
n=0 

(- l )^c"e" ' '"( t -an)"+^' 
(n + j ) ! =/ /i 

. t(6+0 

-I- a6 -h a^ 
dt. 

j—times 

For j = 1 we have, from (2.19) 

E 
n=0 

( _ l ) n c n g - b ( t - a n ) (^ _ a n ) " + ^ 

(n + 1)! 

ot^ 

(6 + 0 ( l + a& + O 
+ Ke -bt 

(2.19) 

(2.20) 

where iiT is a constant of integration. Now putting t = x — a,n* = n-hl and renaming the 

counter n*, we have 

E 
n=l 

( _ l ) n c n e - 6 ( x - a n ) (3. _ ^ ^ ) n 
= —C 

n! 

gf(x-o) 

(6 + e ) ( l + a6 + aO 
+ Ke-^^^~°'^ 

to evaluate the constant K, adjust the counter on the left hand side and use the result (2.10); 
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on the right substitute (2.18) for - c , such that K = - ^ ^ ^ . Thus from (2.20) 

oo 

E 
n=Q 

(n + 1)! ~ " 6-he 

M 

l-\-ab-\-a4 
_ „-b{t+a)-a^ (2.21) 

If 6 4- c = 0 and 1 -|- a6 7̂  0 then ^ = 0, in which case from (2.21) 

E 
n=0 

(n + 1)! ~b 
_ „-fc(t+a) 

l + a6 
(2.22) 

2.5 Forcing terms. 

The result (2.19) may be arrived at by considering a difference-delay equation with a forcing 

term. Let 

f(t)+hf(t)-hf{t-a) = 
fn-l^-bt 

r ( m ) ,/(o) = o. (2.23) 

for m a positive integer. Following the procedure of the previous sections, we have 

F(p) = 
{P + 6)"" (p + 6 - 6e-°P) 

(2.24) 

where F {p) has a simple dominant pole at ^ = 0, and a pole of order m at p = —6. From these 

considerations we arrive at the result 

00 

E 
n=0 

yn^-b{t-an) (^ _ a „ ) " + " ^ 

{n-\-7ny. 

m—\ 

6"*(l+a6) • ^ 
^ ' v=0 

+ E Pm,u (-6) 
j.m—v—\p—bt 

(m-u-iy. (2.25) 

where 

i^^-Pm,v i-b) = lim 
d" 

p-*-b [dp'^ p + 6 - 6e-"P 
u = 0,1,2, ...,m — 1. 

For m = 1, (2.25) gives the result (2.22), and for m = 3 we have the result 

00 

E 
n=0 

lfn^-b{t-an) (̂  _ ^^y^+i -6* 

63 (1 + a6) 66̂ ^̂  

't2 t (1 + a6e°^) a2 2 ( l + a6e"^)^ 
"2"^ 6e«^ ~2^ 62^2^^ 

Now let us consider the case where m may be a rational number. As an example if m = a//3 

then (2.24) has a simple dominant pole at ^ = 0 and a branch point at p = —6. Also, from 
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{2.2A),f(t) = £-^{F{p))wheve 

7+ioo 

7 2m J 
eP^dp 

7—roo 
(p + 6)"/^ (p + 6 - 6e-'»P) 

and the contour C in (2.26) may be 

Figure 2.2: The contour C, in (2.26). 

(2.26) 

Now 

/ = / + / + / + / + / + / = 27riRes (p = 0), 
c >IB' BD DE EF FG GA 

Res(p = 0) = ba//3(i+ab) ^"^ ^^°^§ ^^ ^"^ ^ ^ ' 

B D EF 

Along £)F and F G we have 

/ = / 

R-b 

i limit 
e^0, i l ->oo 

DE FG e 

J x^. 
g-(x+6)t^^ 

/^ (a; + 6e"(^+^)) ' 

(2.27) 

(2.28) 

(2.29) 
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From (2.27), (2.28) and (2.29) 

g-(x+6)t^^ 1_ f 1 1. r e-^''+''>*dx 

Ini J ~ 6"//3 (1 + a6) ~ TT y W^7xT6e°(^W)" ' 27ri 
AB • x=0 

(2.30) 

and if, as previous, our conjecture is to follow then 

^ n g - b ( t - a n ) (^ _ ^ ^ ) n + | 1 1 7 e - ( ^ + ' ' ) M x 
oo 

j.n_—oir—am fj. \"-r-3 i i 

^ r 
n=0 1 

^ - ° "H^-a r i ) " "^ _ . 1 1 /• e-^^+^^Mx 
f ^ + a + l " ) •6° / / ' ( l+a6) 7r 7 x°/^ (x + 6e°(^+'')) ^ ' '̂  
\ P } x=0 

however, since the integral in (2.30) is improper and divergent then (2.31) is not an identity. A 

similar improper divergent integral (2.30) may be obtained for any real number m. 

2.6 Multiple delays, mixed and neutral equations. 

Consider an equation with two delays 

f'(t) + bfit-a)-bf(t-p) = 0, f(0) = l,a,P>0. (2.32) 

Taking the Laplace transform of (2.32) we obtain 

^̂ ^ ~ p + 6e-"P - be-PP 

which has a simple dominant pole at ^ = 0. We may write F (p) in series form such that 

n=0 P r=0 \ r J 

—p(an+/Sj—ar) 

and so using the techniques of the previous sections we have 

ra=0 r = 0 
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If a = 0 and /? = a (2.32) reduces to (2.1) and (2.33) is equivalent to (2.10). I£ p =-a (2.32) 

becomes a mbced equation, and (2.33) reduces to the identity 

E(-rE(-ir ' n \ {t-a{n- 2r))" 

n=o r=o \ r J ^- l-2ba' 

For the homogeneous neutral equation (forcing terms may also be added). 

f'(t)+bf'(t-a)+cf(t-a) = 0, f{0) = l 

we obtain 

F(p)= ^ 
p + pbe-°'P + ce-'^P' 

and from the methods of the previous sections 

V y " r - 6 r ( " ^ (<'Yi*-^'>^T ^ (c + bQe^ 
h h [rJ^bJ r! c - a e ( c - 6 0 ' 

where ^ is the dominant zero of the characteristic function 

9{p)=P+{c + bp) e-°-P. 

Using the transformation (2.11), (2.34) reduces to the identity 

\^\^'(-^^r^+r.n^r / ^ + ^ ^ {t-a{n + r)Y _ (c + b^)e'^ 
h U ^ ^ \ r j rl -c-a^c-bO^ 

and for the degenerate case of a = 0 we have 

oo n n 'cty (-6)" e-'=*/(i+^) 

(2.34) 

h ^ o [ r n b ) r! 1 + 6 

A number of examples will next be investigated in which the methods of the previous sections 

are apphcable and in which the identity (2.13) and its variations can be extracted. 
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2.7 Bruwier series. 

Bellman and Cooke [7] refer to 

n=0 

as the Bruwier series, see [20] and [21], which is a solution to the advanced equation 

/ (t) - ^f (t + oj) = 0, f (0) = 1. (2.35) 

Comparing (2.35) with (2.1) it can be seen that 6 = 0, c= -u, a = -cv and from the series at 

(2.11) 

y rz^" ( t + na;)" _ e^' 

^ n! " l - a ; ^ ' 
n=0 ^ 

where ^ is the dominant real root of ^ - ve'^^ = 0 and \i^Loe\ < 1, is the region of convergence 

of the series. 

2.8 Teletraffic example. 

Erlang [40], see also Brockmeyer and Halstrom [18], considers the delay in answering of tele

phone calls. The problem is to determine the function / (t), representing the probability of the 

waiting time not exceeding time t. Hence for an M/M/1 regimen, Erlang shows 

oo 

/ W = y f(t + y-a)e-ydy. 
y=0 

The probabihty that, at the moment a call arrives, the time having elapsed since the preceding 

call confined between y and dy, is e~ydy. The probabihty that the waiting time of the preceding 

call has been less than t -\- y — a is f (t-\-y — a), where a is the connection time of a call. 

Differentiating the integral equation with respect to t and partially integrating the result gives 

the differential-difference equation (2.1) with 6 = —1 and c = 1, from which (2.10) follows. It 

may be shown that the characteristic function (2.9), with 6 = —1 and c = 1, has the following 
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real root distribution: 

• One root ai p = 0 ioi a < 0, 

• one negative root, plus p = O f o r O < a < l , 

• a double (repeated) root at p = 0 for a = 1 and, 

• one positive root, plus p = 0 for a > 1. 

The following results apply for all real values of t , in the region of convergence lae^"*"! < 1. 

y > ( - i r e ^ - ° " f t - a n ) - - _ f i z g ^ for a > 1 

n=o " ' I y ^ for a < 1 

which on putting t = -ar, we may write 

y(ae-r{r + n)- _ i f ^ for a > 1 

; S ^' \ f^ fora<l 

where ^ is the positive dominant root of ^ — 1 + e""^ = 0. Erlang considered only the case of 

0 < a < 1. In the case when a = 1 there is a double pole which results in, from a previous 

statement in section 2.3 

lim (f(t)-2t) = l. (2.36) 
t—»oo o 

This fact has also been noted, in a different context, by Feller [44]. Bloom [12] proposes the prob

lem of evaluating lim ( / (t) — 2t) given that, for t a positive integer f (t) = Y) (-1) e ~"(t-n) ^ 
*-*°° 0<n<f 

The W.M.C. problems group [94] and Holzsager [60] both solve this problem, and in partic

ular Holzsager considers / ( t ) , V t > 0. Now, f (t) satisfies the differential-difference equation 

f (t) = f(t) — f (t — I), t > 1 and using the theory of linear functional differential equations, 

Holzsager shows the result (2.36). Holzsager's work relates only to the asymptotic of the fi

nite sum whereas in this chapter it is shown that the infinite sum is equal to the asymptotic 

expression for all t. We may also prove (2.36) in the following way. 

Theorem 4 

-(E^=^^^^r^-f|. 
\fc=0 / 
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Proof: Let an= ^ ^ '-,n = 1,2,3,... and consider the generating function 
fc=0 

Fiz) = 1 + E«n<^" 
n = l 

oo n 

i+EE 
e-(fc-") (fc - n)^ „ 

n = l fc=0 

= l + E(e.)" + EE^''""'if"'"^Met. = '-'^. 
n = l n = l f c = l 
oo oo ° ° / _ '\'<̂  

= 1 + E ^^^"^^ "*" E (̂ '̂ '̂̂  E jLi ' rename the counter r, 
n = l r = 0 fc=l 

oo oo 

= E(^^r+E(^^)"(^"'"-i) 
n = 0 n = 0 
oo 

= EK-^)" 
n = 0 

1 
~ 1 - z e i - ^ • 

We therefore have a pole at z = 1, hence F (z) is analytic on C : |2:| < 1. Other poles of F (z) 

are outside the unit circle. A Laurent expansion of F (z) about z = 1,after putting t = 1 — z is 

F{t) = 
1 - (1 - t) e* 
2 / 2t 

and at t = 0, (2 = 1) there is a pole of order 2. The principal part 

2 4 
G{z) = 

( 1 - ^ ) 2 3 ( 1 - ^ ) 

4 °° 
= ^2(n + l)^"--E^'^ 

n = 0 n = 0 
00 . J . 

E(2n + 5J.». 
n = 0 ^ ^ 
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Hence 

(F-G)(z) = l + J ] a n ^ - - 5 ^ ( 2 n + | ) ^ " 
n=l n=0^ ^^ 

i + E(«n-2n-|)A 
n=l 

is analytic for \z\ < 1, and so converges for z = 1. Thus (2.37) follows and the proof is complete. 

An elementary approach leading to (2.37) is suggested by Haigh [51]. Using (probability) 

renewal theory arguments Haigh demonstrates, that, given that X is a random positive variable, 
oo 

then E (X) = X) Prob.(X > n) and if N (t) is the number of random numbers we need to sum 
n=l 

until we exceed some target t, then E {N (t)) = Y, ^'~''S~^^ • Cox [37] and Feller [44] then 
fc=0 

show the result (2.37). 

2.9 Neutron behaviour exzunple. 

In the slowing down of neutrons Teichmann [86] introduces Laplace transform techniques to 

analyze the renewal equation. This example involves the Placzek function 

1 _ e-(i+p)wo 

^ (^) = ( l + p ) ( l - a ) - l + e-(i+P)-o (2.38) 

before inversion, where a is a constant depending on the mass of the moderating nuclei and 

«o = — In a is the maximum lethargy change in a single colhsion. Keane [67] obtains 

where t is lethargy and H (t — nuo) is the Heaviside function. From (2.38), it may be shown 

that F (p) has a simple dominant pole at p = 0 and for 1—a+a In a 7̂  0 its residue contribution 

is A = 1 + j - ^ In a. Using the techniques developed in section 2.2 it will now be shown that 
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Prom (2.10), for 6 = 0 and c = 1 we have 

uf ^ ^ ( - ! ) " ( ? / - a n ) " ê ^̂  
^(^) = E ! i - = T ^ ^ where r; + e-«'' = 0. 

Rewriting the left hand side of (2.39) gives 

^ n ! | 1 - a 1 - Q ; 
n=0 .̂ 

(2.40) 

y . ( -1 ) " / te-"0/(l-a) („ ^ 1) ̂ ^g_„o/(i_«) I " ^ _ ^ 

„ n ! | I — Q; 1 — a 
n=0 

= / i ( t ) - / i ( t - w o ) e " ^ — • (2.41) 

Now it is required to show that (2.41) is identically equal to the right hand side of (2.39). Let 

^ g - u o / ( l - a ) ^ ^ g - „ o / ( l - a ) ^ 
?/ = ,a = and B = then a = Be , 

1 — a 1 — a 1 — a 

so that from (2.40) 
rjte-^ 

p 1 —Q: 

h(t) = 
\-\-ar] 

From 77 + e~^^^~ = 0 put a77 = —F then F = ae^ and hence F e ~ ^ = Be~^, which is satisfied 

by the relationship E = aB. From (2.41) 

g - a t / ( l - a ) g -a ( t -uo) / ( l - t t )g -wo/ ( l - a ) 

1 + ^ l n a 1 + i ^ l n a 

(1 - a) e-"*/(i-") 

1 + T ^ l n a 
as required. 

Identities (2.39) and (2.41) hold in the region of convergence 

double pole occurs at p = 0 when 1 — Q! + Q;lna = 0, therefore 

t-^oo y ^ ' l-aj 3 ( 1 - a ) 

l—a < 1. From (2.38) a 

64 

file:///-/-ar


2.10 A renewal example. 

In determining the availability of a renewed component Pages and Gondran [73] consider the 

case of a constant failure rate. Given that A (t) is the availability of a Markovian component, A 

is the constant failure rate, and g (t) is a density function, then the integro-differential equation 

satisfied by A (t) is 

t 

-A(t) = -XAit) + (l-Ao)g(t) + X g{u)A{t-u)du, A(0) = AQ. 

Taking the Laplace transform results in 

£(A(t)) = 
Ao + ( l -Ao)f f (p) 

P + X-\g(p) 

Considering the case of constant repair time, that is Mean Time To Repair, M.T.T.R., is a, 

then g(t) = 6(t — a), where 6 (t) is the Impulse fimction, residting in 

£ (A( t ) ) = 
Ao + (1 - Ao) e-°P 

p + A - Ae-"P 
(2.42) 

= E A" 

^o(P + ^) 
n+1 

{Aoe-"P" + (1 - Ao) e-'^P^^+i)} 

and by inversion 

(̂*) = E 
n=0 

A'̂  

n! 

Aoe-^(*-"") {t - an)"" H (t - an) + 

(1 - Ao) e-^(*-"("+i)) (t-a(n-h 1))" H(t-a(n + 1)) 

where H (x) is the Heaviside function. From (2.42) the residue at the dominant zero p = 0, 

of the characteristic equation p + A - Xe'^'P = 0 for a > 0 and 1 + aA 7̂  0,is 3 ^ , hence, by 

utilizing the results of the previous sections, the result becomes 

^ ^ [Aoe-^(*-"-) (t - an)" + (1 - AQ) e-^(*-"("+i)) (t-a(n + 1))"J = -
n=0 

-\-aX 
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in its region of convergence laAe^+ -̂̂ l < 1 and Vt G $R. The value of the availability hmit sum 

is independent of the initial value Ao and the closed form solution is independent of the value 

of t. It may also be seen that 

" \n °° \n 
^ —\(t—nn\ I. \n. \ ~ ^ A y ^e-^^*-*^") (t - an)^ = V ^e-^(*-«("+i)) (t-a(n + 1))" = -^— 

f-̂  n! ' ^ n! ^ ^ ^̂  1 + aA 
n=0 n=0 

by putting t - a = T in the second sum. Utilizing (2.10) and putting t = -ar results in 

Eizl):^^,,„,.-^..-..f;t(zi^ 
n=0 n=0 r=0 \ / 

whenever the double sum converges. From (2.42), a double pole occurs at p = 0 when 1+aA = 0, 

resulting in 
, . ^ ^ 2*N 2 ( 3 ^ 
t^oo \ ^ ^ a j 3 

2.11 Ruin problems in compound Poisson processes. 

The integro-differential equation 

R'(t) = ^{ 
Cl 

R(t)- IR(t-x)dF(x) \ (2.43) 

is derived by Tijms [87] and Feller [44] and has applications in collective risk theory, storage 

problems and scheduling of patients. Here, a is the Poisson parameter and ci a positive rate. 

Taking the Laplace transform of (2.43), it follows that 

Given that F is a distribution concentrated at a point a, F* is its Laplace transform, p, is the 

expectation of F and R(0) = 1- k/j,, where k = -^ results in 

R*(p) = 1—^̂ ^̂  . (2.44) 
^ ^P) p-k + ke-'^P ^ ' 
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Comparing (2.44) with (2.2), b = k,c= -k results in 

R (t) = (1 - kp,) E t : ^ e ^ ( * — ) (t - an)'' H(t- an) 
„ n\ 

n=0 

The characteristic equation p-k+ke'^'P = 0 has a simple dominant zero at p = 0, for 1 -afc 7̂  0 

and therefore 

n=0 

and in the region of convergence lafce^""* !̂ < 1. 

From (2.44) a double pole occurs at p = 0 when 1 - afc = 0, therefore 

t-00 \ ^ ^ Cl J 3 

2.12 A grazing system. 

Woodward and Wake [95] consider the differential-delay model 

w' (t) + (ri -g)w (t) + ge-^''^w (t - r ) = 0 (2.45) 

describing a linear continuous grazing system, w' (t) represents the change of pasture mass over 

time t, r i is a constant grazing pressure, g and r are positive constants representing growing 

conditions. From the work of section 2.2, the following results are inferred 

y ^-9^ > e-(^i-g)ft-^) (t - r ) " = j ^ . (2.46) 
; ^ n! ^ ^ l+T(i-g + ri) ^ 

where ^ is the dominant zero of 

h{p)=p-g + ri+ge-''^''^'^ (2.47) 
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and in fact for t > r , the right hand side of (2.46) is a solution of (2.45). Woodward and Wake 

describe a neutral stability condition for 

g-ri= ge-''^^ (2.48) 

and applying (2.48) to (2.47) gives us the dominant zero, ^ = 0, in which case (2.46) reduces to 

y - ( n -£?)"( , . , -g)( t -^) , _ .n _ 1 

n=0 

representing a constant steady state solution for r i > g. The characteristic function (2.47) has 

a double pole for p = —ri and g'T = 1, in which case, from residue theory 

lim ( » ( * ) - ! ) = 2 . 

Other examples occur in stochastic processes, see Hall [53] and in the demographic problem of 

a counter model with fixed dead time, see Biswas [11]. 

2.13 Zeros of the transcendental equation. 

Equation (2.4) is the transcendental function associated with the differential-difference equation 

(2.1). The zeros of this function are well documented and since many research papers have been 

interested in the stabihty of the solution of the differential-difference equation, conditions are 

given for the existence of complex conjugate roots with negative real part. Firstly, ^ satisfies 

(2.4) if and only if In (^ + 6) = In (-ce-<) ; C complex, hence a^+ln (^ + 6) = (2n + 1) 7ri+ln c, 

in which case a Re (^) = - Re (In (6 + ^)) + Inc. If a > 0 =^as |^| -^ oo then Re (^ —>• -oo and 

if a < 0 =^as j^j -^ oo then Re ((,) —> oo. Since (2.4) is an analytic function of ^ , there are 

therefore only a finite number of zeros to the right of any line Re (^) = 7 for a > 0. Similarly, 

if a < 0, there are a finite number of zeros to the left of any line Re ( 0 = 7 - We may also note 

that as a -> 0+,Re ( ^ -> - 0 0 unless |^ + 6| = 1, and as a ^ 0~, Re (^) -^ 00 unless j ^ + 6| = 1. 

A proof of the following theorem may be seen in Bellman and Cooke [7]. 
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Theorem 5 A necessary and sufficient condition for the characteristic function (2.4) to have 

zeros with negative real part is: 

1. ab > 1, 

2. -ab <ac< \Jrl^ + (a6) , where T] is the zero ofT]-\- abtanrj = 0-0 < T] < TT or r] = ^ if 

ab = 0. 

Lemma 6 The characteristic function (2.4) has at most 2 real zeros. 

Proof: From (2.4), let z = ap, a = ab, p = ac, a>0, g (ap) = G (z) and so 

G (z) = z-h a-h Pe-\ (2.49) 

Putting Y (z) = i £ ± ^ = - 1 then at the turning point z* = -{l + a),we have Y (z*) = p ^ , 

hence since, |/5e^+'^| < 1 then if Y (z*) < -1 there are at most 2 real zeros as can be seen from 

figure 2.3. 

-&- -4___^ -3 . 

i 

, -2 -1 / 

Yiz) 
1 

8 / 

.6/ 

2 

S) * 

-2 

Figure 2.3: The real zeros of G(z) defined in (2.49). 

Lemma 7 The transcendental function (2.49) has a finite number of complex zeros with positive 

real part. 

Proof: Let z = x-^iy, then from (2.49) 

x-\-a + Pe ^ cos y = 0 

y — Pe~^ siny = 0 
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The zeros of G (z) depend continuously on p, and for /? > 0 all zeros will be in the half plane 

Re (z) <p.liG (z) = G' (z) = 0 there will be a double zero at 2 + 1 + a = 0 and therefore zeros 

caimot bifurcate or merge, as p varies, in the half plane x > - 1 . Utihzing similar arguments 

to that of Cooke and Grossman [35] it can be seen that ii z = z (P) is an isolated simple zero 

with Re (z) > 0, then it moves to the right of the half plane for increasing p, since 

dz _ dG/dp _ z + a 
dp ~ dG/dz ~ /?(2 + l + a) ^̂ "̂  

^ / d | A (x + a)(x + a + l )+y^ 
\dp) (ar + a + l )2+y2 

Suppose a pure imaginary zero exists, then z = iy and a manipulation of (2.50) gives 

y' = P"^ - o?, and a + /?cos \jp'^ - a2 = Q. 

For P increasing from a to 00 there exists an increasing sequence 0 < Pi (a) < P2 (a) < ..., 

so that hm P/^ (a) = 00 with sin y P"^ — a'^ > 0. 
fc—»oo » 

Here p 6 (/̂ ^ (a) ,Pk+i (c*)) and equation (2.49) has precisely k complex zeros with positive 

real part. Also, whenever P = Pf, (a) there exists a pair of complex conjugate imaginary zeros 

iiyfc such that 

(4/c + 1) I < yfc < (2A; + 1) TT; A; = 0,1,2,3,. . . . 

It appears, from (2.50), that a zero must remain in the region where siny > 0 and cosy < 0 

and in the specific case where a = 0 then P = yk = (4A; + 1) | ; A; = 0,1,2,3,. . . . 

2.14 Numerical examples. 

The zeros of the characteristic function (2.4) can be located using Mathematica. Let p = x + iy 

then 

Re (x, y) = 0 = X + 6 + ce~"^ cos ay , ^ ^ 
^ ' ) (2.51) 

Im (x,y) = 0 = y — ce~"^ sin ay 
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and if for any x, y is a solution then so is - y . Therefore non-real zeros occur in complex 

conjugate pairs. Putting t = -ar in (2.10), we may write 

f. {ace-r (T + nf e-^HQ ^ („^)n ^ / „ \ 

„^„ n! -l+a6 + <-^ E ^ E ( ^ J U ( - + -) (2-52) 

where ^ is the dominant zero of (2.51). As an example for (a, 6, c) = (8, - 1 , 6 ) , ^ = .997954 and 

for T = 2, from (2.52), the sum to six significant figures is 1.050472. 

In the next section we look at the related works of Euler, Jensen and Ramanujan. We 

shall describe their techniques and give in detail, a description of Cohen's modification and 

extension, and a solution to Conolly's problem. 

2.15 Euler 's work. 

Euler's work is related to our equation (2.10); his work was published in Latin in 1779 and we 

give an English translation of the main points that are pertinent to our work. Euler [41], see 

also [42], considers a series given by Lambert and investigates several of its notable properties. 

Euler rewrites the Lambert series in the form 

oo r + l ' •"1 

S = i + nv + n^-^^^^l[{n + {j + l)a + (r-j)P) (2.53) 
r = i y'^^)- j = o 

and given that for constants a and P we may put 

x°'-x^ = (a- p) vx°'+^ (2.54) 

then S = x^. Euler makes several observations about (2.53) for particular cases. 

1. Take the constant and the factor n to the left hand side of (2.53), then investigate the 

limit as n ̂  0, such that 

oo r + 1 T—l 

Inx = v + Y^-f^^X{((3 +I) a-^(r-3)P) (2.55) 
r=l V + ^ J - j = o 
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where from a rearrangement of (2.54) 

x-l^ - X - " 
V = 

a-p ' 

2. For P~0, from(2.53) and utilizing hi (1 - av) = - a l n x , Euler obtains 

> n ( l — ) = - E ^ 
J = l •'' 

3. For P = a, Euler writes 

a ; n _ l ~ yr+l 

n 

and again taking the limit as n ^ 0, Euler obtains, from (2.57) 

. •^v(av(r-\-1))"" 

moreover, substituting Inx = •yx" we obtain 

oo (av (r + 1)) 
x~ — " 

r = 0 

(2.56) 

oo r+1 ' • "1 

r = l ^ ' ' 1=0 

^ . V ^ ^ l ^ A ^ ^ . (2.58) 

Now substitute av = u and x" = y, and from (2.58) 

Multiply both sides of (2.59) by u, differentiate with respect to u, multiply by n, and then 

again replacing wy = Iny, Euler obtains 

^ ^ = f ^ ' (2-60) 
1 - l n y ^ r! ' ^ ^ 

r = l 

72 



in its region of convergence juj < e ^. Euler gives some niunerical values of (2.60) and in 

particidar for Iny = 1/2, from (2.60) he obtains 

^ ur+i (r + 1)-- 1 _ i 
1 — > ; where u= -e 2. 

r=0 

From this work, Euler states his theorem: 

x' ^(n-^-s)"" flnxY , . 

T3ĥ  = ESd^(-j ' (2-61) 
n—O ^ ' 

and (2.61) is identical to our equation (2.13) upon putting sa = —t and x = e~'^. 

2.16 Jensen's work. 

Jensen's [63] work is related to our equation (2.10); his work was pubhshed in French in 1902 

and we give an English translation of the main points that are pertinent to our work. Jensen, 

who appears to have been unaware of Euler's work, obtains the equivalent of identity (2.13) 

by an application of the Lagrange inversion formula. Lagrange's inversion formida, circa 1770, 

arose as a tool in the solution of implicit equations or the reversion of series. 

Theorem 8 ; 
00 n jn—\ 

0(.) = *(a)+E^5?^[^ 'W/ '" 'W]_ 
7 1 = 1 

where z = a-\- wf (z). 

An alternative form of theorem 8, given by Jensen, who says he learned it from Hermite, 

circa 1881, but apparently known to Jacobi, at least as early as 1826 is; 

Theorem 9 ; 
0 0 

g(z) _ y ^ ^ l ; " c P 

n=0 

where z = a-\-wf (z). 

gyz) ^ w a r.An)^^-. 

1 _ ^// (̂ ) -2^n\ dz- [^ ^̂ '' ^ ̂ ^^ 
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If we take the partial derivative with respect to w in theorem 9 and put g = (p'f we obtain 

theorem 8. Jensen puts 0(z) = e"^, / (z) = e^' and obtains, from theorems 8 and 9, 

e - = E " ( " + f ' " ' " \ n d (2.62) 
3=0 ^• 

e - _^(a + jpyu^ 
T^z-^^ j ! (2.63) 

^ j=o -̂  

where u = ze~^'; moreover if we put Pz = p and a = PT in (2.63) we obtain (2.13). Now, 

Jensen puts a = a and a = 6 in (2.62) and multiplies the two series together to obtain 

e(a+6). ^ y {a + b)(a + b + jpy-'u^ 

3=0 ^' 

_^a(a-{- jpy-^ uJ ^b(b + jpy-^ u^ 

3=0 •'' 3=0 •'' 

- y i y i ' ' \ ^ ( ^ + ^ ^ r " ' ^ ( ^ + ( " - ^ ) / ^ ) " " ' " ' ^ ' I (2.64) 
j=Q \^=Q \U J ^• 

Equating the coefficients of u^ in (2.64), Jensen obtains 

(a + 6)(a + 6 + n/?)"-i = E ( "" 1 a (a + i//?)''-^ 6 (6 + (n - i/)/?)'^-'^-^ 
u=0 \ t> 

and similarly, from (2.63) 

" ' n 
(a + 6 + n/5)" = E \a(a + uPf-^ h(b+{n-u) /5)"-^ (2.65) 

w=o\^j 

which is one form of the celebrated generalization of the Binomial theorem given by Abel in 

1839. Putting x = b-\-nP,a = a and /? = -/? in (2.65) we obtain 

(x + a)" = E I " \a(a- upf-^ (x +1//3)"-'^ (2.66) 
u=0 \ V 
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and in a note dedicated to the memory of Abel, Lie noted that (2.66) is in fact a special case 

of a formula noted by Cauchy: 

--'fn\ 
(x + a + n)^ - (x + a)'^ = E ]a{a-{-n- vy^-""-^ (x + vf . 

2.17 Ramanujan's question. 

In the collected papers of Ramanujan, edited by Hardy, Seshu Aiyar and Wilson [56] on page 

332, Ramanujan states in question 738, if 

Hx) = Y. ^ ,, (2-67) 
r=0 

show that 0 (x) = 1 for 0 < X < 1 and that 0 (x) 7̂  1 for x > 1 and also find 

^ ^ / ^ ( i + . ) - ^ ( i ) 

We can see that (2.67) is identical to (2.62) when a = l and /3 = 1. B.C. Berndt [9] gives an 

excellent short historical account of (2.62) and (2.63). 

2.18 Cohen's modification and extension. 

Putting a = -l and /? = - a in (2.62) and (2.63) Cohen [30], in his notation, extends the results 

of the two sums 
00 n / I 1 \ n — 1 

V ^ (^+,"^) = e - and (2.68) 
n=0 

0 0 
^;"( l + an)" _ _e 

=0 

where w = —ze°'^. Cohen considers 

V ^^^"""^ = -1 (2.69) 
^ n\ 1 + az ^ ^ 
n=0 

• n 

(Dx) {(1 - x")"} = E (-1)^ H^ + "̂ ) "̂̂  "̂""̂  
fc=o V k 
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n n ak (Dx)^ {(1 - xT) = E (-1)' I 1(1 + «fc)" X' 
fc=o V k 

where D = ^ . From 

y" x'^^-i (Dx)" {(1 - x")"} dx= j x'^P-^ E (-1)*^ I 

c=0 a;=0 ^==0 \ 

n 

A; 
(l + aA;)"x"'=dx 

Cohen obtains 

n 

k=o \ k I '^^P 

(1 + afe)" ( l - / ? a ) " n ! 

(/5 + l)n 

which corrects a minor misprint error in his equation (1.9). Cohen then considers 

oo ri re 
V ^ V r n /̂3 ^ (i + gfc)- - f (1 - Pa)'' 

( /5+l)n 

and applying the transformation 

oo [n/s] (x> oo 

EE/("'^) = EE/("+^^'^) 
n = 0 fc=0 n=0 fc=0 

he obtains the new result 

E 
fc=0 

(-^e°^)^/3(l + aJb)^ 
A;!(A; + /3) = e E ^„r(i-^a)-

e - ^ F i 

n=0 l ( / ^ + l ) n 

1 

^ + 1 
z (1 - Pa) 

which upon putting /?a = 1 we obtain the result (2.68) and letting /? —»• oo we obtain the identity 

(2.69). Cohen goes on, in this article and in [31], to obtain other results, especially related to 

Laguerre, Hermite and other special functions of mathematical physics. It appears that other 

results may also be obtained by gainfully employing the ideas of Cohen. The following is one 
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such result. Let 

n 
(xD) = xD {x" (1 - xT} = E ( - 1 ) ' ( '" | ( « + «^) ^''^"'^ hence. 

fc=0 

n 
( x D ) ' ^ - " ^ { x " ( l - x T } ] , = i = E ( - l ) ' l 1 (« +afc)"-"* and similarly 

fc=0 \ A; 

(xD)"^-"{x^(l-x^)"'} 

We can now write, from above 

.=E(-i)' m (^ + 6p)'"-", 
p = 0 

oo oo rn n 

E E ^ (̂ )̂'̂ '"̂  {̂ " (1 - ̂ ^r} ixD)---' [x^ (i - x'Y] 
m=0 n=0 

o o o o « , TJ '^ f •^ 

= EEb^E( - i )1 («+<.*)"-"E(-i)' m 

771=0 n = 0 • • fc=0 \ ^ / P=0 \ P 

(/3 + bpy (2.70) 

On the right hand of (2.70) we can use the transformation suggested by Cohen [31], namely 

o o 71 OO oo ^ 

E E/(n,fc)=E Hfiji + Kk) 
71=0 fc=0 k=0 71=0 
OO m OO o o 

E E / K P ) = E E / ( ^ + P'P) 
7n=0 p=0 p=0 771=0 

(2.71) 

which after some manipulation gives 

oo oo 

EE 
A;=0 p=0 

(-l)^+^yV / a + afey-^^ , (^)+x( |±^) 
k\p\ \P + bp 

Also, from the left hand side of (2.70) we obtain 

°° °° ( -Wk .,n ( ri \ °° 

E E ^ ?(-+'•*)"+E (-*-)• 
71=0 fc=0 ^^ \ k J m=l 

(2.72) 

(2.73) 
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and applying the transformation (2.71) to (2.73), it reduces to 

1 _ 5 ^ 
^ a/3 

(i + f ) ( i + S)' 

Prom (2.72) and (2.74) we obtain the result, whenever the double series converges. 

(2.74) 

'-(-if^Py^ (a + aky-P^yi^),.iM^)_ 1 - ^ 
tp-o ^'-P'- \^ + bpJ (I + M)(H.^) 

oo 

EE 
A;=0 p=( 

2.19 Conolly's Problem. 

Brian ConoUy [34] proposes, "for A G [0,1] and m > 0, let 

(An) 
n! 

71—771 

SmW = E-^^^e-'\ (2.75) 
71>1 

Show that 

So (A) = A/ (1 - A), 51 (A) = 1, 52 (A) = 1/A - 1/2, and ^3 (A) = l/A^ - 3 / (4A) + 1/6". 

The infinite sum (2.75), for m = 0, is a very specialized case of the generalized sum (2.13). 

For t = 0, 6 = —1, and a = A we have, from (2.13) 

( ^ " ) ^ - A 7 ^ _ A 

7 1 = 1 

^»w = E ^ ^ - ' " = rT i (2-76) 

with convergence region lAe^ "̂1 < 1, which is different than that given by ConoUy and indeed, 

we have previously shown that (2.76) diverges on the boundary A = 1, and converges on the 

boundary A = -.278464... . 

From (2.75), writing the exponential in series form, we have 

^".w = E E ^ = ^ ^ ^ j — • (2-77) 
71=1 r=0 

Expanding the double infinite sum in (2.77) term by term, and then summing diagonally from 
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the top left hand corner, thus collecting coefficients of A"""", we have 

S". (̂ ) = E V E (-1)' I ( " - ' • ) " - " • . (2.78) 
n = l • r=0 \ r 

For the special case of m = 0, from (2.78) 

°° A - : ^ . , . / n 
'̂oW = E^E(-ir \in-r)\ (2.79) 

71=1 • r = 0 \ f 

and since it is well known that the inner sum is equal to n!, we have from (2.79) 

5O(A) = E A " = Y 3 
n=\ 

X 

which is identical to (2.76). From (2.78), for m > 1 

\ 71—771 ^—.^ / „ 

71=1 r = 0 

\7i-77i n-L I 

E ^Il(-'^y[ ^ )(^--r". (2.80) 
71=771+1 r = 0 "" 

in the second term, the inner sum 

E ( - i r ( ^ I (n - r ) " - " ' = Oforn>m + l 
r = 0 \ ^ / 

and therefore from (2.80) 

1^ yn-m n-l I n \ 

Sm (A) = E ^ E ( - l ) ' (" - ^ ) " " " ' for m > 1. (2.81) 
71=1 "• r=o \ r J 

The convergence region of (2.75) for m > 1 is as previous however, by an application of the 

limit comparison test and applying Stirling's approximation for n! , (2.75) converges on the 

boundary A = 1, and A = -.278464... . 
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Putting m = 1,2 and 3 into (2.81) we obtain Conolly's results. Obviously other Sm{X) 

results are available from (2.81), three other such values are; 

J, . . . _ 1 7 11 1 
^ ' ^ ^ ^ " 3 ? " 8 A ^ ' ^ 3 6 A - 4 ! ' 

c MN 1 15 , 85 25 1 , 
^^^^^ = A ^ ~ I ^ + 2 l ^ - 2 8 8 A + 5 ! " " ^ 

S f Â  - — - - ^ 575 _ 415 137 _ 1^ 
^^^~X^ 32A4'*'1296A3 34563? ^ 7200A ~ 6!' 

An alternative procedure, via a recurrence relation, for determining closed form representations 

of (2.75) is the following. Differentiate (2.75) with respect A, algebraically manipulate the 

terms, and finally we obtain the recurrence relation 

i^iSrn(X)) + jSm(X) = ^ ^ (Sm (A)) + ^Sm (A) = ^ 5 , 7 . - 1 (A). (2.82) 

We can obtain an integrating factor of (2.82) such that 

A(A-57.(A)) = A - ( 1 ^ ^ (A^^^T. (A)) = X^ ( ^ 2 - ^ - - 1 (A) and 

A-̂ TT̂  (A) = J A"^-2 (1 - A) ̂ Tn-i (A) dX, (2.83) 

given that for A = 0 the constant of integration is zero and for m = 0, we have the value 

So (A) = A/ (1 - A). Putting m = 1,2 and 3 into (2.83) we obtain Conolly's results. For m = 0, 

and using (2.82) we have 
l ^ A 

dX'"'"''-'' X 
(So (A)) = - ^ S - i (A), 

and since ^ (5*0 (A)) = _̂ .̂2 we get the additional result 

oo / \ ^ \7 l+ l \2 

«->w=E^^-^"=(r4^. (2-B4) 

which we shall generalize further in chapter 5. I consider this procedure less transparent than 

the first procedure leading to (2.81). The sum (2.13) will be generahzed further in chapter 5. 

80 



Chapter 3 

Biirmann's theorem 

A detailed proof of Biirmann's theorem is given in this chapter. For the principle series (2.14), 

obtained in chapter two, it will be shown that the remainder term of the series vanishes for 

large n, and discuss in detail its radius of convergence. 
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3.1 Introduction. 

Btirmaim's theorem [22] essentially allows, under various conditions, for the expansion of one 

function in terms of positive powers of another function. A sketch proof of Burmann's theorem 

is given in Whittaker and Watson [92] and at a first look it appears that the proof contains a 

fine which seems misprinted. The third last fine on page 129 of [92] is 

••••jnm=ljj f jt) ̂ ' (0 dt.d^ 
4>{t)-<l>{0 

a 7 

and it may seem that 0' (^) in the numerator ought to be (j)' (t) arising out of applying Cauchy's 

integral to the / ' (^) function in the left hand side. This point will be clarified in the author's 

proof. Whittaker and Watson, list Biirmann's theorem and Lagrange's theorem as two separate 

results, however according to Henrici [58], except for matters of notation they are identical. A 

formal proof of the Lagrange-Btirmann theorem, that is different than the author's, is given by 

Henrici [59] and a part of his proof is based on elementary notions in the theory of matrices. 

We also show that the remainder term of Biirmann's theorem when applied to the sum (2.14), 

obtained in chapter two, goes to zero. 

3.2 Burmann's theorem and proof. 

The following treatment is based on that given by Whittaker and Watson, however there are 

some deficiencies and obscurities which we shall attempt to clarify. In our proof we shall suppose 

that 0 (a) = 0, which involves no loss of generahty, but does shorten the formulae. If 0 (a) 7̂  0 

we simply replace 0 (z) by (j)(z) - (j) (a) throughout the theorem as set out below. 

Theorem 10 Let 0 (z) be a simple function in a domain D, zero at a point a of D, and let 

« / N z — a . , . 1 

0(^) 9 (a) 
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/ / / (z) is analytic in D then Vz e D 

n^)=f (a) + E ^ ^ [/' (*) {e ( o n , , . + fl„« (3.1) 
7 -= l 

± f de f \^T ^^^Mm^dt r3 2̂  where Rn+i vm 4>{t)-ct>(0 

The e integral is taken along a contour T in D from a to z, and the t integral along a closed 

contour C in D encircling T once positively. 

The following proper t ies of simple functions are required for the proof of Biirmann's the

orem and may be found in the book by Titchmarsh [88]: 

1. A function 0 (z) of a complex variable z is called simple in a domain D if it is anal5^ic in 

D and takes no value twice in D. 

2. If 0 (z) is simple in a domain D then (p' (z) ^^0 in D. 

3. The inverse function 0~^ (w) exists and is simple in Dw, where Dw is the map of D in 

the to-plane by ty = 0 (z). 

4. A domain D means an open connected set of points in the plane; that is , every point of 

D has a neighbourhood, î , in D and every two points of D can be joined by a continuous 

curve in D. 

Proof of Burmann's theorem. 

The proof will be given in five parts. 

(i). Let Cw be the map of C by w = 0 (2;), and Dw the map of D . Since 0 is simple, Cw 

is a closed contour and Dw is a domain containing it. Also since C encircles every ^ of T, Cw 

encircles 0 (^) for all such ^. Now g (w) = f {<p~^ (w)) is analytic in Dw, since 0~^ is analytic in 

Dw by property 3, and / ' is analytic in D the map of Dw by 2 = 0~^ (w). So Cauchy's integral 

gives, for every ^ of F 

„l^l<\\ 1 f9{s)da__ 1 fgmMMdt 

c 
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upon changing the variable hy s = <j) (t), so that t goes along C. But g (<f) (t)) = f (0-^ (0 (t))) = 

f (t) and similarly for g (cj) ($)); so that, for every ^ on T 

^'^^-^-hia^r (3-3) 
c 

(ii). Each ^ of D has a neighbourhood K (^ in D. Now, by Taylor's theorem, for t G ^ ( 0 

we have 

0 (*) = 0 (0 + (* - 0 <f>' (0 + -^^^0" (0 + ̂ ^ ^ r (0 + -

and 

0' (*) = 0' (0+(* - 0 0" ( 0 + ^ ^ ^ r (0 + ̂ ^^</'"" ( 0 + - • 

Since 0 (2) is simple in D and hence in the subdomain ^{^), 0 (t) - 0 ( 0 7̂  0 Vt G K (^) - {^} 

so that 

ct>'it)-cp'(o _cj>"{o+^r{o .„,. 
0W-0(e) 0'(^)+i^0"(^)- "̂"-̂^ 

Now 0' (^) 7!̂  0 in £) by property 2. Hence, by Knopp [68] page 180, the quotient in (3.4) of 

power series is expressible as a power series for \t — ^| sufficiently small, so that it is an anal34ic 

function of t in some K of ̂ . Further the quotient on the left hand side of (3.4) is a quotient of 

a function of t analytic in D, with denominator non-zero in D — {^} since 0 is simple in D. So 

the quotient is analytic in D — {^}, as well as analytic in a neighbourhood of ̂ . Hence (3.4) is 

analytic in the whole of D. 

(Hi). It therefore follows that 

0̂  it) - <!>'(0 .... 
4>it)-H0^^^ 

is analytic in D, being a product of functions analytic in D. So by Cauchy's theorem 

/fi^^'^''-°' 0' it) - 0' (0./ 

c 

and this with (3.3) , gives for each ^ on F 

/' it) 0' (0 

c 
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(iv). Since a is on F and not on C, (j)(t) ^ (j) (a) for t on C, since 0 is simple. But 0 (a) = 0; 

so 0 (t) 7̂  0 for t on C For such t 

</>(*)-0(0 
1 -

.0w;. 

.. 7 1 - 1 

'<i>iOY 
mtr'Mit) 

r=0 

by summing the geometric series on the right; 

1 0(0" 
0(t)-0(O 0(*)'^[0(t)-0(O] ' 0(*)£:^V0(*). 

.. 7 1 - 1 

r=0 

For each ^ in D we have, using (3.5) 

fiz)-fia) = j f(Odi = ^.jd^j 
r c 

<!>' it) - <!>' (0 
0 (0-0(0 

rft 

= ̂ /.(0./f|E(iD'-« 
where 

''=hj^'^^^'^jjw 
/'(*)0(O" 

[0(0-0(0] 
dt 

r c 

and this agrees with the expression for Ra+i stated in the theorem at (3.2). 

(v). The function 

e(z) = 
z — a z — a . , , 1 

^ («) = 77 0(2) 0 ( 2 ) - 0 ( a ) 0'(a) 

(3.6) 

is defined and analytic throughout D being a quotient of analytic functions with non-zero 

denominator since 0(2) - 0(a) 7̂  0 for 2 in D - {a}, and being continuous at a. Taking the 

summation in (3.6) outside the integration, the typical term is 

hhl /'(*)0(O'"0'(O 

r c 

fit) 

0(*) r + l 
dt 

= JL [J^dt /"0(O'0'(O 
27rii 0(t)'-+i J ^^^^ "^^^^ 

d^ 
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[f'it)e( 
2m J (t-aY^'^ 

c ' 

-dt-L / f'it)eitr^\Ai^r^' - 0 iay^^ 
m J 

c 

1 d"-
r l d f f'it){oit)} r + l 

r + l 

0(2)^+1 

. t=a r + l 
\r-\-l 0 ( - ^ r ' c r r, 

(r + l ) ! d r f'it){eit)} r+l 

t=a 

by Cauchy's integral for the r^^ derivative. This gives the expression (3.1) stated in the theorem 

by means of (3.6), after replacing r - l instead of r and so completing the proof. 

3.2.1 A p p l y i n g Burmann' s theorem. 

Prom Chapter two, we have evaluated 

oo / __zsr 

1 - 2 ^ 
^ ( . + r )% 

r = l r! 
(3.7) 

and the hypothesis of Burmann's theorem requires that 0 be simple in a domain D containing 

the origin, and that / be analytic in D. Now 

XZ 1 

fiz) = ^ , 0(2) = 2 e - ^ e{z) = ^ = e^ and 0(a) := ^ ^ = 1 for a = 0. 

For / (z) to be analytic in D the disc |2| < 1 will be adequate. The definition of a simple 

function is given by property 1, and the following lemma proves that 0 is simple. 

Lemma 11 The function (l){z) = ze"^ is simple in the disc D = {z : \z\ < ^} . 

Proof: Assume on the contrary that 0 (z) is not simple in D, so that there are unequal z 

and 2 such that 
-z ' -z' 

ze ^ = ze ^ 

for |2| < i and |2'| < \ . Now 
^ z 

2 

Z — Z ^^z-z 
oo [z- z \ 
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1 °° 
7 = E 

( . - . • ) 
A r - l 

r = l r! 
since z - z ^0, 

00 r — 

and so TTT < V^ 
z — z 

r-l 

r = l 

°°̂  p - 2 
r-l 

r=2 

oo oo 

Using the fact that X^ ^ < X^ 2 ^ '"'® ^^^^ 
r=2 T-2 

\A n i i + E 
\z — z 

r - l 

r=2 
2r - l 

= 1 + !p-^ 
1 I t ' I' 
1 - ^ 2 - 2 

since the geometric series is convergent, and by the ratio test we require \\z — z 

we may write 

< 1 so that 

1 
< 

|2 ' | - 1 _ 1 | ^ _ ^ ' | 

and we want 

> \--^z-z 

1 
> 2-

This inequality contradicts the assumption 2 < ^, hence 0 (2) is both simple and analytic in 

D. All conditions of Biirmann's theorem are now met. Now we need to show that the remainder 

goes to zero for large n. 
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3.2.2 T h e remainder . 

To obtain an infinite series for / (20) from Biirmann's theorem we need to choose F and C so 

that Rn+i ^ 0 as n ^ 00. Choose a fixed 20 such that [201 < ci. Then F can be the line 

from 0 to 20; and C can be the circle with radius C2 > ci centred at the origin, described once 

positively. Prom the remainder il^+i, defined in (3.2), consider, since 0(2) = ze-\ 

'(0 
0(t) 

ie-^ 

]fo|^real(t- | ) 

1*1 
< -r-r^e 

where, real (t - 0 < I* - CI < |*| + |C| < C2 + ci = C3, 

0(0 
0(t) 

C1.C3 
<—e ' 

C2 

and for appropriate positive constants ci and C2, m < 1. Also 

10(01 = 1*1 e — real t > C2e-'^2 > 0 

so that 

10(0-0(01 > 10(01-10(01 
10(01" = 10(01 1 

> C2e - C 2 

10(01, 
Cl 
— ( 
C2 

>C3 

= m > 0, say. 

The functions 0(2) = ze~^ and / ( 2 ) = ^z- are analytic in Z? = {2 : |2| < ^} and so are 0'(2) 

and / ' (2). Consequently 0' (2) is continuous on the compact set F, and so bounded on F. 

Similarly / ' (t) is continuous on the compact set C, and so bounded on C. So there is an M 

independent of ^ and t such that |0 ' (^) / ' (t)\ < M for ^ on P and t on C. The inner integral 
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in (3.2) has modulus 

IX [ 0(0 
0(0 

'̂  fl u\ AJ f (00^(0 
0(0-0(0 

dt <2^(e,)faeC3y^ 
\c-2 ) m 

which is independent of ^. So that 

l ^ + i l < ^ ( c i ) 2 7 r ( c 2 ) f ^ e ^ 3 y M 
27r \c2 J m 

—> 0 as n ^ oo 

since both M and m are independent of n. 

In chapter two we apply (3.1) and arrive at (3.7). If we put x = -t/z, for 2 7̂  0 we obtam 

1 _^inz-tr,_. 
1 - 2 ^ 

n=0 
nl 

and for the trivial case x = 0, hence t = 0 we have 

1 

^ = E 
00 / -z\n (nze ^) 

1 - 2 
n=0 

nl 

2 _i_ .̂ 3 _L ..4 , .,5 I .,6 = 1 + 2 + 2^ + 2-̂  + 2* + 2^ + 2̂^ + 

3.3 Convergence region. 

For convergence of (3.7) we apply the ratio test , such that 

hm 
r—»oo 

r + l + a; / r + l + a;̂  

r + l V r + x 

= 26 ^ l im 
' ' r—»oo 

r+x 
1 + 

r -\-x^ 

( 2 e - ) 

1 + 
r + a; 

= 26 l - z l 

So the series (3.7) converges V2 such that 

26^-^1 < 1 (3.8) 
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and diverges outside this region. If 2 = x-\-iy , in chapter two we stated that the series converges 

in the region {{x^-\-y^) e2(i-=^))2 < 1 and so the curve 26^-^ = 1, {(x'^-^-y^) e^C^-^))^ = 1 wiU 

separate the regions of convergence and divergence. Similarly in polar coordinates, 2 = re^^, 

the series converges inside a certain oval whose polar equation is re^-^'^^^ = 1. See the sketch 

in chapter 2, figure 2.1. 

3.3.1 Extension of the series. 

The series (3.7) cannot hold outside the region described by (3.8). To investigate if the series 

holds everywhere inside this region, which is where both sides of (3.7) have meaning, we need 

corollary (ii), the principle of analytic continuation, as given on page 89 of Titchmarsh [88]. 

Coroll2U"y 12 If two functions are analytic in a domain D, and are equal at the points of a set 

S which has a limit point in D, then they are equal throughout D. 

From my knowledge of analysis apparantly this corollary has no counterpart for real func

tions. To apply it to the series (3.7), let D be the inside of the oval curve, and let the two 

sides of (3.7) be the two functions. They are equal in |2| < ci, a set of points S which has 0 

as a limit point; and 0 is in Z). So if both sides of (3.7) are analytic in D they must be equal 

throughout D by the above corollary. The left hand side of (3.7) is anal3d;ic in D, because it is 

analytic everjrwhere except at 2 = 1 which is not a point of D. So now we need to show that 

the right hand side of (3.7) is also analytic in D. Consider 

71=0 

(̂-) = E^^^-" (3.9) 

where w = ze~^, and F (w) is therefore the sum of a power series which, by the use of the ratio 

test, converges in the disc \w\ < e~^. The following lemma is required and may be found on 

page 66 of Titchmarsh [88]. 

Lemma 13 A power series represents an analytic function inside its circle of convergence. 

By this lemma we have that F (w) is an analytic function of w in \w\ < e"^. Now an 

analytic function of an analytic function of 2 is an analytic function of 2, if the ranges are 
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correctly matched. In our case ze~^ is an analytic function of 2 in the whole 2-plane, and its 

values w = ze~^ satisfy |ti;| < 6~^ if 2 lies in the oval region D. Thus F {ze~^) is an analjiiic 

function of 2 in D. Hence (3.7) holds for all 2 in the disc D. It may be difficult to determine 

whether (3.7) holds for all 2 values on the curve. In chapter two we demonstrated that (3.7) 

is divergent at the point 2 = 1. At the other intersection vj = —e~^, z ~ —.2784..., the series 

(3.9) has real terms alternating in sign which decrease in modulus by the ratio test and tend 

to zero as n —> 00 and so the series is convergent at 2 ~ —.2784.... 
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Chapter 4 

Binomial type sums. 

A procedure which will allow a specific finite Binomial type sum to be expressed in closed 

polynomial form will be developed in this chapter. The Binomial type sum will be useful in the 

next chapter, where the results of chapter two will be generalized.^ 

'This chapter, in extended form, has been published in the Austrahan Mathematical Society Gazette,Vol.24, 
pp.66-73, 1997. 

92 



4.1 Introduction. 

In the next chapter we shall extend, in various directions the results of chapter two. In the 

course of these investigations we shall come across the finite sum 

Pm in) = ) ! ,, E (-ir r-^""- (4-1) 

Therefore the major aim of this chapter is to develop a procedure that will allow us to express 

(4.1), and its generalisation, in closed polynomial form. Initially an infinite double sum will be 

obtained by the consideration of a Volterra integral equation and the double sum then expanded 

to obtain coefficients in terms of a recurrence relation, which upon further expansion will lead 

to sums of the form (4.1). We shall then prove that the finite sum (4.1) can be written as a 

polynomial in n of degree m, and a procedure for the evaluation of the polynomial will be given. 

4.2 Problem statement. 

Volterra integral equations of the form 

t 

^(t)=Fit)-h fijit-x)^(x)dx (4.2) 

0 

occur in a wide variety of applications. If F (t) = 6 (t), where 6 (t) is the Dirac delta function, 

and we take the Laplace transform of (4.2) then 

where ^ (p) and $ (p) are the Laplace transforms of ip (t) and 0 (t) respectively. Now, consider 

the rectangular wave (l)(t) = H(a - t) = I - H(t - a), where H(t) is the Heaviside function, 

and taking the Laplace transform of 0 (0 we have 

$ (p) = l-^— (4.4) 
p 
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and the n*'* moment of 0 (t) is given by 

Mn =lim 
p->0 

( - i ) " | r { « ( p ) } a 
TH-I 

n + 1 
(4.5) 

Substituting (4.4) into (4.3) results in 

*(p) = 
p - 1 + e-"P 

(4.6) 

and an expansion of (4.6) gives 

*(p) = E E ( - i r | '• lE(-i) ' 
fc^fc-

71=0 r = 0 r / fc=o 

(aryp (4.7) 

It may be noticed from (4.7) that ^ (p) can be written in the form 

^ip)=Y.^mio)f' 
771=0 

where 

and Pm in) is as given in (4.1). 

/5^(a) = Ea"+-P„(n) 
71=0 

4.3 A recurrence relation. 

Lemma 14 ; A recurrence relation for /3^ (a) is 

(4.8) 

rre—1 

(l-a)Pn,{a)= E (-1) 
fc=0 

m-k 0"*-*+^ ^^I^P,(a)^m = l,2,Z. 

withPoia) = j ^ , a^l 

Proof: From (4.3) and (4.4) we may write 

l^m (a) =lim 
p—+0 

1 _rf^ 
m! dp"* l - $ ( p ) / . 

, m = 1,2,3,, (4.9) 
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and its easy to see from (4.9) and (4.4) that p^ (a) = j ^ = ^ , „ 7̂  1. From (4.9), 

m\p^ (a) = lim 
p—»o 

= lim 
p-»0 

= lim 
p->0 

(1+ ^^) 1 

f ^ip) \ 
\ l - $ ( p ) / 

dp"* 

dp^ 

§1 fc )^^^^^)^^{r:^(^| 

Hence, using (4.5) and (4.9), we may write (4.10) as 

(4.10) 

-.„(.)=EMr-(:)^^^.(«) 
fc=0 

(4.11) 

and from (4.11) the P^ (a) are given by the recmrence relation 

m—l , I . , , ^ 
771—A; 0""""+^ (l-a)^^(a)= E i-l)"'-'j^^Pki^)^rn = 1,2,3 

fc=0 

withpo(a) = j ^ , a 7^1, 

hence the lemma is proved. 

From (4.8), P^ (a) may be expanded in a Maclaurin series 

0 0 

Pmia) = Y.Pi?iH0)^, 
q=0 ^' 

(4.12) 

(4.13) 

and the coefficients Pm (0) can be calculated from the recurrence relation in (4.12) as follows. 

Prom the left hand side of (4.12) 

^' {(l-a)/3^(a)} = E f ^ ]^{l-a}PSiO),q = 0,l,2,. dai 
r=o \ r 

dai-
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q\m 
0 
1 
2 
3 
4 
5 
6 
7 
8 

0 
1 
1 
2! 
3! 
4! 
5! 
6! 
7! 
8! 

1 
0 
0 
-1 
-6 
-36 
-240 

-1800 

-15120 

-141120 

2 
0 
0 
0 
1 
14 
150 
1560 

16800 

191520 

3 
0 
0 
0 
0 
-1 
-30 
-540 

-8400 

-126000 

4 
0 
0 
0 
0 
0 
1 
62 
1806 

40824 

5 
0 
0 
0 
0 
0 
0 
-1 
-126 

-4914 

6 
0 
0 
0 
0 
0 
0 
0 
1 
254 

7 
0 
0 
0 
0 
0 
0 
0 
0 
-1 

Table 4.1: The beta coefficients of (4.16). 

and this term is non-zero only for r = g and r = q-l,so that 

^ {(1 - a) P^ (a)} = (1 - a) /?(̂ ) (0) - ( ^ J P^T'^ (0) (4.14) 

Further from the right hand side of (4.12) 

di 

da9 

'm—l 

E(-i) 
.fc=0 

m—k a 
m—k+l 

(m-fc + 1)! 
/5fc(«) 

7 7 1 - 1 

= E(-i) m—k 

fc=0 g — 771+ fc — 1 

^iq-m+k-1) (^) 

771-1 ' / O \ f,m-k+l-q+r 

+ E M r " E (^_%+i-,^.)X'c)-
fc=0 r=0 \ ^ / 

(4.15) 

and setting a = 0 in (4.14) and (4.15) gives, after equating the right hand sides and rearranging, 

the recurrence relation for the coefficients of the Maclaurin series (4.13), 

/3SU0) = E(-1) 
A:=0 

(4.16) 

These coefficients are demonstrated in table 4.1. 

Some observations that may be made from (4.16) and table 4.1 are p''^ (0) = 1, PQ^ (0) = 

q\, /3ff (0) = 0 for m > 1, / ?« (0) = ^S^ (0) and pt"-'^ (0) = ( - I ) ' " • Further, P^^^ (0) = 0 for 

0 < g < m, and so the leading power of (4.13) is a"'+^. 
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Theorem 15 ; The finite sum, Pm (n), (4.I) is a polynomial in n of degree m. 

Proof: From (4.8) 

"L fjn+ma{n+m) , „ . oo , ^\n+m n / „ \ 

^^ C) = E („%/°' + E g;;^ E (-1)' r -"-• (*-i^) 
n=l ^ '' 71=771+1 V"^"";- ^ ^ 0 \ '̂  / 

From (4.12) 

(-1)™ (1 - a) ;5„ (a) = 2 ! : : M _ !f:£LW ^ ^r!£iM 
(m + l j ! m! (m — l)! 

«"^"^/?3(a) , , a'Pm-2ia) , a^/?77.-i(a) _ . . . 
( m - 2 ) ! ' ^ • • • ^ 3! 2! . ^ - - ^ ^ A - ^ , - -

( - l ) ^ ( m + l ) ! ( l - a ) . > , _ _ J _ (m + l)a=^ (m + 1) ma^ (a + 2) 

7̂71+1 ^"^ ^'''' - 1 - a "^ 2a (1 - a)2 ^ 12a2 (1 - a)' 

(m + 1) m (m - 1) a^ (1 + 2a) ^ (m + 1) m (m - 1) (m - 2) a^ (6 + 32a + 8a2 - a^) 

31 

(m + l)!a"*X(a) 

24a3 (1 - a)^ ^ 3!5!a4 (1 - a)^ 

" ^ • " ^ 2 a " * - i ( l - a ) ™ 

where the function X (a) is a polynomial in a, to be determined from the particular Pm-i ('̂ ) > 

that is 

( - l ) " ' ( m + l ) ! ( l - a ) " ' + ^ _ . - .̂  . ^_ i ( m + l ) a ( m + l ) m a ( a + 2) 
Pn, (a) = (1- a)^-' + J ' / . ^ + ^^+1 Â 77.v<-; v̂  -y " 2 ( l - a ) 2 — " 1 2 ( l - a ) 3 - ' " 

(m + 1) m (m - 1) a (1 + 2a) (m + 1) m (m - 1) (m - 2) a (6 + 32a + 8a^ - a^) 

2 4 ( l - a ) ^ - " * "̂  3!5! (1 - a)^"™ 

(m + l)!a"*X(a) 

and so 

^^Vs^Pmi") 
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oo n-\-m E 
71=0 \ n 

m—l m-2 
\k+l E('":M(-a)'-=^E('"-^(-.)- + 

fc=o \ k I k=o \ k 
771-3 / Q 

7njm+l] Y^l m-6 I ^_^^^ ^^^^^^ ^ ^^^2 1 2 - Z . 1 I ( -1 ) ' [2«'+' + «'+'] + 
fc=o V k 

a"< 
7n(771+l)(77l—1 

-4 / m —4 
24 

^ E (-l)'=[a^+i + 2a^+2] + 

771—5 

fc=o y 

m — 5 

A; 

(m + l)!/3„(a) = 

7n(77i+i)(rri-i)(77i-2) ^ j ' - " 1 (-1)*^ [6a'=+i + 32a^+2 + 8a'=+3 - a*+4] 

fc=0 \ fc / 
, , (7rt+l)!aX(a) 

+ — + 2 

n-\-m E 
71=0 \ " 

a 
71+771+1 

+a' 

a 
m - 2 

771—1 _ 1 _l_ T71+1 _ ("1+1)^71 I (771+1)771(771-1) (771-2) . 

Thus /3^ (a) may be expressed in the form 

2 12 ^ 3!5! 

( m - l ) - ("*+l)("*-2) + (m+l)m(77i- l) ^ ] ^ __ ^ ^0 [ __] 

n + m 
^̂771 («) = E 

71=0 \ n 

1̂ 71+2771̂ ^ (m) + a'̂ +2771-1^2 (^) ^ _ ^ a"+"^+iF^ (m)} 

where the Fj (m) ,j = 1,2,3, ...,m, are functions dependent on the fixed parameter m only. 

The summation indices are now adjusted to obtain coefficients of common powers of a in the 

following manner, 

° ° / n + l \ ° ° / n + 2 

Pmia)= Yl \ . . I ^"''"+'^1 ("*) + E I - I «""̂ ""̂ '̂ 2 (m) + 
71=771-1 \ n - m + 1 

°° ' n + m - 1 

71=771-2 \ n - m + 2 

n-\-m 
+ E I ' " " ' " ' ^ |a ' '+" '+ ' i^m-i(m) + E ( '" ' "" I a"+"^+'i^77i (m), 

71=1 V n - 1 / n=o\n 

and so, 

oo 

7̂71 (a) = I "" ) a'^^Fi (m) + E ( " •" ^ I «"^"^^^^i (^) + 
0 / 71=771 \ n - m + 1 

m + 1 
a2"* + m 

a 
2771-1 F2 (m) + E ( "" ^ ^ I «"+"+'̂ 2 (m) + ...+ 

71=771 \ n - m + 2 
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2 m - 2 

m - 2 
â "* +... + m 

a 
771+2 ^ / x 'v-^ I n + m — 1 , , , , 

î TTi-i (m) + E I a"+"^+'i^77i-i (m) 
71=771 \ n - l 

+ 
2 m - 1 

â "* + ... + m 
a 

771+1 

7 7 2 - 1 

Grouping of terms gives 

^ n i ( m ) + E ( " • ^ " ' I a - + - + i F ^ (m). (4.18) 
71=771 \ n 

7̂71 (a) = E " ^ ' 
71+771+1 

71=771 

n + 1 \ , , / n + 2 
\Fi{m)+\ \ Fa (m) + ...+ 

n - m + l y \ n - m + 2 

n + m - l \ [ n-\-m 
Fm-i (m) + I F„, (m) 

n — 1 / \ n 

+a2"*Gi (m) + a2"*-iG2 (m) + ... + a'^+^Gm-i im) + a'^+^Gm (m), 

and so 

/3m(<') = E -
71=771+1 

71+771 

n n + 1 
F i ( m ) + I ' " I F2(m) + ...+ 

n — m I \ n — m + 1 

n + m — 2 \ / n + m — 1 , 
F,n-i (m) + Fm (m) 

n - 2 / \ n - l 

+ ya^^^Gm-n+iim) (4.19) 
71=1 

where the functions Gj (m), like Fj (m), are dependent only on the fixed parameter m. From 

the right hand side of (4.17) and (4.19) it may be seen that 

"* „71+771 "1 

S T^^T;;^^-^"^ (°) = T.^'^'^'Grn-k+i im) 
71=1 ^ ''• fc=l 

(4.20) 

and equating the powers of a"*+^, where j = m + l , m + 2,m + 3, 

/ 1 \ 71+771 "• 

r̂7i(n) = t^L_^(_l) 
(n-\-niy. 

r I 1 ^71+771 
771—1 n + fc 

r=0 fc=o \ n-m-\-k 
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Since 

n + k \ (n + fc) (n + fc - 1)... (n + fc - m + 1) 

n-m-\-k ' ^• 
, A; = 0,1 ,2 , . . . , (m-l) 

is a polynomial in n of degree m and the Fk+i im) functions depend on the fixed parameter 

m, then the right hand side of (4.21) is a polynomial in n of degree m. Hence the theorem is 

proved. 

4.4 Relations between Gk {m) and F^+i (m). 

Prom (4.18) and (4.19) it can be seen that, on equating coefficients of a"*"*"̂ , where j = 1,2,..., m 

gives, 

, m \ I m + 1 , , , 
G„ - i (m) = I F„ - i (m) + I I F„ (m) 

ft(^)= ( " ) F.(m)+( ""^M ft(m)+...+ ( '^J^' j f^-:Cn)+( '2-2 ) '̂"̂ "' 

G, (m) = ( ^ ) F, (m)+ ( " ̂  ' ] ^̂  ('")+-+ ( '^J,' ) ^"- <-)+ ( t j ' j •̂" <"'' 

and therefore 

Gkim)=J2i'^'^^ ]Fj+kim),k = l,2,3,...,m. 
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The functions Fj (m) , j = 1,2,3, ...,m in (4.21) can be recursively obtained from 

M F = G (4.22) 

where M is an (m x m) upper triangular matrix, F and G are (m x 1) column vectors. Simi

larly, from (4.20) 
^(771+fc) /QX 

Gm-k+iim) = t^^—-^, k = 0,l,2,3,...,m 

putting q = m-\-k 

M Pm (0) 
G2m-q-{-iim) = "", , g = m + l , m + 2,...,2m 

and for the counter j = 2m — g + 1 

Gj (m) = 
^(2771-,+l) (Q^ 

( 2 m - j + l)! 
, j = m , m - l , . . . , 2 , l , 

where the /3^^ (0) values can be obtained from (4.16). Therefore (4.22), may be written as 

M F = B, B is a (m X 1) vector and in explicit form, 

m 

0 

m + 1 

1 

m 

0 

m + 1 

1 

m 

0 

2 m - 1 

m — l 

2 m - 2 

m - 2 

m + 2 

2 

m + 1 

1 

m 

0 

Fi (m) 

F2(m) 

Fm-2(m) 

Fm-i im) 

Fmim) 

r /?^"'̂ (0) 
(277l)! 

/3^"'~'^(0) 
(2771-1)! 

/3^+^\(0) 
(771+3)! 

(771+2)! 

(771+1)! 
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m 
T 

P77i(n) 

1 
-n/2 

n(3n + l)/4! 
-n̂  (n + 1) 7(2x4!) 

n (I5n̂  + 30n=̂  + 5n - 2) / (8 x 6!) 

-n^ (n + 1) (3n̂  + 7n - 2) / (16 x 6!) 
n (63n̂  + 315n^ + 315n^ - 91n^ - 42n + 16) / (2̂  x 9!) 
-n^ (n + 1) (9n4 + 54n^ + 51n^ - 58n + 16) / (2* x 9!) 

n (I35n̂  + 1260n^ + 3150n^ + 840n^ - 2345n^ + 540n^ - 40472 - 144) / (3 x 2̂  x 10!) 
-n^ (n + 1) (I5n̂  + 165n^ + 465n^ - 17n^ - 648n^ + 548n - 144) / (3 x 2^ x 10!) 

8 
9 

Table 4.2: The polynomials of (4.21). 

This matrix setup therefore allows a recursive evaluation of the functions Fj (m), j = 1,2,3,..., m, 

in terms of the coefficients /^S^ (0) in the Maclaurin series (4.13). In particular Fi (m) takes 

the form 

r , iMzr ^ ^ . , ^ + 1 ( m + l ) m (m + 1 ) m ( m - 1 ) (m - 2) . 
(m + l)!Fi (m) = - 1 + —^ — + 0 + -^ + ... (4.2^; 

and for a particular value of m, that same number of terms are used on the right hand side of 

(4.23). Some values of Fi (m) are Fi (1) = - i , Fi (2) = ^ , Fi (3) = 0, Fi (4) = - i , Fi (5) = 

0,... . Various closed form polynomial representations of (4.1) are given in table 4.2. 

Cerone, Sofo and Watson [24], have shown a connection of the finite sum (4.1) with Stirhng 

numbers of the second kind and and association of the finite sum (4.1) with an application of 

a problem using the idea of a multinomial distribution. Moreover, the author has generalized 

(4.1): namely, given that 

(_^^7i+77i j]^ _ I n 

(n-\-m). -
^ ' r=0 

"̂.(".-) = fe^E(-irr (-+̂ )""" f*-^*) 

for X a real number, then Vm (n, x) can be expressed as a polynomial in x and n of degree m 

for both X and n. 
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Theorem 16 / Vm in,x) is a polynomial in x and n of degree m for both x and n. 

Proof: The following resuft is needed and is quoted by Feller [44] on page 65. 

i,(n) = E(-l)^f"V^4''^ = ''^'''-'^-^ (4.25) 
fc=o \ k j [ ( - l ) "n ! , i = n. 

From (4.24), 

'•^o \ r J r=Ok=o ^- \ r 
' x^'-'^r''. 

k ^ 

(4.26) 

Changing the order of summation on the right hand side of (4.26), gives upon using the above 

result (4.25) 

r=0 
Vo (n, ̂ ) = ^ E (-l)M "" (̂  + ^)" = 1- (4.27) 

The result (4.27) can be integrated m times with respect to x to evaluate Vm in, x) as defined in 

(4.24). For example, integrating (4.27) and using the initial condition Vi (n, 0) = Pi (n) = -n/2, 

from table 4.2 for m = 1, results in 

/_-|N7i+l n ( n \ 1 

^^^" '^) = i r T I ) ! ^ ( - ^ ) M ^ \i^^r)-^'--\in^-2x). 

Using this procedure we see that (4.24) is a polynomial in x and n of degree m for both x and 

n. Alternatively, the recurrence relation 

a; 

Vm in, x) = Pm in) - / Vm-1 in, t) dt, VQ (n, x) = 1, 

0 

may be used to evaluate Vm in, x). The table 4.3 lists some of the Vm in, x) in closed form. 

In the next chapter we shall extend the residts of chapter 2, and also utilize the polynomials 

obtained in this chapter. 
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m 
0 
1 
2 
3 
4 

Vm in, x) 
1 

- (n + 2x) /2 
{3n^ + n (1 + 12a;) + 12a;'-̂ ) /4! 

- (n^ + n'̂  (1 + Ox) + n (I2a;^ + 2x) + 8x^) / (2 x 4!) 
(I5n^ + 30n=* (1 + 4x) + 5n^ (1 + 24a; (3a; + 1)) + 2n (60a;̂  (4a; + 1) - l) + 240a;4) / (8 x 6!) 

Table 4.3: The polynomials of (4.24). 
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Chapter 5 

Generalization of Euler's identity. 

In this chapter an investigation of a generalization of the identity (2.13) of chapter two is 

undertaken. The investigation will also make use of the finite binomial type sums obtained 

in chapter four. A connection with renewal processes will be made. It will be proved that 

generated infinite sums may be represented in closed form that depend on fc-dominant zeros of 

an associated transcendental characteristic function.^ 

^This chapter, in modified form, has been pubUshed in the Journal of Mathematical Analysis and AppUcations. 
Vol.214, pp. 191-206, 1997. 
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5.1 Introduction. 

We shall consider a forced differential-difference equation, of arbitrary order, and by the pro

cedure developed in chapter 2, generate sums which, by the use of residue theory, may be 

represented in closed. As in chapter 2 the generahzed identity, as it will be shown, depends on 

a dominant zero of an associated transcendental characteristic function. We shall also develop 

recurrence relations for use in determining specific closed form expressions of the infinite sum. 

We shall employ an induction argument to prove the closed form representation of the infinite 

sum and then give a functional relationship of the sum. An extension to our main results will 

be indicated and in the process utilize the finite binomial type sums obtained in chapter 4; a 

connection with renewal processes can also be made. 

5.2 l-dominant zero. 

5.2.1 T h e s y s t e m . 

Consider, for a well behaved function f(t), the forced dynamical system with constant real 

coefficients b and c, real delay parameter a, and all initial conditions at rest. 

n I n t / X 

R-n y^ }jn-rf{r) [t - (R - n) a) = W (t)', t > Ra 

E I ^ I 6̂ -V^̂ ^ (t)=w(t);0<t<Ra. 
r=0 \ r 

(5.1) 

In the system (5.1) w (t) is a forcing term, t a real variable, and i l is a positive integer, being 

the order of the differential-delay equation. Taking the Laplace transform of (5.1) and utihzing 

the property 

£ (/W (t - k)) = e-̂ P [ p"F (p) - yp-if'^i-^^ (0) J , 

we obtain 
R 

-'^ I / . 7\7 /• _ - a p \ - R - i E I (P + ^y (ce--')''~' ]F{p) = W ip). (5.2) 
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From (5.2) 

^^^ = 7 , ,p (5.3) 
(p + 6 + ce-°P)^ ^ ^ 

where F (p)and VF (p) are the Laplace transforms of / (t) and w (t) respectively. Equation (5.3) 

may be expanded in series so that 

^W = E ( £ L _ ^ 
(p+l>f{l+^) 

" I S ^ . j (p + 6)-« • ('-̂ ^ 

To bring out the essential features of our results we may choose the forcing term w(t) = 6 (t), 

the Dirac delta function, such that W(p) = 1. Substituting for W (p) into (5.4) and taking the 

inverse Laplace transform, we have 

where, H (x) is the unit Heaviside step function. The inverse of (5.3), a solution of the system 

(5.1) by Laplace transform theory may also be written as 

7+ioo 

fit) = ^i I eP'F(p)dp, 
7—too 

for an appropriate choice of 7 such that all the zeros of the characteristic function 

giip)=P + b + ce-'^P (5.6) 

are contained to the left of the line in the Bromwich contour, and F(p) is defined by (5.3). 

Now by the residue theorem 

/ ( t ) = ^ r e s i d u e s of (e^^F(p)) 
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which suggests the solution of / (t) may be written in the form 

fit) = YQreP^' 
r 

where the sum is over all the characteristic zeros pr of gi (p) and Qr is the contribution of the 

residues in F (p ) at p = p^. The zeros of the characteristic function (5.6) with restriction 

ace 
l+ab < 1 (5.7) 

are all distinct. The poles of the expression (5.3) depend on the zeros of the characteristic 

fimction (5.6), namely, the zeros of gi (p). The dominant distinct root po, of gi (po) = 0 is 

defined as one with the greatest real part and therefore we have that asymptotically 

R-l 

/(*) ~ E ^ ^ . f c ( P O ) (R-k-iy (5.8) 

Prom (5.5) and (5.8) 

/(*) = E n + i ? - l \ ( -c)"e- ' ' (*-°")( t-an)"+'^-^ 

71=0 n 
(n + R-l)\ 

(5.9) 

R-l ^_^ ^R-k-lgPot 

E^^.'^(PO) ^R_k-iy 
fc=0 

where [a;] represents the integer part of x and the residue contribution QR^k (po), is given by 

d'' 
k\QR,k (Po) = lim 

P-+PO dp^ 
((p - Po)"" F (p)^ ;k = 0,l,2,...,(R-l) (5.10) 

since (5.3) has a pole of order R at the distinct dominant zero, p = po for 1 — ac ^̂^ 0. From 

now on we may take, without any loss of generality, & + c = 0 and 1 + a6 7̂  0. These conditions 

simply allow the distinct dominant zero, po; of the characteristic function (5.6), with restriction 

(5.7), to occur at po = 0, and therefore from (5.6) and (5.10) respectively 

g(p)=p + b- be-^P (5.11) 
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and 
, . ^ .„. .. \ d^ / / n \^\^ 

\k = 0,1,2,...,(R-l). (5.12) k\QR,k (0) =lim 
p—»o 

P 

dp'' I U (P) 

Theorem 17 . Let 

Tnib,R,a,t)=i " + ^ - ^ 5 -e -K^- - - ) ( t - an ) -^^ -^ 
n / (n + i J - l ) ! 

(5.13) 

and 
oo 

5fl(6,a,t) = E ^ n ( ^ ^ ' « ' * ) (5-14) 
71=0 

which is convergent for all values ofb,R,a and t in the region of convergence (5.7). Then by 

the suggestive behaviour of (5.9) 

SR(b,a,t) = yQR,k (0) (^^!"fe'l\),- (5.15) 

The series (5.14) is known as an Abel type series, because of the {t - an)'^'^^~^ term and, the 

convergence region (5.7) may be obtained by applying the ratio test to the term Tn {b, R, a, t) 

in (5.13). A proof of the main theorem 17 will follow shortly. Firstly we shall develop two 

useful recurrence relations for the evaluation of the terms QR^k (0) in (5.12) and an identity 

for the QR^k (0) terms. Secondly, using the terms QR^k (0) we shall give some closed form 

representations of the infinite sum (5.15). Thirdly, a recurrence relation for the series (5.14) 

will be developed, and finally an induction argument on the integer R will be apphed to prove 

the main theorem 17. 

5.2.2 QR^k (0) recurrences and closed forms. 

Lemma 18 . A recurrence relation for the evaluation of the terms QR,k-\-i (0) in (5.12) is 

ik+1) QRMI (0)=i? E ^'^^'ip'+nr^^'^''^'''-' ̂ ^^ ^̂ -'̂ ^ 
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with 

Qfl,o(0) = 
( l + a 6 ) R-

Proof: From (5.12) 

QK,o(0)=lim 
p-»0 .9ip)J (1 + ab) R-

Also from (5.12) 

ik + iy.QR,k+iiO)=liin 
p—>o 

d M d ^ ~ ^ ^' p 
dp'' I dp \^(p) 

;A; = 0 , l , 2 , . . . , ( i ? - l ) (5.17) 

= i l l im 
p-*0 

dk f pR-^g (p) - pg'(p)) 

dp'\ igip))""-"' 

where g (p) is defined in (5.11) and its first derivative 

g' (p) = 1 + abe-"'P. 

Letting h(p) = gip) — pg' ip) we find that h{0) = 0 and h' (0) = 0 and therefore expanding 

h{p) as & Taylor series about p = 0 we may write, from (5.17) 

(A; + l)!Qfl,fc+i(0)=i21im 
p—>u 

^[(JPV^'^M 
dp^ I \gip)J p^ 

(5.18) 

where 

Hence from (5.18) 

hi],) =±^-''y''^:y-'^=B(,) 
3=2 

(fc + l)!Qfl,fc+i(0)=il^ini 
dp'' I \gip)J 

B(p) 

Rlim 
p->0 tr 

^i=o V /i 

R-hl (fc-M) 

P^) \ B^f^^ip) 
.gip) J 

(5.19) 

no 



by the Leibniz ride of differentiation, where 

df" 
B'-'(P) = ~B(p) 

Now since 

lim 
di" 

P-^o [dpt^ 

and substituting in (5.19) we find that 

Bip) 
(-l)^ba^+2 

(A*+ 2) 

ik + 1) g . , + 1 iO) = R y ( z i r ^ ^ M g , ^ , , _ ^ (0) 

which completes the proof of lemma 18. The following lemma regarding moments of the gen

erator function (f> (x) will be proved and required in the evaluation of another comprehensive 

recurrence relation for the contribution Q^k (0) to the residues. 

Lemma 19 . The n^^moment of the R*^ convolution ofcp (x) = —bH (a — x) is (—ab)^ (—«)" nlC^-

Proof: Consider the rectangular wave 0(a;) = —bH {a — x) = b(—l-\-H(x — a)), which 

has a Laplace transform of $ (p) = -̂ ^— ^. The R^'^ convolution of $ (p) can be expressed 

as 

$ « (p) = b^ 
' - l + e-"P^ R 

P 

KR 
(-i+i:^\ 

R 

r=0 

V 
•R=l,2,3... 

J 

i-apy 
R 

oo 

= {-ab)^yC^ i-apy (5.20) 
7-=0 
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The convolution constants, C^ in (5.20) can be evaluated recursively as follows 

Cj, — Pj. — ^^qijjj; R=l 

C^=J:(^r-jCf-^\R = 2,3,A. 
3=0 

and they are polynomials in R of degree r; in fact they are related to Stirling polynomials of 

the second kind so that C^ = (-If Pr (R) where Pr (i?) are the polynomials fully described in 

chapter 4. The n*'* moment of the i?*'* convolution can be obtained by differentiating (5.20) n 

times with respect to p, so that 

dp"^ 
[$« (p)] = (-ah)"" E C^ ( - « ) ' r (r - 1)... (r - n + 1) p'--". 

and therefore 
/ f l 

hence the proof of the lemma is complete. This lemma may now be used to determine a 

recurrence for QR^k (0) which, it is argued to be more computationally efficient than directly 

using (5.12). 

Lemma 20 . A recurrence relation for the evaluation of the terms Q̂ f̂c (0) in (5.12) is: 

QR,k (0) 

R f Ti \ k 

( RN E l " \Y.i-"^''~'i-^^y'^i-rQ^^riO)-i-ab)''QR^kiO) 
( l - ( -a6)^) \p, \jj7^o 

(5.21) 

with initial values CQ = 1 and Qo.o (0) = 1-

Proof: From (5.12) 

dk 
fc!<3«,.(0)=lim^ 

R 

1-^ip), 
•k = 0,1,2,...,(R-l) 

p-*o dp'̂  
=lim ['^i-^ip)) 
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k\QR,k (0) 

(l+ab) 7f 

S ^ ^ T R ^ 2(l+ab) 
Rba' 

12(l+ab) ̂ { a 6 ( 3 i 2 - l ) - 4 } 
Rba' 

8(l+ab) 
Ti+s{2- AabR + a262i^ (i? - 1)} • 

a^6^ (15i?^ - 30i22 + 5i2 + 2) - a'̂ 6^ (120/?'^ + 40i2 - 16) + 
a6(200fi + 5 6 ) - 4 8 

Rba^ 
240(l+afc) R+4 

â ft̂  (3i?4 _ loi^a + 5ij^ + 2i?) - a^6^ (40i?^ - 40i2^ - 16il) + 
a^b^ (I40il2 + 36i? - 8) - ab (128i? + 64) + 1 6 96(l+o6)"+^ 

Table 5.1: Some values of the recurrence (5.12). 

R 

-hm y -—r 
p->o ^-^ dp'^ 

j=o ^ 

• $ ^ (p) . 

J , ^^\i-^ip)y 

^ ^ R \ J^ I k \ d''-' 
=Jii5Er E 

P" ' " j=0 \ J / r=0 \ T-
[^(P)]^ dpk-r L- V /̂J ^pr 1 (1 _ $ (p)y 

Utilizing lemma 19, for the (k - r) th moment of $•?' (p) imphes that 

« I R \ J.^ I k 
k\QR,k (0) = E ( " I E I (-«) (-^^)' (̂  - ^)'^^r^'^>.^ (0) 

j=0 V J / r=0 V ^ 

R I R\Jl^l k 
Qî ,fc(o) = E I " I E I 'I 1 (-«)''^(-«^)^^^-^i.^(o)' 

using the fact that C^ = I and taking the term at j = i2,r = A; to the left hand side we 

obtain the recurrence (5.21). Now using recurrence (5.16), or (5.21), we can list some values of 

QR,k (0) as given in table 5.1. 

The following lemma on a functional relationship of QR^k (0) will be usefril in the proof of 

the main theorem 17. 

Lemma 21 . 

R(l + ab) QR+IMI (0) + ''^•^QR^k (0) 

k 

d_ 
db' 

(R-ik + l))QR,k+iiO)^ 

0,1,2,3,...,iR-I). (5.22) 
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Proof: From (5.12) 

| { . ! g , , ( 0 ) } = | O i m d'^ 

dp^ \gip), 

R 

Interchanging the order of differentiation in the second term, and after some simplification, we 

obtain 

^ W i . , . ( 0 ) } = l i m d*" l-Rp'^jgip) 
ip) dp'^ iR+l 

and since 

we have 

> ^ - ' - ^ 

and using (5.12) 

*'!««.'(°)=-fj'is 

d 

dp*' 
J pR p^+i V 

1 ^ ^ " P + V P ) J . 

b:^QR,k (0) = R iQR+i,k (0) - QR^k (0)) 
db 

Now, the Q (0) terms may be associated by constants ci_C2, and cs such that 

QR+i,k+i (0) +ci(R- (k + 1)) QR,k+i (0) + 

(5.23) 

C2QR,k (0) + C3Qit+i,fc (0) = 0; (5.24) 

the (R — (k-\-1)) factor in QR^k+i (0) is required since it does not contribute for i? = A; + 1. 

Prom table 5.1 we choose three k values and substitute the respective Q(0) values in (5.24), 

then solving for ci_C2, and C3 we obtain 

Cl = 
R(l-hab) 

1 a . a 
,C2 = - . , , î , a n d C3 = l + a6' l + a6 

Hence from (5.24) 

«««.'« (°) - ^ytt6?'^«'^^' (°) - if^b'^'^^ C' 

j^,e«....(o) = o. (5.25) 
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R 
1 
2 

3 

4 

5 

The closed form of (5.15). 
i 

l + a 6 ' 
t 1 ba^ 

(1+abf (l+a6)^' 
t2 , 3ba2t 6a^(l-2a6) 

2(l+ab)^ 2(l+a6)4 2(l+ab)^ ' 
t3 . 6a2f2 ba3(4- l lab) t ba4(l-8ab+6a2b2) 

6(l+ob)* ' (1+ab)^ 6(l+ab)'* ' 6(l+ab)^ 
t* 5baH^ 5bo3(2-7ab)f2 5ba4(l-10ab+10a2b2)t ba^{3-66ab+199a^b'^-72a^b^) 

24(l+ab)^ 12(l+ab)^ (1+ab)'^ ' 4(l+ab) ' ' 3( l+ab)" 

Table 5.2: Some closed form expressions of (5.15). 

Substituting (5.23) in (5.25), and after some minor manipulation, we obtain the result (5.22), 

and the proof of lemma 21 is complete. Using the QR^k (0) in table 5.1, some closed form 

representation of the infinite series (5.15) are given in table 5.2. 

For the specialized case of i? = 2,6 = - 1 and a = X from (5.14) and (5.15) we obtain the 

result, (2.84) in chapter 2, that ConoUy missed. In the next section we give a proof of the main 

theorem 17. 

5.2.3 L e m m a and proof of t h e o r e m 17. 

The following lemma will be useful for the proof of theorem 17. 

Lemma 22 . A recurrence relation for the infinite series (5.14) is 

i? (1 + ab) SR+I + (^b^SR - tSR = 0. (5.26) 

Proof: From (5.13) and (5.14) 

SR+I = E 
n \ n / (" + ^ ) ' 

n = 0 \ "' 

Also, from (5.13) and (5.14) 

= UtSR-af:nTn). (5.27) 
\ 71=0 / 

71=0 
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Now multiplying (5.27) and (5.28) by R(l-{-ab) and ab respectively and substituting into the 

left hand side of (5.26), gives 

il + ab)tSR-a (l-hab)ynTn + 
71=0 

a (1 + ab) E nTn - (1 + ab) tSR 

= 0 
71=0 

which is identical to the right hand side of (5.26) and the proof is complete. 

Proof of t h e o r e m 17. 

The proof of theorem 17 will involve an induction argument on the parameter R. Lemma 

22 proves the left hand side of (5.15). For the basis, R = 1, a proof of (5.15) has been given 

in chapter 2. For i? = 2, a proof of (5.15), by Biirmann's theorem has been given by Sofo and 

Cerone [83]. The induction argument for the right hand side of (5.15) will involve the recirrrence 

relation (5.26). From (5.26) 

SR+I = 
R(l-\-ab) 

1 
R(l + ab) 

Rt 

tSR - O'b—SR 

R-l .n—k—i 
t E (R-k-i)iQR,k (0) 

ifc=0 ^ ^ 

-<^bY:^^.iQR,kio) 
k=o ^ ' 

i ? ( l + a&) 

R 
|?Q«,o(o) + E^7S)^Q«,fc(o) 

(fl-fc)t R-k 

R 
k=l 

j.R—k 
- ^ ^ E -{R:^.dhQR,k-i (0) 

fc=i 

(5.29) 

where the counter in the third term has been adjusted. Now collecting terms in (5.29) we have 

that 

R r 

SR+1 

tR-k 

^ ' fc=i •-

\QR.O (0). 

+ 

(1 + ab) R\ 
(5.30) 
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From lemma 21, after adjusting the counter k 

R(l + ab) QR^i^k (0) = (R-k) QR^k (0) - ab^^QR,k-i (0) (5.31) 

so that by substituting (5.31) into the square bracket of (5.30) we have that 

^̂ +^ = il + ab)Rl^^'' (0) + E ( l ^ ^ « + i . ^ (0) 

tR R ^R-k 

= ^Qifi (0) QR,O (0) + E (^_fe),Qi?+i,fc (0) (5.32) 

where Qi^ (0) is identified in (5.16) or table 5.1. By the convolution nattue of the Q (0) terms 

we may write equation (5.32) as 

fR R ^R-k 

SR+I = -Q^+i,o(0) + E(^rit)!^«+i-'^(0) 

R ^R-k 

= E(^rfc)T^^+i.fc(o) 

which completes the proof of theorem 17. 

It is now worthwhile to briefiy indicate a functional relationship for the infinite sum (5.14). 

Prom the left hand side of (5.15), let 

t = ar, p = R—l and 7 = abe then 

- (-7)-(r + n)-+^ . - m g - ^ 
^pi^) = 2_^ ~] , p - U , 1,2,3... 

71=0 

and 

<^P ('̂ ) + 70"p (r + 1) = rap-i ( r ) . (5.33) 

Fyke and Weinstock [78] gave a functional relationship of (5.33) for the case oi R = 1 only. 

Sofo and Cerone [83] have given a proof of the functional form (5.33) for the general case of 

integer R. 
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5.2.4 E x t e n s i o n of results . 

The dynamical system (5.1) may take other functional values of the forcing terms w (t), other 

than 6 it), such that consequent results of (5.15) may be extended. We shall consider two other 

cases. 

Casel: Let 

w(t) = 
^-btfn-l 

( m - l ) ! 

in the system (5.1), where m is a positive integer and foUowing the procedure of section 5.2, we 

obtain 

n + R-1 \ b"e-^(*-°") (t - an)"+"^+^~^ 
(n + m + J ? - 1)! 

= y \ ' Q ^ . M O ) + V ^ Tr,PmA-b). 
^-^ (R-u-l)\ ^(m-v-iy. 

E 
71=0 \ n 

• R - l 4.R-U.-1 

^-^ VR-a-iy. ^ (r 
p = 0 ^ ^ ' v=0 "^ 

(5.34) 

In identity (5.34) we have that 

v\Pm,u i-b) = lim 
p—^—b 

d" 
^ { ( p + 6)"^F(p)} •,i/ = 0 , l , 2 , 3 , . . . , ( m - l ) 

/i!Qii,M (0) =lini 
p—i\j 

di" 
^{pRF(p)} •,!, = 0,1,2,3,...,iR-1) 

and 

F(p) = 
(p + 6)'"(p + 6-6e-«P) R' 

For R=l and m = 2 we have 

^ l^n^-bjt-an) (^ _ a^)n+2 ^ ^-bt 

^ (n + 2)! ~ fee"*-
71=0 ^ ^ 

t + 
1 + abe' 

Ij^ab 

ab 

+ &2 (1 + ab) 

and for i? = 2 and m = 3 

, ^ / n + 1 \ b n g - b ( t - a 7 i ) ( ^ _ a n ) " + 4 

.^oV n j (- + 4)! 
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= e 
-bt t^ 2 t ( l+a6e°^) 2 (abe"'') ̂  + 6a6e"^ + 3 

2 (he°^f (be<^f ^ (be'^bf 

t 
+ 

a" 
63(l + a6)2 ' 262(i+a6)3 64(1 + ^5)2' 

In the degenerate case, for a = 0, from (5.34) we obtain the impressive identity 

E 
71=0 \ n 

.R 771-1 

n + i ? - 1 \ ^ng-bt^71+77l+it-l 

(-iLv ^ 
bt 2-^ hR+v u=Q 

(n + m + i J - l ) ! 

.u-l R-l 

z/- l ) !^E 
(R), t ^ — i ^ ( -1)^ (m)^ t ^ - / - i 

where (a;)^ is known as Pochhammer's symbol. The identities (5.34) and (5.15) may be differ

entiated and integrated with respect to t to produce more identities. 

Case2: Let 

w(t) = 
J.771—1 

(m - 1)! 

in the system (5.1), where m is a positive integer and following the procedure of section 5.2, we 

obtain 

n E(-^r("^''''lE 
71=0 \ '^ / r=0 \ r 

(-1)^ {t - ar) n+m+R-l 

(n + m + i ? - l ) ! 

771+fl-l .m+R-k-l 

E QR,k (0) 

fc=0 (m-\-R-k-iy 

k\QR,k (0) 

k 

lim 
p->0 

dJ^ 
dp'' 

{pr-+RF(p)} =lim 
p-»0 dp^ ] \gip) 

R' 

(5.35) 

(5.36) 

0,1,2,..., m + i? - 1; m > 1; i l > 1 

where 

F(p) = 
p'^(p-\-b- be-^'P)^ 

which has a pole of order m + i? at the singularity p = 0, and g (p) is defined by (5.11). Let 
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t = —ax and from (5.35) we obtain 

^ / n + i ? - l \ ( 1 \n-\-m+R-l '̂  / „ \ 

m+R-l ^^yn+R^^Q^^^^^^ 

4-L a^im^R-k-V\\ ^ "̂̂ '̂  
fc=0 

where the inner sum on the left hand side is the general polynomial investigated in chapter 4, 

namely 
(_-\\n+m+R-\ n / „ \ 

W-.(n..) = (i;^i^^_,),E y ̂  J (-1)'(̂  + ̂ ) " — 
and hence from (5.37) 

71=0 V '^ / k=0 

By an application of the ratio test the infinite sum in (5.38) converges in the region |a6| < 1, 

since lim 1/^^^ uS^ — 1- l'^ ^^^ special case, that of a; = 0(a 7̂  0), Vm+R-i in,0) = 

Pm+R-i {n)t where F77i+ie-i (n) are the polynomials in chapter 4, described by (4.21), and 

therefore from (5.38) 

0 0 

E l , N71 / "• + -^ ~ ^ i D ( \ QR,m+R-l (0) ._ „„x 

Prom (5.35), for the degenerate case a = 0, we have the identity 

771+JJ—1 +—k/ n+R-1 \ f ^ y n " - i ^ - t-'-Qu.kjO) 
„-0 \ n (n + m + R-iy.^^^ M , l 2^^(m + R-k-

since on the left, the inner sum is unity for n = 0 and zero otherwise and on the right, using 

(5.36) QR^k (0) = 1 for fc = 0, and zero otherwise. Some examples are now illustrated. Putting 

120 



a = -ab in (5.38), we have for the case of i l = 1 and m = 1 that 

on 

2a; ^„»(„ + 2x) = ̂  + _ i L ^ , 
71=0 ^ ^ ( 1 - a ) 

oo 
and when x = 0, Y, na"" = 7 7 ^ . However Jolley [64], entry 40 on page 8, gives the listing 

71=0 ^ •' 

E "'<^" = n-n,J' which is obviously incorrect. Jolley gives no other entries of this form, apart 
7 1 = 0 *• '' 

from chapter 2, (2.12). We have given a general method for closed form representations. For 

R = 2 and m = 2 we have that 

E a " ( n + l ) K + „ ( i + 6 . ) (n + 2 . ) + 8 x 3 ) = 8 ^ ^ j j ^ ^ 4 a . (5a + 4) 
^ il-a) ( 1 - a ) ( l - « ) 

4Q: (Q;2 + 4Q; + l) 

• " ( ! - « ) = ' 

which may also be checked on, say, 'Mathematica'. 

5.2.5 Renewal processes . 

In the theory of renewal processes, let M (t) = E (N (t)), be the expected number of renewals 

in the time interval [0, t] such that M (t) = ^ /Q /("^^ (a;) dx and the Laplace transform is 
7 1 = 1 

Mip) = l UP) 
Li-/(p) 

(5.40) 

Also, the expected instantaneous renewal rate m(t) = ^M (t), whenever ^M (t) exists such 

that 

m(p) = ^ . (5.41) 

M(p),fh (p) and / (p) are, respectively, the Laplace transforms of M (t) ,m (t) and / (t). Feller 

[44] obtains the average number of registrations of an event M (t), for a type 1 counter as 

M(t) = l - e-^* + f M(t-x) 6e-''(==-")iI (x - a) dx. (5.42) 
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Prom (5.40) or (5.42) we may obtain 

1 
M(p) = 

p{p-\-b- he-°-P) 

and upon inversion the result is identical to that given by (5.35) with R = 1 and m = 1. 

Chaudhry [26] considers various other forms of the function / ( p ) from which expected instan

taneous renewal rates are evaluated. For the shifted exponential function 

/ ( t ) = ( l - e - ' ' ( * - " ) ) i f ( t - a ) 

and from (5.41) we have 
be~"P 

m{p) = 
p"^ -{-bp- be-^'P 

where 

g ip) =p'^ + bp- he-^'P. (5.43) 

Prom the work of the previous section we may write 

n ^ ^ J •- . (-1)"+- 6"+^ jt -a(r + 1))"+-+^ _ ^ ^j (e, + b) e î̂  
' ^ ^ ' " Z ^ Z ^ l I (n + r + l)! Z ^ a d + (2 + a6)e, + 6' m ^ ^ 

; = 0 r = 0 \ r J v - • ' • - r .^Q^^j^y^^u,uj^j 

where ^,-, j = 0,1 are the two distinct dominant zeros of the characteristic function g(p) in 

(5.43). In the next part we shall prove closed form representations of infinite sums which depend 

on k dominant zeros of an associated characteristic fimction. 
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5.3 The fc-dominant zeros case. 

5.3.1 T h e A;-system. 

Consider, for a well behaved function f (t), the forced dynamical system with constant real 

coefficients b and c, real delay parameter a, and all initial conditions at rest, 

cfit-a)+j:\ ^ ]bf^--f(^){t)=w(t)-t>a 
r=0 \ f 

J: I ^ \b''--f(^)(t)=w(t);0<t<a. 
r=Q \ y 

(5.44) 

In the system (5.44) w (t) is a forcing term, t a real variable, and A; is a positive integer. If we 

let w(t) = 6 (t), for illustration, and use the methods of the previous section we obtain 

F{p) = 
(p + 6)" + ce-«P 

Expanding (5.45), inverting and considering the residue, we get 

E [-c) e ^ '{t an) _sr^Q(t: ^ u 

u=0 71=0 
(nk^-k- 1)\ 

where 

Q(a = lim [ ( P - i u ) F ( p ) ] , V = 0,1,2,3,...,k-l 
p^iu 

(5.45) 

(5.46) 

(5.47) 

and ^^ are defined as the k dominant distinct zeros of the characteristic function 

gip) = ip + b)'' + ce~"P. To simplify the algebra let us take c + b'' = 0, which allows one 

dominant zero of the characteristic function 

gk (p) = (p + b)*=-bV^P, (5.48) 

with it + ab > 0, to occur at the origin. The condition A; + ab ^ 0 will ensure the distinct nature 

of the zeros of (5.48). From these considerations and (5.46) we have the following theorem. 
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T h e o r e m 2 3 . Let 

rr (uu *̂  6'̂ *̂ e-''(*-'̂ ") (t - an)"*=+*=-i 
Tn (k, b, a, t) = , , \ rrr 

(nfc + fc-1)! ""^ (5-49) 

S(k,b,a,t) = yTnik,b,a,t) (5.50) 
n=0 

w/iic/i is convergent for all values of k, b, a and t in the region 

-i\k (ab)^e'^* <ike-')\ (5.51) 

Then 
fc-i 

S(k,b,a,t) = yQ(Ue^-^\ (5.52) 
u=0 

where Qi^^,) is defined in (5.47) and ^^ are the k dominant distinct zeros of the characteristic 

function (5.48). 

The following two lemmas, regarding the location of dominant zeros, will be useful in the 

proof of Theorem 23. 

Lemma 24 . The characteristic function (5.48) has k simple dominant zeros lying in the 

region F : |p( < ^^^ ; a, b > 0 and k is a positive integer. 

Proof: We have previously defined a dominant zero as the one with the greatest real part. 

It is known, see [7], that (5.48) has an infinite number of zeros lying in the left (or right) half 

plane. Using the same method as described in chapter 2, lemma 6, it can be shown that (5.48) 

has at most three (and at least one) real zeros with restriction (5.51) one of which is at the 

origin, ^Q = 0. Applying Rouche's theorem it is required to show that \A (w)\ > \B (w) — A (w)\ 

iovw=p-\-b,A(w)=w'',B(w) = w^ - b*=e'̂ -«'̂  in the region F' : |w| < ^ ^ . Now A(w) 

has k zeros lying in the region F' and since \w^\ > |_b'=e"^~"'"| imphes that (k + 2ab)'^ > (ab)''; 

then B (w) has k dominant zeros lying in the region F' and hence (5.48) has k dominant zeros 

lying in F. 
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Lemma 25 . The characteristic function 

qjip)=P + b- be^^'^'^-^Py'' (5.53) 

for j = 0,1,2,3, ...,k - 1 has one dominant zero for each j lying in the region F as defined in 

lemma 24-

Proof: Now, Ai (w) = w has one dominant zero lying in the region F' and 

Bi (w)=w- be(2'rij+ab-at/;)/fc_ Therefore \w\ > \-be^2nij+ab-aw)/k^ implies that (k + 2ab) > ab, 

hence Bi (w) has one zero lying inside the region F' and it follows that for j = 0,1,2,3,. . . , A; - 1 , 

(5.53) has one dominant zero lying in the region F. 

Proof of Theorem 23: Firstly, we evaluate Q (^^) from (5.47) and from (5.52) we may 

write 

^b^k^-bit-an)^t_^^^nk+k-l k-1 ^^j 
S(k,b,a,t) = y , , \ -ri = > T-j- :• (5.54) 

;S ink + k-iy t^oi^ + U'-'ik + ab + a^,) 

The characteristic function (5.48) may be expressed as the product of factors such that, 

gkip) = ip + b)' - b'e-^P = n (p + 6 - be(2-^-«P)/'=) = J J QJ iP) • 

3=0 3=0 

Lemmas 24 and 25 show that the dominant zeros, aj, of qj (aj) for each j = 0,1,2,3,. . . , A; - 1 

are the same as the k dominant zeros of gk ip). Using (5.47), the contribution Ct(aj) to each 

of the factors qj (aj) is 

n(aj) = lim [ip-aj)Fj{py 
p->aj 

= lim 
p^aj 

p-aj k 

Qj ip) \ A; + ab + aaj 

and using this result, we have from (2.10) that 

- (be2-^iA)%-K^-^) (t - f ) " ^ ke-^' ^5 55^ 
2-^ n\ A; + ab + aaj 
71=0 
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for each k = 1,2,3,... and j = 0,1,2,3,...,k - 1. Note that the sum (5.55) may in fact be a 

complex number. The summation of all the A; dominant zeros , for each of the factors qj (aj) 

implies from (5.55) that 

y ^ ke<^J* ^ ^ ^ (be2"^/fe)%-K^-x) (t - ^ ) " 

- ^ A; + ab + ao:,- ^ - ^ n! 
J = 0 •' j=0 71=0 

2nijn/k = E^ 7'^' E-
71=0 j=0 

Rescaling the infinite sum, by putting n = (n* + 1) k, (and then renaming n* as n) gives the 

result, 

^̂ fc y > b^fee-Ht-°"-°) (t-an- a)"^+*^ _ ^ A;e"î  

^ ^ (nk-\-ky. ~ ^ k + ab + aaj' 

Now letting y = t — a and, from qj (aj), using the fact that e"".? = { 5 3 ^ ) then 

^ br^ke-bjy-an) (^ _ â )rifc+fc ^ ^ e"^3'e-^("+2') 

; ^ (nA; + A:)! " , ^ (6 + «,)'(A; + ab + a a , ) b*̂ " 

Differentiating (5.56) with respect to y, which is permissible within the radius of convergence 

(5.51), gives after some algebraic manipulation 

^ b^k^-b{y-an) (^ _ oy,)nfc+fc-l ^ ^ ^ 

A . (nA; + A; - l ) ! " | ^ (b + a ,)^- i (A; + ab + aa , )" 

Renaming y as t shows that (5.57) is the same as (5.54) since by lemmas 24 and 25, aj = ^^ for 

j = 0,1,2,3, . . . ,A;-1; z/= 0,1,2,3,. . . ,A;-1, and therefore theorem 23 is proved. Some examples 

are now given to illustrate the above theorem. 

5.3.2 Examples . 

(i). For A; even there are 2 real dominant distinct zeros and (A; - 2) complex conjugate zeros 

of the characteristic function (5.48) that need to be considered for determining the right hand 

126 



side of (5.54). Consider, in particular, the case A; = 2, then 

b2n^-b{t-an) (^ _ ^ufn+l 1 ^^^t 

E w e ^ \'' ~"'"') \-^ 

('2n-l-n! ^ 2 ^ n=o (2n + l)! ^ ( b + ^ J ( 2 + ab + a ^ J -

For (a,b,t) = (.1,2,2) then (4o)Ci) = (0,-4.5053) and the sum takes the value, to four signifi

cant digits, .2272. 

(ii). For A; o d d there are 3 real dominant distinct zeros and (A; — 1) complex conjugate 

zeros of the characteristic function (5.48) that need to be considered for determining the right 

hand side of (5.54). Consider, in particular, A; = 3, in this case there will be one real zero ^o and 

two complex conjugate zeros ^i = (a; + iy), ^i = (a; — iy) and ^^ satisfies (^^ + b) - b^e"*^" = 

0,u = 0,1,2. Hence we have 

E 
^3n^-b{t-an) (^ _ an)^n+2 ^^^t 

,^0 (3n + 2)! (b + ^o)2(3 + ab + aeo) + 
2e^* [(a:2a;4 - a;3a;5) cosyt + (a;2a:5 + 3:3X4) sinyt] 

(a;f+y2)2(^2+^2) 

where a;i = (a; + b), a;2 = a;f - y'^,X3 = 2yxi,X4 = 3 + aa;i and X5 = ay. For (a, b, t) = (.8,1,2) 

then (^o>^i'^i) = (0 , -1 .2193+ 1.3668i,-1.2193-1.3668i) and the sum takes the value, to 

four significant digits, .2769. Again the previous results (5.54) may be extended in various 

directions, we briefly mention one extension. 

5.3.3 E x t e n s i o n . 

Consider, for a well behaved function fit), the forced dynamical system with constant real 

coefficients b and c, real delay parameter a, and all initial conditions at rest. 

^ ( ^ ] f,k{R-3) ^ I -̂ ^ I b^k-rf{r) (t - (R - j) a) = w (t); t > Ra 
3=0 yR-jj r=o\ r 

g I ^ ^ ^bRk-rfir)^t)=w(t);0<t<Ra. 
r=0 \ f 

(5.58) 
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In the system (5.58) w (t) is a forcing term, t a real variable, and R and A; are positive integers. 

Let w (t) = ^(jn-i)\ ) ̂ ^^ m = 1,2,3,... and taking the Laplace transform of (5.58) we have 

Fip) = 
(p + &)"'((p + 6)'=-6*=e-«p) 

R-
(5.59) 

By the methods of the previous section 5.3.1 we finally obtain 

. , . + H - 1 \ b^fce-Kt-an) (^ _ ^^^nfc+Rfc+TTi-l ^ ^ 1 ^-bt^m-r-1 p^^^ ( , 5 ) 

2^\ I (nk-\-Rk-\-m.-U\ ~ ^ (m-r - 1)\ 
n = 0 

(nA; + i?A; + m - l ) ! 
r = 0 

i /=0/ i=0 ^ ^ ^ 

(5.60) 

where 

r!F77i,r (-&) = l im 
p—*—b 

IJ'IQR,,, ( O = lim 

^ ( ( P + f ' ) ' " i ' ( p ) ) 

£:((P-U''^(P)) 

;r = 0 , l , 2 , . . . , ( m - l ) , 

•,p, = 0,l,2,...,(R-l) 

F (p) is defined by (5.59) and ^^, i/ = 0,1,2,3,.. . , A; - 1 are the k dominant zeros of the charac

teristic fimction (5.48). For (R,k,m) = (2,2,3) we have, from (5.60) 

t^in + l) 
71=0 

^2n^-b{t-an) (j. _ ^ n ) 

(2n + 6)! 

271+6 

2 (bSe'̂ ^)' 
bV^t (i + 4a) + 4 ( l + a ^ b V ) 

+E-
.iut 

t -
2 2 - a^^e-"^" 

bTi;;"2(b+o+«^^e-<. ; ^ (& + U'(2 (& + U + "^'e-'^O'L 

where e,. are the two dominant zeros of H^ + bf - b^e"'^^- = 0. The degenerate case of 

0 = 0, implies that the transcendental function (5.48) reduces to a polynomial in p of degree A;. 

Specifically for (a, R, k, m) = (0,2,2,3) we have the identity 

\ 271+6 1 ~ , , (bt) 

E ( " + l)(2^T6)!-2 
71=0 

(bt)^ + 4 + bt sinh (bt) - 4 cosh (bt) 
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Chapter 6 

Fibonacci and related series. 

A first order difference-delay system is considered and by the use of Z transform theory generate 

an infinite sum which by the use of residue theory may be represented in closed form. Related 

works to this area of study are considered and some central binomial coefficient identities are 

also given. A development of Fibonacci and related polynomials is undertaken together with 

products and functional forms.^ 

^A shortened version of this chapter has been pubhshed in The Fibonacci Quarterly, Vol.36, pp.211-215, 
June-July 1998. 
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6.1 Introduction. 

In this chapter we consider a difference-delay system and by the use of Z transform theory 

generate an infinite sum which we shall represent in closed form by the use of residue theory. 

We shall compare our work to that of Jensen and lay the foundation so that our results may 

be further generalized in the ensuing chapters. We shall investigate some central binomial 

coefficient identities, and develop Fibonacci related polynomials, products and functional forms. 

6.2 The difference-delay system. 

Consider the related Fibonacci difference-delay system 

fn+\ - bfn - Cfn-a = 0, n > a 1 

/71+1 - 6/71 = 0, n < a J 

with initial condition /Q = 1, b and c are real constants and a and n are positive integers 

including zero. The Z transform of a sequence {/„} is a function F (z) of complex variable z 

defined by F (z) = Z [fn] = J^ fnZ'"" for those values of z for which the infinite series converges. 
71=0 

Taking the Z transform of (6.1) and using the initial condition yields, upon rearrangement 

F (A - ^ = - (6.2) 
^ ^^)- z - b - cz-'' 2«+i -bz'^-c 

and expanding as a series we have 

The inverse Z transform of (6.3) is 

(6.3) 

/n = E 
°° ' n-ar 

r = 0 

(D'M—):/(n-a.)= E ( / j ( D ''"""' («•*) 
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where U(n- ar) is the discrete step ftmction and [x] represents the integer part of x. The 

inverse Z transform of (6.3) may also be expressed as 

c J=o ^ ^ 
(6.5) 

where C is a smooth Jordan curve enclosing the singidarities of (6.2) and the integral is traversed 

once in an anticlockwise direction around C. It may also be shown that in (6.5) there is no 

contribution from the integral aroimd the contour. For the restriction 

c(a + l) a+l 

b(ab)'' 
<1 (6.6) 

the characteristic function 

^ ( ^ ) = z « + i - b z « - c (6.7) 

has (a + 1) distinct zeros ^j,j = 0,1,2,3,.. . , a. All the singularities in (6.2) are therefore simple 

poles such that the residue, Resj of the poles in (6.2) may be evaluated as follows 

Res,- = hm (^ - ^3) za-hl _ b2;« - (a + l )e , -ab 

and hence from (6.4), (6.5) and (6.8) we have 

[7i/(a+l)] 

fn= E n — ar 
t n + l 
^ 1 

r = 0 
U Z.(«+i)e.-ab-

(6.8) 

(6.9) 

A Tauberian theorem [7] suggests that for n large, from (6.9) 

[7i/(a+l)] 

E 
r = 0 

n — ar (D'̂ '" —ar) 
A71 

SO 
71+1 

(a + 1) ̂ 0 - «^ 

where ^Q is the dominant zero of (6.7), defined as the one with the greatest modidus. 
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6.3 The infinite sum. 

Theorem 26 ; For all values of a,b,c, and n 

- / n - a r \ , e y ^^ 

±^A . \bJ ~ (a+l)i 
n — ar\/'c\'rf ^ ^n+i 

(6.10) r=o \ r / ^"' (a-\-l)^Q-ab 

in the region of convergence (6.6). 

Using (6.9) and (6.10) we may write 

[7i/(a+l)] 
n — ar \ /c\r , . J±L i n-ar \ /rw , , /m+i 

( ) b(—)+ y n-W("—) = k 

and so 

^ / -(n-{-ar) \ /cxr , , ^ £̂ +̂1 

.=[(^l) /a lV r J^b) ^^(a + l)^,-ab-

Thus 

Proof of Theorem 26: Without loss of generality let c = ab,ae^, in (6.7) such that 

<ci+l 

b=-5o 
«+^g' 

also, let n = —/3a and substitute in the left hand side of (6.10) such that 

^ / - a ( / 3 + r ) \ , . ^ , , ^ / a / 3 + ar + r - l \ /Q! + £n°(^+''^ 
E "̂̂  ^ û b-«(̂ +̂ ) = E(-i)n r ' TSI^ 
r=n \ r / r.̂ n \ r / \ so / r=0 \ 7̂  / r=0 

= E ( - ! ) ' • [ " ^ + " ^ + ^ - ^ ^ '^^^^'^ / a/3 + a r \ ^,^+,(„+i)_fc^afc-a(a+l)(/3+7.) _ (g_^^^ 

7-=0 
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Now, expand (6.11) term by term and sum the convergent double sum diagonally from the top 

right hand corner, thus gathering inverse powers of ^Q, such that 

v ^ _a(/3+r) y ^ riy-k I (^iP + r-k) 

r=o k=o \ a(P + r - k) - k 

a(P-{-r-k)+r-k-l 

r — k 
a 

and after some lengthy but straightforward algebra we may simplify the double sum to 

ô" 
•al3 

l + aE(-«) ' (a + l)^-'e — 1 c—ar 
0 

r = l 

_ f - a / 3 = eo-
<y+eo 

[(a + l)a + a 

_ c-aP+l 
— SO 

1 
îS+̂  

_ ^0 
-a/3+1 

(a + 1) ^Q - ab 
(a + l ) ^ o - a ( ^ 

which is identical to the right hand side of (6.10), upon replacing —a/3 = n. The convergence 

region (6.6) is obtained by applying the ratio test to the term in the sum (6.10) and is shown 

in figure 6.1. The theorem is proved. 

F igure 6.1: Convergence region for the discrete case. 
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6.4 The Lagrange form. 

Jensen's work [63] is related to our sum (6.10). Jensen substitutes 0 = (^ + 1)" and f = (z-\-1)^ 

into Lagrange's formula, theorem 8, and obtains 

where y = z(z-\-l)~^ . Similarly, from the Lagrange alternate formula, theorem 9, Jensen 

obtains 
-(n + jA (̂  + 1)"+' (. + !)" 
h\ i J ^ - i - ( / 3 - i ) . - i - , ( ^ ) - "̂̂ ' 

Jensen also substitutes (j)= (z-\-1)"+"^ and / = (z + 1)^, and obtains 

-"(A) 3=0 \ J 

n 
n 

equating the coefficients of ŷ ' in (6.13) and (6.14) and substituting m = m-kp, Jensen obtains 

the striking result 

n + m \ ^ _ ^ ^ _ ( n + jp\ fm-jp] ^^^^^ 

k I fe^+^"^v 3 j V ^-^ I 

Jensen notes that (6.15) is analogous to Abel's identity, see chapter 2, and is comprised in the 

more general formula, due to M.I.G. Hagen, 

a(p + q-nd) + bnql P + q \ _ y ^ a + bj lq + 3d\ Ip-jP 

ip + q)ip-nd)q I „ I ^^iq +jd) ip-jd) ^ j ) \ n - j 
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Jensen also used (6.15) and the method of recurrences to prove the novel identity 

which Cohen and Sun [32] gave a more general form by the use of general series transformations. 

Chu Wenchang [27] obtained even more general forms of binomial convolution identities by 

the use of power series expansions and convolutions. We can now show that our sum (6.10) 

is the same as Jensen's identity (6.12) and that (6.10) holds for all real parameter values. 

Let c = ab,a = —P,ab^ = y and z = a^^, from (6.7) we have that ^o = b(z + l) and 

y = z/ (z-\-1)^, and substituting in (6.10) we obtain Jensen's identity (6.12). If we let /3 = 0, 

(6.12) reduces to the binomial theorem. To show that (6.12) holds for all real parameter values, 

we first write 

" " z'' 1 
(z + l)^'-+"+i l-(P-l)z 

and putting the denominator in the left hand side in series form we can write 

^ . / n + r/3 + j \ . 

E(-i)M 1-̂ ; 

expanding the double series and summing diagonally from top left hand corner we obtain powers 

of z, namely 

yz^yi-lY-4''^'^\ / n + p/3 + r-p 
r=0 p=0 \ ^ / \ ^ " ^ 

and since the inner sum is equivalent to (/3 - 1)^, the parameters n and /3 are arbitrary and 

therefore belong to the set of real numbers. In the next section we shall investigate many 

interesting cases of the identity (6.10) and an associated related result. We shall investigate 

the case of a = 1. 
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6.5 Central binomial coefficients. 

For the case of a = 1, (6.7) produces the dominant zero ^Q = (b + y/^~+Ac\ /2 such that for 

n= -ae^,c= -X and b = 1 identity (6.10) may be written as 

^ 1 2r + a - l 

f(a,x) = 2_^ 
r=0 

r 
X = 

l + yJl-^X l-a 

V I - 4 a ; 
(6.16) 

-2 Fl 
a g + l 
2 ' 2 

a 
Ax 

and in particular / (1, x) = - ^ ^ occurs in the book of Wiff [93], / (a, 1/8) = 2(3"-2)/2 ( l + v/2) 

and / (1 ,1 /8 ) = V2 is a very slow converging series. Replacing x by —x in (6.16) and then 

adding we obtain 

l - a 

gia,x) = E 
r = 0 

4r + a — 1 

2r 

„2r 
X'' = 4 F 3 

a g + l g + 2 g + 3 
4 ' 4 ' 4 ' 4 

1. g g + l 
2 ' 2 ' 2 

16a;̂  (6.17) 

so that g (a, 1/8) = 2(2«-i)/2 i^i^,(^) l - g 
Therefore, in general, we may 

obtain closed form expressions for binomial sums of the type 

^ f 2(a i r + a2) + a - l j ^,^,+„^ 

r=o \ a i r + a2 

for constants ai,a2 and a. It also follows from (6.16) that for a and /3 G 3? we have the identity 

2^oFi 2-^1 

a g + l 
2 ' 2 

a 
Ax = (1 + v n ^ ^ 2F1 

g+/? g + l + / 3 
2 ' 2 

a + /3 
4a; 

or 

r = 0 

2r + a - 1 
a; = (i+x/i^^'E 

^ ^ / 2r + a + / 3 - l , ^ 

r = 0 

(6.18) 
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For a = 2 and ^ = 0 adding alternative terms in (6.18), we have , after using (6.17) and 

minor manipulation 
some 

r=o \ 2r 

1 3 1 5 
2 ' 4 ' ^ ' 4 

1 1 3 
16a;̂  

PYom (6.16) with a = 1 and collecting coefficients of x we obtain the common result 

2 r \ I r - h \ 
2 "" and this result will be generahzed in the next chapter. The identity 

(6.16) may be differentiated with respect to x to obtain more identities. If we let the operator 

P — ^'^f (< '̂ ^) ^^ obtain from (6.16) 

^ / 2r + a - l E^ 
r = 0 

r 
X = 1-ix {" + 7r=li} (6.19) 

= (1 + a) a; 2F1 

Operating on (6.19) by p again we have that 

g + 2 Q+3 
2 ' 2 

a + l 
4a; 

E-̂  
r=0 

2r + a - 1 
a;'" = (1 + a) a; 2F1 

g + 2 g + 3 
2 ' 2 

a + l 

+ (2 + a) (3 + a) x^ 2F1 

4a; 

g + 4 g + 5 
4 ' 4 

a + 2 
4a; 

«= „ / 2r \ _ 
and in particular for a = 1 and x = 1/S ,^2^ \ 1 8 ' ' = •^. Thus we may, in general 

r=o \ r I 
obtain identities of sums of central binomial coefficients; 

2v/2' 

E' 
r=0 

2r + a - 1 
x-

for A; integer. Similarly , (6.16) may also be integrated to obtain more identities. Integrating 

the right hand side of (6.16) will necessitate branch cuts and singularities dependent on the 
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value of a. So that putting a = 1 will simplify the integral. From (6.16) 

°° I 2r 
93 (̂ ) = E 

r=o \ r 

X •r+3 

(r + l) , 

X Xl 

t=0 t=0 
i — times 

dt 

^ / ^ ^ ^ ' 

where (r + 1) • is Pochhammer's symbol. For j = 1, the constant Cr 
2r 

i^ is known 

Catalan numbers. In particular g^, (x) = -^^ | l - 10a; + 30a;2 - (1 - 4a;)^/^|, ^3 (-x) = 

i ^ | - 1 - 10a; + 30x2 + (1 + Axfl'^X, so that ^3 (a;) + ^3 (-a;) produces the identity 
120x 

^ / 4r \ x^ 

^ l 2r I (2r + l ) (2r + 2)(2r + 3) -24^{(^ + ̂ )̂̂ ^ -̂2^ -̂(̂ -̂ )̂̂ ^1 

Other values of a may be utilized; if a = 2 then from (6.16) we have the identity 

E 
r=0 

2r + l 
x' = 2F1 

1 ^ 
•^' 2 4a; 

1 - 4a; + \ / l - 4 a ; 
(6.20) 

Multiplying both sides of (6.20) by x and then integrating, we have 

00 

E 
r=0 

2r + l 
^ = J-{\-2x-s/l^^^] 
• + 2 4a;2 i- -" 

2r + 1 \ 
where the coefficient MCr = \ I f+2 = ^7^^^ ^^^ ^^ thought of as modified Catalan 

numbers , and in particular for x = 1/4 we have the slow converging series 

r=0 V r 
r + 2 
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An alternative procedure for integrating (6.16) for a = 1, is the following. Take the first term 

of (6.16) to the right hand side and integrate j-times such that 

' 2r \ x^ 1 f r f 1 \ dt Mx.) = E M M ^ = ̂ / . . . . / ( 
y/l^^t I t 

t=0 t=0 
j — times V . 

and consideration needs to be given to the improper integral. In particular 

/^3(l,:r) = ^ | - - - + — + a ; 2 l n 2 + ^ ^ T x^In (l + ^ / ^ ^ | , 

, /, N 1 r 1 a; 3a;2 2i ^ (lOx + 1 ) VI + 4a; o, / . /, , , vl 
^ 3 ( l , - ^ ) = ^ | ^ + 2 + — ^ " ^ ^ ^ ^ " ^ 24 a;2ln(l + V r + 4 ^ | 

and adding produces the identity 

- / 4 r \ x^r i f ^ + 3|i + ^21^ 2 + ( l o - i j ^ v ^ ^ - ( l o x + y y m ^ 

E 1̂  2r j (20 (2r + 1) (2r + 2) 2a;2 | _^2 j ^ (( i + ^J^TA^ (l + V T ^ ^ ) 

Now, if in (6.16) we put x = x? and for a = 1 integrate, we have 

/ 9x ^ f 2r\ a;2''+i arcsin2a; 

and integrating once more 

oo 2r \ a;2̂ +2 Vl - 4a;2 + 2a; arcsin 2a; - 1 

=0 \ r 
/ 2 ( l , a ; 2 ) _ E | I (2r + l ) (2r + 2) 

In particular /2 ( l , i ) = f - 1, /2 ( l , f) = 1 - \/2 - In ( v ^ - l) and adding these two cases 

produces the identity 

r=0 2r 
yl'A '^ = - 1 4ln(V2-l). 
^ I ^ I (4r + 1 ) (4r + 2) 4 s/2 2 V J 
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Similar identities may be obtained for other values of a. If for example a = 2 , b = l , c = - 2 / 2 7 

and n = —a G 3fl then, from (6.10) 

E 
r=0 

3r + a — 1 

27 
_2 + V3f 3 y _ 
- 3 l̂ TTvlJ - ̂ "̂^ 

g g + l g+2 
3 ' 3 ' 3 

g g + l 
2 ' 2 

6.5.1 R e l a t e d results . 

The previous results that involve the arcsin x function suggests we may design a related sum of 
oo 

the form ^ , "'" . which may be expressed in closed form. Consider the function 
r = l / Or \ 

\ ^ / 
f (x) = ^y^"f, then a Taylor series expansion of / (x) about the origin allows us to write 

fix) = arcsin x = E 
r = l 

(2a;) 2 r - l 
(6.21) 

2r 

and / (1 /2 ) = ^ = E ^ and / (z/2) = ^ l n ( 4 ^ ) = E^ " 4 ^ ^P°^ ^ ^ using 
r=i { 2r 

r 

r = i / 2 r 
r l 

r 

the relation arcsin z = - i l n (iz + Vl - zA . Multiplying both sides of (6.21) by 2x and differ

entiating any number of times will produce other identities. Differentiating (6.21) once, and 

simplifying we have 

oo 

/i(^) = E 
(2a;) 27-

r=i / 2r 

r 

= T^f + arcsm x 

V T ^ ^ 
(6.22) 
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s o t h a t , A ( ^ ) = E ^ = | + l , a n d A ( - ^ ) = £ y ^ = i ( ^ I n ( ^ ) - l ) 

V ^ / V ^ / 
Differentiating (6.22) with respect to x, and simplifying we obtain 

oo 

/.(:^) = E T ^ 
r=i / 2r 

2r a; (l + 2a;'̂ ) 2a; (l + 2x'^) arcsin a; 
+ ( l -a ;2)2 l - a ; 2 + \/(l - x'f 

(6.23) 

oo oo 

particularly, /a ( i ) = E y ^ ^ = 1 + ^ , and/2 (f) = E 
'•=1 / 2r \ ^ r=i 

izil 

V ^ y 

/ 2r 

r _2_ 
~ 25 (*'-(^)-3) 

At the writing up stage of this thesis, the author discovered that more general identities of the 

form (6.22) and (6.23) have been given by Chudnovsky and Chudnovsky [28], as an example 
0 0 

they give E / ^^ \ ~ f + 1- In their recent paper, Chudnovsky and Chudnovsky [28] obtain a 
r = l ^ 2 r ^ 

\ ' • / 

master theorem from which they can, amongst other manipulations, derive exphcit expressions 

of contiguous generalized hypergeometric functions. The identity (6.21) may also be integrated 

repeatedly. Integrating (6.21) once we have 

0 0 

gr̂  (x) = y^ —^—^—^ = 2 (arcsin a;)' 
r=i , / 2r 

(6.24) 

and PI (1) = ^ = 3C (2), gi (i) = 2 (in (V2 - l ) ) ' , pi ( i ) = ^ = ^ , gi (f) = 2 (in ( 4 ^ ) ) ' , 

from which upon manipulation we obtain 

E 
r=i / 4r 

2r 

T-*"" 
' V 5 - 1 

= ^ 4 F 3 
6 

1 1 1 5 
^•> • • • ) ^1 2 

5 7 0 
4 ' 4 ' ^ 

1 

16 
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Integrating (6.24) three more times gives us 

oo 

g^ix) = E (2x) 2r+3 

r=l / 2r 
r2 I 1 4 (2r + 3) (2r + 2) (2r + 1) 

r • 

_ a;(2a;2 + 3)(arcsina;)^ 

3 

2Vl - a;2 (lla;2 + 4) arcsin a: 85x^ 

9 ~^r 
8^ 
~9 

and P4 (1) = ^ - ^ , so that in general we may obtain identities 

(6.25) 

E 
r = l 

22r 
— ^.^2 

2r 
= avr̂  + p, 

r" I I (2r + 1),. 
r 

for j = 1,2,3,... and constants a and /3. Comtet [33] obtains 

E 
r=i ^ / 2r 

r4 

177 r^_ l 

3240 ~ 2 ^ '̂  

1,1,1,1,1 

3 2 9 9 

however there appears to be no closed form expression of E — 7 ^ — r for m > 4. We can 
''=1 / 2r 

obtain identities of this form, so that from (6.25) with x = 1/2, we have 

00 

E 
r=l 2r 

1 8 ^ ^ ^ ^ 2 54-
r M j (2r + 3)(2r + 2)(2r + l) 

r 

Other identities involving C, functions and multiple C, functions are given by Borwein [14]. In the 

next section we shall investigate the finite sum (6.9). We shall , for a = 1, give a trigonometric 

representation of (6.9), recover and extend some results given by Binz [10], and highlight a 

number of interesting apphcations of the Fibonacci sequence. 
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n 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

fn 
1 
b 

b' + c 
b^ + 2bc 

b4 + 3b2c + c2 
b^ + 4b^c + 3bc2 

b*' + 5b4c + 6b^c^ + ĉ  
b'̂  + 6b^c+10bV + 4bc^ 

b» + 7b«c + 15bV + lOb^c^ + c* 
b^ + 8b7c + 21bV + 20b^c^ + 5bc4 

biu + 9b«c + 28b^c2 + 35b*c^ + 15b2c4 + ĉ  
b^^ + lOb^c + 36b^c2 + 56bV + 35b^c4 + 6bc^ 

b^^ + llb^Oc + 45b«c2 + 84b«c=̂  + 70b4c^ + 21b2c^ + c^ 

Table 6.1: Polynomials of the finite sum (6.27). 

b 

1 

1 

2 

3 
2 

c 

1 

2 

1 

- 2 
- 1 

name 

Fibonacci 

Jacobsthal 

Pell 

Fermat 
Chebyshev 

generating function 

z2 - z - 1 

z2 - Z - 2 

z2 - 2z - 1 

z2 - 3z + 2 
z2 - 2z + 1 

zeros 

1±V5 
2 

2 , - 1 

1±V2 
2,1 
1,1 

solution of (6.26) 

*i(^)""-(^)""[ 
i (2» - (-1)") 

_^^(l + V 2 r ' - ( l - ^ / 2 ) - ' ^ 
2"+! _ 1 

n + 1 

Table 6.2: Special recurrences and solutions. 

6.6 Fibonacci, related polynomials and products. 

Consider (6.9) for a = 1, such that from (6.1) 

fn+l - bfn - cfn-1 = 0 , fo = l (6.26) 

and 
t"/2l f n-r . 

7-=o \ r 

(6.27) 

Some polynomials of fn are given in table 6.1 

The recurrence (6.26), for some parameter values b and c may be identified as shown in 

table 6.2. 

Horadam [61] and [62] has recently written a lucid and pertinent examination of Jacobsthal 
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representation numbers and polynomials, and functional forms. Hendel and Cooke [57] suggest 

that second order recursions may be represented by finite products involving trigonometric 

functions. From (6.27) we may thus write 

3=1 ^ ^ 

and so after multiplying corresponding factors 

[n/2] 

/ , = b" -2K2] ]1[ |b2 + 4 c c o s 2 ( ^ ^ 

We can see that for b = 0 and n even 

fn = iAc)^X{cos 
2 / TTJ 

2n + l 

and since from table 6.1 we note that /„ = c"^ we may deduce 

n cos 
-KJ 

2n + l 
= 2-

The characteristic fimction (6.7), for a = 1, has two zeros 2^0,1 = b ± WTAC and from (6.27) 

[n/2] 

E 
r=0 

^ - ^ ^ ^r^in-2r) ^ 1 
V&2 + 4c 

bJ^^/WTAc\ / b - V & ^ + 4 c \ 

2 ) 

n+\\ 

> (6.28) 

and putting b = (a; - 1)^ and c = ba;, we obtain the result obtained by Binz [10]; namely 

[n/2] 

E 
7-=0 

n — r ]x^x- if--'^ = ^ [ix ix - 1))"+^ - (1 - x)-^'] 
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We can integrate, for 0 < a; < 1, the result given by Binz , therefore producing the new identity 

[n/2] 

E 
r=0 

2F1 

n — r S ( r + l , 2 n - 2 r + l) = 

1,1 

n + 2 
- 1 ( - l ) " n ! V ^ 2 F i 

l , n + 2 

2n + 3 

n + 1 22n+2r (n + 1) 

where B ix, y) is the Beta function and F (x) is the classical Gamma function. Differentiating 

(6.28) with respect to c and substituting we obtain, in an easier manner, yet another result 

quoted by Binz [10] 

[n/2] 

Ê  
r=0 

^-r \r^^_^^2n-2r_xix-l)^] (n + 1) a; { a ; - i + ( -1)"} + 

r (a; + l)^ I („ _ 1) {^n+l ^ ( _ i ) n | 

We may derive (6.28) from a slightly different viewpoint and also in the process give a solution 

to a problem posed by Krafft and Schaefer [70]. Consider the two binomial expansions 

l + Vl + aĴ  

r=0 

(i-^)"=4-E(-'r(';)a+^r' 

Subtracting (6.30) from (6.29) we have 

2-(2M-I) y 
2fM 

=0 V 2j + 1 

(1+.)'=^ O -I O 
2p 

VI+ x 

and to identify (6.31) with (6.28) let 2/x = n + 1 so that 

71+1 

vr+x 

(6.29) 

(6.30) 

(6.31) 

(6.32) 
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^ l r j ^ 4 ; VTT^ 

where \u'\ is the least integer not smaller than ?/. From (6.28) let b = 1 and c = x/4, hence 

= '- ^ ^— = 2~- E (1 + ^)^ 
,=0 \ 2 j + l J 

(6.33) 
j=o \ 2j + l 

From the left and right hand sides of (6.33) let n = 2m + 1 so that 

"•"f'f—i(i)-=>~g(::: „...,. 
r = 0 

Expanding the right hand side and collecting powers of x we have 

[(2771+1)/2| 

E 
r=0 

2m + 1 - r 771 I 771 

r=0 I j=r \ 27 + 1 

J 

r 

and equating coefficients of x we have the novel identity 

- / 2 m + 2 I I J \^^2im-r)+il 2m + l - r 

j=r \ 2i + 1 

Now, to solve the problem of Krafft and Schaefer, add (6.29) and (6.30) so that 

r î n + 1 71+1 

2-" E I •" 1(1+^)' = 
3=0 \ 2j 

i + x/TT^V ^ /l-V^TS^ 
71+1 

• ) 
+ ^ ) 

(6.34) 

The ratio of (6.34) and (6.32), after putting 2m = n + 1 is 

m I 2m , 

E 1(1 + )̂̂  
3=0 I 2j ttr 

•m-l I 2m 

E 1(1 + ^)' 
j=o \ 2i + l 

= Vl + x 
^^1,1+^i+^j 

l_fk:̂ )̂ "^ 
Vi+Vi+s/ 

and hm a^ = y/T+lc, which solves Krafft and Schaefer's problem after replacing l + a; with 
771—»00 

X 
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It is of some passing interest to note Wiff [93] derived (6.27) for c = -b. The derivation, by 

Wilf, counts the number of words of n letters over an alphabet of b letters that do not contain 

the substring of a word of a letters. Graham et al. [49] discuss the continuant polynomial, 

Knixi,X2,...,Xn), defined by 

Koi) = l, 

Ki (xi) = Xl 

Kn ixi,X2,..., Xn) = Kn-l (x i , a;2,..., Xn-l) Xn + Kn-2 ixi,X2, ..., Xn-2) i 
In particular, a Morse code sequence of length n that has A; dashes, has n - 2A; dots and n - A; 

n — k 
symbols altogether. These dots and dashes can be arranged in ( | ways; therefore if we 

A; 

replace each dot by z and each dash by 1 we get Kn iz, z,..., z) = E I | z^'^^ which is 
r=0 \ f 

the Fibonacci sequence. There is another intriguing connection of the Fibonacci sequence with 
oo 

the Lambert series. The series L(x) = E IZJF was presented by Lambert circa 1771, and has 
r = l 

been studied extensively. A closed form representation of the Lambert series may be useful, 

because of its possible importance in prime number theory. For the Fibonacci sequence (6.26) 

with b = c = 1 it may be shown, see Knopp [68], that E y^ = v ^ {-̂  ( ^ ^ ) - ^ f - ^ " ^ ) } • 

In the next section we will prove a number of functional forms of (6.9), some of which are new. 

6.7 Functional forms. 

The following lemmas are functional forms of (6.27). 

Lemma 27 ; Let fn be defined by (6.27), / _ i = 0 and f-n = ( - l ) " c i - " / „_2 , then 

J2i-c)'fn-2k = 0. (6.35) 
fc=i 

Proof: From the left hand side of (6.35) 

E ( - C ) ' /n-2fc = -C/7.-2 + C^fn-A - cVn-6 + •.• + ( - c ) " " ' f-n+2 + ( - c ) " f-n 
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and by the definition 

= - c / 7 1 - 2 + c V n - 4 - c V n - 6 + - + <? fn-& - C^ fn-i + cfn-2 = 0 

and the proof is complete. 

Lemma 28 .• 
"̂  • m 

&"/n = E (-^)' /n+—2.' for m>0. (6.36) 

Proof: We shall employ an induction argument. For m = 0, fn = fn, for m = 1 we obtain 

(6.26). Consider 

b^+'fn = & ( E ( "" ) (-C)' /n+m-2i 

, m \ 2 / "^ 1 r 
6/7^+771 -bc\ I fn+m-2 + bc \ ^ ) /7i+77i-4 + 

TTT-

+ b ( -C)"^-^ ( I fn-m+2 + b (-C)"^ fn-m 
m — l 

and from (6.26) substitute for b/„ 

m 
/ „ + „ , + ! - c/n+77X-l - C {A+771-1 - 0/7^+771-3} + c2 I I {/71+777-3 - 0/71+7,1-5} + 

+ (-c)""-^ ( "^ ] {/71-771+3 - c/71-771+1} + i-c)"" I " " I {/71-771+I - c/71-771-1} , 

collecting coefficients of (-cY gives us 

/71+771+1 + E f " •" M i'^y U^rn+1-23 + i-c)-^' fn-m-1 

3=0 V j 
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^ ^ m + 1 . ^ 
2^ I ) ( — 0) /7l+771+l-2i 
3=0 \ j 

and the lemma is proved. 

Lemma 29 ; 

fufv — 2_^i~^) fu+v~2k-
fc=0 

Proof: From the left hand side 

fufv = ibfu-i + cfu-2) fv 

u~l ti—2 

= E ^ (~ )̂*' /"-l+^-2fc + C E i-^^f fu-2+v-2k 
fc=0 ifc=0 

t i - 1 u - 2 

= E (~'^) if'^+v-2k - Cfu~2+v-2k) + 0 E (~*^)*' fu-2+v~2k 
fc=0 fc=0 

u—1 u—1 Ii—2 

= E (~^) /"+' '-2fc - ^ E (~^ ) ' ' /"-2+i^-2A; + C E (-c)*" fu-2+v-2k, 
k=0 fc=0 lfc=0 

all of the second and third terms are annihilated except for the A; = u — 1 term, in which case 

u-l 

E (~'^) /•"+v-2fc + ( -c)" /-U+T; 
k=0 

u 

k=0 

hence the lemma is proved. Two special cases are 

1. for ^ = u, /2 = E (-c)"-V2fc and 
fc=0 

2. for t; = w + 1, fufu+i = E i-cy^'^ fi+2k-
fe=0 

Lemma 30 

771 [m/2] 

E / n / m - n = ( m + 1) /771 + E ( - ^ ) ' ("^ + 1 - 2 i ) /m-2, - . 
n=0 i = l 
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Proof: Prom lemma 29 put u = m-n,v = n, hence 

771 fm—n 
< ^\k J. 

2k / J fnfm-n — ^ I ^ (—c) fm-

n = 0 71=0 \ fc=0 

m ( m 
' ( „\k t V ^ / .Nfc J. 

2k = E E M ' / 7 7 1 - 2 . - E ( -^) ' / -
71=0 U = 0 fc=71+l 

= E u - + E (-̂ )'/—2fc - E (-̂ )'/—2fc 
71=0 L fc=l fc=71+l 

now apply lemma 27, such that 

E/n/771-71 = (m + l ) / r „ - E E i-^)''fm-2k 
71=0 71=0 fc=7l+l 

(m + 1) /771 - E - ? i~^y /"^-2i 

and reapplying lemma 27 

771 ["1/2] 

E fnfm-n = ( m + 1) / ^ + E ( " C ) ' ( ^ + 1 - 2j) fm-23 

71=0 j = l 

hence the lemma is proved. 

Lemma 31 ; 

/71 = fmfn-m + Cjm-lJn-m-1 

Proof: From lemma 29 put u = m,v = n-m hence 

771 

/77l/71-771 = E ( - ^ ) ' ^ - 2 ' ^ ^^-^^^ 
fc=0 

also from lemma 29 put u = m - 1, t; = n - m - 1 hence 

771—1 

c/771-1/71-771-1 = C E ( - C ) * " / n - 2 - 2 f c 

k=0 
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m—l 

= - E (-^)*^"'V7i-2-2fc. (6.38) 
fc=0 

Adding (6.37) and (6.38), fn = fmfn-m + cfm-ifn-m-i hence the lemma is proved. 

Lemma 32 ; 

"^-^ ' m - l 
^"=Er . (-)^/-2i-

Proof: From lemma 28 put m = m — 1 and n = 1, hence 

b—l/l = E I . i-^y fm-23 

and since / i = b, the lemma is proved. 

Lemma 33 : 

In ^^ Jn—mjn+m + \ ^ ) /m—l 

Proof: From lemma 29 put u = n-m, v = n-\-m giving 

71—771 

fn-mfn+m = E (~'^) /27i-2fc-
fc=0 

Put n-k = n* and rename n*, giving for 0 < m < n 

71 

fn-mfn+m = ^ _ ^ (—c) /2fc> 

fc=771 

and specifically for m = 0, 
\7i—A; 

fc=0 

Subtracting the last two sums produces 

71 
71—fc 

2fc /^-/71-771/71+771 = J2i-c)''-'f2k-Y.(-'^ f 
fc=0 k=m 

m—l 

= E(-^)""'̂ 2fc 
A:=0 

151 



7 7 1 — 1 

= (-c)" '̂-"^ E (--)"^~'"V2.; 
fc=0 

identifying the last sum as f^_^ we have the result and hence the proof of the lemma. For 

m = 1, and c = 1, we have Cassini's identity, namely fl = fn-ifn+i + ( -1)" • 

Lemma 34 ; 

3=0 \ 3 / \ ^-3 ) 

Proof: Prom(6.27) we have 

r=0\ r j 

and using lemma 28 

/p/. = E ( ^ ~ j M̂ E ( ~. ̂  j (-^)' /p4-,-2.-2,-1. (6.40) 

Now put r -\- j = a(constant) and equate coefficients of fp+q-.2a in (6.40) and the expression 

of lemma 32, let p = n, and put n = 2m, rename the counter and we have the result (6.39). A 

WZ certificate function, i?(n, A;), of (6.39) is 

^, , , A; (2A; - 3 - 3n) (2n - A; + 1) 
R{n,k) = 7) , 

^ ^ (n + l ) ( A ; - n - l ) 2 

which proves that (6.39) is an identity. Other functional identities of the Fibonacci sequence 

are given by Graham et al. [49]. 
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Chapter 7 

A convoluted Fibonacci sequence. 

An arbitrary order forced difference-delay system is considered from which finite binomial sums 

are generated. Z transform theory is then utilized to represent the finite binomial type sums 

in closed form, moreover Zeilberger's creative telescoping algorithm, PetkovSek's algorithm 

'Hyper' and Wilf and Zeilberger's WZ pairs method is used to certify particular instances of 

the identities. 
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7.1 Introduction. 

In this chapter we generalize the system of chapter 6 and generate finite binomial sums. We 

utilize Z transform theory to represent the finite binomial sums in closed form and we can also 

employ Zeilberger's creative telescoping algorithm, PetkovSek's algorithm 'Hyper' and Wilf and 

Zeilberger's WZ pairs method to certify particular instances. Firstly we consider a homoge

neous convoluted Fibonacci sequence and develop the general finite sum and its closed form 

representation. By considering multiple zeros of an associated characteristic fimction we de

velop new identities and certify some of them by the WZ pairs method. Secondly we generalize 

our results by considering forcing terms of binomial type. 

7.2 Technique. 

Consider what we shall describe as a generahzed, or convoluted, Fibonacci sequence /„ , that 

satisfies 

E I ^ I i-c)""-' E I ^ I i-^y~' fn+r-iR-3)a = Wn, n> aR 

J=o\R-3j - , . 

E ( ^ I i-b)^~"fn+r = Wn\ n < aR 
r=0 \ 7" 

(7.1) 

with a and R integer, b and c real and Wn is a discrete forcing term. A method of analyzing 

the solution of system (7.1) is by the use of Z transform techniques. Let Wn = 0, / R _ I = 1 and 

all other initial conditions of the system (7.1) be zero. If we now take the Z transform of (7.1), 

utiUze the two Z transform properties 

Z[fn+k]=z'' 
k-1 

/(̂ )-E/-̂ "" 
71=0 

and 

Z[fn-kUn-k]=Z-''Fiz), 
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where Un-k is the discrete step function, we obtain 

^ (̂ ) I E ( ^ 1 (̂  - by (-cz-)«-^- \ = z. (7.2) 

From (7.2) 
7 .yOR+l 

F(z) = - - ^ C73\ 
(z-b- cz-'^)^ (z«+i -bz<^-c)^' ^ ' ^ 

In series form, (7.3) may be expressed as 

° ° / j R + r - l \ rry^-o^r 

and we may obtain the inverse Z transform of (7.4) such that 

[n+l -R1 

"+' ^ ^ i? + r - l \ / n-ar \ rc\r o ,̂ 
' ' 1 / I' \ , n—ai—R+l 

\-^ I ri-\-r — L \ I n — ar \ /c\'^ 

/„M,c,.)=/„= E ^ L,._JG)^"-
(7.5) 

r=o y r I \R-\-r 

where [x] represents the integer part of a;. The inverse Z transform of (7.3) may also be expressed 

as 

c ~̂° 
where C is a smooth Jordan curve enclosing the singularities of (7.3) and Res^ is the residue of 

the poles of (7.3). The residue, Resj, of (7.6) depend on the zeros of the characteristic function 

in (7.3), namely 

g (^z) = z''^^ - bz" - c. (7.7) 

Now, g (z) has a + l distinct zeros ^j,j = 0,1,2,3,.. . , a, for 

a+l 

'^-<M' 
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therefore the singularities in (7.3) are all poles of order R. We may now write (7.6) as 

/ 

/- = EE^H,.(e,) 
j=0 n=0 

n 

\ R-l-fj. 
^3 

n-R+l+^i (7.8) 

where 

M'QR,/! (^j) = lim lAi^-^^r-^ (7.9) 

for each j = 0,1,2,3, ...,a, and F (z) is given by (7.3). Combining the expressions in (7.5) and 

(7.8) we have that 

[n+ l - f l l 
L o + l J 

E i? + r - l 

r=0 

n — ar 

R + r 

2r \ /c\r 
•ar-R+l 

a R-l 

= EE'3H,.'fe) n tn-R+l+fi (7.10) 
j=o fi=o \ R — l — p 

and putting n = n* (a + 1) + i? - 1 in (7.10) and renaming n* as n, we have an alternate form 

y ^ [ ^ + ^ - 1 I [n(a + l)+R-l-ar \ .cy^^^,. +l)-ar 

r=0 

j=On=o \ R - l - p J 
(7.11) 

The case of distinct zeros has been examined in chapter 6, hence we shall briefly investigate 

the case of multiple zeros. In doing so we shall recover a result given by Wilf [93], and describe 

a generalization of this result which we believe to be new. The WZ pairs method of Wilf and 

Zeilberger will be employed to certify particular instances of identities that we shall generate. 
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7.3 Mult iple zeros. 

When the characteristic fimction (7.7) has double (repeated) zeros, which wiU be the case for 

c = -a'' y-^[+i) , then (7.3) has poles of order 2R. In this case we may write from (7.11) 

5("*:"')("'"r-V"'')(sffp.r---»g--"-'(™) 
(7.12) 

where the Res^ must take into account the repeated zeros of (7.7). For a = 1, c = - (b/2)^ and, 

from (7.3), 
F(z) = 

^R+l 

(z-b/2f^ 

which has poles of order 2i? at z = b/2. Utilizing (7.8), (7.9) and (7.12) we have 

^ \ r l \ R + r-1 JK'^J ^ y ^ y \ 2i?-l-/x 
(7.13) 

If i? = 1, then (7.13) reduces to a result given on page 124 of Wilf's book [93], namely 

t(--')(^)-=..,..„.n-(d^). ..., 
where the trigonometric product is evaluated from the relation in chapter 6. Hence (7.13) is a 

generalization of (7.14) which we believe to be new. Utilizing Zeilberger's creative telescoping 

algorithm, described in [74] and available on 'Mathematica', we obtain from the left hand side 

of (7.13) a recurrence /„ (R) that satisfies 

4 (n + 1) (2n + 1) /„+i (R) - (n-\-R) (2n + 2R-\-1) fn (i?) = 0. (7.15) 

Iterating (7.15), we have that 

f (R) - 2-2- r f (^ + i ) ( 2 ^ + l + 2j) 

fniR)-2 JLL (i+^-)(i + 2i) '̂-'"^ 
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so that from (7.13) and (7.16) we obtain 

2 2 7 i y - / ^ + ^ - l \ / 2 n + i ? - l - r \ ( Z 1 \ \ Y ^ ( ^ \ ( 2n + R-l 

f^o\ r ) [ R + r-1 ) \ ^ J ^o[f^)[2R-l-^ 

_YiiR + j)i2R + l + 2j) 
i i il+j)il + 2j) • ^'-"^ 

Further results may be obtained as follows. Differentiate (7.11), for R=l, and its trigonometric 

representation with respect to c, then substitute c = — (6/2) and simplify such that 

^"«=&i: jiT]=-]d-^(^]£-n^)- '-' 
From 'Mathematica', a recurrence relation for /^ (1) in (7.18) is 

4n (2n - 1) f'n+i (1) - (n + 1) (2n + 3) / ; (1) = 0. (7.19) 

Iterating (7.19) and using (7.18) we have 

7 1 - 1 

and comparing (7.18) and (7.20), we have 

, - 2 n " f f ( l + j ) ( 3 + 2j) ^ fr , f^l_\ f ^^^. f_n^\ p.21) 

To further illustrate the technique, from (7.13) and (7.15) with i? = 2 we obtain 

! i . / ^ r + l \ /^2n + l - r \ / - ^ y ^ 2 - 2 n J ( 2n + l \ J ' ^ + M + l ' ^ ^ ' 

r=0 r / \ r + l 

_ ^ - 9 . T f ( 2 + j)(5 + 2j) (722) 7 1 - 1 

(r+7y(2i+i)' 
3=0 
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Writing 

§(':')('"'r)(T)--B-.-..('"r)(^ 
and using result (7.13) we have that 

5(':'](";:r)(Tr--<-.>vn-.-(^)i:».'" 
r=o \ -̂ y \ r + l / \ 4 y ' A X y2n-\-lJf-' \2n-^l 

\ / \ / 3=1 '^ k—\ ^ 

(7.23) 
From (7.22) and (7.23) the identity 

. -27i r r (242K5H-2i ) f r . 2 / ' TTi \ " ,2( -r^k \ .^,^ . , , 
' n ( l + , - ) ( 2 i + l ) - n - ( s ^ r n j g ^ ^ ^ ( 2 ; ^ J - 2 " " ( 2 n + l)2 (7.24) 

is obtained and rewriting we have, using (7.21), that 

(2n + l)2-iorf^^±^H^±M Tf(l+i)(3 + 2j) 
(2n + l) - 1 0 i l ( i + , - ) ( 2 , - + i ) - l l ,-(2,--l) • 

Prom (7.21) and (7.22) 

n ( 4 n 2 - l ) ^ " - ^ ( l + j ) ( 3 + 2j) 
3 i j J ( 2 i - 1 ) ' 

(n + l ) (2n+l ) (2n + 3 ) ^ y^^(2 + j)(5 + 2j) 
3 i i ( l + j ) ( 2 j + l) 

and from (7.18) 

Ji^ f 2n-r\ /-ly 2-2-n (4n2 - l) 
^:[ . J ( T J = 3 • 

Similarly, we can show that 

2 n - r \ / - 1 Y _ 2-2"n(8n'*-20n3-10n2 + 5n + 2) /" = E-
n 

I I I — , 

4 15 r=i \ r 
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n - l / . 

I i J (2j - 1) (2j2 - 5j - 2) • (̂ -25) 

The left hand side of (7.25) satisfies the recurrence 

4 n ( 2 n - l ) ( 2 n 2 - 5 n - 2 ) / „ + i + (n + l)(2n + 3 ) ( 2 n 2 - n - 5 ) / „ = 0 

and hence 

n (8n^ - 20n3 - 10n2 + 5n + 2) ^ ^ (j + l) (2j + 3) (2^2 -j-5) 

15 =-n 
3 
fJi 3 i2j - 1) (2j2 - 5j - 2) 

Similarly 

A ^3 I 2̂ ^ - ^ I T — Y - 2"^^ri (lOn^ - 112n5 + 112n^ + 140n3 - 21n2 - 28n - 2) 

7 1 - 1 / . 
^ _2-27i TT (j + 1) (2j + 3) (Af - 12j3 - 31 j2 + i8j + 35) 

i j i (2i - 1) (4^4 - 28i3 + 29^2 + 28j + 2) ' 

YJ ij + 1) (2i + 3) (Af - 1 2 / - 31j2 + I8j + 35) 
i j i (2i - 1) (4^4 - 28i3 + 29j2 + 28j + 2) 

n (lOn^ - 112n5 + 112n4 + 140n3 - 21n2 - 28n - 2) 
105 

In general 

22n Ji^ _ / 2 n - r \ (-i 

r—l 

can be expressed as a polynomial in n of degree 2m for m integer. By the WZ package on 

'Mathematica' the identity (7.25) may be verified by the certificate function 

/ 12n* ( r - l ) - 8n3 (r2 - r + 3) + n2 (4r2 - 15r - 13) 
2 (r — 1) (r — 1 — 2n) 

\ +2rn (6r - 7) + 6r2 - 5r + 1 
^ ^ " ' ' ' ^ " r ( 2 r - l - 2 n ) ( r - l - n ) ( n + l)(2n + 3 ) ( 2 n 2 - n - 5 ) 
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Similarly for the identity (7.13), for particular values of R, and by the use of the WZ package 

we may obtain a rational certificate function, V (n, r, R) that certifies the identity, in particular 

. . . . , ._ 2r(2n + l - r ) ( 4 r - 5 - 6 n ) 
^ ^""^"' ^̂  - (2n + 3)(2n + l - 2 r ) ( n + l - r ) ^^^ 

^^, ,̂ 2r (2n + 4 - r) (4nr + lOr - 6n2 - 23n - 14) 
Y in r A] ^= —- —̂  -

^ ' ' ^ (n + 4)(n + 9)(2n + l - 2 r ) ( n + l - r ) ' 

7.4 More sums. 

Since (7.7) has at most three real zeros we may obtain further results as follows. Consider 

multiple zeros of (7.7) for a = 2 and c = - 4 (6/3)^ such that g (z) = (z - y ) (z + | ) and 

therefore (7.3) and (7.9) may be modified such that 

F(z) 
y2R+l 

({-ffi^ + l))"' 

IJ'^-Q2R,ti 
'2b' 

= lim 
,26 

'''̂ "••' ( " 0 =}^ 

hence from (7.11) 

dP_ 
dzP' 

d" 

2R 2by^F(z) 
3 J 

R 

dz" - ^ ) " ^ 

,p, = 0,l,2,...,2R-l, 

,u = 0,l,2,...,R-l 

. H + r - 1 \ / 3n + H - l - 2 r \ / - 4 

^ l r j l R + r-1 ' V 2 7 
b3" = 

EEc?...(f)("""-M(!)'"^'-EE-.K-| 
,t^;^o \^J \2R-l-fi ) y^^J 3=0^=0 V -̂  

For i l = 1 and i? = 2, we have respectively from (7.26) that 

3n + i? - 1 

R - l - p 

^ \ 37l+/i 

(7.26) 

/„ (1) = y^ f "̂̂  ~ ^'' I f — y = 3- '̂"+'̂  {2'"+' (9n + 4) + (-1)"} and (7.27) 
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/.(2)=E(̂ +i)i'7+rj(̂ y='"'""'̂  
r=0 

2371+2 3n + l 

+ 
23n+4 

27 

23n+5 / 3 n + 1 
+ 23"+3 (3n + 1) 

+ t ^ ( 3 n + ^ ) 

= (3n + 1) 3F2 
1-371 2-371 

3 ' 3 ' 

- 1 - 3 7 1 -371 

—n 

(7.28) 

2 ' 2 

Prom 'Hyper', in 'Mathematica' a recurrence relation for (7.27) and (7.28) is, respectively 

729 (3n + 4) fn+2 (1) - 27 (21n + 52) fn+i (1) - 8 (3n + 7) fn (1) = 0, /o (1) = 1, / i (1) = 

23 

27 

and 

729 (3n + 5) (3n + 4)^ fn+2 (2) - 27 (I89n3 + 1440n2 + 3399n + 2348) fn+i (2) 

100 
-8 (3n + 7) (3n + 8) (3n + 10) fn (2) = 0, /o (2) = 1, /i (2) = 

27 

7.5 Other forcing terms. 

We can now consider the system (7.1) with non zero forcing terms. Consider a forcing term of 

the form, (other forms may also be taken). 

n 
Wn = 

571+1. -R-m 

m + R-1 

with all initial conditions zero and m a positive integer, again the results of the previous section 

are applicable. For the purpose of demonstration let a = 1 and c = - (b/2) so that from (7.12) 

^ 1 R + r-1 \ I 2n + i2 + m - l - r \ / - l ^ ' " 

r=0 E + m + r - 1 

2 i l - l 
n 

'i\2n-R+m+n rn-\ n bR+P. 

m — l — p. 
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where 

and 

M!Q2fl,MM =^ "̂l d^j z^ 
dz/̂ 1 (^_b)« 

i^\Pm,u ib) =lim 
2 — • & 

d" I z« 

In the case that i? = 1, m = 1 and 2 respectively we obtain 

7 1 - 1 

5ZI ''^. . "̂  I ( T ) =4-2-2"(2n + 3)=4-3.2-2"J] 
r=0 \ r + l 

5 + 2j 

.̂ ô3 + 2i 

and 

" / 2n + 2 - r 

r=o I r + 2 4 — = 4(2n-l)+2-2"(2n + 5) 

/ i 2 i - l+ ' - ' M^ + 2,-

For constants aj and positive integer m we have that 

7 1 - 1 " / 2n + m - r \ / - 1 \ ' ' , .̂̂ ^ 
/- = E ( I T =(-l)'"2-2n(2n + 2m + l) + 4E« . n-' 

r-=o \ r + m j=o 

and for m = 0 reduces to identity (7.14); moreover a recurrence for the left hand side is 

. . o n .^ r /o o ON ^ 4m(6n + 2m + 5) / 2n + m + 2 \ ^ 
4(2n + 2m + l ) / n + i - 2n + 2m + 3 /n = — ^ ^ — — — ^ ,/o = l . 

(2n + m + 2) \^2n + m + 2 y 

In the next chapter we shall develop new identities for the infinite representation of the sum 

(7.5). 
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Chapter 8 

Sums of Binomial variation. 

In this chapter the results of chapters six and seven will be generahzed. By residue theory 

and induction the author proves that infinite generated sums may be represented in closed 

form which depend on A; dominant zeros of an associated polynomial characteristic function. A 

connection between the infinite series and generalized hypergeometric functions is also demon

strated.-^. 

^ A modification of this chapter has been submitted for pubhcation 
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8.1 Introduction. 

In this chapter we shall generahze the identities of chapters six and seven. We shall consider the 

infinite form of the sum (7.5) and develop a procedure for representing it in closed form. We 

will prove that the closed form representation will depend on a dominant zero of an associated 

characteristic function. We will also demonstrate a connection of the infinite binomial sums 

with generalized hypergeometric functions and some of its identities. We can then develop these 

ideas further and generate infinite binomial type sums which we may represent in closed form 

depending on k dominant zeros of an associated characteristic function. Particular cases of our 

identities may be certified by the WZ pairs method of Wilf and Zeilberger. We shall illustrate 

our theoretical results with some numerical examples. In the appendix we will investigate some 

properties of zeros of polynomial characteristic functions. 

8.2 One dominant zero. 

If we consider the system (7.5) of chapter seven, with c = b to make the following algebra more 

manageable, we obtain 
yuR+i 

F(z) = 

with 

(z-b-bz-)^ (^(z))^ 

g (z) = Z"+1 - bz'' - b. 

(8.1) 

(8.2) 

Now p (z) has a + 1 distinct zeros ^j, j = 0,1,2,...,a, for 

(a + l) a+l 

(«&)" 
< 1 , (8.3) 

and from residue consideration 

n — ar n ^n-ar-R+l^yyQ^^^^^.) 
r-\-R-l J 3=0 P=o \ K- L- p 

^n-R+l+^l 
^3 

(8.4) 
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If we define the dominant zero ^Q of g (z) in (8.2) as the one with the greatest modulus, we 

conjecture (and shortly prove) that 

« - i 

yTr (R, n, a, b) = E ^«./^ (^o) ) ir""^^^^ (8-5) 
r=0 11=0 V R - l - IJ' 

where 
d^ L. .^RFiz) 

iJ-^QRii HQ) = lim 

F (z) is given by (8.1) and 

dzt" {(--^o)^ ,p = 0,l,2,...,R-l, (8.6) 

r + i? - 1 \ / n — ar i „ „^ R . i 
Tr(R,n,a,b)=\ ^Ti-ar-R+l (3.7) 

We may also note,from (8.4) and (8.5), that 

E Tr (R,n,a,b)+ E ^- (^ ' " ' " ' ^ ) = E ^^-'^ ^^o) ^o '"''''''^ 

r=0 r=["+^-^] '̂ =0 \R-1-P J 

and therefore 

f^ r . ( i l , n , a , b ) = - E E Q H , . ( e , ) f " U ; - H + i + . . 

The conjecture (8.5) will be proved later, firstly we give a recurrence for the evaluation of (8.6) 

and a recurrence for (8.5). 

8.2.1 Recurrences . 

A recurrence relation for the evaluation of QR,I iQ in (8.6) is now given. 

Lemma 35 : 

( . . ! )« . . . ( .„ )=m^ttDi^( -^ ;^)«««. . ( .„ ) . (S.S) 
^0 fc=o ^0 \ a-1 J 
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p = 0,l,2,...,R-l, withQR^oi^o)= {j^+^y• 

Proof: Putting ^ = 0 into (8.6) we obtain the expression for QR^ (^Q) . Also from the 

definition, 

' d ^ + i { f z''(z-^Q)\^^ 
ilJi + l)\QR,t,+iiiQ)=lim 

dzi^+'^ I V P (2) 

where 

= R lim 

h(z) = 

d^ [ (^'^ i^ - io)Y^' Hz) 
dz^^\\ giz) ) ( z - C o ) ' 

(g(z - ^0) + z)g(z)-z{z- JQ)g' (z) 
^a+l 

and ^ (z) = z" ^ ((a + 1) z - ab). It can be seen that h (^Q) = 0 and h' (^Q) = 0, hence expand

ing h (z) in a Taylor series about z = ^QVfe find that 

h(z) _ ^ (-1)^-(Co - b) (i - 1) (z - eo)^-^ ( ^ ^ ^ - A _ B i , ) 

iz-iof U ^i [ a-1 ) 

We now have 

i^Ji+ly.QR,^,+liio) = R lim 
Z—>Co 

d/- j / z ° ( z - e o ) \ 

rf^^^H ^(^) y 

R+l 
5(z) 

= i? lim E 
/X \ / ^ a ( f l + l ) ( ^ _ ^ ^ ) il+1 \ (M-fc) 

z-»Co 
fc=0 A; ^R+i (^) 

Ŝ '̂ ) (z) 

where 5̂ *̂ ) (z) = jg^B (z), and 

lim 
Jfc 

lim 
z-*Co 

^ (-1)^' (Co - 6) (i - i)fe (^ - ^o )^ - ' " ' 

^ 4^0 J=2 

a + i - 1 

a - 1 

( - l ) ' ( ^o -&)( fe + l)! / « + ^ - l 
-A:+2 a - 1 
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A* 

R 

/̂ !Qfl,M (^o) 
SSL. 
A3 

aR^i TT=T 

anjAlzb) i-R-l _ aK(a+l)(Cn-b) ^R 
7AR+1 Cn — 0 4H+1 ^ 0 

T I ^ [A2 (3ai? - g - 8) - 2bA(3ai? + a - 4) + 3 (il + 1) ab2 

f R - 3 afi|S 

A^ ja^i? (i? - 1) + 2a (1 - 4i2) + 12} 
+6A2 {-a2i? (3il + 1) + 2a (8i2 + 3) - 12} 
+b'^A {a2 (3il + 2) (i? + 1) - 8a (i? + 1)} 

- a 2 b 3 ( ^ + l ) ( i ? + 2) 

Table 8.1: The Q values of the discrete case. 

closed form (8.5) 

tn+l 

pn 
^0 
Ti+r 

n + 
a(a+l)(Cn-fe) 

'^ \ 37ia(yl-6) a(2(a-l)>l^-M(5a-2)+3af>=^) 
2 1"*" 2̂ 1 + 2:P 

, n + l 
/̂  y'- ^ I 2a{A-b) ( n \ 7ia((lla-8)>l'^-2bA(13a-4)+15ob2) 

/ A^ (I2a2 - 30a + 12) - bA2 (52a2 - 70a + 12) 
"^121^ 1, WAa (70a - 40) - 30g2b3 

Table 8.2: Closed form of the discrete case. 

and (j — l)i^ is Pochhammer's symbol. Hence we can write 

(p+iy.QR,^+i (eo) = i ^ E I ^ I (^ - ^y•QR+h^^-k (eo) 
fc=o V A; 

( - l ) ' ( eo-&)( fc + l)! f « + fc-l 

^0 
k+2 

a-1 

and upon simplification we obtain (8.8) hence, the lemma 35 is proved. We can now list some 

values of QR^P, (Co) i^ table 8.1, where for ease, A = (g + 1) Co - ^^• 

Using the values of QR^^, (CO) in table 8.1, some closed form expressions of (8.5) are listed 

in table 8.2. 

The following lemma gives a recurrence relation for the left hand side of the identity (8.5). 
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Lemma 36 ; Let 

SR = 22Tr (R, n, a, b) 
r=0 

where Tr (R,n,a,h) is given by (8.7). A recurrence relation of (8.g) IS 

Proof: 

and 

(« + 1) b~77SR - abRSR+i - (n + 1 - i?) S-H = 0. 

J oo , 

(8.9) 

(8.10) 

SH« = E l '• + ̂  "-"^ 1 6 — « 
r=o \ r \ r + R 

= (^ + 1) 
bR 

oo , . 

Y.^TriR,n,a,b)+r+^-^\SR. 
r=0 ^ ' 

Prom the left hand side of (8.10) 

(a + 1) b 

abR 

0, 

oo , . 

-lyrTriR,n,a,b)+('^^±^)sR 
r=0 ^ / 

oo . 

yrTr(R,n,a,b)-\- ( 
T-=n V 

(^ + 1) 
bR 

n-\-l-R 
bR 

(n-^-l-R)SR 

which is the right hand side of (8.10) and the proof is complete. 

8.2.2 P r o o f of conjecture. 

The proof of the conjecture (8.5) will involve an induction argument on the parameter R. For 

the basis, R= 1, (8.5) was proved in chapter six. Now we give an induction argument for the 

right hand side of (8.5). 

-̂-̂ îŝ +̂̂ ^̂ l̂ --̂ ^̂ -̂̂ ^̂ ' (8.11) 

169 



also, iSn = ^4-SR and db'-'R - 6ASe 

.2 -R-l 

^̂ ''̂ -Sl.-̂ -Ĵ ™^̂ -̂̂ "̂ - 'n + l + ^ - i ? ^ 

Co / 
^fl , , /.(Co)} 

Substituting into the right hand side of (8.11), we have 

{a+lHl R-l 
n 

bA 

^^+^ = ^ < 
M=0 \ iJ _ 1 _ ^ 

t7 l 

so 
n-f l+l+/ i I deo^fl,M(Co) + 

n R-l 

-(n + l-R)Y: 
P=o \ R - l - p 

Co^-^+^+'^gfl,^ (Co) 

n ^7i-fi+l+;i f (^ + <^b) Co^Qfi,/. (Co) + MQi?,,. (Co) 

+ab (n + 1 + // - i?) Q^_^ (Co) 

n 

gbi^A 

E'«&(i?-/^)Co "" cr^+'^QR,.(Co)+E I " icr^^'^'^ 
/^=o \ R - p J M=o y i ? - 1 - ^ 

((A + gb) Co^Qfi,/! (Co) + M Q R , M (Co)) 

1 
abR^o\ "" ]^o~''QR,oi^o)+'E^b(R-p) n j71-i?+l+/l 

R 
Cr""^"'̂ QH,M(Co) 

abi?A 
n i t - i 

+ E I 1 Co 
M=0 \ i? - 1 - /i 

M=l \ R-p 

n-R+l+, ^^^ ^ ^^^ C03fc<5fi,M (̂ O) + M Q H , M (Co)) 

In the second sum rename /i* = /i + 1 (and let /i* = /Li), so that we may write 

n 

R 
^cr^QR,o (Co)+^^^ 

fl-i 

E«M^-/^) 
/ i = i 

n 

n A - i 

E l \Q 
/^=i V i 2 - / i 

cr^+^+'^Q^,, (Co)+ 
R-p 

n-R+^i iA + ̂ b)ioi-fiR^-liio) 
+ (M - 1) AQii,^_i (Co) 
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n \ . H-i / \ "'biR-fJ-)^oQR,pi^o) 

J a - Q i , o ( C o ) Q . . o ( C o ) + ^ E ( / _ , , ) C - ' ^ j +(A + ab)Co4gH.-i(Co) 

+ ip-l) AQR,^^I (Co) 

-.R-l/ \ I «^(-R-M)CoQfl,M(Co) 

Co"-Q.+i,o(Co)+^E( Z . )^°""'^1 +(^+«^)Co4Q..-l(Co) 
+ (/x-l)AQfi,^_i(Co) 

n 

RJ ' " ' '^^i^Vi?-/. i 
Using the relationship (8.42) in appendix A reduces the previous fine to 

"" ^Co"-̂ îi+i,o(Co) + E ( "" I Cr^-^^^R+i,.(Co) 
R J ^=1 \ R — p 

^ ' n 
= E 1 ^r'̂ '̂QH+i.M (Co) 

fj,=o y R- fj. 

which completes the proof of the conjecture. 

The degenerate case, for a = 0, of the identity (8.5) can be noted. Firstly, Co = 26 and 

71+i-ii / ri-\-l — R 
P'IQR^P, (2b) = 1 for /i = 0 and zero otherwise, hence (8.5) reduces to J2 I 

r=0 \ f 

2n-\-i-R^ which is not Gosper summable, as defined by PetkovSek et al. [74], however by the 

WZ pairs method a rational certificate function is V (n, r) = 2(r-'J-2+R) • 

It is of passing interest only, to note that the dominant zero Co? may be set to unity, in 

which case the closed forms in table 8.2 of the identity (8.5) would be simphfied. If we put, 

from (8.2), gu iz) = z°'+^ - bz" - 1 + b, then for 1 < b < il + i), gu iz) has a imit distinct 

dominant zero Co- From (8.5) for i? = 1,2 and 3,n=-aeU and putting Au = a(l-b)-\-l, 

we have explicitly that 

, (a + l)r + a-l \ fl-bY b<^ 

r=0 \ r 
b"+V Ac/' 

r + l \ / (g + l ) r + a \ fl-bV _ b"+^ f g(g + l ) ( l - b ) 

.+1 j v ^ " ^i r Au 
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y " ( _ i r I ' ' ^ " ^ I I ( " + l ) ^ + " + l \ / l - b V b"+2 f «("+!) Sac^ja+m-b) 

r=0 r + 2 I \b''+^ J Af^ I a(2(a-l)>lg,-(5a-2)bAu+3ab2) 

and in general all other R value identities can be obtained from (8.5). 

" 2 ^ 

8.2.3 H y p e r g e o m e t r i c functions. 

n Let TriR,n,a,b) be defined by (8.7) and To{R,n,a,b) = j " | b'^+i-^. The ratio of 
. - R - l 

consecutive terms 

Tr+i(R,n,a,b) _ j 
Tr (R,n,a,b) 

h{r+^^^) 

(r + l)n(r+i?) 
1 = 0 \ / 

s(a,b) 

is a rational function in r and therefore the series SR(n,a,b) of (8.9) may be expressed as a 

generalized hypergeometric function 

^0 a+lFa 

R-n-1 R-n R-n+1 R+a-n-1 
a+l ' a+l ' a+ l ' "• ' a+l 

n 1—71 2—71 g - 1 — 7 1 
a ' a ' a ' " • ' a 

S (a, b) (8.12) 

oo {R-n-l\ fR-n\ / R~n+l\ f R+a-n-l\ 

Z ^ f—Il\ fh::Ik\ {2=Ik\ fa-l-n\ ^\ (—'!1\ / ' 1 - T i \ / ' 2 - 7 i \ / ' a - l - 7 t \ 

where (a;)^ is Pochhammer's symbol and 

s (a, b) 
(a + l) a+l 

iab)" 

Some particular results of (8.12) are worthy of a mention, since it may be shown that (8.12) 

reduces to known hypergeometric fimctions. For a = 1 and a = —n G $R\ J~ then 

T02F1 

R+a-l R-i-a 
2 ' 2 

a 
:(l,b) (8.13) 
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= To 1+E 

2 A ; - 1 

. ..fc n iR + a-l+j) 
( - 1 ) J=0 

A;!b*= fc-i 

=̂1 n(«+i) 
3=0 

the Gauss hypergeometric series (8.13) may also be written as 

B 

1 

j^^rws / (1 -1)^'^-^-^^/^t(^+"-^)/^(1 -s(l,b)t)(i-«-")/2dt 
^ 2 ' 2 J^£o 

which is valid for | s ( l ,6) | < 1 and B ix,y) is the Beta function. The difference in the two 

top terms of the hypergeometric function (8.13) is one-half, hence there exists a quadratic 

transformation, see [1], connected with the Legendre function, P^. Using the identity on page 

562 of Abramowitz and Stegun [1] we may write (8.13) as 

T o 2 " - i F ( a ) { - s ( l , b ) } ( i - " ) / 2 { l - s ( l , b ) } - « / 2 p i l - { { l - 5 ( l , b ) } - ^ / 2 } , 

where s (1, b) G (—<x), 0) and F (x) is the Gamma function. We may write the identity (8.5) as 

, A / -R + r - 1 

r=0 

—a — r 
R-l 

—a 
6-"-'-^-^' = E^«.M(^O)I iCo 

R + r-1 } ^0 \ R-l-p 

n-R+l+p. 

=^{^r>-^r^-{{ 4 1 - 1 / 2 ' 

1+i 

for b > 4,2Co = 6 + V^^ + 4b and QR,^ (CO) is defined by (8.6). Other specific cases of (8.13) 

are as follows. 

(i). For b = 4, s (1,4) = -l,a = 3/2, and from page 557 of Abramowitz and Stegun [1] 

T02F1 

2R+1 2fl+3 
4 ' 4 

3 
2 

rp2-(2fl+i)/4r (I) ^ 
2R-1 

r ( f + l ) r ( | - f ) 

' r ( f + | ) r ( | - f ) 

since the parameters in the hypergeometric function 

2R+1 2 ^ + 3 3 _ 
~~A 4^ + 2 ~ ' ' 
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then from Kummer's identity we have 

^0 2-Pl 

2R+1 2R+3 
4 ' 4 

3 
2 

- 1 = EQH,.(Co)f '/' ]eo-''-'^' 
M=o y R-l-p I 

- / R + r-1 

r=0 \ r 

^ Tor(f)r(f + f) 
r(f + l )r( i -f) 

- 3 / 2 - r 

i l + r - 1 
4^-1/2-r-R 

Here the dominant zero Co = 2 (l + v ^ a n d some values of the infinite sum are 

R=l 

1 
8(1+^2)^/2 

R = 2 
- ( 2 + v ^ ) 

2(43)(l+v^)^/2 

R = 3 

3(2+V2) 
2(45)v^(l+v/2)^/2 

R = A 

- 5 
4''v^(l+V^)^/2 

(ii). For b = 4, s (1,4) = - 1 , a = 1/2, and from page 557 of Abramowitz and Stegim [1] we 

have 

^ f R + r - l \ ( -1/2-r 
4 ^ 2 — « = r o 2 F i 

r=0 i? + r - l 

2fl- l 2fl+l 
4 ' 4 

- 1 

p.=Q \ R-l- p 

ro7r2(i-2^)/2 

r(f + i ) r( i -f) 

and some values of the infinite sum are 

R=l 

il+V2)''' 
4 

R = 2 

(l+V2y^-\V2-2) 
4a 

R = 3 

3V2(l+V2y^'\V2-2) 
2(45) 

R = A 

5V2(l+^^)'/' 
4̂" 
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8.2.4 Forcing t e r m s . 

As in chapter seven, if in the dynamical system we consider forcing terms of the type 

^71 = I ^ 1 b"+ 
m + R-1 

l-R-m 

then the result is the identity 

^ l r + R~l 

r=0 

n — ar R-l 

r+R+m-1 
vn-ar-R-m+l _ V"^ ^ /^ >. n 

/ i=0 R - l - p 
Co 

n-R+l+p. 

where 

and 

m—l 

v=0 

n 

m — l — 1/ 

+ ypm,uib)\ •" lb—+1+-

IJ'^-QR,P (CO) = hrn 

.!P.,(b)=lim[^{(z-b) Fiz) 

dzf" 

F(z) = 
^aR+l 

(Z - by^ (Z«+1 - hz'^ - b)^ 

where Co is the dominant zero of (8.2). If i? = 2 and m = l, then 

E 
r=0 

r + l n — ar \ f \ 2a 

r + 2 ba = b̂ " + 
b2-"Ci+" in ((g + 1) Co - ab) + g (g + 1) (Cp - b)) 

iio-b)iia + l)iQ-ab) 

for the degenerate case of g = 0, we obtain the interesting Binomial convolution identity 

71+1-771-i l 

E 
r=0 

r + i l - 1 n 
771—1 

, = E (-«" 
r + i? + m — 1 / v=o 

R + u-1 

V 

n 

vn — l — v 

R-l 

+E(-i)' 
/ i=0 

m + p — 1 

fJ' 

n nn—R+l-i-fi 

R - l - p 
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2-^1 
R,R + m — n — l 

R + m 
1 

in + l)B(R + m,n + 2- R-m)' 

which for specific values of m and R may be certified by the WZ pairs method of Wilf and 

Zeilberger. 

8.2.5 P r o d u c t s of central binomial coefficients. 

In chapter six we obtained identities of central binomial coefficients, we can carry out a similar 

but brief examination here for the identity (8.5). From chapter six, (6.10), and (8.5) putting 

i? = 2, a = 1, n = —a, b = 1 and c = —x then 

^ / r + l 
f(a,x) = 2_^ 

r=0 

2r + a 

r + l 
X 

fl±y/T^\ 

l - 4 a ; 

l - a 

a-l + 
VI -Ax] 

(8.14) 

= 0 : 2 ^ 1 

g + l a+2 
2 ' 2 

a 
Ax 

^ / r + l 
/ (a, -x) = 2^ 

r=0 

(l+s/l+^\ 

r + l 

and adding (8.14) and (8.15) we have 

1 + Ax 

l-a 

2E 
r = 0 

2r + l 

2r 

4 r + Q; 

2r + l 
X 

2r 
Q!4-P3 

g + l Q+2 g + 3 a + 4 
4 ' 4 ' 4 ' 4 

1. g g + l 
2 ' 2 ' 2 

16a;̂  (8.16) 

(^±^) 
l - g / 'l+i/l+li 

l - 4 a ; {«-i+7r^}+ 1 

l - g 

+ Ax 
o ; - l + 

x/T + Ax\ 

From (8.14) 

/(1,̂ ) = E 
r=0 \ r 

r + l \ / 2r + l 
X' 

r + l ( 1 - 4 . ) ^ / ^ ^ V r 

+ 1/2 
{Axy 
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and collecting coefficients of x^ we have the result 

r + l 

r 

2r + l 

r + l 

^ + V2 . 2 , . 
(8.17) 

which we shall generahze shortly. Integrating (8.16) we have 

r=o V 2r 

Ar + a 

2r + l 

X 2r+l 

2r + l 
= ax 4F3 

g+l g+2 g+3 g+4 
4 ' 4 ' 4 ' 4 

3 a g+l 
2' 2' 2 

lOx^ 

dividing by x and integrating, and performing this operation again we have 

E 
r=0 

2r + l 

2r 

4r + Q; 

2r + l 

X 2r+l 

(2r + 1) 
3 = ax 6î 5 

1 1 a+l a+2 g+3 g+4 
2 ' 2 ' 4 ' 4 ' 4 ' 4 

3 3 3 a a + l 
2 ' 2 ' 2 ' 2 ' 2 

16a;̂  

Differentiating (8.16) will produce other identities, as well as putting a higher value of R. 

Returning briefly to the relation (8.17) we will demonstrate that this is a special case of a more 

general relation. From (8.14) with general R and a = 1 we have 

E 
r=0 

r + R-1 2r + R-l 

r + R-1 
x' =2Fi 

R R+l 
2 ' 2 

1 
Ax 

E ^R,3^^ 
3=0 

(1 - 4a;)^-i/2 
and 

r = 0 
( l - 4a : ) ^ - i / 2 -

Prom (8.18) and (8.19) adjust and then equate the coefficients of x^ gives 

(8.18) 

(8.19) 

r + R-1 \ ^ \ 2r + R - l \ J ^ i r + R-3/2-i ^^2,r-j,^^^^ 

r I \ r + R-1 j j=o \ r-j 
(8.20) 
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R\3 
1 
2 
3 
A 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 

2 
6 
12 
20 
30 
42 
56 
72 
90 
110 
132 
156 
182 
210 

2 

6 
30 
90 
210 
420 
756 
1260 

1980 

2970 

4290 

6006 

8190 

3 

20 
140 
560 
1680 

4200 

9240 

18480 

34320 

60060 

100100 

4 

70 
630 
3150 

11550 

34650 

90090 

210210 

450450 

5 

252 
2772 

16632 

72072 

252252 

756756 

6 

924 
12012 

84084 

420420 

7 

3432 

51480 

Table 8.3: The constant lambda of (8.18). 

where the constants XRJ are the coefficients of x in the expansion of 

(1 - 4x)«-i/2 2i^l 
R R+l 
2 ' 2 

1 
Ax = E -^^-j'^' 

j=0 

some values of XRJ are given in the table 8.3. 

From (8.20) for i? = 1, we obtain the common result 

we obtain the result (8.17) and for R = Q, 

- - 1 / 2 . , 2 . 
22^ for i? = 2 

r - l 
2 -2 + 30 1 """^^/^ 122-4 

r - 2 
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8.3 Multiple dominant zeros. 

In this section we shall generalize the identity (8.5). We shaU prove that a generated infinite 

series may be represented in closed form that depend on A: dominant zeros of an associated 

polynomial characteristic function. Consider the delay syste 
tem 

^ k \ , _ . 
E i-b) ^ fn+j + Cfn-ak = w^, n> ak 
•̂=0 V ^ J 

fc / A; , ^_. 
E I i-b) ^ fn+j =Wn, n < gA: 
3=0 I j 

(8.21) 

with c + b*̂  = 0 and all initial conditions at rest, except for fk-i = 1. As in the first section, 

set Wn = 0 and take the Z transform of (8.21) such that 

we 

F(z) = 
yOfc + l 

(z - b)^ - (bz-'')^ (z°- (z - b))^ - bk 
(8.22) 

and upon inversion 

/ 7 i = E Un-afcr-fc+1 

r=o \ A;r + A; — 1 
(8.23) 

Also from (8.22) we may write 

c 

j=Q v=0 ^ 

C is a smooth Jordan curve enclosing the singularities of (8.22) and ReSĵ ^ is the residue at the 

poles. The characteristic function 

k uk gk (z) = (z" (z - b))'= - b (8.24) 
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with restriction 

(a + l) a + l 

(gb)" 
< 1 

has exactly (g + l)A; distinct zeros Cj> for v = 0,1,2,...,k 

statement will be clarified in appendix B. From (8.22), then 

(8.25) 

- 1 and 1/ = 0,l ,2, . . . ,g. This 

k-1 a 

•̂ - = E E ^ f c > ) a . w h e r e 
j=Q i/=0 

(8.26) 

Q (Ci>) = lim (^-U Fiz) 

Cj> 

M^.>-^) ((« + i)C,>-«^) 

and from (8.23), (8.26) and (8.27) 

[n-fc+ll 
L(»+l)fcJ 

E n — gA;r fc—1 a 

7-=o V A;r + A; — 1 

77i-afcr-fc+l _ V ^ V ^ 
71+1 t71+ 

^3,v 

(8.27) 

^ot^oki^j^,-hf ' ((g + 1)C,> - gb) 
(8.28) 

If we let Cj,o>i = 0,1,2,..., A; - 1 be the A; dominant zeros of (8.24) then we have the following 

theorem. 

8.3.1 T h e k t h e o r e m . 

Theorem 37 Let 

Tr (k, n, g, b) 
n — aA;r 

A;r + A; — 1 

^n-afcr-fc+l ^ ^ ^ (8.29) 

S (k, n, a, b) = E ^r ik, n, a, b) (8.30) 
r = 0 

w/iic/i zs convergent for all values ofk,n,a and b in the region of convergence (8.25), then 

k-1 

S(k,n,a,b) = E 
cn+l 
HO 

v f c - 1 ^ M e . - . o - & ) ( ( « + 1 ) c,-,o - «&) 
(8.31) 
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The series (8.28) with (8.31) gives us 

^"P."^ - k-l .71+1 
2 ^ r^( fc ,n ,a ,b)+ E T4A;,n,a,b) = E ^ ''° 
-=« '•=[l^ff^] U^^iko-b)' ' ( ( a + l )C,-o-a6) 

and hence 

00 fc-1 a >.n+l 

E r,(A;,n,a,b) = - ^ ^ ^-^ 
r=\sd^h±i] j=o „=i k (^jj, - b) ((a + 1) C,-„ - gb) 

[ (a+l)fc J 

Proof of theorem 37. The characteristic function (8.24) may be expressed as the product of 

factors such that 
fc-i fc-i 

gk iz) = n {^"^^ - bz'' - be^'^'^lk) = Y[ qj iz). (8.32) 
3=0 j=0 

For each of the j factors in (8.32) we may write 

^a+l 

^i ^'^) = za+l _ bza _ be2Tii/fc (^•^^) 

for j = 0,1,2,..., A;— 1. The characteristic function qj (z) in (8.32) has exactly g + l distinct zeros 

for each j , of which aj^Q shall indicate the dominant zero, the one with the largest modulus, 

which may be complex. All the singularities in (8.33) are simple and therefore for each j , Fj (z) 

has simple poles. Utilizing the result (6.10), from (8.33) and evaluating its residue, we may 

write 

A o • ,^ I n-ar\ a'lf 
y^2m3r/k ^n-ar ^ jfi . g 3 4 N 

r = 0 
(a + 1) Q!ĵ o — ob 

for each j = 0,1,2,..., A; — 1, and note that (8.34) may in fact be a complex number. Summing 

(8.34) over j gives 

V ^ V ^ _27rijr/fc ( I L7i-ar _ V ^ 3£ 
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R^cahng the left hand side by r = (r* + 1) k, ( and then replacing r* by r ) results in , after 

changing the order of summation 

y e^^i3ir+i) (n-ak(r + l)\ ^^_^^^^^^^ ^ ^ ^n+i 

3=0 \ k(r + l) j ^ ( a + l ) a , . o -

^ / n - aA; (r + 1) \ , , ^-i nJ^^^-
V 5n-afc( r+l ) ^ - ^ ^J.O . n (r. <,. . 

7^o\ k(r + l) ) ^^k((a + l)aj,o-ab) ' • ^^'^^^ 

Now make the substitution n - aA; = m in (8.35) giving upon simplification 

^ / m - aA;r \ _^^^ ^ b-'̂ aJ^Q+ '̂̂ +i 

h [ kr + k y ^ " ' ^ ^ M ( a + l ) % , o - a b ) - ^ " ' - ^^'^^^ 

Newton's forward difference formula of a function h (xj) = hj at Xj is defined as 

^% = A^-i/i,+i - ^!^~^hj,k = 1,2,3,... 

and taking the first difference of (8.36) with respect to m results in, from the left hand side 

r=o y A;r + A; j r=o\ kr + k j r=o\ kr + k-1 I 

Similarly from the right hand side of (8.36) 

* - l / f t - (7n+l ) 7n+afc+2 _ ^-771 77i+afc+A ^-1 f.-m^m+ak+l . , . 

3=0 " 3=0 

where AQ = (a + 1) Q;J_O — «&• From the characteristic function qj (z) in (8.32) Q;"_O i'^jfi — b) — 

be^^ijfk = 0 we may write (8.38) as 

fc-l t-77l+fc-l-,771+1 

E " ^3,0 

1. A I. L\fc-1 j^Q kAa (Q;J,O - b) 
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and combining with (8.37) gives, after simphfication 

a E I m — aA;r \ , , , til 1 ^TTi-afcr-fc+l _ V^ 

r=o l A;r + A ; -1 I ^ k (a,-o - b)'"'^ ((a + 1) aj^ - ab) 

m+1 
3,0 (8.39) 

Since the dominant zeros a^-o, j = 0,1,2,..., A; - 1 of qj (z) are the same as the dominant zeros 

Cj,o of f̂c (^) iĴ  (8-24), (this statement wUl be proved in the appendix B), then upon renaming m 

as n in (8.39) the theorem 37 is proved since (8.39) and (8.31) are identical. Note that putting 

A; = 1 in (8.31) yields the result (8.5) for i? = 1. 

8.3.2 Numerical results and special cases. 

In the following numerical results, the dominant zeros Cj,o ^^^ evaluated from gk iz) in (8.24). 

It may also be noted that for A; > 3 the dominant zeros occur in complex conjugate pairs. The 

numerical results are given to four significant digits. 

k 

2 

3 

3 

n 

3 

3 

3 

g 

2 

1 

2 

b 

10 

-10 

10 

ko 
Co,o = 9.8979 1 

Ci,o = 10.0981 J 

Co,o = -8.8730 

Ci,o = -10.5329+.7826i 

C2,o = -10.5329-.78262 

Co,o = 10.0981 1 

Ci,o = 9.9511+.0883i > 

C2,o = 9.9511-.0883i 

> 

identity (8.31) 

299.9899 

-30.0005 

29.9998. 

The degenerate case, g = 0, of (8.31) yields the result 

m fc-i fc-i _ (i + e2-^^/^) ^ 2̂ ;̂  - ^ ^.ijim+2yk ,,,771 (n. 

-0 \kr + k-lj j ^ , ke^^^^ik-^)!^ k2-. k 
(8.40) 
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and for A; = 4, we have 

r=o \ 4r + 3 
= ^ ( 2 - - 2 f + i s i n ^ ) 

Using the WZ pairs method of Wilf and Zeilberger a rational function proof certificate, Vk (m, r ) , 

for A; = 1 and 2 of (8.40) is respectively 

^1 (^ '^) = Tr 1 N and V2 im,r) = ( ^ - l ) ( 2 r - l ) 
2 ( r - l - m ) ^v ' ^ m ( 2 r - 2 - m ) 

8.3.3 T h e H y p e r g e o m e t r i c connect ion. 

n Consider the term Tr (k,n,a,b) of (8.29) with To (A;,n,g,b) = | '" ] b"-*=+\ the ratio of 

consecutive terms 

(a+l)fc-l 

rr+i(A;,n,g,b) 
Tr ik,n,a,b) ak—1 / . \ fc—2 / „, . , \ 

(̂  + 1) n (r + '^)u(r+'-^^) 
7=0 "̂  ^ i=o '̂  ^ 

- s ( g , b. A;) 

is a rational function in r and therefore the series S{k,n,a,b) of (8.30) may be expressed as a 

generalized hypergeometric function 

To (a+l)kF(a+l)k-l 

fc-71-1 fc-71 fc-7i-l+(a+l)fc-l 
(a+l)fc' (a+l)fc '-" ' (a+l)fc 

_7i_ 1;:^ afc-1-71 2fc-l 2fc-2 2fc-l-(fc-2) 
afc' ak '•••' ak ' fc ' fc ' •" ' fc 

S (a, b, k) 

where 

s(a,b,k) = 
(a + l) a+l 

(gb)» 

A simple example shows that, from (8.30) and (8.31) for A; = 2, g = 1, b = x ^ andn=-ae^, 

have two distinct dominant zeros of (8.24), Co,o = 4 (l + Vl+'^x), Ci,o = i (l + Vl - 4a;) we 

184 



and therefore 

oo 

E 4 r + a 
„2r 

=0 V 2r + 1 
X"-' = ^ 4 ^ 3 

= E 

a + l a+2 a+3 a+4 
4 ' 4 ' 4 ' 4 

g g + l 3 
2 ' 2 ' 2 
(l-a 
HO 

U 2 K-.0 + 1) (2̂ e,-,o - 1) 

16a;̂  

Specifically with a = 1, 

r=o \ 2r + 1 

1 3 -1 5 
2 ' 4 '-^ ' 4 
1 1 3 

16a;̂  

V l - 4a; + VI + 4x - 2 
( x / m S - (1 + 4a;)) ( V r : ^ - (1 - 4a;)) 

4a; \y/Y^^Ax y/T+Ax E 
r=0 

4r + l 

2r 
X 

,2r 

which confirms the result obtained in chapter six. Again the identities may be differentiated 

and integrated to produce more results. 

8.4 Non-zero forcing terms. 

If we consider the system (8.21) with all initial conditions at rest and with a forcing term of the 

f n \ 
form ! / ; „ = ( I b"""^"^^ for m integer and follow the procedure of the previous section 

\ m - l ) 
we obtain the identity 

^fr + R-r 

r=o V r 

n — gA;r n 
771—1 

j,7i-afcr-fci?-77i+l ^ y p^^^ (^) 

kr + Rk + m - 1 I U=ZQ \ m - l - u 

L71—771+1+1/ 

n R - l f c - 1 

+EE^^.Mte-o), , ^ 
^=0j=o \ R-l-fJ-

^n-R+l+n 
^i,0 (8.41) 
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in the region of convergence (8.25) where 

i^!^77i,i/ ib) = l i m 
z—»6 dẑ  r ^ z 

/^!Qii,/i (Cj.o) = lira {(^-U'^q^} 
and 

F(z) = 
yafcii+l 

For i l = 1,A; = l , n = 

(z - b)"^ ((z« (z - b))^ - b'=) 

-a e 9fi and m = 2, from (8.41) we have 

R-

E(-i)' 
( g + l ) r + a + l \ / i V 

r=0 r + 2 
I f l y = (a - a) b" - b2" + 

j y ^ ^ J (Co,o 

l - g j , 2 + g ^ l - ' 
" ^0,0 

-^) ((« + l)Co,o-«'') 

where Coo ^̂  ^^^ dominant zero which satisfies (8.24), and specifically for (a,a) = (1,Q;), 

2Co,o = b + \/&2 + 4b, so that 

2r + a + 1 
E(-i)' 

l - g 

r=0 r + 2 

• ixr b(2b)"('b + \/b2+4b^ 
M = ( a - l ) b - b 2 + \ ^ -> -, 
6 ; ^ ^ (b + 2)V62 + 4 b - b2 + 4b) 

Many other identities of this form may be attained by various manipulations, one such result is 

E 
r=0 \ r 

r + l \ / 4r + 4 
X -2r 

3 . . 3 -

X I / X \ 2 / X ^ 2 

2r + 2 2 \ Va ; -4 a; + 4 
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8.5 Appendix A: A recurrence for Q's. 

In this appendix we shall demonstrate how we arrived at the recurrence 

gbi?AQ^+i,^ (Co) = «&(i2-/^)CoQfl,M(Co) + (M-l)AQie,^-i(Co) 

+ (A + gb)CoJ-Qfl,;.-i(Co) 
"so 

that was used in the proof of the conjecture in section 8.2.2. 

From (8.6) 

(8.42) 

^J'^-QRP. (Co) = lira 
di" { ~aR 

( - « o ) « ^ (8.43) 
dzM 1̂^ -̂ "̂  g^iz)}, 

where g (z) is defined by (8.2) and Co is the dominant zero of g (z). From (8.43) we can differ

entiate with respect to b such that 

/^! |QH,.(Co)=;im^ 
d^" f^oiz-^o)^-^z''^ (z-^^)Rz<^R (^ _ ^ ^ ^ a ( f l + i ) + n 

dz^' + iH+l Ag^ (z) ' gR (z) 

where A = (g + 1) Co — ^b. Simplifying (8.44) by adjusting the third term, we obtain 

)w!^Qit,M (Co) = ^/^!Qii,M (Co) + JI^^-QR+1,^ (Co) 

(^) J 
(8.44) 

^ 0 lim 
rfM ((z-^o)^-^Z<^+^) 

(Co&(^)^"'^-^(^-Co)) (8.45) 
bA z'^'io \dz^' 1 g^+'^ iz) 

Let h(z) = Co^ iz) z~°--A(z - Co)) ^ Taylor series expansion about the dominant zero Co, gives 

us 

/̂ (̂ ) = (^-Co)'E(-i) 

and substituting into (8.45) we have 

^' """'"' \ib-io)i\-'i--ioy-' 

/^I^Qfl,/! (Co) = -fi^'-QR,P (Co) + f/̂ !Qfl+i,M (Co) 

bA z-^io 

^ r ( ^ _ ^ ^ ) f l + V ( f l + i ) 

dzM 1 ^^+1 (z) 
B, (8.46) 
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where 
oo h<z) 4^ . / a + j - l \ 

^̂  = ( 7 r ^ = E(-i) '^ ^ J(6-?„)fj-(z-e„)-^ (8.47) 

Expanding (8.46) by the Liebniz differentiation rule 

/^•'^Qfl,M (Co) = ^M!gf l , p (Co) + f M!Qfl+i.M (Co) 

R^ 
f E (/̂  - ^)!Qfl+i,M-fc (Co) lira S f (8.48) 

fc=o \ k I ^^<o 

j(fc) and after evaluating lim B\ ' from (8.47) and substituting into (8.48) we obtain 

^ | Q i i , . ( C o ) = Q i l + i , M ( C o ) - Q i l , M ( C o ) - ^ ^ E ( - l ) ' / a + A; + l \ ^-fcQ^^^_^_^ ^̂ ^̂  _ 
fc=o y A; + 2 J 

(8.49) 

Now (8.49) and (8.8) suggest that the Q (Co) terms may be related by an expression of the form 

Qfl+1,/1+1 (Co) = C l - ^ Q R P (CO) + C2P.QR^(Co) +C3(R-p-l)QR,^+I (CO) (8.50) 

ioT p = 0,1,2,..., R — 1. The constants ci,C2, and C3 can be evaluated by forming three simul

taneous equations and using the Q (Co) values, given in table 8.1, we may write (8.50) as 

QR+i,fM+i (Co) = ~^'db^^''' ^^°^ "̂  obR^^''' ^^°^ ^ AR ^^./^+i (Co) 

which upon rearrangement gives 

dr^ rt^_ Co f abAi?QH+i,^+i (Co) - MQii, /x (Co) . . . .^ ^ 

5 b ^ - - ( ^ o ) = b A ( A T ^ | - g b C o ( i ^ - . - l ) Q . . + i ( C o ) ^- ^ ^ ^ 

Now, since 

-TTQRP' (Co) = •^lli^^.M (Co) 
"?o so "" 
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substituting into (8.51) and rearranging we obtain 

abRAQR+i^f,+i (Co) =ab(R-p-l) COQR,M+I (Co) + MQR,/i (Co) 

+ (A + ab)io—QR,^(^Q) 
"so 

which is the required relation (8.42) after replacing p with p — 1. 
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8.6 Appendix B: Zeros. 

Some properties of the zeros of the characteristic functions (8.2); 

g(z)=z''+^-bz''-b 

and (8.24); 

gkiz) = (z^z-b))''-b k uk 

will be discussed in this appendix. Let b be a real constant, a and k £ N and z is a complex 

variable. 

Theorem 38 (i). The function (8.2) has at least one and at most two real zeros and a dom

inant zero, the one with the greatest modulus, CQ such that Co > ^ /or b > 0 and |Co | > 

for b < 0 and the restriction (8.3); namely ( o + l ] ^ 

ab 
a+l 

< 1 . 

(ii) The function (8.24) has at least one and at most four real zeros. 

Proof: (i). The characteristic function (8.2) with restriction (8.3) has a + l distinct 

zeros, for the derivative of g (z) cannot vanish coincident ally with g (z). The fact that a related 

function to (8.2) has distinct zeros appears to have been reported first by Bailey [5]. Let 

G (z) = z°' (z — b), hence G (z) = b, and the turning point of G (z), away from the origin occurs 

at z = ^ j - . Now consider the graphs of G (z). For b > 0, 

G (z) for a odd 

Figure 8.1: The graph of G (z) for a odd or even and b > 0. 

190 



For b < 0, 

G (z) for a eve: 

G (z) for g odd 

Figure 8.2: The graph of G (z) for a odd or even and b < 0. 

The two graphs of G (z) indicate therefore that (8.2) has at least one and at most two real 

zeros. In both cases of b > 0 and b < 0 it will be shown in the next theorem that the dominant 

zero, Co) the one with the greatest modulus, of (8.2) is always real, such that Co > & for b > 0 

and ICo I > ^Ti for b < 0 and the restriction (8.3) with a real. 

(ii). In a similar fashion it may be seen that gk (z) has at least one and at most four real 

zeros. Let Gk (z) = (z"" (z — b)) , hence Gk iz) = b^ and the turning point of Gk (z) away from 

the origin occurs at z = ^-^. Now consider the graph of Gk (z) for b > 0 ( the case of b < 0 

follows in a similar fashion ). 

GkJ^z) 
3a 

20 

10 

-i "̂  
-10 

^ . ^ p 4 , . . . -^ 6 ^ 

Figure 8.3: The graph of Gk iz) for b > 0. 
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Theorem 39 The characteristic function (8.32) 

^«+i _ b2« - be^"^/*^ = qj (z) 

has a zeros on the region C : \z\ < ab 
a+l for each j = 0,1,2,..., A; - 1 with restriction (8.3). 

The study of the zeros of (8.32), (8.24) and (8.2) is important in the area of queuing 

theory, and severeal papers have been devoted to this study, see for example, Chaudhry, Harris 

and Marchal [25] and Zhao [97]. Their studies have concentrated, amongst other things, on 

robustness of methods for locating zeros inside a unit circle. In this thesis the location of 

dominant zeros of (8.2), (8.24) and (8.32) is of prime importance. 

Proof: Let A(z) = -hz°-. Then A(z) has a zeros in the region C and |A(z)| < b ( ^ ) . 

Now 

\qj(z)-A(zy = 

< 

2;°+! _ bê '̂ ^̂ '/*̂  

( ab ^"+1 

a+l^ 

By Rouche's theorem, see Tagaki [85], it is required that \qj (z) - A(z)| < |A(z)| hence 

1 + a ab 

a+l Va+1 
< 

ab 
g + l 

and 

1 < 
gb 

^g + i y V a + 1 

which is satisfied since (8.3) applies, therefore the theorem is proved. Also from (8.32), letting 

j = 0 gives the characteristic fimction (8.2). Theorem 38 now follows since at least one zero of 

ab 
a+l 

for b < 0. Note that the (8.2) must be real, it is evident that Co > 6 for b > 0 and |Co | > 

restriction (8.3) is imperitive for theorem 39 to apply. If for example g = l,b = 1/2 and A; = 1 

which indicates that (8.3) is not satisfied, then go (z) = z^ - z/2 - 1/2 gives the two zeros as 

2 = {-1/2,1}, neither of which are in the region C : |z| < 4. 

192 



T h e o r e m 40 The characteristic function gk (z) has ak zeros in the region C : jzj < 

restriction (8.3). 

ab 
a+l 

with 

Proof: Let B (z) = {qj (z))'= = (z"+i - bz'' - be^'^'Jl^f . Utihzing theorem 39, B (z) has 

therefore gA; zeros in the region C and therefore k zeros have modulus bigger than 

the region C, 

ab 
a+l 

. In 

|B(z) | = kz'^+i-bz^-be^'^^^/'^)' 

< 
gb 

g + l 

o+l 
+ b 

gb 

g + l 
+ b 

-1(^)"(^)-}' (8.52) 

Now 

|^fc(z)-S(z)| = (G (z))^ -b^- Tz^+i - bz" - be '̂̂ ĵ/*^)' 

for every j = 0,1,2,..., A; - 1, and G (z) = z°-(z-b). Furthermore, let Cj = be^'^'^l'^, such that 

( G ( z ) ) ^ - b ^ - ( G ( z ) - c ^ ) ' - b^ -E ' ' 
r=l \ r 

(-l)'"c5G'^-'-(z) 

< b^+Ef ^ i&̂  
gb gb 

= b^ 

= b^ 

=1 \ r 

i + E 
r-=l \ r 

1 + (1 + M)*= - M'= 

g + l / V a + l 
+ 6 

ab N " / 2 a + l^ 

n fc—r 

fc—r 

a + l y V a + 1 

(8.53) 

where M = {-^X f ^ ^ ) > ^- -^^ Rouches theorem, it is required that 

\gk (z) - S (z)| < | 5 (z)( and upon using (8.52) and (8.53) we have that 

1 + (1 + Mf - M^ Kb" (1 + My 

i < 
' ab Y /2a + l' 
a + l U + l . 
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which is satisfied by virtue of restriction (8.3). Therefore the characteristic fimction (8.24) 

has aA; zeros in the region C : jzj < and A; zeros with modidus bigger than ^ . The 

theorem is proved. Consider as an example, g = 3,b = 10 and A; = 6 such that restriction (8.3) 

is satisfied and C : jzj < 7.5. The zeros of qj (z), are hsted below, showing that one dominant 

zero appears from each of the qj (z), for j = 0,1,2,3,4 and 5. 

qoiz) 

qii^) 

q2iz) 

qsiz) 

q^iz) 

qsiz) 

10.0100 

10.0051+0.0086i 

9.9951+0.0087i 

9.9900 

9.9951-0.0087i 

10.0051-0.0086i 

-0.9696 

-0.9157-0.3231i 

-0.7589-0.6127i 

1.0372 

-0.7589+0.6127Z 

-0.9157+0.3231* 

0.4798-0.8944i 

0.7697-0.6786i 

0.9669-0.3668i 

-0.5136+0.8375i 

0.9669+0.3668* 

0.7697+0.6786* 

0.4798+0.8944* 

0.1412+0.9933* 

-0.2031+0.9708* 

-0.5136-0.8375* 

-0.2031-0.9708* 

0.1412-0.9933* 

The dominant zeros of qj (z) are listed in the first column and all have modulus bigger than 

7.5. These dominant zeros are exactly the same k dominant zeros of (8.24). It appears that the 

zeros, aj (a, b) of function (8.32) can be related for b > 0 and b < 0. It may be shown that the 

following relationships hold. 

(i). For all values of A; and a even, aj (a, b) = -aj (a, -b), 

(ii). For A; odd and a odd, aj (a,b) ^ -aj (a, -b ) , and 

(in). For A; even and a odd, 

aj (a, b) = < 

- t t j+ i (a, -b); for j < | 

- a o (a, -b); for j = | 

- a . fc (g , -6 ) ; for j > | 
•> 2 

where j = 0,1,2,..., k — 1. 
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Conclusion and suggestions for further work. 

This thesis deals with the classical quest for closed form expressions for certain classes of infirute 

series and in particular, with identities for classical hypergeometric series and their generafisa-

tions. The methods utifized in this th^is , for 'identity proving' are those of function theoretic 

methods and computer-assisted techniques of symbohc manipulation algorithms of 'certifica

tion' of hypergeometric identities. In this thesis the author also develops new interesting classes 

of 'binomial' series identities and their non-hypergeometric generalisations. 

A number of suggestions are now indicated in which further investigations may be under

taken to expand on some of the ideas presented in this thesis. 

(1). It is possible to obtain many other multiple infinite sum identities by considering higher 

order differential-delay and difference-delay systems. 

(2). It is feasible that the approach and methods employed in this thesis may be extended 

to prove identities of a 'continuous nature'. In this respect it may be possible to generalise the 

known identity; 

" e(*-̂ ) (t - x)^'-^ dt _\ T^,x>0 I T(pt) A , a; = 0 
t=x \ 1-p' 

(3). Some of the results of chapter six may also be derived by considering a simple Markov

ian queue of bulk service variation of the M/M^°^/l system in which service is in fixed batches 

of size g, irrespective of whether or not the server has to wait for a full batch of size a. Renewal 

processes therefore provide a rich source of material for the investigation of representation of 

series in closed form. 
(4). If we pose the conjecture: Given that 

oo 

yF{t-an)H{t- an) ~ X (t,a) 
71=0 

then 
oo 

yFit-an)=Xit,a) 
71=0 
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where H (x) is the Heaviside function, 

oo oo 

yFnip) = yTr [F(t - an) H{t- an)], 
71=0 71=0 

Tr [F (t - an) H (t - an)] represents the transform oi F(t- an) H {t - an) and X (t, a) is a 

function dependant on t and a. The transform may be the appropriate one depending on the 

model under investigation. It would be a worthwhile research project to investigate: 

(a). What general class of functions F (t — an) do we require for the conjecture to be vahd?. 

(b). What form does X (t,a) take and under what general conditions does the conjecture 

hold?. 

(5). It may be seen that some partial sums of the constants in table 8.3 form known 

sequences, which should provide a basis for future research. 
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