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Abstract 

This thesis sets out to model, fi-om the manufacturer's point of view, the warranty 

cost of a repairable product. The product can be a complex one made up of numerous 

components, all of which are replaced upon failure and are non-repairable. The warranty-

cost model is used to extrapolate the cost when the warranty is extended. Both point and 

interval estimates of the current and extended warranty costs are evaluated in this study. 

The modelling in this diesis is based upon real data obtained fi-om an Australian car 

manufacturer. As such, the thesis starts out with a detailed discussion of the important 

issue of data checking and cleaning. 

Survival methods are used to model the product as a repairable system, with each 

repair consisting of the replacement of one or more failed components. Thus, the re

pair is taken to be as good as new, and the repair process can be modelled as a renewal 

process. Of interest is the expected number of replacements of each component during 

the warranty period, which can be estimated using renewal theory. To make the mod

elling manageable, the failure of each component is taken to be independent of the failure 

of other components. 

The reliability of components with a small number of claims is assumed to follow 

the exponential distribution, whilst for components with more claims, the Weibull dis

tribution is used. Although other models are considered, the exponential proves to be 

adequate when tiie number of claims is small compared to the number of items produced. 

Because of its versatility, the Weibull distribution is an appropriate choice when modelling 

components with a larger number of claims. Log likelihood methods are used to estimate 

the parameters of the models, from which tiie number of renewals during the warranty 

period are estimated. Numerical methods are employed to do this for the Weibull model. 

The expected warranty cost for each component is calculated from the expected 

number of replacements and the expected cost of repair. The cost of repair is taken to be 

a variable quantity in this study. Using the variance of the expected number of renewals 

and tiie variance of tiie cost of repak, tiie variance of the warranty cost is obtamed. The 
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Abstract v 

estimated warranty costs and variances of all components are used to obtain an expected 

warranty cost per vehicle produced, and a confidence interval on that cost. 

The variance of the Weibull model proves to be too big to be of practical use. How

ever, the exponential model's variance is quite usefiil. Simulation has been used to obtain 

a better confidence interval for the Weibull model. Simulations are also used to verify the 

results obtained by the modelling used in this thesis. 

S-Plus has been used extensively throughout the thesis to perform the analysis. Al

though the number of fimctions in the S-Plus library is quite comprehensive, many new 

fiinctions have been written by the author to undergo the analysis needed for this study. 
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Chapter 1 
Thesis Introduction 

1.1 Scope and Significance of This Study 

Expensive, complex products are almost always sold with a warranty, so the cost of ser

vicing a warranty is significant. Wasserman (1992) suggested that warranty claims could 

amount to 10-30% of production costs. Menezes and Quelch (1990) claimed that war

ranties represent an increasing cost to the manufacturer. They reported that the automo

tive industry in the United States of America spent over US$5 bilUon on product warranty 

in 1988, up from just over $700 million in 1965. Majeske and Herrin (1998) stated that 

in 1992, the combined total warranty payment bill for Ford, General Motors and Chrysler 

was $9.2 bilHon. 

The cost of servicing warranty claims is to be paid for by the manufacturer, who 

must cover this cost in the sale price of the product. The most important reason for 

determining the cost of a warranty is the need to price the warranty (Hill and Blischke, 

1987). Analysis of warranty data provides many benefits: it enables an estimate of the 

warranty cost to be made; it can predict the new costs if the terms of the warranty are 

altered; and it provides feedback to engineers about the reliability of the product, which 

may be valuable in reviewing the design of a product or the manufacturing process. 

Manufacturing in Austialia has become more competitive in the world market with 

the reduction or removal of import tariffs. The building of cost-effective, quality prod

ucts has become an aim of many Australian (and international) companies. This is clearly 

exemplified in the car manufacturing industry, where the decrease of import duties has 

resulted in quality, imported vehicles becoming more competitively priced. Local manu

facturers have had to build a reliable product at a cost-effective price to compete in this 

fierce market place. Over recent times, the standard warranty that comes with Australian-

built cars has risen from one year to three years, but in confrast, many importers currentiy 

offer a more generous five-year warranty. Since the extent of a warranty is often used to 

judge the rehability of a product, it can be a powerful marketing tool. 



2 Chapter 1 Thesis Introduction 

The modelling of warranty costs is a complex stiidy because of the variety ot 

warranty terms, and because of the stochastic natiire of product or component failures. 

Singpurwalla and Wilson (1993) affirmed that "the warranty problem is multidiscipli-

nary, involving topics as diverse as economics, game tiieory, law, marketing, operations 

research, psychology, probability, and statistics." 

One of tiie most difficult warranties to analyse is the two dimensional warranty, 

which is limited by both calendar time and usage. Altiiough some literatiire has appeared 

since Singpurwalla and Wilson (1993) declared tiiat "not much has been done witii regard 

to two-dimensional warranties", there still appears to be a need for further work with two-

dimensional warranty modelling. Although the data used in this tiiesis is two-dimensional, 

the approach used is a one-dimensional approach. This approach, as discussed in Sub

section 5.2.8, is suitable for the terms of the manufacture's warranty. This simplified 

approach has been used in this thesis because of the large number of components to be 

analysed. 

As much has already been written about the modelling of warranty costs, one might 

consider the subject to be in no need of further attention. However, most papers have 

taken the form of a theoretical treatise, with few studies investigating the application of 

the models. Blischke (1990) stated: 

Perhaps more pressing, however, is the need for practical applications-oriented re

search. Before they find widespread use in practice, the elegant models that have 

been developed must be incorporated into approaches that identify all significant 

cost factors and the associated data requirements, that emphasize the use of infor

mation that could realistically be attainable and that realistically model operational 

warranty progress. Methodological papers along these lines have not appeared in 

the statistical or management science literature (perhaps not because such studies 

have not been done, but because the results are proprietary). 

Thirteen years later, Jablonowski (2003) is still echoing these sentiments. He talks about 

the widenmg gap between theoretical developments and practice in risk management 

modelling, and what needs to be done to reduce the gap: 

The existence of a wide gap, however, may be indicative that theoretical develop-
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ment in afield is not fruitful ... The key is moving formulas and equations from 

paper to practice. ... Rewarding practical success, not just formal rigor, would 

go a long way to help assure that proper attention is paid to the development of 

"application friendly " theory. The corresponding threat is that without practical 

justification, or at least its promise, the theory will not be taken seriously. 

This thesis attempts to reduce the gap between theory and practice. It uses real data 

from an automobile manufacturer's warranty database. Practical issues that concern the 

handling of real data are discussed in this study, from the methodology involved in the 

checking and cleaning of the data, to the implementation of theoretical models. These 

practical issues are an important aspect of this thesis, and therefore much effort has been 

devoted to them in this study. 

Murthy and Blischke (2000) acknowledged that "For most companies, warranty 

costs are a closely guarded secret, as evidenced by the fact that very little warranty data is 

available in the public domain." In the quote of the previous paragraph, Blischke (1990) 

pointed out the proprietary nature of warranty data. Some studies have analysed car-

warranty data, for example, Kalbfleisch, Lawless and Robinson (1991), Lu and Vance 

(1997), Majeske and Herrin (1995 and 1998), and Lu (1998). However, because of space 

limitations, these papers have discussed the analysis of one or two parts only. There is a 

need for a more extensive study that includes the warranty cost covering all components 

of a complex product, such as the automobile. There is a need to explore the processes 

involved in a larger study, and there is a need for practically-based research. In addition, 

the literature appears not to contain any warranty data from an Australian manufacturer. 

This thesis models the warranty cost of an entire vehicle manufactured in Ausfralia, It 

also discusses in detail the practical issues that need to be resolved when analysing the 

real data. 

It is common practice in the literature to assume that the cost of repairing a product 

is a constant. However, a manufacturer can only indicate a range of costs that it is willing 

to pay to the repair agent for particular repairs, rather than one particular price. The data 

obtained for this study reveals that the cost of replacing a particular component resulting 

from a warranty claim is far from constant. By allowing the cost of repair to be a variable, 

this study extends the current warranty models. 



4 Chapter 1 Thesis Introduction 

The current literature on the use of simulations in warranty-cost modelling is com

plemented by the use of simulation to verify the models that are established in the tins 

study, and by the use of simulation to validate the techniques used in developing the mod

els. Some of the simulations produce new results that complement the current literature 

on warranty sunulation. 

An integral part of tiiis tiiesis is the extensive use of S-Plus in developing the many 

fimctions needed to complete the analysis. Although the S-Plus library of functions is 

vast, new fiinctions have been developed to do the processing required in this study. 

To summarise, this thesis extends the current warranty-cost models in the literature 

by presenting a practically-oriented, extensive study on warranty-cost modelUng that uses 

an Australian automobile manufacturer's entire database for one year's production. The 

database contains warranty data for the entire length of the warranty of all of these ve

hicles. The aim of this thesis is to use this database to model the manufacturer's cost of 

a warranty, and then to use the model to predict the cost when the warranty terms are 

extended. Confidence intervals, often not discussed in the literature, have also been es

timated m this dissertation. A further extension to the current literature is achieved by 

treating the cost of repair as a variable rather than as a constant, and by presenting simu

lations that verify the results of tiie modelling, and that validate the techniques used in the 

modelling. 

1.2 Thesis Outline 

This first chapter has identified tiie need for the current sttidy, and has established its 

significance in the literature. 

The next chapter discusses some perspectives on warranties. The purpose of that 

chapter is to provide some background to tiie modelling of warranty costs. 

Chapter 3 explores the way in which tiie warranty process can be modelled. In

cluded is a detailed discussion of the modelling of the two-dimensional warranty. The 

chapter also discusses tiie various approaches to warranty-cost modelling that has ap

peared in the literature. 

The manufacttirer's data is dealt with in Chapter 4. ft discusses the practical issues 

of managing tiie real database, including how tiie data is imported into S-Plus, what ex-
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ploratory data analysis is conducted, how errors in the data are detected and cleaned, and 

how the survival database is constructed. 

The theory behind the models used in this dissertation is then considered in Chap

ter 5. It discusses the assumptions made, the survival analysis methods used, the non-

parametric and parametric methods used to estimate the reliabiHty of components, and 

the use of the renewal process in modelling component reliability. This is then put to

gether to obtain the warranty cost of each component and then the overall warranty cost 

to the manufacturer. 

Chapter 6 discusses how these theoretical models are used in conjunction with the 

cleaned data from Chapter 4, to obtain a specific model for the data. Again practical issues 

of joining the data to the theory are discussed in this chapter. Exponential and Weibull 

models are used to fit specific data from the manufacturer's database. Model estimates 

of the cost of the current warranty and an extended warranty are made, together with 

confidence intervals for these costs. 

Chapter 7 consists of a number of simulations. A bootsfrap simulation is presented 

to verify the results of the modelling in Chapter 6. Further simulations that generate data 

representing a whole year's production are presented: one for a three-year warranty, and 

one for a five-year warranty. A sensitivity analysis on the parameters of the model is 

performed, and then three more simulations are presented. These explore the fitting of 

a model to warranty data under various situations that mimic the collection of warranty 

data. The results of the simulations are used to validate the techniques used hi modelling 

the data. 

The thesis concludes with a discussion of the findings and limitations of this study, 

and identifies areas that could possibly be further explored. 

A number of appendices have been included for completeness and ready reference. 

Contained in the appendices are a number of S-Plus scripts that have been used in the 

analysis of the data. These have all been written by the author of this thesis, specifically 

for this project, A feature of these functions is that they have been designed to handle 

input parameters, so that they can easily be reused with other data sets. It is also possible 

to adapt the functions to databases from different manufacturers. 

Apart from the S-Plus scripts, a number of graphs are contained in the appendices. 

They have been included in this dissertation because they support the discussion in the 
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main body, but have been placed in tiie appendices because there are too many to include 

in the body of tiie tiiesis. 

A compact disc has been included witii this thesis. It contains all the S-Plus scripts, 

functions and datasets that have been generated for tiiis project. Some tables that have 

been created are too big to include in the appendices, so they have been referred to on the 

compact disc. All the files and functions are included so that it is possible to run the entire 

project from scratch. However, many of tiie data objects have taken a lot of processing 

time and have been assembled over several months. In order to be able to view the files, 

S-Plus 2000 or S-Plus 6 needs to be mstalled on the viewing computer. Two main folders 

can be found on the compact disc: Warranty and Warranty6. Shortcuts, which can be 

used to launch the project in S-Plus, called Warranty and Warranty6 are included on the 

compact disc. This should copied onto the computer's desktop and used to start the S-Plus 

session, as it opens the project with the required objects for this project. 



Chapter 2 
Warranty Perspectives 

2.1 Introduction 

The previous chapter provided an outiine of this thesis and identified the need for this 

study. The practical nature of this dissertation was pointed out. This study uses an auto

mobile manufacturer's warranty database and discusses the detail of how this data is used 

to model the warranty cost of the manufacturer's warranty, and how this model is then 

used to estimate an extended warranty. Before starting the exploration and analysis of the 

data, a background to the study of warranty modelling is provided. 

This chapter discusses a few different perspectives on warranty. The first perspec

tive is a historical one. In the first section, the colourful history of warranties that has lead 

to the accepted present-day warranties is presented. A definition of a warranty is then 

given. A classification that is based on the terms of the particular policies follows this. 

Two-dimensional warranty policies, that are based on two attributes, such as time and us

age, are then explored in their own right. Following this are two sections that explore the 

link that warranties have with management and engineering. Business decisions involving 

aspects such as planning, marketing, warranty servicing policies, warranty reserves, le

gal obligations, and warranty data management are discussed in the management section. 

The engineering section considers the effects on warranty cost of issues such as product 

design and development, quality confrol programs and product maintenance policies. 

2.2 A History of Warranties 

The beginning of this section is adapted from Loomba (1996). 

Warranties can be traced back to the days of the Babylonians in the twenty-first cen

tury B.C. (Thomas, 1999). The eye-for-an-eye rule was one of the first policies imposed 

upon sellers and fradesmen. Examples of laws governing the frade of slaves and livestock 

are cited in Loomba (1996). The vendor had to provide a refund or replacement of goods 
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if a known defect was hidden from tiie buyer, witii a time limitation ranging from one day 

to one month. Examples in which the buyer had no redress are also cited. 

Warranties based on moral and religious virtues can be found in ancient worids, for 

example, in the Ancient Hmdu (circa A.D. 500), Early Islamic (circa A.D. 632-661) and 

Jewish (circa second centtiry A.D.) civilisations. They were also evident in Europe in 

the Middle Ages, where the powerfiil church denounced tiie selling of goods for profit. 

However, frade did exist and was accepted if it was not in the pursuit of profit, and the 

goods for trade were free of defects. Little, if any, comeback was available to the buyer 

of shoddy goods, hi tiie early fourth centtuy A.D., crafts became popular, but warranties 

were not needed as the merchants and products were locally known. 

The general rule of caveat emptor ("let tiie buyer beware") applied during the in-

dusttial revolution. This worked reasonably well because products were simple and the 

consumer could understand and evaluate tiiem before purchase (Blischke and Murthy, 

1994). Vendors were locally known and word of mouth was often used to assess a prod

uct. 

By the late nineteenth century in the U.S.A., standardised product warranties had 

emerged, but were very limited, due to the powerful position of the manufacturers. De

ceit, misbrandmg, adulteration and misrepresentation were widespread. Often warranties 

were offered without any intention of fiilfilling them and consumers perceived warranties 

to be an indication of poor quality. The growth of more complex products brought with it 

a greater need for consumer protection and the emergence of organisations that indepen

dently tested products. They were sponsored by insurance companies, underwriters and 

consumer-sponsored organisations. In 1914, the Federal Trade Commission in the U.S. 

established a set of codes for the selling of goods. Several versions of these codes were 

enacted by congress in the 1930s. 

In tiie meantime, tiie U.S. courts began to make exceptions to the rule of caveat 

emptor. Kelley (1996) described a prune case. In 1939, Baxter challenged the Ford 

Motor Company m tiie courts, over its advertismg claim that their vehicles had a triple 

shatterproof glass wmdshield. Baxter sustained mjuries after a stone struck his windshield 

and shattered it. Ford argued that no warranty could exist without privity (tiiat is, direct 

contt-acttial relationship between buyer and seller), and that express warranties do not 
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attach themselves to the product sold. The Washington Supreme Court disagreed with 

Ford. 

By 1952, all states except Louisiana had adopted the Uniform Commercial Code. 

The code specified a manufacturer's obligations for both express and implied warranties. 

In express warranties, the emphasis was that the seller's promise to provide goods that 

fitted the promised description formed part of the deal. When an express warranty was 

not given, an implied warranty of merchantability applied to goods sold. The Commercial 

Code was primarily aimed at commercial fransactions and was suppletory, not regulatory. 

The rationale for this was that merchants were expected to have sufficient knowledge and 

bargaining power to protect themselves in commercial transactions. 

Consumers, on the other hand, did not have this expertise and bargaining power. 

Hence, there was a need for regulatory laws. The Magnuson-Moss Warranty Act was en

acted in 1975 for this purpose. It followed ten years of studies, proposals and hearings 

aimed at overcoming warranty problems such as excessive use of disclaimers, inadequate 

coverage, consumer difficulty in obtaining warranty service and complex warranty lan

guage. The Act specified that a fiiU warranty was to provide for the free replacement of 

defective goods for an unlimited duration, and was to include compensation for inciden

tal damages. It also specified that a seller did not have to offer a full warranty, but could 

provide a limited warranty, where the terms and limitations were specified. Needless to 

say, many manufacturers changed their warranties to read "Limited Warranty" after the 

passing of this act. The act also specified that an impUed warranty of merchantability was 

inferred in the sale of all goods, and could not be reduced by a limited warranty. The im

plied warranty stipulated that goods were to be "fit for ordinary purposes for which such 

goods are used" (Kelley, 1996). 

According to Beerworth (1991), the most important sources of product liability 

rules in Ausfralia are the tort of negligence (the common law) and Division 2A, Part V, 

Trade Practices Act 1974. The law of negligence imposes liability upon a person who does 

not use reasonable care in the manufacture and design of a product. Division 2A, on the 

other hand, imposes liability upon a manufacturer for a product which is unmerchantable 

or unfit for its stated purpose. 

By the second half of the twentieth century, dramatic changes were taking place in 

the role and importance of warranties, in relation to product sales and service. Blischke 

and Murthy (1992) identified four main factors responsible for this. Firstly, consumers 
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were becoming more aware of their rights as a result of consumer groups being more ac

tive and vocal. Secondly, governments were responding to tiie concerns of these groups 

and were legislating to protect tiieir rights. Thirdly, manufactiirers were reacting to pres

sures from both consumer groups and governments. Lastiy, manufacturers were realising 

tiie unportance of warranties as a marketing tool. (This is discussed fiulher in Section 

2,6,) 

By the late 1980s, consumers were becoming more quality sensitive, Manufactiirers 

responded to tiiis demand by producing high quality products and backing tiiem up with 

longer warranties. Menezes and Quelch (1990) identified three factors for this consumer 

focus on quality. These comprised tiie availability of quality products originating from 

Japanese companies; tiie fact that many consumers have high disposable incomes but 

littie time or inclination to deal with product failure; and increased product complexity, 

often leaving the consumer unable to judge quality before buying the product. 

By the 1990s, manufacturers have focussed on customer satisfaction. Warranties 

were seen as a means of assuring this satisfaction. For example. General Electric in the 

U.S. had a "satisfaction guaranteed" program for all its major appliances that allowed 

customers to retum any appliance within ninety days, no questions asked (Menezes and 

Quelch 1990). Similarly, in Ausfralia, O.P.S.M. currently offers a spectacles warranty 

which includes free exchange with glasses of comparable value during the first four weeks 

if customers are dissatisfied for any reason. 

2.3 Definition of a Warranty 

In simple terms, "a warranty is a producer's guarantee that a product or service will ad

equately meet performance requfrements for a certam period" (Thomas, 1999). More 

specifically, it is that a warranty is a contractual agreement between a manufacturer, or 

seller, and a consumer, tiiat a product is, or certain of its performance characteristics are, 

free from defects m materials and workmanship; it is a commitinent to correct problems 

if tiie product fails during tiie warranty period (Menezes and Quelch, 1990, and Blis

chke and Murthy 1992 and 1994). If the product is not used under the specified normal 

conditions, tiie warranty is nullified, and tiie manufacttirer's obligations are released. A 

manufactiirer can also use a warranty to identify tiie limitations of liability when the prod-



2.4 Classification of Warranties 11 

uct is used in the specified manner. For the consumer, a warranty is an msurance policy 

against product defects. 

2.4 Classification of Warranties 

The following classification of warranty policies is an adaptation of the taxonomy pre

sented by Blischke and Murthy (1992 and 1994). The policies are not necessarily mutu

ally exclusive. 

1. Free Replacement Warranty: With this warranty, the manufacturer either replaces, 

repairs or reimburses the customer for a failed product for a period of time tyj 

commencing from the time of the initial purchase. This policy is the most common 

warranty on consumer goods, ranging from nomepairable inexpensive products, such 

as film, to expensive repairable items, such as automobiles and refiigerators. 

2. Pro-rata Warranty: In this warranty, a manufacturer agrees to refiind an amount 

in proportion to the remaining time left on the warranty bounded by time t^j from 

the time of the initial purchase. This policy is appropriate for products such as 

automotive batteries and tyres, that wear out and must be replaced when they fail. 

3. Combined Free Replacement and Pro-rata Warranty: Up to time t^i, this policy is a 

free-replacement one. Between tyji and tw2 (where t^\ < 1^2) the warranty converts 

to a pro-rata policy. 

4. Renewing Warranty: Upon failure of a product during the warranty period, a 

replacement is made, and the warranty starts anew. This policy is offered with 

inexpensive electrical, elecfronic or mechanical products where the warranty is 

contamed inside the product's packaging. By returning the new warranty regisfration 

card, the warranty starts anew. 

5. Fleet Warranty: A group of A'' items are covered as a lot, for a total period of Ntyj. 

This type of warranty is applicable to components of industrial and commercial 

equipment bought in lots, as spares, and used one at time until failure. This policy 

was referred to as the fleet warranty by Berke and Zaino (1991), who pointed out that 
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tiie fleet warranty has advantages to tiie manufactiirer over the combination policy 

because the effect of infant mortality is averaged out with longer wearing parts. 

). Reliability Improvement Warranty: This policy has evolved from airiine companies 

purchasing commercial aircraft and is now mandatory for any U.S. Department 

of Defense purchase of military equipment (Nenoff, 1988). Under this policy, the 

manufactiirer undertakes to repair or replace tiie product or its components within a 

specified ttimaround tune, and make design and engineering changes necessary to 

meet the required reliability, as measured by the mean time between failure. This 

type of warranty has also been referred to as the essential performance requirements 

warranty (Gilbertson, 1989). 

The above policies can be restricted on one variable, such as calendar time or usage 

(measured, for example, by distance fravelled or flying hours), or on two variables, such 

as tune and usage. The two-dimensional warranty is usually offered in the automobile 

and aviation industries. 

In any of these policies, replacement or repafr upon failure is at the manufacturer 

or repairer's discretion, but may be written into the warranty policy. Replacement is 

appropriate for non-durable and inexpensive consumer goods, or where the cost of repair 

would be greater than the cost of replacement. Repair is more appropriate for expensive, 

durable goods. 

When a manufacturer wants to limit the warranty by usage, but does not want to 

impose a two-dimensional warranty, he may offer different policies to different segments 

of consumers. For example, home users may be offered a two-year warranty on a washing 

machine, whilst an industrial or commercial user may be offered six months. 

In the next section, two-dimensional warranty regions are categorised. 

2.5 Two-Dimensional Warranty Regions 

Some products or components age with both use, due to wear, and time, due to rusting, 

as well as being affected by humidity and other environmental factors (Singpurwalla and 

Wilson, 1993). In such cfrcumstances, it is appropriate to limit the warranty by time and 

usage. 
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The two-dimensional warranty has been referred to under different names by vari

ous authors. Moskowitz and Chun (1994) and Chun and Tang (1999) called it the "two-

attribute warranty". Farewell and Cox (1979) referred to multiple time scales, while Law

less (1995) and (1998) described it in terms of covariates. The term "two-dimensional 

warranty" is used in this dissertation. 

Two-dimensional warranties can be subdivided according to the two-dimensional 

regions representing their policies. The following two-dimensional warranty policies are 

an adaptation of those presented in Blischke and Murthy (1992) and (1994), Murthy, 

Iskandar and Wilson (1995), Singpurwalla and Wilson (1993), and Chun and Tang (1999). 

1. Rectangular Region-Vi^ytre 2.1(a): Coverage is for a maximum time tw and usage 

Uyj, whichever comes first. Cars and aeroplanes typically come with this type of 

warranty. 

2. L-shaped i?egion-Figure 2.1(b): This policy is a compromise between Policy 1 and 

Policy 2 above. Under this policy, the product is covered for a minimum time period 

tyji and for a minimum usage u^x. The manufacturer's obligation is limited by a time 

t^2 and usage Ui„2- Because of the time and usage restrictions, neither heavy users 

nor light users subsidise the other. Again, no product is known to be covered by this 

policy. 

3. Infinite L-shaped Region-^i^(\xe 2.1(c): Coverage is for a minimum time t^ and 

minimum usage Wu,, whichever occurs later. No product is known to be offered with 

this warranty. As failure of most products depends upon both usage and age to some 

extent, a manufacturer would be reluctant to offer this open-ended warranty. 

4. Triangular Region-Vigare 2.1(d): This policy is an extension of Policy 3, where a 

linear decrease from a maximum usage is used instead of a cut-off at u.^u2. This policy 

covers a product up to a maximum time, î y, from purchase and for a maximum 

usage ofuyj. Conceptually, this is the fairest policy since neither heavy nor light 

users subsidise each other, and this is accompUshed in a smooth way, avoiding the 

jumps in Policy 2. Again, no product is known to come with this warranty policy, 

perhaps because of the complexity for the lay-person to determme whether they are 

still covered by warranty. This could lead to customer dissatisfaction. 
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Fig. 2.1. Two-dimensional warranty policies. 

5. Circular Region-Ti^re 2.1(e): This is another variation of tiie triangular region in 

an attempt to make the warranty poUcy fairer for the average user. 

6. Flexible Region-Vi^yre 2.1 (f): This policy is referred to as the iso-cost policy by 

Chun and Tang (1999), and tiie flexible two-attribute policy by Moskowitz and 

Chun (1994). With this policy, a customer can choose, at purchase, any rectangular 

warranty plan represented as a pomt on the iso-cost curve. The iso-cost curve is 
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determined so that any point on the curve has the same expected warranty cost to 

the producer. Moskowitz and Chun (1996) and Gertsbakh and Kordonsky (1998) 

highlighted the appeal of this policy, as the flexibility may be attractive to a variety 

of customers. 

Other variations of the two-dimensional region have been reported in the literature, 

but the above are probably the most practical. One variation is the unlimited distance 

warranty that is offered with the sale of some vehicles. This warranty is dependent on 

time only, and so is, of course, a one-dimensional warranty. 

The rectangular region of Figure 2.1(a) is the one in most common usage in the 

automobile and aviation industry. It is simple to implement, and leads to littie, if any, 

discrepancy. 

For most other products, a one-dimensional warranty is offered, and consumers 

usually have a limited range of usage. Heavier users, such as commercial users, are 

generally offered a shorter time under warranty. Interestingly, in more recent years, this 

policy has been offered with imported cars in Ausfralia. It favours the heavy user. 

Many of the other policies of Figure 2.1 are attractive since they are fairer to all 

users. However, there do not appear to be any products offered with these other policies 

because they are more difficult to implement, more costiy to administer, and more likely 

to lead to disputes and ill-feeling amongst customers. 

A pro-rata variation on these two-dimensional policies is also possible. For exam

ple, with the Rectangular policy, the first part of this policy is identical to Policy 1, where 

the product is covered for a maximum time of tĵ i or usage Uy,\. The pro-rata period ex

tends this to a maximum time t^2 or usage ŵ 2 on a pro-rata basis. This is illustrated in 

Figure 2,2. Again, there do not seem to be any products covered with this warranty policy. 

This study focuses on the two-dimensional, free-replacement warranty. 

2.6 Warranty and Management 

Blischke and Murthy (1992) identified tiie type of questions that a manufacturer needs to 

answer about warranties: What is the cost of a specific warranty? How do the competitors' 

warranties compare? How does the cost of warranty change with a change of parameters 

(for example, duration, form of rebate)? How does one optimise the choice of warranty 
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Fig. 2.2. Two-dimensional pro-rata policy. 

when multiple business objectives are involved? What is the optimal sfrategy for servicing 

a warranty? What kinds of data are needed and how should the data be analysed? What 

are the optimal decisions with regard to product design and manufacture, given that the 

product must be sold with a specific type of warranty policy? 

A number of publications have endeavoured to integrate the many aspects of war

ranty analysis. Most notable of these are Blischke and Murthy (1992) and (1994), Murthy 

and Blischke (1992a) and (1992b), and reviews by Hill and Blischke (1987), Blischke 

(1990) and more recentiy, Murthy and Djanaludin (2002). 

The discussion in this section reviews some of the literature that explore various 

issues of warranty analysis. 

2.6.1 Decision-Making 

Management is faced witii setting many production variables in the manufacturing process. 

Some smdies have attempted to provide a management model based on various decision 

variables. For example, Mifra and Pantankar (1993) provided a model that integrates the 

marketing, production and financial variables mto a multi-objective fiinction. Decision 

variables included tiie price, warranty length, production quantity, and lot size. System 

constt-aints on tiie above decision variables were based on minimum and maximum values 

between which those variables should lie. Several goals were considered at different lev

els of priorities. Thus, optunisation of specific goals, such as cost minimisation or profit 

maximisation was made possible by adjusting the decision variables. 
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The life cycle approach has been used by some authors. For example, Murthy and 

Blischke (2000) discussed engmeering (technical) issues and management (commercial) 

issues that affect a product throughout its life. A product's life-cycle can be divided into 

three broad phases. The prelaunch stage, which includes product design, development of 

a marketing plan and the specification of a warranty. The launch phase focuses on the 

target launch date. The postlaunch phase includes servicing the product, feedback and 

design revisions, and fulfilling the warranty obligations. By integrating warranty policy 

with other aspects of decision-making, the cost of a warranty can be well planned for. 

Another example of a study using the product life cycle approach was the one by 

Polatoglu and Sahin (1998). It investigated the probability distributions of the manufac

turer's rebate, cost, revenue and profit during a cycle under a renewing, combination free 

replacement/pro-rata warranty policy. 

A manufacturer needs to estimate the warranty cost of a product so that it can be 

built into the purchase price. Blischke and Scheuer (1975) modelled the long-term profit 

to the producer when a product is sold with and without a warranty. Both the free-

replacement and pro-rata warranties were discussed. In the same stiidy, the long-term 

cost to a buyer was also modelled. 

2.6.2 Marketing 

A favourable warranty can reduce consumer-perceived risk and can be used as a market

ing tool. For example, Chrysler in the United States extended its power frain warranty 

from two years/24,000 miles to seven years/70,000 miles, and Chrysler aggressively ad

vertised this fact. Industry analysts calculated that this resulted in Chrysler gaining at 

least one market share percentage point (Menezes and Quelch, 1990). Another example 

was Hyundai's extension in 1990, of its one-year warranty to tliree-years/60,000 kilome-

fres. This attempt to gain a greater Ausfralian-market share on its relatively new Excel 

resulted in a sales increase of 40% in the following year (Hyundai, 2004.) 

As Murthy and Blischke (1992a) pointed out, manufacturers are sometimes forced 

to offer better warranties in order to keep up with the competition. A good example of 

this can be found in the automobile industry, where the frend to offer less favourable war

ranties in the sixties and early seventies was reversed after the penefration of the market 

by Japanese cars, which were offered with more favourable warranties. By the turn of the 
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cenhiry, Australian manufactiirers were offering 3 years/100,000 kilometres as a standard 

warranty because of pressure from importers. 

In a highly competitive marketplace, manufactiirers see customer satisfaction as 

important. Murthy and Blischke (2000) pointed out tiiat product support, through the 

servicing of a warranty, is important in fostering customer good-will, and can lead to 

subsequent sales. According to Stahl and Grigsby (1997, page 165), Ford estimates that 

it costs five times as much to attract a new customer as it does to retain an old one. 

Menezes and Quelch (1990) argued tiiat from a manufacttirer's perspective, cus

tomers that experience a problem with their product should be encouraged to invoke the 

warranty for two reasons. One is that consumers with problems often do not complain, 

they just switch brands. A second reason is that a dissatisfied customer has the poten

tial to do harm by spreading strong negative word-of-mouth comments about the product. 

A customer that feels satisfied with problem resolution is more likely to be loyal to that 

brand and spread positive word-of-mouth communication. 

Elsayed (1996, page 475) summed it up as foUows: 

The increasing worldwide competition is prompting manufacturers to introduce in

novative approaches in order to increase their market shares. In addition to improv

ing quality and reducing prices, they also provide attractive warranties for their 

products. In other words, warranties are becoming an important factor in the con

sumer 's decision-making process. For example, when several products that perform 

the same function are available in the market and their prices are essentially equal 

the customer's deciding factor of preference for one product over the other includes 

the manufacturer's reputation and the type and length of the warranty provided with 

the product. Because of the impact of the warranty on future sales, manufacturers 

who traditionally did not provide warranties for some products and services are 

now providing or required to provide some type of warranty. 

2.6.3 Warranty Servicing Policies 

Some stiidies have analysed the costs of different warranty servicing policies. For ex

ample, Dagpunar (1992) compared the cost of two warranty servicing policies. The first 

policy is an adaptive repafr-cost Irniit, which is set dynamically according to the age of 



2.6 Warranty and Management 19 

the product and the length of warranty remaining. The second is a constant repair-cost 

limit throughout the warranty period. Dagpunar concluded that there was little cost bene

fit in the adaptive policy, especially when the additional adminisfrative costs of the policy 

are taken into consideration. 

In the case of automobile warranty claims, repair is almost certainly the only option, 

as replacement of the entire vehicle would be unnecessary and far too expensive. Thus, 

the above sfrategies are not used in this thesis. 

2.6.4 Warranty Reserves 

A number of studies have modelled the size of the warranty reserve needed to honour a 

warranty. For example, Menke (1969) considered a nonrepairable product sold with a pro

rata warranty that had an exponential failure distribution. Amato and Anderson (1976) 

factored into the model the present-day value of warranty claims and changes in the price 

level. Thomas (1989) extended the warranty reserve models by considering the uniform, 

gamma and Weibull failure distributions. EHashberg, Suigpurwalla and Wilson (1997) 

made fttrther extensions by modelling warranty reserves for two-dimensional warranties. 

Jun and Pham (2004) modelled the warranty reserve for the free-replacement and pro

rata warranty policies when the value of money in discounted over time and the repair in 

minimal on a series system. 

In the current study, the warranty cost per vehicle is estimated, from which a war

ranty reserve can then be calculated. 

2.6.5 Legal Obligation 

Legal liability is a cost that the manufacturer may have to meet. Morgan (1982) stated 

that the cost of liability from product warranties has been increasing over the years. 

Blischke and Murthy (1994) identified the following areas for which a manufacturer 

can be held liable: negligence, including breach of duty of reasonable care with regard to 

design, manufacture, inspection and the warning of any foreseeable danger; the quality of 

the product, including any physical harm or injury caused by a product used according to 

the manufacturer's instructions; misrepresentation, if unrealistic performance claims are 

made about a product, be they false representation, or based on laboratory or consumer 
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research; and breach of warranty, when a manufactiirer does not honour the terms of tiie 

warranty. 

2.6.6 Data Collection and Management 

The importance of data collection and management was pointed out by Lawless (1998, 

page 41): 

Ifconstinicted and maintained properly warranty data bases may be used to pre

dict future claims, to compare claims experience for different groups of products, 

and to study variations in claims relative to factors such as time and place of man

ufacture, or usage environment. In some circumstances warranty data may also be 

used to estimate the field reliability of products and to identify opportunities for the 

improvement of quality and reliability. 

2.7 Warranty and Engineering 

A manufacturer's warranty cost depends upon the reliability of the product. The reliabil

ity of a product, in turn, depends largely upon its design characteristics and the ability of 

the manufacturing process to produce an item according to the specified design. Greater 

reliability is achieved by improvements in the design and development of a product, and 

improvements in quality control during the manufacturing process. These improvements, 

however, come at a cost, and an engineering decision has to be made as to where the 

balance between these competing expenses should lie. Studies that explore the connec

tion between warranty cost and engmeering design and manufacture are discussed in this 

section. 

2.7.1 Manufacturing Stages 

Blischke and Murthy (1994, Chapter 10) presented a comprehensive discussion of the 

relationship of warranty cost and various engineering decisions. The effects on warranty 

cost of engineering decisions made at the design stage, the manufacturing stage and pre-

sale testmg stage were explored. Blischke and Murthy developed a manufacturing cost 

model that was dependent on warranty and manufacturing costs, both of which, in turn. 
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were dependent on the parameters of the reliability of the product. These parameters were 

considered to be a variable that can be adjusted by the engineer, and which can take on 

values within a given range. 

2.7.2 Quality Control 

The study of warranty data provides an opportunity to monitor the reliability of a product. 

As Suzuki (1985) put it, a warranty "serves not only the owners, but also the manufac

turers who wish to monitor the reliability of their products". Put in another way, "the 

ultimate test of a manufactured product is how well it performs in the field, that is, in 

the hands of the customers" (Lawless and Kalbfleisch, 1992). An example of a company 

that uses warranty data to monitor its manufacturing is given by Firestone, who use their 

monthly warranty analysis as an early warning system (Menezes and Quelch 1990). 

Quality control is part of the manufacturing process and is achieved through in

spection and pre-sale testing. Reducing batch sizes and increasing inspection increases 

the reliability of the end product, thus reducing warranty costs, but this is paid for in in

creased production costs. Many authors have discussed the issue of optimal batch size 

that minimises both production and warranty cost. For example, Chen, Yao and Zheng 

(1998) developed an end-of-production inspection procedure for batch-produced items. 

Their aim was to identify a checking policy that minimised warranty and inspection cost. 

The approach was to choose a sample from a batch of items. The batch was considered 

satisfactory if a threshold of defective items for a given sample size was not reached, and 

inspection was stopped. If the threshold was passed, fiirther inspection was conducted, 

either until the threshold for the increasing sample size was met or the entfre batch was 

inspected. In this way, a balance between inspection and repair cost and warranty cost 

was achieved. Wang and Sheu (2003) also discuss the frade-offs between manufacturing 

cost and warranty cost. They developed a cost model to find the optimal production lot 

size to minimise the total production and warranty cost. 

Bum-in tests are used to find infant failures, improve the reliability of a product, 

and reduce warranty costs and customer dissatisfaction. This is particularly applicable to 

electronic components where infant mortality can be high. Kar and Nachlas (1997) used 

a renewal-theory approach to develop a net profit function that included bum-in cost, an 

in-plant component replacement cost, and a warranty cost. This non-convex fiinction is 
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optmiised by using a sequential search over tiie extreme points of the feasibility region. 

The methods used in tiiis sttidy apply to decreasing hazard systems only, which limits the 

shape parameter of the Weibull model to less than one. 

Warranty data can be used to monitor tiie rehability of components in a system. 

Lu's (1998) sttidy was concemed with usmg early vehicle warranty data (4 or 5 months 

in service) to predict potential reliability problems. Such problems could have resulted in 

a product recall or other corrective action. Using data from Chrysler on a range of 23,365 

cars of various models and 8,752 tiiicks, produced between 1983 and 1986, Lu modelled 

mileage accumulation rates on the lognormal disfribution. The Weibull distiibution was 

used to model the time to failure of vehicles. The reliability for each 1,000-mile inter

vals was calculated, and tiie data exfrapolated to predict fiittire claims. Early detection 

of reliability problems was also the subject of Wu and Meeker's (2002) study. They de

veloped a procedure to detect potential problems from early warranty data, using botii 

statistical decision rules and graphical methods. These techniques discussed in both of 

these stiidies would be very useful "quality control" information tiiat could be used in the 

manufacturing process. 

2.7.3 Predictive Model and Warranty Data 

Majeske and Herrin (1998) compared the warranty cost predicted by a manufacturer's 

model against field data. They used two sets of warranty data to make their comparisons. 

The first set involved the redesigning of the radio to allow for new features, such as a 

compact disc player. The manufacturer used an exponential model and found that the 

warranty data showed a failure rate of twice that predicted by the manufacturer's model. 

Majeske and Herrin concluded that the Weibull model provided a better fit to the data than 

did the exponential model. 

The second set of warranty data was based on the brake subsystem of a luxury car. 

The manufactiirer redesigned some components within the system (for example, brake 

pads, rotors) to utilize state of the art materials. A Weibull model was used to predict the 

lifetime of tiie brake subsystem and it provided a good fit to the data. However, the model 

used by the manufacturer under predicted the number of warranty claims by a factor of 

four. Majeske and Herrin found that the bench test focused on mducing catastrophic 

failures tiiat mdicated the end of a brake component of subsystem life, and excluded other 
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less severe failures, such as uneven wear in the brake pads and rotors. They concluded that 

manufacturers need to verify the predictive models obtained from bench testing against 

warranty data, and that the failure mode needs to be considered. 

2.7.4 Maintenance Scheduling 

The scheduling of preventive maintenance to minimise warranty costs has received atten

tion by some authors. Chun (1992) included a scheduled preventive maintenance cost and 

a repafr cost at failure for a product. His objective was to determine the optunal number 

of preventive maintenance operations during the warranty period in order to minimise the 

manufacturer's overall cost. He considered the case where preventive maintenance was 

imperfect, and repair at failure was minimal. 

In a similar but more in-depth study, Lin, Zuo, Yam and Meng (2000) developed a 

cost model that incorporated warranty, periodic preventive maintenance and repair upon 

failure of a system. The study's aim, however, was to find the optimal design of a mixed 

series-parallel system. The overall cost, includuig manufacturing and set-up expenses, 

maintenance expenses and warranty costs was optimised. 

In yet another study, Chen and Popova (2002) developed a maintenance pohcy to 

minimise servicing cost for an item with a two-dimensional warranty. An iterative pro

cedure is used to estimate the item's failure rate distribution from warranty data, The 

authors used an algorithm based on Monte Carlo simulation to obtain the optimal main

tenance policy. 

In all three studies, the preventive maintenance cost was borne by the manufacturer. 

This may be the case with large military or civil projects, or with the reliability improve

ment warranty policy, but is generally not the case with consumer goods. Although there 

have been examples of car importers in Ausfralia taking up the scheduled maintenance 

costs, it is generally not the practice, with the maintenance usually being paid for by the 

consumer. In this thesis, it is assumed that maintenance cost will be met by the consumer. 

2.8 Conclusion 

The purpose of this chapter has been to present some perspectives on warranties and thus 

provide some useful background to the study of warranty-cost analysis. Literature that 
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discusses a range of warranty issues has been presented. In this chapter, the scope and 

significance of this study have been discussed. Various warranty policies have been clas

sified according to the terms of the rebate. Two-dimensional warranties, which are of 

interest in this study, have also been classified. The links between warranty and manage

ment, and warranty and engineering have been explored. 

The next chapter explores warranty modelling. It discusses the modelling of the 

warranty process, including two-dimensional warranties. The chapter also surveys current 

literature on the various approaches to modelling warranty costs. 



Chapter 3 
Warranty Modelling-A Review 

The last chapter presented a broad overview of warranties. The purpose of this 

chapter is to enlighten on the breadth of approaches to warranty modelling that exist m the 

literature. The chapter starts with a consideration of the processes involved in modelling 

the warranty cost, from when a fault occurs, through to the cost of rectifying the problem. 

This is followed by a discussion of the modelling of two-dimensional warranties. The 

chapter ends with an expose of a number of approaches used for product reliability and 

warranty costing. 

3.1 Modelling the Warranty Process 

The warranty process consists of item failure as perceived by the customer, the customer's 

response to that failure, and the manufacturer's or repairer's response to a customer's 

claim, if one is made. The following comprises a discussion of the modelling involved at 

each of these stages. 

3.1.1 ModeUing Failure Mode 

Murthy and Blischke (1992b) identified two ways of modelling the time to failure: phys

ically based or black-box based. The former approach is based on the physical nature of 

the failure, where items are considered to receive shocks of random magnitude at random 

time intervals. In the Shock Damage model, item failure occurs at the first instant that 

a shock exceeds a critical value. In the Cumulative Damage model, item failure occurs 

when the cumulative damage exceeds some critical value. In both cases, the time to fail

ure is a random variable, and obtaining its distribution fiinction involves the analysis of 

the stochastic process characterising the shocks. 

In the black-box approach, the physics of the failure is not considered at all. The 

time to failure, X, is taken to be a random variable with a distribution function, F{x), 

based on the modeller's physical judgement and on historical data. 

Many complex products have a modular design. Each module is made up of a 

number of components, the failure of any of which results in module failure. Thus, to 

25 
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model failure, component failure needs to be related to module failure, and module failure 

needs to be related to item failure. Thus, the modelling of failures in a complex system 

can become very difficult. One smiplification is to assume that the failure of a module 

does not affect the failure of other modules. 

3.1.2 Modelling Time to First Failure 

Item failures occur randomly over tiie time continuum. Thus item failures, in tiie case 

of one-dimensional warranties, can be freated as random points along a time axis. The 

two-dimensional case is discussed in Section 3.2. 

Ascher (1992) pointed out tiiat it is important to differentiate between the modelling 

of repairable and nomepairable systems. It is appropriate to model the time to failure of 

a nomepairable item or part with a suitable probability distribution function. Ascher 

suggested the approach outlined in Figure 3.1 (which is adapted from Figure 3 of Ascher) 

for analysing the inter-arrival times of a repafrable system. For a repairable system, a 

distinction needs to be made between the first failure and subsequent failures of an item 

because any subsequent failure depends on the repair or replacement policy, as discussed 

in Subsection 3.1.5. In fact, early models of warranty costs, such as those of Menke (1969) 

and Amato and Anderson (1976), ignored the repair process altogether and were based on 

tiie time to first failure only (Hill and Blischke, 1987 and Blischke, 1990). Considering 

first failure only, the expected warranty cost of an item with a warranty length of time 

length tu; is given by 

C(t^) = CsF{t^), 

where ĉ  is the cost to supply tiie item and F(-) is the probability distribution for the 

failure of the item. 

The failure of components withm a system is being modelled in this sttidy. As such, 

tiieir failure is bemg modelled by a suitable distribution fiinction. 

3.1.3 ModeUing Customer Claim Behaviour 

Not all failures lead to clarnis, as tiie buyer may decide to put up with a minor defect. If the 

product is subjected to regular maintenance, tiie failure may not be reported until the next 

scheduled service. Rai and Singh (2004) addressed the issue of the existence of spikes in 

warranty claims towards tiie end of a warranty period, and provided a methodology for 
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Fig. 3.1. Statistical anlaysis of successive inter-arrival times of a repairable system. 

plotting the hazard fimction of components. This issue clearly puts another complexity 

on the modelling of failure times, as the reported times may not represent the true time of 

failure. Figure 3.2 shows that the spikes appearing in timing of claims for the data used 

in this study, although existent, are not very severe. Thus, their impact will be minimal. 

Indeed, from the manufacturer's point of view, modelling the claim time instead of the 

actual failure time is sufficient in terms of estimatmg the cost of the warranty. However, 

if the reliability of a component needs to be analysed, then the existence of claim spikes 

needs to be considered. 
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Fig. 3.2. Claims density. 

On the other hand, a buyer may attempt to make a false claim, as may be the case 

if the item was misused. The manufacturer or repairer incurs a cost in processing the 

claim, and a further cost if the repafr is carried out. If the manufacturer refuses to carry 

out the repair, fiirther costs may be incurred in the form of litigation or the tarnishing of 

a reputation. The manufacturer then has to decide whether or not to honour the claim. 

As these issues are difficult to quantify, their inclusion adds complexities to the model. 

These complexities are not considered in the current study, and all claims in the warranty 

database have been assumed to be bona fide. 

3.1.4 ModeUing Rectifi cation Action 

A manufacturer usually has the option to repair or replace a product when it fails under 

warranty. If tiie product is expensive and complex, repak is usually the only viable option. 

The performance of the product after repafr depends on the nattire of the rectification ac

tion carried out. Murthy and Blischke (1992b) and Blischke and Murthy (1994) identified 

five main types of rectification actions: 
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1. Replacement: In the case of inexpensive items, or components of more complex 

ones, replacement is the usual option. The failure distribution of the new item or 

component would be the same as the original item, provided no design or production 

changes have taken place since the first item was produced. 

2. As-good-as-new repair: Under this type of repair, a complex product is brought back 

to its original condition. The product's failure distribution after repair would be the 

same as that of a new item. 

3. Minimal repair: Under this type of repair, the product is brought back to its condition 

just before failure. Its failure rate would be the same as it was just before repair. 

4. Between as-good-as-new and minimal repair: The repair here may be a major 

overhaul, leaving the item with a lower failure rate than before the repair, but not as 

low as the failure rate of a new item. This may be modelled by a different failure 

distribution or distributions, which may depend on the number of repairs. 

5. Imperfect repair: Under this type of repair, an item is left in a worse condition than 

before the repair. This could be due to a number of reasons, such as the installation 

of a faulty part, human error or the damage of another part during the repair process. 

The effect that these repair-types have on the failure rate are represented in Figure 

3.3, which has been adapted from Figure 2, Blischke and Murthy (1992b, p.5). 

The analysis in this tiiesis is on a component level, with each repair consisting 

of a replacement of a component. Therefore, the new component has the same failure 

distribution as the original one, assuming that no design or manufacturing changes have 

taken place, and the rest of the components are taken to be unaffected. That is, the repair 

of the vehicle is taken to be minimal for all components other than the replaced one. 

Section 5.2 contains a more comprehensive discussion of the assumptions made in the 

modelling used in this study. 

The time needed to carry out a repair consists of processing time, time to diagnose 

the problem, repair or replacement time, testing time, and time to retum the item to the 

buyer, which can all be aggregated mto one repair time. Repair tune is important in 

warranties that include a penalty for down time, as is the case in a reliability improvement 

warranty (see Section 2.4), It is also of interest to buyers as this time deprives the buyer 
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Fig. 3.3. Failure rates after various repairs. 

of the use of the item, which may then lead to additional costs and loss of revenue. Repair 

time can be modelled as a random variable, having its own distribution. If the repair time 

is small compared to time between repairs, it can be taken to be zero. That is the case in 

this thesis. 

3.1.5 ModeUing Subsequent Failures 

The modelling of time to failures after the first failure depends upon the rectification 

action after a failure, as discussed in the last section. 

When a system is repaired as-good-as-new, tiie failure distribution of the repaired 

item is identical to tiiat of tiie item when it was new. Similariy, a replacement part has the 

same distribution as the original if there have been no design or manufactiiring changes. 

Botii of tiiese sittiations can be modelled by a renewal process, where the time between 

renewals has a disfribution which is the same as the failure distiibution of the first failure. 

A detailed formulation of the renewal process is shown m Section 5.6. 

If an item is always subjected to minimal repafr after failure, its failure rate after 

each repafr would be identical to its failure rate just before failure. Thus, the item's 

first and subsequent failures can be modelled by a non-stationary Poisson process with 

mtensity function given by the failure rate. 
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When an item is subjected to repairs other than as-good-as-new or minimal repair, 

the failure rate is not the same as that of a new item, or the item just before failure. 

Some works on imperfect repair appear in the literature, but these are from the inspection 

monitoring and maintenance viewpoint (for example, Pham and Wang, 1996). 

3.1.6 Modelling the Cost of Rectification 

When a warranty claim is made, the manufacturer incurs a variety of costs. These costs 

comprise an administrative cost (even if it is not a valid claim), the cost to repair or replace 

the item, a retailer's handling cost, a spare parts inventory cost and possibly a transporta

tion cost to collect and retum the item. These costs can be aggregated into one service 

cost. This service cost depends on the product characteristics and the usage pattems of 

consumers. Thus, it is a random variable which can be modelled by a suitable distribu

tion function. If the variability in service cost is small, it can be treated approximately as 

a deterministic quantify. This seems to be the case in studies to date. The current study 

freats the cost of repair as a variable. 

Let us first look at a model of the manufacturer's cost of servicing a free replacement 

warranfy when a failed item is replaced. Suppose that ĉ  is the average manufacturer's 

cost of supplying an item. This cost includes all costs of doing busmess, including manu

facturing, distributuig and advertising, but excludes warranfy costs. Let C(tT„) be the total 

cost of supplying the item with a warranfy of length t^. Then the total expected cost of 

an item under warranfy is 

E[C{t^)]=Cs[l + M{t^)], (3.1) 

where M(-) is the ordinary renewal fiinction associated with the distribution fiinction 

F{-) (see Subsection 3.4.5), and E{-) denotes the expected value. Renewal fimctions are 

difficult to evaluate in all but a few simple distributions, and this poses a problem for 

solving (3.1). However, extensive tables for various distributions are given in Baxter, 

Scheuer, Blischke and McConalogue (1981), and numerical methods are available, such 

as those provided by Xie (1989). 

If the item is repaired instead of replaced, with the repair cost being constant (Cr), 

and the repair is as-good-as-new, then (3.1) can be modified to give the expected cost of 
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supplying an item with a warranty of length t^, as 

For minimal repafr, between as-good-as-new and minimal repair, and imperfect repair, the 

M{t^) term in (3.2) needs to be replaced by tiie appropriate expected number of repairs 

with nonidentical failure disfributions. Equations (3.1) and (3.2) can be found in a number 

of papers, such as BUschke and Scheuer (1975) and (1981). 

For tiie data used in this tiiesis, repafrs consist of replacmg a failed component with 

a new one. As the analysis is conducted on a component level, tiie repair is taken to be as-

good-as-new as far as tiie replaced component is concemed. The remaining components 

are taken to be unaffected by this replacement. 

Cost models for the pro-rata, the combination, and the reliabilify improvement war

ranties, are given in Murthy and Blischke (1992b). 

3.2 Modelling Two-Dimensional Warranties 

The discussion in Section 3.1 applies to both one and two-dimensional warranties. Two-

dimensional warranties, however, have the additional consfraint of being limited by two 

variables instead of just one. For example, two-dimensional warranties exist for aero

planes and automobiles. These warranties are limited by calendar time, taken from the 

purchase date, and usage, which may be measured as distance or flying hours. 

There are two approaches to analysing a two-dimensional warranty. In the one-

dimensional approach, analysis is performed on one dimension, with the second dimen

sion being related back to the first dimension. This approach sunplifies the problem to a 

one-dimensional problem. In the two-dimensional approach, analysis is performed using 

a two-dunensional distribution. This approach is mathematically more difficult. 

Suigpurwalla and Wilson (1993) stated that most of the work in modelling war

ranties has been restiicted to the one-dimensional case, covering issues such as the ex

pected cost of servicing a specific warranfy, and the choice of an optimum price-warranfy 

combmation. They pomted out that not much has been done with two-dimensional war

ranties. 



3.2 Modelling Two-Dimensional Warranties 33 

3.2.1 One-Dimensional Approach 

In the first approach, item failure is modelled by an intensify function which is a function 

of both the age and usage of the item. The usage, in turn, is modelled as a function of 

age, so that the intensify fiinction is expressed as a function of age only. This reduces the 

two-dimensional problem to a one-dimensional point process formulation. 

Murthy and BUschke (1992b) and Murthy, Iskandar and Wilson (1995) formulated 

the one-dimensional approach as follows. Let the sale of the item occur att = 0. Let 

Xc{t) and Uc{t) be the age and usage, respectively, of the item currentiy m use at time t. 

Let U{t) be the total usage that a buyer has had from the purchased item, including any 

replacements, over the time interval [0, t). If no replacements have occurred in [0, t), then 

Xc{t) = t and Uc{t) = U{t). This is also tme if the item is repaired minunally, and the 

repair time is negligible compared to time between repairs, and thus can be assumed to be 

zero. 

If the relationship between age, Xc{t), and usage, Uc{t), can be assumed to be lmear, 

then 

Uc{t) = RX,{t), 

where R represents the usage rate which may vary from one user to the next, R can be 

modelled as a non-negative random variable with a distribution G{r). Kim, Djamaludin 

and Murthy (2001) considered two different densities ofG{r): the uniform distribution 

and the gamma distribution. They also considered the discrete case where the usage rates 

can be categorised into groups. Thus, conditional on R = r, failures occur according to a 

Poisson process with intensify A(t|r). This can be modelled in the form 

X{t\r)^ij{Xe{t),UM 

where ip{x,y) is an increasing fimction of both x and y. 

3.2.2 Two-Dimensional Approach 

In the second approach, item failures are characterised by a two-dimensional distribution. 

Murthy, Iskandar and Wilson (1995) formulated the two-dimensional approach as follows. 

Let (Ti, Ui) denote the time and the item usage, respectively, at first failure. Similarly, 

let {Ti,Ui),i > I denote the time interval and item usage between the (i - l)st and i-th 
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failures. Then {Ti, Ui) can be modelled by a bivariate distribution fimction: 

F,{t,y)=^Pr{T,^t,U,^y) 

The form of Fi{t, y) depends on the nattire of tiie rectification actions. For nonrepairable 

items, or if the repafr is as-good-as-new, {Ti,Ui),i> 1, is a sequence of independent and 

identically distributed random variables with a common two-dimensional joint distribu

tion fimction F{t, y). For repairable cases other than as-good-as-new, the characterisation 

of {Ti, Ui) depends on the type of repafr. An analysis of the failure data would be needed 

to determine an appropriate form of the distribution function, F{t, y), which must have 

the property that E[U\T = t] is an increasing function of t. Suitable distributions are 

the Beta Stacy and the Multivariate Pareto distributions. Iskandar (1991) provided a two-

dimensional renewal function solver 

3.2.3 Comparison of the Two Approaches 

Murthy and Blischke (1992b) pointed out that the one-dimensional approach requfres the 

specification of the distribution rate, G (r), across the buyer population, and the failure 

rate function, V'(•,•)• If this can be done, the modelling can be done as a one-dimensional 

point process. This approach has the advantage that it is simpler to work with than the 

two-dimensional formulation. Many autiiors, for example Moskowitz and Chun (1994) 

and (1996), and Sarawgi and Kurtz (1995), have supported this approach, using a linear 

relationship between usage and time. 

Murtiiy and Blischke (1992b) also pointed out that warranfy data is generally col

lected in two-dunensional form. However, the manufactiirer does not readily have any 

information after the warranfy period, or about items without claims. Thus, an estimate 

for tiie usage rate, R, for each customer would have to be obtained from failure data, or 

from a post-sale survey. 

It is anticipated tiiat fiittire work based on a two-dimensional distribution will be 
conducted. 

hi tiie current stiidy, only the warranfy clarnis data are available, ft is shown in 

Section 5.2 that tiie data used m this stiidy can be suitabfy modelled using a one dimen

sional approach. Smce tiie anafysis in this stiidy is based on individual components, the 

one-dunensional approach is more practical because of the amount of analysis to be per-
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formed. It is anticipated that fiiture work based on a two-dimensional distribution will be 

conducted. Gertsbakh and Kordonsky (1998) recognised that failure of mechanical com

ponents in automobiles, such as those in the braking system, predominantiy depends on 

mileage. Others deteriorate over time due to envfronmental effects, such as humidify, as 

is the case with rusting of the car body. However, for vehicles without a warranty claim, 

only age and not distance is known, and usage would have to be estimated. This would 

introduce a source of error, so it has not been pursued. It would be desirable to fiirther in

vestigate this approach at a later date. Thus, the analysis of the data in the current study 

is one-dimensional, based on age. 

Another reason for basing the warranty cost estimation on age, rather than distance, 

is the fact tiiat many industries work on a monthly reporting cycle. As Elsayed (1996, 

page 513) pointed out: "It is more beneficial to the manufacturer to allocate warranty cost 

as a fimction of the age of the products, the number of claims during any tune, and the 

number of products in service at that time." Thus, analysis based on age is more likely to 

be of use to the manufacturer. 

3.2,4 Cost Models for Free Replacement Warranty 

The cost models for the standard two-dimensional warranfy bounded by a time t^ and a 

usage Uw, can be approached as a one-dimensional or a two-dimensional problem. Murthy 

and Blischke (1992b) give the sellers cost for nomepairable items imder a rectangular 

warranfy bounded by a time t^ and a usage Uiy as 

E [C {tyj, Uyj)] = [1 + M{tw, Uyj)] Cs, 

where Cs is the cost to supply the item, and M (t, x) is the two-dimensional renewal func

tion associated with F {t, y). This is the two-dimensional version of (3.1). The difficulfy 

in solving this two-dimensional equation lies in evaluating the expected number of re

newals, M{tyj, u-u,). The evaluation of M{t.u,, u^) differs according to whether the one or 

two-dimensional approach is used. 

If the item is repafred instead of replaced, with a repafr cost of c ,̂ and the repafr is 

as-good-as-new, the warranfy cost under a rectangular warranfy bounded by a time tyj and 

a usage Uyj is 

E [C {ty,, U^^)] = Cs + CrM{tw, Uw), 



36 Chapter 3 Warranty Modelling-A Review 

This is the two-dimensional version of (3.2). Again, the difficulfy lies in evaluating 

M(tu,,Wu,). 

3.3 Modelling Product Reliability 

A range of factors that influence how tiie reliability of a product is modelled has received 

attention by many autiiors, and is tiie subject of tius section. The lifetune distiibution can 

be affected by such things as the censoring time distiibution and the delay in reporting 

warranfy claims. Some authors have advocated the use of supplementary information 

to help model tiie reliabilify of a product more accurately. Many autiiors have mcluded 

the influence of such factors by incorporating covariates into the reliability models. The 

following is a survey of literature that have discussed such issues. 

3.3.1 Lifetime Distribution 

Many authors have written about modelling the reliabilify of a nomepairable product with 

a lifetime distribution. This is often a precursor to calculating the cost of a particular war

ranfy policy. Lakey (1991) proposed a series of steps to determine the lifetime distribu

tion, which include: the collection of data; the determination of the theoretical fimction 

that most closely resembles this densify; and the estimation of parameters using maxi

mum likelihood. These steps are broadly followed in the current study. She observed that 

within tiie defence industry there is very little expertise in assessing warranfy risk for mil

itary weapon systems. The purpose of her work was to find the failure distributions which 

characterise selected families of equipment failures. 

Ellis (1990) was motivated by the need to estunate the cost of extending a war

ranfy on automatic transmissions used in medium and heavy dufy on-highway vehicles 

and off-highway and mihtary vehicles. He used data for major repairs only, which was 

defined as tiiose repairs requfrmg the removal of the fransmission from the vehicle. He 

proposed a two-component Weibull model, with a decreasing rate component, (Weibull 

shape parameter less than 1), and an increasmg rate component (WeibuU shape parame

ter greater than 1) to model tiie time to first failure. This caters to both mfant mortalify 

and wear-out with age. Sunilarly, Majeske and Herrin (1995) used a mixttire of uni

form and WeibuU distributions to model time to first failure, suggesting an inherent defect 
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component and a usage component, to model the time to first failure of two luxury-car 

components. Other studies have modelled the failure of a component on a combination or 

modification of distributions, such as a competing risk model involving two Weibull dis

tributions (Jiang and Murthy, 1995), the beta-integrated distribution (Lai, Xie and Murthy, 

1998), the exponentiated WeibuU distribution (Jiang and Murthy, 1999), and the modified 

Weibull distribution (Lai, Xie and Murthy, 2003). 

When a single component is to be anlaysed, these mixture models may be appro

priate, especially if two sources of failure are evident. However, in this thesis, all the 

components of a vehicle are to be modelled. To make this task manageable, a single 

failure mode model is used. 

Finding a method of selecting the member of a family of distributions that best fits 

a set of observations was the subject of Quesenberry and Kent's (1982) study. The distri

butions considered included the exponential, gamma, Weibull and lognormal. However, 

as the method requires a noncensored set of observations it is not used in this stiidy. 

3.3.2 Censoring Times 

Some studies have investigated how the lifetime distribution of a product is affected by 

the distribution of censoring times, that is, the time when observation of a unit ceases. In 

warranfy databases, only claims information is recorded. Nothing is known about units 

where there have been no claims. Suzuki (1985), Lawless, Hu and Cao (1995), and Hu, 

Lawless and Suzuki (1998) discussed the problem of using incomplete data to estimate 

the parameters of the lifetime distribution. They advocated the use of a follow-up survey 

to acquire usage data on imits without a warranfy claim in order to obtain better parameter 

estimates of the lifetime distribution. Similarly, Oh and Bai (2001) discussed the use of 

supplementary data that can be obtained from authorised dealerships who repair vehicles 

after the expiration of a warranfy. The additional data, be it from customer surveys or 

from repair data, can be used as additional input in determining the parameters of the 

lifetime distribution. 

Using failure-record data ortiy, which is usually readily available, was an issue dis

cussed by Kalbfleisch and Lawless (1988), The use of such data, they maintained, was 

insufficient to make satisfactory inference about the reliabilify of a product. They advo-
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cated the use of regressor variables determined by obtaining supplementary data, such as 

that obtainable tiirough a post-warranfy survey, or by using prior model data. 

Altiiough it is desfrable to obtain additional information by smveying customers 

that have not made warranfy claims, a survey was not possible in the cun:ent study as onfy 

the warranfy data was avaUable. Similarly, it was not possible to obtain post-wan-anfy 

repair data from authorised dealerships. 

3.3.3 Reporting Lags 

Some authors, such as Kalbfleisch, Lawless and Robinson (1991), Lawless and Kalbfleisch 

(1992), Lawless and Nadeau (1995) and Lawless (1998) developed models that incorpo

rated a time delay in entering a claim into tiie warranfy database as a regression variable. 

They referred to tiiis delay as the reporting lag. Kalbfleisch et al. (1991) found that a 

reporting lag of 20-60 days occurred in tiie data they used. In the warranfy data that is 

used in tiiis tiiesis, tiie data was entered mto the database by the dealership on tiie day 

the customer brought the vehicle in for a repair Additionally, sufficient time has been al

lowed for all claims data to be entered before the collection of tiie data for analysis. Thus, 

reporting lags are not considered in this study. 

3.4 Survey of Approaches to Warranty Modelling 

This section surveys the range of approaches to the modelling of product reliabilify and 

warranfy cost that exists in the literature. Approaches have included the modelling of 

the number of warranty claims as a Poisson process; the Bayesian approach; the use of 

dynamic linear modelling (multivariate analysis); the Markovian approach; and lastly, the 

use of simulation. The use of the renewal function to model the time to failure is discussed 

in Section 5.6. 

3.4.1 Warranty Claims Distribution 

Some autiiors have modelled the number of warranfy claims during a warranfy by a non-

homogeneous Poisson process. In this approach, the number of claims during the war

ranfy period is of interest, not the type of repafr or time to failure. Bohoris and Yun 
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(1995) used this approach to estimate the warranfy cost under a hybrid (free replacement 

and pro-rata combination). Crow (1990) pointed out that complex systems such as auto

mobiles, afrcraft and communication systems, are repaired and not replaced upon failure. 

As such, the reliabilify of these repairable systems could be modelled as a nonhomoge-

neous Poisson process. Crow's model was a nonhomogeneous Poisson process with an 

intensify function 

U{t) = X/3t^-\ t>0, 

with A, /3 > 0. Because the intensify fimction has the same form as the hazard rate for a 

Weibull distribution, this particular nonhomogeneous Poisson process is often referred to 

as a Weibull Poisson process or the power law Poisson process. Crow (1993) went on to 

obtain confidence intervals for the failure intensify function. 

Other authors have explored the use of different distributions to model the number 

of claims at a particular time. For example, Lu and Vance (1997) introduced the L-V 

distribution, defined as 

Pr(X) —j A_^\f-i_^\x-i 
x = 0 

p){l-r)--\ x:= 1,2,3,... 

with parameters p and r, where 0 < p < I and 0 < r < 1. They used the distribution to 

model the number of repairs per 100 vehicles. Lu and Vance used data from an authorised 

dealership containing all repairs of vehicles with nine or more months of service that were 

driven 10,000 or more miles. They found that the L-V distribution provided a better fit 

than the geometric distribution or the Poisson model. Lu and Vance's analysis provided a 

good snapshot of the situation at a particular time, but did not discuss the distiibution of 

claims over time. The type of repair, the dispersion of costs of repairs and the usage rate 

of vehicles were not considered in thefr work. 

Another issue that some authors raised was that claim rates may vary over tune. Us

ing the data from Kalbfleisch et al. (1991), Lawless (1995), Lawless and Nadeau (1995) 

and Lawless (1998) reported that by sfratifying the data into six two-month production 

periods, it was evident that the claim rate was higher in one period than the other periods. 

Although there was some evidence in our data that the rate of claims does vary by month 

of production, it would be necessary to conduct that analysis on each component. This 

is beyond the scope of tiie present study, where an overall view is required. However, it 

would be worth pursuing in a future study, using a subset of components. 
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Lawless (1995) compared two methods for the analysis of recurrent events: mar

ginal analysis (for example, rates and mean fimctions) and conditional specifications (for 

example, intensify fimctions) for covariates. He indicated that marginal analysis does not 

attempt to develop a fiiU model for tiie event process, which could be used for predic

tions. The analysis in this dissertation attempts to model individual components. Thus, 

marginal analysis is not pursued in the current study. 

The analysis in tius tiiesis is done at a component level. Thus, this tiiesis is not 

concemed with the aggregate number of repairs at any particular time on the system as 

a whole, but with tiie reliabilify of individual components and the overall warranfy cost 

due to these clarnis. As such, tiie nonhomogeneous Poisson process is not used to model 

the reliabilify of vehicles; a renewal fimction approach on individual components is used 

instead. 

3.4.2 Bayesian Approach 

In the Bayesian approach to reliabilify analysis, supplementary information is used to 

establish a prior probabilify densify function, g {6), where the form of the distribution is 

known or assumed and the value of the parameter 0 is sought. "This distribution expresses 

the state of knowledge or ignorance about 6 before the sample data are analysed," (Maitz 

and Waller, 1991, page 167.) The supplementary information may come from engineer

ing design and test data, operating data in different envfronments, engineering or expert 

judgement or even operating experiences with similar equipment. Using the prior distri

bution and the operatmg data y (for example, warranty data), the posterior probabilify 

densify function, g{6\y) is estabUshed. 

A number of studies have used the Bayesian approach, for example, Giuntini and 

Giuntini (1993). In tius thesis, the prior probabilify densify is established for individual 

components. A posterior probabilify densify function is not sought, as all the available 

data is used to establish the prior densify function. However, new data can be used to es

tablish a posterior densify in fiittire sttidies, once the prior densities have been determined. 

3.4.3 Dynamic Linear Modelling and Neural Networks 

In forecastmg clauns when a new model is infroduced, Wasserman (1992) recommended 

tiie mclusion of prior model data, if tiiere have not been significant changes in tiie man-
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ufacturing process or warranfy policy. Wasserman and Sudjianto (1996) compared three 

strategies for forecasting warranfy claims. The first, the static predictive model, mvolves 

the use of either regression or time series models. They are the most widely used. They are 

adequate for interpolation, but are risky when exfrapolating using data that is highly non

linear, or that is perturbed by localised phenomena. The second sfrategy is the Kalman 

filter or dynamic linear modelling sfrategy, which has the abilify to adapt to local process 

trends while maintaining the simplicity of a linear model. The third is the nonparametric 

modelling approach, which provides the flexibilify to capture nonlinearities in a data set. 

However, if not fitted carefully, the model may be too responsive to local variations. This 

approach includes the use of artificial neural networks. Wasserman and Sudjianto show 

that the nonparametric modelling approach provided a better fit to the test data than did 

the use of the other two sfrategies. This is because it offered the flexibilify to model local 

trends and any general nonlinear phenomena. 

The appeal of neural networks is that they are relatively easy to program, there is 

no requirement to use any particular equational form, they appear to be highly resistant to 

outiiers and commercial packages are widely avaUable (Stem, 1996). One disadvantage 

of neural networks is that they do not give prediction intervals indicating the level of 

uncertainfy. Stem suggested that the neural networks approach is appropriate when the 

phenomenon is complex, involving many predictor variables in a nonlinear combination, 

and when a sufficient amoimt of data is available to estimate a complex model. However, 

if the underlying process is well understood then it is usually advantageous to develop a 

model. 

Since we have established mathematical models to describe the warranfy data, and 

we are interested in predicting costs under an extended warranfy, the use of dynamic linear 

modelling and neural networks does not appear to be the best approach in this situation. 

3.4.4 Markovian Approach 

As Trivedi (1982, page 309) stated, a stochastic process is a Markov process if the prob

abilify of an event occurring depends only on the state of the system at the present time, 

and not on its past history. Thus, the distribution tiiat describes the probabilify of an event 

occurring in the future depends on the present state of the system, and not on how the 

system arrived in that state. 
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Some products, such as clocks, refrigerators and indusfrial pmnps, are used con

tinuously, whilst others, such as television sets, washing machines and automobiles, are 

used intemiittentfy The failure rate during usage would be different from that when idle. 

To obtain the disfribution fimction for tiie time to failure, it is necessary to model the us

age partem. Murthy (1992) modeUed the tt-ansitions between in-use and idle periods as a 

two-state contmuous time Markov process. He examined what happened when tiie usage 

intensify varied, and found tiiat the cost of a warranfy increased witii increasing usage. In 

this thesis, we are not concemed as to whetiier failure occurs whilst a vehicle is idle or in 

use. In order to keep tiie modellmg manageable, the reUabUify of components over time 

is modelled without concem about the fact tiiat usage is intermittent. 

A different approach using a Markov process, is one where tiie reUabiUfy of an 

item is modelled as a fransition through compartments tiiat describe the aging process. 

The probabilify of tiie fransition from one state to a different state can be calculated from 

the probabilify of failure of tiie item. This approach was used by Faddy (1993). In yet 

another Markovian approach, Balachandran, Maschmeyer and Livingstone (1981), con

sidered a tiiree-component system. The item went from one state of component condition 

(working/failed) to anotiier state. The probabilify of component failure can be used to 

work out the probabilify of fransition from one state to the next. Clearly, when a prod

uct comprises many components, as in our case, this method becomes very cumbersome. 

Blischke (1990) commented on the problematic natiire of this approach, even though the 

transition probabilities are more easily obtained than the renewal fimctions. Thus, this 

approach is not used in this study. 

3.4.5 Renewal Process Approach 

The replacement of a component with a new one, or a repair that is as-good-as-new, can 

be modelled by a renewal process. The renewal function, M {t), counts the number of 

replacements that occur in a given period of time. Frees (1986) developed three estimators 

of M {t) which could be used to estimate the warranfy cost of a product. Frees and Nam 

(1988) used a straight line approximation to evaluate the renewal function under two 

different warranfy policies made up of combinations of free replacement, pro-rata and 

renewing warranties. They found that this method gave reasonable results. Frees (1995) 

went on to develop a semiparametric estimation of warranfy costs. An example of the 
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application of the renewal function to estimate warranfy costs can be found in Summit and 

Cerone (2003), where this approach was used to analyse the failure data of an automobile 

component. 

This current thesis uses a renewal process approach. The formulation of the renewal 

function is discussed in more detail in Section 5.6. 

3.4.6 Simulation Approach 

Many papers have been written with the aim of offering support to management by pro-

vidkig a software tool that can be used as an aid to decision-making, for example, Rooker 

(1989), Isaacson and Brennan (1991) and Hadel and Lakey (1993). Monte Carlo simula

tion is used to generate failure times and warranfy costs. Typically, inputs include mean 

time between failures, the form of the failure distribution and its parameters, the length 

of the warranfy period, the average cost of repair, the form of the rebate function, and the 

number of replications of the simulation required. In some of these studies, the model 

used to generate results was not detailed. 

In contrast. Hill, Beall and Blischke (1991) presented a simulation where one of 

three lifetime distribution could be chosen: the gamma, Weibull or truncated normal dis

tributions. Inputs to the simulation included the parameter values of the lifetime distribu

tion, the warranfy length, the length of the life cycle of the product, the form of the rebate 

and discounting fimctions. The simulation yielded the mean and standard deviation of the 

set of simulated costs. Hill et al. validated the model against the tme expected costs given 

by the mathematical model in the exponential case. They found that the warranfy length, 

rebate terms, and the lifetime distribution of the product were the main determinants of 

warranfy cost. 

In a study by Roberts and Mann (1993), the failure of major components of a system 

was simulated. They found that the simulation supported the nonhomogeneous Poisson 

process model (Crow, 1990). The simulated model had the advantage of identifying which 

major component had failed, thus giving more information than the nonhomogeneous 

Poisson process model. In this thesis we extend the simulation to all components and use 

simulation to verify the results of the theoretical model. 

In their synthesis of existing warranfy models, Hill and Blischke (1987) concluded: 

It would appear that the "real-world" manager seeking a working model for quan-
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tifying the cost of a given set of warranty provisions may not find a suitable one 

among the published mathematical models. ... the existing models are capable of 

yielding a closed-form solution to the expected cost of a warranty when the life dis-

ti-ibution is assumed to be exponential... the authors suggest the use of a computer 

simulation model as an alternative fiexible enough to incorporate virtually any type 

of product failure distribution. 

In this thesis, simulation is used to validate an overall warranty cost model based on 

the Weibull and exponential reliabilify models of individual components within a vehicle, 

3.5 Conclusion 

The purpose of this chapter has been to discuss the modelling of the warranfy process, 

the approaches to the modelling of two-dimensional warranties, various aspects of the 

warranfy-modelling process that some studies have explored and the various approaches 

to warranfy-cost modelling that have appeared in the literature. The approach that is used 

in this thesis is the renewal process approach, which is developed in Section 5.6, 

The next chapter discusses the manufacturer's data. It looks at the processes in

volved in getting the data to a usable state, including importuig the data into S-Plus, 

exploring tiie data and building up the survival database. The theoretical models are dis

cussed m Chapter 5, including the renewal process approach to modellmg the number of 

clauns during the warranfy period. This is followed by the application of the models to 

the cleaned manufacturer's data in Chapter 6, 



Chapter 4 
The Manufacturer's Data 

4.1 Introduction 

This chapter details the data that are used in this study. The source of the data, the data's 

shortcomings and how they have been overcome are discussed m this chapter The detail 

of the procedure involved in going from raw data to a database that is ready for survival 

analysis is outlined. 

As established in Chapter 1, published warranfy data, in particular Ausfralian data, 

is limited. This study analyses some genuine warranfy data from an Ausfralian automo

bile manufacturer. To protect from misuse of the data, the manufacturer's identify has 

been withheld. The manufacturer has made available the production details of vehicles 

manufactured during 1997, including all the warranfy claims on these vehicles right up 

to the download date, 21/5/2002. The raw data indicates that the 3-year warranfy had 

expfred on 99.95% of the vehicles in the database. 

The data that are analysed in this study comprise two databases. The first contains 

30,117 records of vehicles that were manufactured during the year under study. The fields 

in the sales database include vehicle identification number (VIN) and production date 

(prod). Other fields are included in the database but have not been used in the analysis in 

this study. 

The second database contains 62,456 records of warranfy claims made on those ve

hicles. This database of claims has been built up by the dealerships, who, on behalf of 

the manufacturer, have fulfilled the warranfy claims made by customers. The fields in 

this database include vehicle identification number (VIN), dealer identification (dealer), 

claim number (claim), production date (prod), sale date (sale), repair date (repr), dis

tance (dist) in kilomefres and age at claim (age) in months, replaced part number (part) 

and name (partname), and cost (cost) of repair There are other fields included in the 

database that have not been used in the analysis. 

S-Plus 2000 as been used extensively in the analysis of the data. It has been chosen 

for this project because S-Plus is a powerful data analysis product that has its own built-in 

45 
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S language. This allows for tiie writmg of scripts, tiius providing a means of re-using 

programs with different data sets. It is an aim of this study to produce reusable code, so 

that the analysis of otiier data sets can be canied out. S-Plus's power lies in the fact that 

it works on vectors and arrays of variables, rather tiian on tiie processing of individual 

values within a vector This was an important consideration because of the large size of 

the databases. In addition, S-Plus offers a comprehensive number of fiinctions tiiat can 

be used in survival analysis. Apart from S-Plus, packages tiiat were considered include 

SPSS, SAS, Statistica and Minitab. 

A number of original S-Plus scripts and fimctions have been written by tiie author of 

this thesis, m order to conduct tiie analysis described in this chapter Many are presented 

in Appendix A. All the fimctions, scripts and data frames referred to in this chapter can 

be viewed on the accompanying compact disc. 

The rest of this chapter describes in detail what has been done with the data. As 

this is a practical project using real data, considerable time and effort have been invested 

in exploring the data, validating it and cleaning it. The chapter starts with a discussion 

of the format of the downloaded data, and how it has been imported into S-Plus. The 

nature of the exploratory data analysis is discussed in the subsequent section. The way 

in which the errors in the data have been identified and treated is discussed extensively in 

the section following that. The freatment of the data pertaining to vehicles that have been 

repaired more than once is then discussed. Subsequent to this is a section that discusses 

the building up of the database that has been used to conduct survival analysis. The 

chapter concludes with a summary of the data cleaning that has been carried out in this 

study. 

4.2 Importing The Data 

The manufacttirer's data consists of three Excel files. The first contains sales information, 

and tiie otiier two contam a clauns database which, due to its size, had been split into two 

for downloading purposes. All three files have been converted to tab-delimited ASCII 

files firstiy, tiien imported into S-Plus. By converting the Excel files to tab-delimited files, 

it has been possible to set field data-types for the import. Before converting tiie two claims 
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files, the field id has been added to each database. Filling this field with the concatenation 

of VIN, dealer and claim has created a unique key to the records, enabling duplicates 

from the two separate files to be identified. 

To import the sales data, the script ImportSale.ssc has been written, and can be 

found on the accompanying compact disc. The script adds the field age2, which is to 

hold the age of vehicles at the time of a claim. This field has been included in the sales 

database in order to have an age for vehicles that have had no claims. Its value is the 

number of days between 21/5/2002 (the file download date), and the vehicle production 

date, less 28 days. The 28 days represents the average delay between production and sale 

of a vehicle (see Subsection 4.4.2). The value of a^e2 has been limited to three years, 

this being the time limit on the warranfy, after which observations are censored. In the 

claims database, age2 has been calculated from the sale and repair dates primarily, with 

the fields age and dist also available. When a^e2 could not be calculated from the data in 

the claims database, it could be estimated using the value in the sales database. Obtaining 

values for a^e2 is discussed fiirther in Section 4.4. Thus, the script ImportSale.ssc creates 

a database of vehicles produced in 1997, including an estimate of their age on 21/5/2002. 

This sales database is the S-Plus data frame sales97 on the accompanying compact disc. 

The script ImportClaim.ssc, which is included on the accompanying compact disc, 

imports the two claims data files. The field age2 is added after the import, and holds the 

difference between the repair and sale dates. This field is used to calculate the vehicles' 

ages at the time of a claim. Then the script combines the two claims files into one, 

elimmating any duplicate records by using the field id, as described above. The next 

section discusses how, in order to check for errors, age2 is compared to the field age, 

which is included in the manufacturer's database. 

This claims database needs to be sorted by VIN, then by part and then by repr, to 

facilitate calculating a component's age, as discussed in Section 4.5. Because of the size 

of the database, the sort takes a long time in S-Plus, but when exported to Excel, it can 

be done quickly. It is possible to sort all the data in Excel initially, before converting the 

file to a tab-delimited format, if there is only a single claims file. However, in the case 

of two claims files, the data needs to be sorted after the two claims files are combined. 

Once the data is sorted, vehicles that have been repafred more than once can be identified, 

and a component's age within these vehicles can be calculated. After being sorted, the 

Excel file has been converted to a tab-delimited ASCII file so that it can once again be 
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imported into S-Plus in the appropriate format. A field to keep track of any data changes, 

and anotiier field to flag errors have been added. The claims database is the S-Plus data 

frame claims97 on the accompanying compact disc. 

The origmal manufacttirer's data files have not been included on the accompanying 

compact disc. They are omitted so tiiat tiie identify of tiie manufactiirer cannot be deduced 

from the original data. Some fields have been omitted from tiie original data and the part 

numbers have been changed before tiie import. However, tiie imported data is available 

on the disc and can be viewed in an S-Plus session. 

4.3 Exploratory Data Analysis 

As an initial step, the data have been explored in the manner described in Tukey (1977, 

Chapter 2), in order to obtain an overall impression and to identify any pattems of errors 

present. Boxplots of all the numeric variables, prod, sale, repr, age, age2, and cost, 

have been plotted to find any outiiers in the data. As can be seen in Figure 4.1, all of 

these variables except prod contain outliers. A matrix plot of the three date fields has 

been constmcted to examine the relationship between these fields. However, little can be 

concluded from this plot due to the existence of exfreme outliers. 

Summary statistics, including minimum, maximum, upper and lower quartiles, me

dian, mean, standard deviation and the number of records containing NA (not available) 

have been generated. These statistics, together with the plots outlined above, are a very 

usefiil starting point in identifymg errors in the data. An S-Plus function called fPlotSmr 

has been written to generate the plots and summary statistics. The function is presented 

in Appendix A. 1. 

It is evident from the exploratory data analysis that the data contains a number of 

errors, and that further investigation is needed to identify the fypes of errors, tiie number 

of cases of each error type, and tiie actual cases in error To facUitate this process, an S-

Plus function fCheck has been written. Figure 4.2 shows the process flow of the function 

and the complete function is shown in Appendix A.2. The output of this fiinction is also 

displayed m Appendix A.3. 

A discussion of the anomaUes that have been found in the data, and an indication 

of the number of records affected, follows. Most of the figures below have been obtained 



4.3 Exploratory Data Analysis 49 

o 
a. 

CO 

8 
c 
S 
M 

3 

a. 
X 
o 
m 

CN 

< 

0001. 

UJ10001.X 

00001 

a. 
X o 
(0 

.2 
0] 
Q 

Q. 
X o 
m 

0001 009 

SlflUOJS 

Fig, 4,1, Raw data boxplots. 
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Is prod NA? identtiy cases 
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Fig, 4,2, Logic flow for data checking function. 
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from the output of the function/C/zecA:, whilst others have been derived separately. The 

section following this contains a discussion of how these problems have been resolved. 

1. Sale and repair dates are either not available or zero: The sale date is NA in 8 

records. All records contain a repair date, and none of the sale or repafr dates 

contam zero. (This is not the case for other years' databases.) The manufacturer's 

representative has indicated that an NA (or zero) in the sale date means that the 

vehicle was repaired before it was sold, thus making a sale date unavailable. 

2. Sale date is before production date: There are 5 records. This is obviously 

impossible and must be due to an incorrect data entry. However, in all of these five 

records, the sale date is after the first production date (1/1/97), so the error may be 

in the production date. Therefore, these production dates need to be checked against 

the sales database. 

3. Repair date is before production date: There are 17 records. Again this is impossible, 

and these records must be incorrect. The repair dates are not before 1/1/97, so the 

production dates may be in error in these records, and therefore need to be checked. 

4. The sequence of events is production, then repair, then sale: There are 753 cases of 

this situation. At first glance, a warranfy claim before the sale of a vehicle seems 

impossible. But this could again have been a case of a vehicle being repafred 

before it was sold. This could have been initiated by the dealer upon delivery of the 

vehicle. Examples of such repafrs include the removal of marks on duco, upholstery 

or interior coverings, the replacement or recharge of a battery, the lubrication of 

squeaky hinges, the replacement of missing or damaged trim or even mechanical 

adjustments such as a front-end alignment. Any of these items could possibly have 

been picked up by a buyer upon the inspection or test drive of a vehicle. This 

conjecture is supported by the fact that in 365 of the 753 cases, the sale occurred 

within two weeks of repair 

5. Sale date is unrealistically too long after production date: In 120 records, the sale 

date is more than one year after the production date, with 21 of these being over two 

years after the production date. The median number of days that sale occurs after 

production is 28, and the maximum is 1357 days, the latter clearly indicating an 
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outlier. The data appear to contain genuine cases of long delays in selling vehicles, 

as well as errors which need to be cleaned. 

6. Age does not equal the difference between repair and sale dates: In 111 records, the 

difference between age and age2 is greater than one month. This figure excludes 

the cases where repair is before sale. Of these, 77 have over two months difference 

between age and age2. Although the manufacturer's representative stated that checks 

have been put in place at the data entry level for the age field, tiiis clearly could not 

have been the case. In 16 of these 111 records, the value entered for age is zero, 

and in many cases, a zero in the age field does not match the distance entered. For 

example, in 89 cases, dist is over 100 kilomefres whilst age is 0. This suggests that 

perhaps some dealers may have entered zero in the age field simply for expedience. 

7. Distance does not correspond to the age of the vehicle at repair: To check the value 

entered in the distance field of a record, it has been compared to the 99% prediction 

interval for distance based on two linear models, each going through the origin. The 

first model uses age as the independent variable, and the second uses age2. Thus, 

the models are of the form dist = (^^age + e, where/^i is a constant and e is the 

error term. Bowerman and O'Connell (1990, page 193) give the 100 (1 — 2a) % 

prediction interval for the linear model through the origin, t/o = P^XQ + e, as 

yO±^(a,n-l)SWl + 
XQ 

(4.1) 

where t(a,n-i) is the a percentile of the t-distribution witii n - 1 degrees of freedom, 

and s, the sample standard deviation, is given by 

.-.\2 , _ E (y - y) 
^ — ______ ___ 

n - l 

The data contams 585 cases where dist is outside the 99% prediction interval usmg 

age as tiie mdependent variable. Sunilariy, there are 715 cases outside tiie 99%) 

prediction mterval using age2. Thus, errors amongst the fields dist, age and age2 do 

exist in the data. 

8. Exti-eme values in the cost of repair: The two highest costs are $23,636.30 

and $27,193.00. ft appears that these values could be in error However, tiie 

manufacttirer's representative has indicated that such extreme cases, although rare. 
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have actually been paid out. Therefore, these costs have not been cleaned out of the 

database. 

It should be noted that these error groups are not mutually exclusive. That is, some 

records contain more than one anomaly. Overall, these anomalies represent less than two 

percent of the claims data, making the data reasonably accurate. Thus, removing records 

with these errors could have been an option, but so doing would have infroduced a bias in 

the number of failures in the subsequent survival analysis. The next section discusses the 

approach that has been taken in handling these anomalies, and explores more deeply the 

criteria that have been used to determine whether an anomaly is m fact an error 

4.4 Data Cleaning 

Blischke (1990) was aware of the problems of inaccurate data when he wrote: 

User data are frequently only haphazardly obtained and can be notoriously unre

liable. Some models take this into account by including parameters which express 

probabilities of false warranty claims and of undeclared legitimate claims. How 

one might estimate such parameters is another unresolved problem. 

Rai and Singh (2003) discussed the problem of unclean warranfy data. In finding the 

distribution of usage rates, their approach was to omit data that was outside the 99%) 

statistical limits of the data. 

The concem of this study is to obtain an accurate set of data that can be used to 

obtain models for the reliabilify of components. Attempting to factor in data inaccuracies 

into the models can make them very complex and unusable. The approach that has been 

taken in this study is to clean the data as far as possible. 

As stated in Subsection 3.2.3, the analysis in this study is based on age, rather 

than on usage. Thus, it is important to accurately establish components' ages from the 

fields age, dist and a^e2. The fields age, dist, repr and sale have been entered by the 

dealerships, thus making them susceptible to entry errors, and therefore in need of careful 

checking. Since some obvious errors exist in the age field, it has been decided that age2 

should be used as a starting value for the vehicle's age, as the sale and repafr dates are 

less likely to be in error The value in age2 can then be checked against the other fields. 



54 Chapter 4 The Manufacturer's Data 

rate=mean(dist/age) 

age2 = NA 

delay = log(sale - prod) 
medDelay=exp {median(delay) } 

avSale = prod + medDelay 

age2 = age x 30.4 age2=dist/rate 

age2=repr-avSaIe 

age2=repr-avSale 

Is prod<repr<sale? age2 = 0 

age2=dist/rate 

Does age2 m a t c n ^ 
age or dist? ^^ 

vL 

-^N —»-< .^Does age match d i s t ? . 

Nj 

> Y ^ 

Is cost > $10000 Identify cases 

End 

Fig. 4,3. Logic flow of cleaning function. 

A starting pomt for checking for errors in age2 is to look for errors in repr or sale, 

since a^e2 is based on tiiese two fields. After that, a5fe2 should be checked against the 

values of age and dist, which could be used if the value in age2 is found to be in error 

An S-Plus fimction,/C/ean, which is presented in Appendix A.4, has been written 

to clean tiie data. A flowchart showmg the logic of the fimction is shown in Figure 4.3. A 

discussion detaUing the data cleanmg procedure that has been undertaken follows in the 

next section. 
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4.4.1 Errors In The Repair Date 

It can be seen from Figure 4.3 that the first error in age2 to be dealt with is the one 

originating from an error in repr. Errors in the repair date can be classified mto three 

types: (i) value is NA, (ii) repair is before production, or (iii) repair is before the sale, but 

after production. This last case is discussed in Subsection 4.4.3 below. To clean records 

containing the first two types of error in the field repr, the fields age or dist are available 

to establish the vehicle's age. If age is not 0 or an outiier, then a^e2 has been given the 

value of age multiplied by the average number of days in a month. Otherwise, if age is 

0 or an outlier, and if dist is not an outiier, then age2 has been set to dist/rate, where 

rate refers to the usage rate, measured in kilomefres per day. To reduce the influence 

of outliers, rate has been obtained using the S-Plus function ImRobMM, which fits the 

robust and efiicient MM-estimator proposed by Yohai, Stahel and Zamar (1991). A zero 

intercept has been unposed on the linear model, and rate has been assigned the value of 

the model's gradient. If neither age nor dist are usable, then age2 needs to be set to NA 

in the function/C/ean. However, no records in the data used in this study have needed to 

have thefr value of age2 set to NA. 

4.4.2 Errors In Sale Date 

Before sale is examined for errors, the field prod needs to be checked for errors. This 

is done because prod is needed to check the value of sale, and in some circumstances, 

is needed to estimate the sale date. The values entered in prod in the claims database 

are easily checked against the values entered in the sales database for each vehicle, by 

matching records on VIN. All values in prod were found to be correct, and there are no 

blank or NA entries. 

The next field to be checked is sale, and as is the case for repr, there is a need to 

search for zeros, NA and outliers. In addition, records for which the sale date is before the 

production date, or for which the sale date is unrealistically too long after the production 

date, need to be found. The fCheck function described in the last section identifies records 

with all of these problems with the exception of the outiiers in sale, so this has been 

tackled next. Since the sale dates are closely linked to the production dates, which span a 

year, the range of sale dates is closely packed with a range not much wider than one year. 

Perfectly acceptable sale dates at the beginning and end of the year have been found to be 
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outliers. Thus, it is not practical to exclude all outiiers in sale. The approach tiiat has been 

adopted is to find exfraneous values in sale that have a sale date an uncharactenstically 

long time after the production date, which has already been checked. 

We define delay = sale - prod. After removing records in which sale is 0, NA or 

less than prod, the distiibution of delay has been examined. It was found to be skewed, 

with a mmimum value of 0 and a maximum of 841 days. Because of the skewed natiire of 

delay, the outiier limit on its nattiral logaritiim scale has been used as a cut-off value. This 

worked out to be 372 days, which is a fairly long time O'ust over one year) for a vehicle to 

remain unsold. However, its value is plausible, so it has been accepted. In records where 

delay is more than 372 days, tiie value in sale has been taken to be an error, and the value 

ofage2 has had to be recalculated, as described below. This affected 83 records. 

We defined medDelay as tiie median of delay, which is 28 days. A representative 

sale date could be obtained by adding medDelay to prod, which could be subfracted from 

repr to obtain an approximate age for a vehicle. However, in cases where the repair date 

is before this calculated representative sale date, the vehicle's age would have to be set 

to 0. That is, max [0, repr ~ {prod + delay)] could be used as an approximation to the 

vehicle's age. As this value is an approximation to the vehicle's age, it would only be 

used if nothing else was avaUable. 

Returning to the logic flow diagram of Figure 4.3, it can be seen that in checking 

the value ofage2, the function fClean checks the value of repr first, and then determines 

if there are any errors in sale. Once it is determined that there is an error in either of these 

fields, the fimction uses dist as first choice, then age and then max [0, repr — {prod 4- delay)] 

to evaluate age2. In any event, a match is sought between this new value ofage2 and one 

of the remainmg two values. The complete procedure of the function/C/ea« can be seen 

in Figure 4.3. 

4.4.3 Repair Date Between Production And Sale 

As a^e2 has been set to repr - sale, the value in age2 would be negative if the repair 

date for a record is before tiie sale date. Obviously a vehicle cannot have a negative age, 

so tiiese records need to have tiieir values ofage2 recalculated. 

As discussed m the previous section, a vehicle could have been repaired before it 

was sold. Thus, a repafr date prior to a sale date is not necessarily an indication of an error, 
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provided the repair and sale dates occur after the production date. There are 753 records 

satisfying these conditions, seven of which have already been dealt with because tiieir 

sale date is too long after production. This leaves 746 records that need to be assessed. In 

743 of these, age is zero, in two records age is one month, and in one record age is two 

months. In the latter two cases, age could have been calculated from the production date 

by the dealerships. One could conclude from this that the vehicles had most likely been 

repaired before they were sold. However, m only 712 of tiie 746 cases dist is less than 

or equal to 100 kilometres, and in a further 14 records, dist is less than 200 kilomefres. 

It could therefore be concluded that because of the relatively small distances ttavelled by 

these 712 (perhaps even 746) vehicles, a repair was carried out before sale. But m the 

remaining records, dist is significantly larger, up to 99,565 kilomettes in one case. It was 

unclear as to where the error lies in the eighteen cases where age is two or less months 

and dist is over 200km. Either there is an error in the value entered for dist or there is an 

error in the values entered in age and repr. It is more likely that there is an error in one 

field (dist) than in two fields (age and repr). Thus, age2 has been set to zero in all 746 

records. 

4.4.4 Check age2 Against age And dist 

After all of the above processing, the value ofage2 has been verified against the values of 

age and dist. This is done within thefClean function. Despite the redundancies in check

ing the adjusted age2 values, which have previously been verified as described above, it 

is more efiicient to check all the values of a^e2, as S-Plus works on the whole vector of 

values altogether If the value ofage2 cannot be verified against either age or dist, then 

the value of age is checked against the value of dist, and if these values correspond to 

each other, age2 is given a value based on age. 

The value of a^e2 is deemed to match the value of a^e if their values are within one 

month. Since age is measured in months and age2 is calculated in days, a difference of 

up to one month in their values is deemed to have verified the value in age2. 

The fields a^e2 and dist are considered to be in agreement if the value of dist lies 

within the (two-sided) 99%) prediction interval of distance for the given value of age2. 

The prediction interval is given by (4.1), with the dependent variable, dist, being linked 

to the independent variable, age2, by the linear model described in Subsection 4.4.1. 



58 Chapter 4 The Manufacturer's Data 

\fage2 does not match either age or dist, but the value of dist lies witiiin tiie 99% 

prediction interval for the given value of age, then age2 is assigned a value of age x 

365.25/12 in the function/C/ca«. 

In the data used in this sttidy, there are seven cases where tiie values of eitiier age 

or dist do not lie withm tiie 99% prediction interval for the given value of a^e2. In only 

two of these does tiie value of dist lie within the 99% prediction interval for tiie value of 

age. fri these two records age2 has been assigned tiie value of a^e x 365.25/12. In tiie 

other five cases, the value ofage2 has been left as is. 

4.4.5 Cleaned Database 

All of the cleaning and checkmg of data described above have been incorporated into tiie 

function/C/ean. The result of passing the claims database to the fimction is a cleaned 

database, which is the data frame clean97. The file for this data frame is on the accompa

nying compact disc, and it can be viewed in an S-PIus session. 

4.4.6 Missing Records From Sales Database 

Twenty-one records exist in the claims database for which there are no corresponding 

records for the vehicles' VIN in the sales database. The production year for all of these 

records has been identified as 1997 in the claims database. This again points to an error: 

either the sales database is incomplete, or the production date has been incorrectly stated 

in the claims database. As the number of records is small, this error would have little 

impact on the subsequent analysis. It has been observed that the vehicles' VINs are 

within the range assigned to the 1997 records, so it has been decided to include these 

records. It was felt that making the error of falsely including these claims, and thus 

slightly increasing the estimated warranfy cost is preferable to making the error of falsely 

excluding them, and underestimating the warranfy cost. 

Thus, it has been necessary to write additional records to the sales database for these 

twenfy-one records. These have been appended to the sales database, with the prodn field 

set to -I to mdicate that tiiese records are added. The S-Plus script AddSale.ssc has been 

written to do the processing and is included in Appendix A.5, 

file:///fage2
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4.5 Component Ages in Subsequent Repairs 

When a vehicle is repaired, a failed component is replaced by a new component. Thus it 

is necessary to calculate the age of, and the distance travelled with, this new component. 

Only on the first repafr will age and distance of the component be the same as the age of 

the vehicle. 

In order to calculate the age and distance of a component, the data has been sorted by 

VIN, then by part, and then by repr before being imported. Thus, vehicles are grouped 

together in subsequent records. Consequentiy, a record with tiie same VIN and part 

as the record immediately preceding it represents a second or subsequent replacement of 

a component. The age of such components can be calculated by subfracting the repair 

date of the previous record from that of the current record. The distance travelled with 

the replaced component can be calculated in a similar fashion, and put in a new field 

called dist2. Although the modelling in the current study does not use dist2, it has been 

included so that it can be used in future studies. 

The S-Plus fimction fCompAge has been written to calculate the age of components 

that were replaced more than once in a vehicle. The script is presented in Appendix A.6. 

The output offCompAge(clean97) has been put in the data frame compAge, which is 

included on the compact disc, and may be viewed in an S-Plus session. 

4.6 Database of Failed and Censored Times 

In order to perform survival analysis, a database with the following fields has been created: 

VIN, age2, dist2, part, partname and status, a field to indicate whether the record 

represented a faUed component (1) or a censored observation (0). This database shall 

be referred to as the survival database. It has been built up from the claims and sales 

databases, and comprises: (i) components that have failed, (U) components that have been 

replaced but had not failed by the end of the observation period, and (iii) vehicles with no 

warranty claims. The following describes how these three different types of records have 

been identified. 

The records of failed components in the survival database have been obtained from 

the data frame of component ages (compAge). Since each record in compAge represents 
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a failed component, all of the records in compAge need to be written into the survival 

database, with status set to one. 

The second type of record in the survival database is tiiat of replaced components 

that have not failed by the end of the warranfy period. Each entiy in compAge represents 

one failed component and one replaced component. A subsequent failure of a replaced 

component has resulted in another claim being made, which is then represented in the 

claims database by a another record. The way in which these records are identified has 

been described in tiie previous section. The last record for each unique vehicle/part com

bination represents a component that has not failed. These records would be represented 

in tiie survival database as a censored record. The non-failed components' censored ages 

have been calculated as the difference between tiie download date, 21/5/2002 and the date 

of tiie last repafr. The distance travelled by the vehicle since the components were fitted, 

has been estunated from the usage rate {dist/age2) of that vehicle multiplied by the com

ponent's age. The fields part, partname, status, the last of which has been set to zero, 

are included to complete each censored record in the survival database. 

The third type of record in the survival database is that of a censored record of a ve

hicle that has not had a claim. As survival analysis has been performed on a component 

level, these censored records come from vehicles without a claim on a particular compo

nent. For each of these vehicles, a non-failed (censored) record has been written in the 

survival database. The age of the vehicle has been previously calculated in the sales data

base (see Section 4.2) and stored in the field a^e2. The field status has been set to zero 

to indicate that these were censored observations. No values have been entered in dist2 

for these records. 

The survival database has then been created by merging records from these three 

different types. The building up of the survival database as described here has been done 

by means of an S-Plus function,/Si/rv/ve, which is presented in Appendix A.7. 

4.7 Conclusion 

In tiiis chapter, the natiire of the data that was available for this stiidy has been described. 

An initial data exploration has been described, which revealed the need for some data 

cleaning. The type of errors identified in the data, and how these were treated to maximise 
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the accuracy of the subsequent analysis has also been discussed. To obtain the age of 

components, the difference between the repair and sale dates has been calculated, and then 

this value has been checked against the recorded values of age and distance. The details 

of the processing involved has been discussed in this chapter The aim of this processing 

is to build up a database of observations of both failed and non-failed components that is 

to be used for survival analysis. 

The reliability of each component is modelled in the next chapter, as is the cost of its 

repair, from which a cost model for each component is developed. From these individual 

models, an overall warranfy cost model is procured. The next chapter discusses the theory 

behind the models, whilst the chapter foUowing that, discusses how the models are used 

in conjunction with the data described in this chapter to estimate the overall warranfy cost. 



Chapter 5 
Survival and Cost Models 

5.1 Introduction 

The last chapter described the raw data tiiat was available for tiiis project, and discussed 

how this data was checked and cleaned. The focus of the current chapter is the theoretical 

development of warranfy cost models. Models for botii tiie reliability of components and 

the cost of repairing these components are developed, and from these, a model of the 

warranty cost is constmcted. An approach using bootsfrap resampling is also discussed. 

The next chapter discusses tiie implementation of these models using the manufacturer's 

data. 

This chapter starts by outlining the assumptions made in developing the models. 

Following that is a discussion of the techniques used in analysing survival or life data, 

of which warranty data is an example. Then, non-parametric and parametric models of 

individual component failures are developed. Both point and interval estimates of compo

nent reliabilify are obtained. A discussion of the use of the Renewal Process in warranfy 

cost analysis follows. This is used to obtain point and interval estimates of the expected 

number of failures of a component during the warranfy period. A model of the cost of 

component repair is then developed. Unlike previous research into warranfy cost analysis, 

the cost of repairing a component is not freated as a constant, but as a random variable. 

A model of the warranty cost is tiien developed based on the models of component relia

bilify and cost of repafr. Both point and interval estimates are obtained. This approach is 

then compared to tiie more dfrect approach of obtaining a bootstrap point and interval es

timate of the total warranty cost. The chapter ends with a discussion of the limitations of 

the models. 

5.2 Assumptions 

In tiiis section, a number of assumptions that have been made in producing models of 

warranfy costs are discussed. 

62 
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5.2.1 Validity of Claims 

It has been assumed that all component failures during the warranfy period have lead to 

a clahn, and that all claims have been valid. However, this may not have been strictly 

correct, for there may have been users who had not bothered to make claims for minor 

faults because it was inconvenient to do so. Conversely, some users may have made 

claims soon after the warranfy period ended, or when only one dimension of the warranty 

had expfred. For example, the distance limitation may have been surpassed, but the time 

limitation may not have. Dealerships may have been willing to make a warranfy claim by 

adjusting the distance at claim to be within the bounds of the warranfy. These variations 

have been ignored because their numbers are likely to be insignificant compared to the 

total number of claims. 

In addition, the manufacturer's data has been assumed to be genuine and correct, 

apart from the errors that were described in the last chapter 

There are many instances in the manufacturer's database of claims being honoured 

after the expiration of the warranty. The manufacturer's representative has indicated that 

this does occur if a known manufacturing fault exists. However, because owners are free 

to go to any mechanic after the warranty period, the database does not include all of the 

post-warranty failure data. Thus, the database is not representative of the total number of 

failures occurring after the warranfy expires, so no data beyond the warranfy period has 

been used in the analysis conducted in this study. 

5.2.2 Timing of Failures 

In the context of this warranfy study, failure of a component has been deemed to occur 

when a user has made a claim. In realify, this may not strictly be the case, because a 

component could show signs of impending failure before it actually fails. The customer 

may then have acted upon tiiese signals rather than have waited until final failure of a 

component. Christer (1981) and Christer and WaUer (1984) developed this concept of a 

lead-up time into failure, which they called "delay time". 

In other instances, a fault may have occurred some time before the claim was made. 

In the case of minor problems, such as the deterioration of a door bush or the failure of a 
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radio, cassette or compact disc component, the user may have held off making a claim to 

a more convenient time, such as that of a scheduled service. 

When looking at a wide range of components, it is difiicult to ascertain the precise 

timing of the failure of a component. Using these factors makes tiie modelling more com

plicated. The timing of the claim, rather than tiie timing of the failure, is of importance to 

the manufactiirer in warranty analysis because this is when payment of the claim has to 

be made. Thus, in modellmg failure of components in tiiis sttidy, it has been assumed tiiat 

a failure occurred when a claim was made. 

5.2.3 Repair Time 

As the vehicle repafr time is generally small compared to tiie mean time to failure of a 

component, it has been assumed to be zero. This is standard practice in the literature. It 

has also been assumed that the distance travelled by a vehicle before sale was negligible, 

and that the number of vehicles that were decommissioned (for example, if the vehicle 

was written off) in the time interval under investigation, was also negligible. 

5.2.4 Nature of Repair 

The manufacturer's representative claimed that all repairs under warranfy were carried 

out by replacing faulfy parts. Thus, if a part is listed on the claims database, then that 

particular part had been replaced by a new one. It has been assumed that the part identified 

in the claims database represents both the part being replaced and the replacement part. It 

has also been assumed that all repairs were as good as new. 

There are a number of records with no part listed. These repairs could include 

adjustinents or cosmetic repairs witii no actual part being replaced, and have therefore 

been analysed separately. 

5.2.5 Independence of Component Failures. 

In multi-component products, failure of one part may lead to failure of subsequent com

ponents. The modellmg of such systems is quite complex, as the model must incorporate 

aspects of tiie dependent component failures. Blischke and Murthy (1992) advocated the 

modeUmg of component failure as independent failures only, for the sake of simplicify, 
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unless there is sfrong evidence to the contrary, or unless specific dependencies are be

ing investigated. This suggestion has been followed and it has been assumed that the 

probability of failure of a component is independent of other component failures. 

5.2.6 Uniformity of Parts 

It has also been assumed that all components bearing a particular part number were iden

tical. This might not have strictiy been tiie case, as manufacturing conditions may vary 

from batch to batch. It is tme to say, however, that a component, as identified by a part 

number, was supplied by a single supplier with fixed specifications. One could analyse 

the performance of a component obtained from different suppliers, but that is not the ami 

of the present mvestigation. Thus, it has been assumed that all parts with the same part 

number were identical, and that the time to failure of such components was a random 

variable derived from the same distribution. 

5.2.7 Location Factors 

One may build a location factor into a model to cater for the different climatic conditions 

encountered by users in different locations. Although some inferences can be made about 

where a vehicle has been driven from both purchase and warranty data, there is no re

striction as to where or how the vehicle can actually be driven after purchase. Therefore, 

a location factor has not been included in the models used in this study, and it has been 

assumed that data affected by these factors were randomly distributed. SimUarly, other 

vehicle operational factors were not included in the model, and it has been assumed that 

these factors were randomly distributed in the data. 

5.2.8 Dimensionality of Warranty 

Most vehicle warranties are based on time and distance, and are therefore, two-dimensional. 

The warranfy in the current study is for three years or 100,000 kilometres, whichever oc

curs first. Some authors developed models based on two-dimensional distributions, for ex

ample, Blischke and Murtiiy (1992) and (1994), Murthy, Iskandar and WUson (1995) and 

Singpurwalla and Wilson (1993). These have been discussed in Section 3.2. Other studies 

developed models based on usage rates, for example, Chun and Tang (1999), Gertsbakh 
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and Kordonsky (1998) and Moskowitz and Chun (1994), which have also been discussed 

in Section 3.2. Hu, Lawless and Suzuki (1998) made tiie assumption tiiat mileage accu

mulation is linear over time. Lu's (1998) data had an average usage rate of 1000 miles per 

month, which equates to 19,300 kilomefres per year. Lawless, Hu and Cao's (1995) data 

found that over a large population of customers, the median rate of use was about 13,000 

miles, or 20,100 kilomettes per year. Our data shows a median usage rate of 19,700 kilo

mettes per year, which lies between tiiese two figures. It would be expected that tiiese two 

American figures would be similar to our Ausfralian figure, smce it is possible to travel 

vast distances in botii countties. With this usage rate, few users would reach 100,000 

kilomefres by the end of three years. Therefore, the time limitation is tiie more critical 

measure of tiie warranty length. The study data contains no information about the dis

tance travelled by vehicles with no warranty claims, and it was not possible to obtam this 

information through a survey. Thus, it would have to be estimated, which could infro-

duce a new source of error Therefore, the warranty modelling in this study is based on 

time alone. It has been assumed that the number of vehicles that would reach 100,000 

kilomettes within the three years would not be significant. 

Let us examine the consequences of this decision. Using the data for the current 

investigation, an upper non-outlier limit for usage of 44,700 kilometres per year was ob

tained. This figure was obtained by using the last claim record of each vehicle in the 

claims database, and eliminating records containing outliers in vehicle's ages {age2) or 

distance (dist) fravelled. In addition, records of vehicles less than two months old, or 

of vehicles that had travelled less than 3,300 kilometres (the average distance fravelled 

by the vehicle m two months), were also eliminated before calculating this non-outlier 

limit for usage. The usage figure of 44,700 kilometres per year is a reasonable figure 

for a heavy user such as a sales representative. Usuig this figure, 1 !%> of the users that 

made a clarni reached the distance limitation of the warranfy (100,000 kilomefres) before 

they reached the time limitation. (These figures were calculated in the S-Plus function 

fUsage, which is presented in Appendix B.l.) Figure 5.1 shows vehicle usage rates of 

cars witii warranfy clarnis. Although the data shown in the figure has been taken from a 

lUnited sample, tiiat is the clauns data only, it does support the notion that the vast ma-

jorify of vehicles will reach their tune limitation of the warranfy before they reach their 

distance hmitation. IdeaUy, Figure 5.1 should include vehicles witiiout claims. However, 

the resources to conduct a survey to obtam the data were not available in this study. 
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Fig. 5.1. Vehicle usage rates, showing warranty limits and max usage rate for the full 
3-year warranty (diagonal line). 

5.3 Survival Analysis Methods 

Warranfy data are an example of life data. Thus, the techiuques used to analyse life 

data are used to analyse warranty data. The concepts of censoring times, survival tunes, 

and hazard rate, or instantaneous rate of failure, which are used in survival analysis are 

discussed in the sections that follow. The concepts discussed below can be found in many 

reliabilify texts, such as Lawless (1982) and Nelson (1982). 

5.3.1 Censoring Times 

Survival analysis concems the lifetime distribution of items varying from mechanical or 

elecfronic components to humans. In this chapter, survival analysis techniques are used 

to estimate the failure distribution, both non-parametric and parametric, of components. 

It is not practical to observe the lifetime of items until all items fail or die. Usually, the 

time of a study is lunited to a set period of observation. This results in the censoring of 

lifetimes to the observation limits. There are two types of censoring. When the lifetime of 

an item is observed for a fixed period of time, tc, the situation is described as having Type 

I censoring. Within this type of censoring, if the failure time, T, is known to be greater 
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than the observation time, t^, so tiiat T ^ tc, tiie censoring is said to be right-censored. 

When the lifetime of an item is observed until a set number, r, of events (usually deatii or 

failure) occur, the situation is described as having Type II censoring. 

Warranfy data is an example of Type I right-censored data, where the upper limit of 

observation is set by tiie warranfy period, t̂ ,. For vehicles with no repafrs, tiie observed 

time is ty,. In cases where vehicles have been repaired, the observed time is the balance 

of the warranfy period, after tiie last repafr on the vehicle. Thus tiie resulting database 

includes the tune an event occurs or the time the item was withdrawn from observation 

(censored time), togetiier with a status indicating to which category the data belongs. 

5.3.2 Hazard Rate 

The hazard fimction is defined as the instantaneous rate of failure. 

Let T be the random variable representing the lifetime of interest. Then T will 

usually take some finite value, t, in the interval [0, oo). The cumulative failure distribution 

is given by F {t) and the densify function is given by / {t). The survival, or reliabilify 

function, which is the probabilify of surviving to a time T > t is given by S {t) = 

1 — F {t) = Pr {T > t). The hazard function is defined as 

^ ^ At-̂ O A t 

,. Pr{t^T <t-\-At) „ ,_ 
= hm —^ ^ ^^ ^ -^Pr T ^ t) 

At->0 A t V ^ / ^ m 
s{ty 

Thus, h{t)St is mterpreted as the probabilify that the item will fail in [t, t + St), given that 

it has not failed before t. 
The cumulative hazard function is given by 

H{t) = I h{x)dx 
Jo 

= f f{x)dx 
Jo l-F{x) 
f' dF{x) 

Jo l~F{x) 
f' -dS{x) 

Jo S{x) ' 
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giving 

H{t)^-logS{t). (5.1) 

Both the hazard and the cumulative hazard functions are used in establishing non

parametric and parametric fits to data in the following sections. 

Murthy and Blischke (1992b) stated that many products exhibit a hazard rate which 

has a characteristic bath-tub shaped curve (see Figure 5.2). In the first phase (0 to ti), 

there is a high infant mortality rate. Young items fail due to defective materials or poor 

manufacturing processes (often referred to as teething problems). These failures can be 

reduced by a suitable bum-in period and testing program. The failure rate decreases 

during this phase as these initial failures are weeded out. The next phase (between ti and 

t2) is characterised by a constant failure rate. Failure in this phase is due purely to chance, 

and not age. This is characteristic of electrical and electronic components. During the 

last phase (beyond t2), the failure rate increases as the item ages. This is characteristic of 

mechanical components that are wearing out. 

h(t) 

Fig. 5.2. Bath tub hazard rate. (Adapted from Fig. 1, Murthy and Blischke, 1992b.) 

Ascher and Feingold (1984) distinguished between the bathtub curve for the hazard 

rate (which they call force of mortalify) of parts or simple products, and the rate of occur

rence of failures of a single repairable system. Figure 5.2 and the above discussion refer 

to the former The modeUing of multi-component items can be done by modelling each 

component failure and tiien relating each component failure to item failure. This would 

depend upon how a component's failure affects tiie failure of other components and of 

the item itself. Sometunes the failure of a component can damage or weaken otiier com-
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ponents. Thus, the modelling of failure interactions can be very diflScult. Because of the 

large number of components involved in this sttidy, component failures have been taken 

to be independent of one another 

5.4 Non-Parametric Estimation of Component Reliability 

The use of non-parametric models for survival data is a newer approach tiian its parametric 

counterpart. The non-parametiic approach is appropriate when a parametiic form cannot 

be foimd, or is not requfred. It can be used to interpolate results within the bounds of the 

data. 

The number of items at risk, k (t), is the number of items in the sample that have not 

failed just before time t. Let the period of observation, which in our case is the warranty 

length, t„, be divided into intervals so that 0 = to < ti < t2 < • • • < t„. Then mterval i 

is [ti_i, ti), where 1 ̂  ^ ^ n. An estimate of the probability of an item surviving interval 

i is 
_ k {ti) - di 

^'~ k{ti) ' 
where d, is the number of failures, or deaths, during interval i. Using the chain mle for 

conditional probabilify over all the intervals, the survival to tn is 

S{tn) = S{tn\tn-l) X S'( t„_i | tn-2) X . . . 5 ( t i | t o ) X S{to) 

=- PnX Pn-i X ...piXpo 
n 

i = l 

where po = S (to) = 1. This leads to the Kaplan-Meier estimator of survival. 

It is also known as the product-limit estimator There are numerous references on the 

Kaplan-Meier estimator, such as Venables and Ripley (1999). 

The Acttiarial Method, as detailed in Nelson (1982), is a similar approach to the 

above, but uses an adjustment term to estunate survival at the cenfre of an interval. It 

assumes tiiat items are taken out of observation at the cenfre of an interval. The survival 

of an item in the interval i is 

di 
Pi 

k{ti)-0.bri' 
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where n is the number of items removed from observation during interval i. This leads to 

an estimator of survival 

di \ SN{t) = Yl(l 
k{ti)-{).bri_ 

The Actuarial Method is used to constmct life tables of human life expectancy. 

A different approach was taken by Fleming and Harrington (1984). An estimate of 

the cumulative hazard is given by 

This is known as the Nelson estimator of the cumulative hazard. Using (5.1), we have 

S (t) = exp {—H (t)). This leads to an estimate of survival as 

di 
Sp{t)^exp[-Y^ 

With large data samples, the Fleming-Harrington estimator produces similar results to the 

Kaplan-Meier estimator 

An approach given in Jardine (1984) is a little different to the above. It uses the 

average number of items at risk m an interval by averaging the number at risk at the 

start and end of an interval, that is, v {ti) = 5 (A; {ti) + k {ti+i)). The average hazard 

rate for the interval is then calculated as di/v {ti). The cumulative hazard to the end 

of an interval is then calculated as the sum of these hazards. Equation (5.1) leads to 

S (t) = exp {~H {t)}, from which we are able to estimate the survival of each interval. 

The estimator is 

Each of the above methods can produce slightly different results. In a warranfy 

application, the number of failures is small compared to the total number produced, so 

the above methods would yield very similar results. As the Kaplan-Meier method is the 

most commonly used method, and since it is readily implemented in S-Plus, it has been 

used in obtaining a non-parametric fit to the data. 

Having established a method of obtaining a point estimate for survival, let us con

sider the variance of the estimate. The literature contains a number of suggestions and 

modifications for the variance of a survival estimate, and these are reviewed in Venables 

and Ripley (1999). Greenwood's formula for the variance of the survival function estimate 

is obtained as follows. Since H (t) is the sum of independent increments, the variance of 
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H (t) is the cumulative sum of terms. That is. 

This leads to an expression for the variance ofS (t): 

var [S(t)) = 5{tf J^ k{t,).k{t.^y 

This is again in common usage and is readily implemented in S-Plus, so this has been 

used for the variance of the survival function. 

5.5 Parametric Models of Component Reliability 

Parametiic models for survival data are becoming less popular now that non-parametiic 

approaches are available. This is because no assumptions need to be made about the 

parametric form using the non-parametric approach. However, parametiic modelling is 

the only appropriate approach when exfrapolation beyond the data is necessary. This is 

the case when future frends need to be predicted. In warranfy analysis, if the cost of 

extending a warranfy is to be estimated, as is the case in this study, a parametric model is 

required. 

The simplest parametric model is the exponential model, which has a constant haz

ard rate. It has often been used in reliabilify analysis because of its mathematical tractabil-

ity. As Hill and Blischke (1987) put it: "closed-form results are most easily obtained if it 

is assumed that the lifetime of the items in question are exponential." It is an appropriate 

model where few failures have been observed and when initial bum-in occurs. Since the 

warranfy period is short compared to the lifetime of a component, we are observing the 

Ufetime of a component during the flat part of the bath tub hazard curve, again making 

the exponential model appropriate. 

However, Blischke and Murthy (2000) recognised the flexibility of the Weibull dis-

ttibution and have stated that it is "the most widely used failure distribution in reliability 

applications" (page 108). Although tiie Weibull does offer greater flexibilify than the ex

ponential distribution, botii models are used m this study. The exponential's fractabUify, 

especially when obtaining confidence limits, is the reason it has been used. 

The rest of this section discusses the use of the likelUiood fiinction to obtain pa

rameter estimates of models. Pomt and variance estunates of the exponential model are 
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discussed, followed by a similar discussion of the Weibull model, both of which are used 

to model the reliabilify of components. Following this, the next section exammes how 

the point estimates and their variances can be used to obtain an estimate of the expected 

number of claims made during the warranfy period. 

5.5.1 Log Likelihood Function 

The parameters of a distribution used to model data can be obtained using maximum 

likelihood methods. This approach is used in many texts, for example. Cox and Oakes 

(1984). For a large sample size, the maximum likelihood estimators have good statistical 

properties, and are readily calculated. The cumulative distiibution fimction of a maximum 

likelihood estimator is close to a normal distribution with a mean equal to the parameter 

being estimated, and with a variance no greater than that of other estimators. 

Let Ti, T2,... Tn be a random sample of size n of ages to failure, drawn from a 

probabilify densify function / (t^; d), where tj is the time of the jth failure and ^ is an 

unknown parameter set. The likelihood function of this random sample as a function of 

the parameter is given by 

L{tj;e)=(llf{tj;e)] (l[s{tf,e)\, (5.2) 

where / {tj) is the densify distribution of T, S (T) is the survival function, F is the set of 

observations reaching failure and C is the set of censored observations. The parameters of 

the model can be found by maximising L. To simplify the calculations, the logarithm of 

the likelUiood function is first taken, as the maximum of L can be obtained by maximising 

log (L). From (5.2), tiie log likelUiood function is 

l{tj;9) = log(L) 

^og (Y[ f itf, 0)] + ^og(II S{tf, 9)], 

which can be written as 

/ (t,; 9) = Y^log (/ (tj; 9)) + Y^log {S {tf, 9)). (5.3) 
jeF jec 
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5.5.2 Exponential Model 

This subsection discusses botii point and mterval estimates of tiie parameter of an expo

nential model fitted to a set of data. The next subsection does tiie same for a Weibull 

model. 

Point Estimate 

The probabilify densify fimction for the exponential disfribution is 

/( t ) = Xe-'\ (5-4) 

where the parameter A is tiie failure rate. The cumulative distiibution fiinction and tiie 

survival function are given by 

F (t) = 1 - e-^\ and 

S{t) = l-F{t) = e~^\ (5.5) 

respectively. Using (5.4) and (5.5), substittite for / {ty, 9) and S {tj;9) in (5.3): 

l{ty,9) = 5^1og(Ae-^*0+El°g(^~''0 
j&F j^C 

= ^ (log A - A t , ) - ^ At,-

= T.^ogx- J2 ^tj. 
j&F jeFuc 

If r of the sample of n items reach failure, so that n — r of the sample are censored items, 

we have 
r n 

litf,9) = ^logA-^At,-
j = i j = i 

n 

= r log A - A y ^ t j , 
3=1 

A local maxunum of I can be found when dl {tf, 9) JdX = 0, Thus, the maximum likeli

hood estimator of the parameter A can be obtained by solving 
n 

r 
^ 3=1 

which yields an expression for the maxunum lUcelihood estunate of A as 

A = ^ J - - . (5,6) 
2_/7=l '^3 
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Variance 

Nelson (1982, p318) gives the maximum likelihood estimate of tiie variance of the 

parameter 6 (= 1/A) of the exponential distribution (5.4) for time-censored data as 

Var 
( ^ ) 

$ 

E. 1 — exp (-t,/̂ )] ' 

where tj is the censoring time for item j . From this expression we can obtain the variance 

of the failure rate as 

Var (x) = 
X 

E,- 1 — exp ( - t ,A)" • 

5.5.3 WeibuU Model 

This section discusses point and interval estimates of the parameters of a Weibull model 

fitted to a set of data. 

Point Estimate 

The Weibull distribution may be written in the form 

/W--f-)'"'exp 
.V, 

(5.7) 

where /? is the shape parameter and T] is the scale parameter It follows that tiie survival 

fimction is 

S{t) = exp 

Substittituig for / {tj; 9) and S {tj;9) in (5.3), we get 

. ' y . 
(5.8) 

l{tf,9) 
/ 3 - 1 

exp 
V. 

+ ^ l o g 
JGC 

= E 
JGF 

log^ + ( / 3 - l ) l o g J 

P 

V 

exp 
V. 

5 : i o g ^ + ( / 3 - l ) ^ ( l o g t , - l o g r y ) - ^ M 
j e F V 3&F j£FUC V 
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If r of tiie sample of n components reach failure, so that n-r observations are censored 

items, we have 

l{tj;9) = rlog^ + {0-l)J2{^ogt,-logv)-J2(^A 

= rlog/3-rIog7)+(/3-l)^log(j-(^-l)rlogi7-7;"^J]*, 

= r log^ - r^logr? + {/3 - l)Y,logtj - V'^Yl^j-

A local maximum of I is obtained by taking partial derivatives with respect to each para

meter, P and T], and then setting them to zero. Now 

P P j=i j=i j = i 

r "• J. 

= - ^ - r l og r / + ^ l o g t , - r / - ^ ^ t f log-^, (5.9) 
P 3=1 3=1 ^ 

and 

' i = i 

= ~{~^ + r'±f 

• dl{tj;e) 
Equating — to zero, we obtain the relationship between the parameters: 

1 " -

r 
3 = 1 

yielding 

^=(;E*fV- (5.10) 
r 

3=1 
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Equating d I {tj; 9) /d /3 to zero and substitiiting for f) in (5.9), we have 

l ^ -A' v ^ . / / I n \ fl \ n 

r'°^[7^f) +Elo8*.-^^^E*n I E*fiog 
3=1 {lEU^f) 

n \ •'• n n \ ^ 

i-ios(;E*n +E'<>g*.-(;E'?) E*ni°s*.-iog(;E'?i 1=0 

r r 

P P 
1 

j = l / 3=1 

n \ r 

j=l / j=l 3=1 

i°g ^E*? +Ei°g'i-'- E*f E*f i°8*i-I'os ;E*f 
3=1 / 3=1 J=l / 3=1 P ' \r 

0 
3=1 

^ - J log (̂  E^f) ^pogtj - r g t f j gtf logt. 

P d=i / 3=1 3=1 

^^^'ogfe'f +Ei°«'.- E*f Etfiog<,+;iog(iE*n =0. 
3=1 / 3=1 0 = 1 / j = l 3=1 

which leads to 

^ + J2^ogtj-r(Y^tn ^t^logtj^O. 
P 

(5.11) 
j = i vj = l / j = l 

A value for p can be found by solving (5.11) iteratively. Once a value for P is determined, 

a value for ^ can be found using (5.10). Thus, parameter estimates for both parameters of 

the Weibull distribution can be found using the method of maximum log likelihood. 

Variance 

For items with a failure density / (a;,; p, a). Nelson (1982, pages 375 to 379) gives 

the Fisher information matrix for the log likelihood as 

F 
-dH/dii'^ -dH/dpda 

He gives the large-sample asymptotic covariance matrix of/i and a as the inverse of this, 

namely, 

var ( ^ ) 

var {fi) GOV {p, a) 
GOV {p, a) var {a) 
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Thus, for tiie Weibull distiibution, the covariance matiix from a maximum likelihood fit 

of a set of data is given by 

var (f) 
(5.12) var (77) 

cov (^f), pj 

A confidence region for tiie combination of tiiese parameters can be obtained. As 

Draper and Smith (1966, page 95) pointed out, it is incorrect to use a rectangular confi

dence region tiiat is made up of the confidence intervals of the two separate parameters. 

Cook and Weisberg (1994, pp218-9) have shown that for a two-parameter model, 

y\x = 9o-\- 9iXi + 2̂2̂ 2 + £, 

with independent normal errors having mean 0 and constant variances a^, a joint 100(1 — 

a)% confidence region for {9i, ^2) can be obtained from a sample of size n. It is the set 

of all values of the 2 x 1 vector 9 that satisfies tiie inequality 

(0-9y Ivar (9)]'^ (9 - 6^ ^ 2F(1 - a,2,n - 3), (5.13) 

where F (1 — a, 2, n — 3) is the percentage point of the F-distribution with 2 and n — 3 

degrees of freedom that leaves an area of a under the right tail, and var (9) is an estimate 

of the variance-covariance matrix. The points that satisfy this inequalify fall inside this re

gion with centre at 9. Thus, using (5.13), a confidence region for the Weibull parameter set 

can be obtained from the point estimates of the parameters and their variance-covariance 

matrix. This can then be used to obtain point and interval estimates of the expected num

ber of claims during the warranty period, as discussed in the next section. 

5.6 Modelling Failure Using a Renewal Process 

This section discusses how the renewal equation can be used to model the number of 

replacements of a component m a vehicle. Firstiy, the formulation of the problem using 

tiie renewal fimction is presented, followed by the solution of the renewal equation for the 

exponential model. The section ends with a presentation of numerical methods to solve 

the renewal equation for the WeibuU model. 
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5.6.1 Formulation 

When a component fails, it is replaced by a new one. However, the warranty does not 

start anew on the replaced component. The duration of the warranty is based on the age 

of the vehicle, not that of the component. The process of replacing a failed component 

with a new one is called a renewal process. The formulation of the renewal process has 

been documented in a number of references, such as Cox (1982) and Tijms (1994). 

During a warranty, the original item may fail and be replaced with a new one. This 

process is repeated as many times as required during the warranty period. The lifetime of 

the original item, and each of its replacements if failure occurs, is a random variable. Let 

the age at failure of item j be Xj. The Xj are assumed to be independent and identically 

distributed, with a probability distribution F {x). Let the number of renewals in the time 

interval (0, t) be A'' (t), with N (0) = 0. This means that the original component is not 

taken as a renewal. 

Now Xj represents the time between the {j - l)th and the jth renewal. Then 

N{t) ^ n if and only if Sn < t, where Sn = Yl%i ^j- Since Sn is the sum of n 

independent and identically distributed random variables, the distribution of Sn is the n-

fold convolution of F {x) with itself Thus the probability that there are n renewals up to 

time t is given by 

Pr (Â  (t) = n) = Pr {N (t) ^ n) - Pr {N (t) ^ n + 1), (5.14) 

so 

Pr (Ar(t) = n) - Fr {Sn <t)- Pi {Sn+i < t). 

Let M (t) be the expected number of replacements of failed components to time t, 

that is, M{t) = E [N (t)]. Given that the first replacement occurs at xi = x, we have 

M{t\x,=x) = ^ M ( t - x ) + l i f : r< t . 

Thus we have 
/>oo 

M{t) ^ I M{t\x=^x)dF{x) 
Jo 

= / {1 + M {t - x)} dF {x) 
Jo 

which gives 

M (t) = F{t)+ I M{t-x)dF {x). (5.15) 
Jo 
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By using the change of variable mle of integration, (5.15) can be written as 

f M{t- x) dF {x) = M{t-x)F (a:) |U ' f F i^) ^M {t - x). (5.16) 
Jo ''^ 

Since F (0) = 0 for a lifetime distiibution, and M (0) = 0, we have from (5.16) 

CM{t-x)dF{x) = - I F{x)dM{t-x). 

Further, putting s = t - a: we have dM {t - x) = -dM (s), so that 

/ M{t-x)dF{x) = - / F{t-s)dM{s) 

Jo Js=t 
= I F{t-x)dM {x). 

Jo 
Thus, (5.15) can be written as 

M{t) = F{t)+ I F{t-x)dM{x). (5.17) 
Jo 

Let tiie distribution of Sn - E ; = I ^3 be Fn (t), so tiiat Fn (t) - Pr {N (t) ^ n). 

Since M (t) is the expected number of renewals to time t, we have 

M{t) = E[N{t)] 
oo 

= ^ n P r [ i V ( t ) = n ] . 
n = l 

Using (5.14), we have 

M (t) = Fi (t) - Fa (t) + 2F2 (t) - 2F3 (t) + 3F3 (t) - 3F4 (t) + . . . 
00 

= J^Fnit)-
n = l 

Now Fn (t) is the n-fold convolution of F (t) with itself, so that 

Fi(t) == [ dF{s) = F{t) 
Jo 

Fn{t) = I Fn-i{t-s)dF{s), n = 2 , 3 , . . . 
Jo 

For only a few distributions (for example, exponential and gamma) can (5.15) be 

formulated algebraically. For most distributions, it has to be solved numerically. Equation 

(5.15) is firstiy solved when F (t) is exponential, and then its numerical solution for tiie 

Weibull distribution is discussed in the subsequent subsection. 
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5.6.2 Solution for the Exponential Distribution 

Let us first consider the Laplace transform off (t), which is defined as 

/>oo 

L{fm = r{s)= / e~^'f{t)dt. 
Jo 

For the exponential distribution, we have / (t) = Ae"̂ *, so that after some simple algebra 

we get 

/ • W = j ^ . (5.18) 

Taking the derivative of (5.15) and usmg Leibnitz's mle, we have 

m{t) = / ( t ) + / m{t-x)f{x)dx, 
Jo 

since M (0) = 0. 

Taking the Laplace fransform we get upon using the convolution theorem (Cox, 

1982) 

m^s) = r{s) + r{s)m*{s) 

and so 

'"'(^) = Y^y (5.19) 

Using (5.18) in (5.19), for the exponential distribution m* (s) is 

A 
m*{s) 

(̂  + A)(1-A) 
A 

s 

Taking the inverse Laplace fransform of this gives m (t) = A, and so since M (t) = 

J^m{t)dt, 

M (t) = At, (5.20) 

which, of course, is a famiUar result. Solution (5.20) may also be obtained from (5.17) 

by substituting F (t) = e^^, rearranging, differentiating and solving the resulting first 

order differential equation. This technique is, however, not applicable to more general 

distributions and will not be dealt with further 

From (5.20), an estimate of the variance of the number of renewals is given by 

w r [M (t)] = t̂  x mr (A). (5.21) 
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As discussed m Section 5.5.2, an estimate of the variance of A can be obtained from the 

deviations, which can then be used to obtain an estimate of the variance of the expected 

number of renewals, using (5.21). 

5.6.3 Numerical Solution for the Weibull Distribution 

An approach developed in Xie (1989) to obtain a numerical solution to the renewal equa

tion is used in this study, and is shown below for completeness. 

Equation (5.15) can be written as M {t) = F (t) + /J M {t - x) f {x) dx, where 

f {x) is the density of F (x). This equation is known as the Volterra integral equation of 

the second kind. Xie (1989) stated that many studies have presented numerical methods 

for solving this equation (for example. Baker, 1977), however, he pointed out that solving 

(5.17) is simpler 

By partitioning an interval [o, 6] into n intervals of equal width, we can use the 

midpoint mle to evaluate the Stieltjes integral 

/

6 n 

f (x) dg {x)^J2f {xi_i/2) {g {xi) - g {xi^^)} , (5,22) 
i = i 

where Xi_i/2 = |(xj + Xi_i). 

For a given t, let the partition of the interval [0, t] for 0 ^ z ^ n be to < ti < t2 < 

•• • <tn, with to = 0 and t„ = t. 
Then using (5.17), we have 

M{tj) = F{t,) + r F{tj - x)dM{x). 
Jo 

Using (5.22), M {tj) can be approxmiated by 

3 

M{t,) ^F{tj) + Y.F{tj - t,_i) {M{ti) - M(t,_i)} 
1=1 

3-1 

= F (t,) + YlF (tj - t,_,) [M(t,) - M(t,_0} + F (tj - t^_,) {M {tj) ~ M(t,_i) 
i=I '̂  2 / 

Thus, 

{l - F (t. - V i ) } M itj) ^F{t,) + Y,F {ti - «<-i) {Mik) - M(*<_,)} 
i~\ 

-F{t,-tj_,)M{tj_,)^ 
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giving 

M (t,) 

and so 

F jtj) + Ytl F (tj - t , . i ) {M {ti) - M (t._i)} - F (tj - t^_i) M(t,_i) 

l - F ( t , - t , _ i ) 

where 

, . . , i ^ ( i , ) + 5 , - F ( t , - t ^ _ i ) M ( t , _ i ) 
M (t,) « )̂ ?̂ ^ , (5.23) 

j ' - i 

Si-^Y^F {tj - *i-i) {M (t,) - M (t,_i)} . (5.24) 
1=1 

Thus, M (tj) can be calculated recursively. Similarly, Sj can also be calculated recur

sively using M (tj_i) and the value of F (t) at the midpoint of the interval. Now 

tj - tj_i = tj - - {tj + tj_i) 

= 2 i^^ ~ ^^-^ 

where h is the interval width. Thus, (5.23) can be simplified to 

Xie (1989) provided an implementation of (5.25) and (5.24) in a Basic program for 

the Weibull failure distribution. Murthy and Iskandar (1992) used the same numerical 

method but expanded the program by including options for different failure distributions. 

Their program was implemented in Fortran and imposed a variable dimension limit of size 

6000. Thus, for a step size h, the program could compute M (t) for t ^ 6000/i, which 

effectively means that time could be divided into as many as 6000 intervals. In the current 

study, these programs have been adapted into an S-Plus program, which is discussed in 

detail in the next chapter Both Xie, and Murthy and Iskandar have shown that the method 

produces reasonably accurate results with a step size from 0.001 to 0.002 for t up to about 

3. 

An estimate of the variance of the expected number of renewals of a component can 

be obtained by working through the following steps: 

1. Obtain a confidence region for the Weibull parameter set using (5,13); 
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2. Evaluate the number of renewals of tiie points along this confidence region using 

(5,25) and (5.24); 

3. Obtain an estimate of the variance of the number of renewals using: 

var [Mp (t^)] = 
E?=i Mpi{t^)-Mp{t^) 

n - l 
(5.26) 

where Mp, (t^) is the number of renewals of component p during the warranty 

period, tiu, at pouit i on the confidence region which contains n points, and Mp {tyf) 

is the estimated number of replacements of component p during tiie warranty period. 

The way in which tiiis variance is tiien used to estunate a confidence interval for the 

cost of the warranty is discussed in the Section 5.8. 

5.7 Modelling The Cost of Component Repair 

The cost of repair is generally tteated as a constant in the literature. This thesis extends 

warranty cost models by considering the cost of repair to be a random variable. This has 

been done because the manufacturer's data reveals that there is quite a range of costs in 

the repair of any single component. Examination of Figure 5.3 reveals that bimodal and 

tri-modal cost distributions are evident, as well as skewed distributions with long tails, 

and combinations of these distributions. Although some of these cost distributions could 

be modelled with two or three normal distributions, to model all these various densities 

individually for all components would be an unmanageable task. As the intent of this 

study is to obtain an overaU estimate of the cost of the warranty, we have opted to simplify 

the modelling of the cost of repafr by using one statistic for all components, and obtaining 

its variance. The choice of the statistic is discussed in subsequent subsection. 

It may seem surprising that there is such a variation in the cost of repair of a com

ponent, smce under tiie warranfy, when a component fails, it is replaced by a new one. 

However, tiie warranfy cost also mcludes a labour component. The manufacturer indicates 

a scale of charges that it expects to pay for a repair, based upon a known fault. This would 

be easier for the manufacturer to estunate m cases where previous repairs have been con

ducted. Known problems wUl have a set procedure formulated for the repafr of the fault, 

whilst new problems could uivolve some exploration by the mechanic to resolve the prob-
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lem. As mechanics' skill levels vary, tiiere would be a variation in the abilify to diagnose 

and repafr a problem from a customer's description. How well a customer can identify a 

problem, and how soon the customer acts upon a problem on first detecting it, could also 

influence tiie cost of repafr. All of these factors can lead to a variation in the cost of repair 

for each component that is replaced, with a greater variation in more complex repairs. 

Here is an example of tiiis situation from the author's personal experience. A car 

owned by the author developed a loud knockmg noise, which appeared to be coming from 

the ttansmission, and caused the shift lever to vibrate. The problem was actually caused 

by a faulfy coil. This was well known to the repairer at the time, but could have been a bit 

of a mystery to a mechanic if he/she had not come across the problem before. In another 

example, a leak in the rear of the engine required the replacement of the rear main seal. 

This was a delicate operation, and if not fitted perfectly, the leak persisted, despite the 

replacement of the seal. When presented with the problem, one mechanic thought that the 

leak was coming from a different location, and replaced another seal, which of course, 

did not solve the problem. Eventually the vehicle was taken to another dealership, where 

there was a mechanic who was familiar with the problem and knew that the rear main 

seal needed replacing. He explained that it was diflScult to fit the seal in exactly the right 

position when the engine was put back into place. Indeed, this mechanic needed two 

attempts to finally solve the problem. This example shows that mechanics have varying 

levels of skill and familiarify witii a problem, and that an amount of exploratory work is 

sometimes required. Once a fault is well known, its solution should become more routine, 

take less time, and therefore be less costly to repair 

Lastly, it should be pomted out that some autiiors have buiU the value of money 

over tune into the warranfy cost model. Such sttidies include Hill and Blischke (1987), 

and Chun and Tang (1999). This is important when the time frame is qmte large, or the 

inflation and mvestinent rates are high. In our analysis, we are using a warranfy of three 

years, which is a relatively short period of time. During our sttidy, Ausfralia has had a 

low inflation environment, as measured by changes in the Consumer Price Index. Over 

a four-year period, the overall inflation was less than 10% in total, with some quarters 

showing deflation. Another consideration is that the manufactiirer collects the cost of 

tiie warranfy when a vehicle is purchased, and is then able to invest the fimds acqufred. 

The increase in the cost of repafr due to inflation should be nullified by tiie mcrease in 

mvesttnent capUal. Thus, modellmg tiie value of money in our models has been omitted. 
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However, an adjustinent to the cost of tiie warranfy to include the value of money can be 

incorporated into the models to obtain estimates in terms of today's dollar value. 

5.7.1 Choice of a Representative Cost Statistic 

From the discussion in the last subsection, it is clear that we are faced with choosing 

a statistic to represent the cost of repairing each component from a range of costs with 

various distributions. One option is the mean, which is efficient but not robust, and subject 

to the influence of outiiers. Another option is the median, which is robust but not efiicient. 

A compromise between the two, which is both efiicient and robust, would appear to be 

a suitable choice. The trimmed mean, for example, is the average of the middle data 

(usually 50%). Thus, the influence of outliers is minimised at the expense of losing some 

data. With the trimmed mean, the smallest 25% of the data and largest 25% are not used, 

and only the inner 50% of the data are used. In contrast, the biweighted mean uses a 

more gradual weighting of the data (see Woimacott and Wonnacott, 1990, page 539). The 

weighting, uj, on any data point X is 

\ 0 if | Z | ^ 1 ' ^^-^'^ 

where Z is a standardised X value given by 

„ X -X 
(5.28) 

3R 

Here, X is the median and R is the interquartile range. Thus, the weighting decreases 

the further away the value of X is from the median, up to the point when X is three 

interquartile ranges or more from the median, when the weighting becomes zero. The 

biweighted mean is then given by 

X, = ^ ^ . (5.29) 

A modification to this statistic is the biweighted iterated mean (see Wonnacott and Won

nacott, 1990, page 541), where the biweighted mean is used to again calculate the Z 

values. Thus, (5.28) is modified to 

^ x-x, 

A set of weightings for the data pomts is then calculated according to (5.27) as before, 

and tiie biweighted iterated mean is calculated using (5.29). The process of recalculating 

Z values is repeated using the new value of Xb, to obtain a new value of the biweighted 
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Table 5.1. Comparison of median and various means. 

Part 

BULB,LIC 12V 
TRIMFDC 
SOCKET& RET ASS 
BULB LMP RH7802 
BULB,RR LMP 
RELAY,COMPUTER 
TRANSMITTER SET 
S/S 
CAMRY BATTERY O 
LAMP BACK UP 
BELT ASSY FRT 
MOULD.R/DR.OUT1 
MOULD.F/DR.OUT1 
MOULD.R/DR.OUT2 
MOULD.F/DR.OUT2 
DISC,FT 
FRONT DOOR TRIMl 
FRONT DOOR TRIM2 
CARPET FLRFNTMC 
PUMP.VANE 

Median 

12.70 
16.20 
17.72 
18.80 
19.81 
39.34 
45.46 
69.67 
80.51 
90.01 
95.88 
108.28 
121.13 
151.06 
171.62 
185.71 
206.72 
277.06 
329.29 
661.23 

Mean 

13.17 
18.67 
21.16 
19.73 
20.84 
38.30 
47.48 
72.18 
80.35 
90.70 
102.38 
127.19 
136.87 
152.08 
174.15 
250.49 
224.94 
282.99 
327.49 
594.90 

Trimmed 
Mean 
12.76 
16.73 
196.40 
18.61 
19.90 
39.21 
45.26 
69.74 
77.74 
89.93 
96.85 
112.71 
121.28 
149.35 
172.27 
237.55 
196.28 
280.62 
336.77 
663.23 

Biweighed 
Mean 
12.70 
17.82 
19.69 
18.06 
19.86 
39.28 
44.54 
70.03 
77.36 
90.13 
96.58 
115.46 
118.85 
151.65 
173.55 
239.90 
191.41 
282.08 
341.21 
671.78 

Biweighted 
Iterated Mean 
12.70 
18.07 
20.13 
17.91 
19.88 
39.26 
44.29 
70.14 
76.72 
90.15 
96.67 
117.83 
118.28 
151.73 
173.83 
247.36 
188.59 
282.73 
342.99 
673.81 

iterative mean. This process is repeated iteratively until the desired accuracy in X^ is 

achieved. 

Thus, it would appear that any one of the trimmed mean, the biweighted mean or 

the biweighted iterative mean would be a good statistic to represent the cost of repairing a 

component. These values have been compared for several components and some of these 

are shown in Table 5.1. It appears, as the figures in the table reveal, that no one statistic 

seems to behave better than any other It can be seen, for example, that the biweighted 

means lie outside the range set by the means and the medians for some components. Al

though the data for some components contain outiiers, the mean has been the statistic used 

to represent the cost of repairing a component because the manufacturer's representative 

indicated that claims as large as the outiiers were known to have been paid under the war

ranfy. (This has been discussed m Section 4.3.) Thus, the mean cost of repair, Cp, has 

been used as an estimate of the cost, Cp, of replacuig component p. That is, an estimate of 

the cost of replacing component p is given by 

1 '' r-

^ = rẑ -̂̂ ' (5-30) 
t" J = l 

where Cpj is tiie cost of replacing component p in the jth clarni, and the sum is taken over 

all Tp claims mvolving component p. 
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5.7.2 Variance of the Cost of Repair 

The variance of the cost of repairing component p can be estimated by the square of the 

standard deviation of the costs of repairing that component. That is. 

al = (sdp)2 

Z.>p=i \Xp ~ Xp) 

rp-l 
(5.31) 

where Up is the standard deviation of the (infinite) population of component p over unlim

ited time. 

5.8 Modelling The Cost of a Warranty 

The last two sections contain a discussion of how, on a component level, the number of 

repairs during the warranfy period and the cost of those repairs can be estimated. Esti

mates of the variances of these quantities are included in the discussion. In this section, 

the point estimates and variances of the number of repairs and the cost of repairs are used 

to obtain an estimate of the warranfy cost. 

5.8.1 Point Estimate 

For a warranty of duration t^, the cost of the warranfy per vehicle, Wp, on component p is 

given by 

Wp = Mp (t^u) Cp, (5.32) 

where Mp {t^) is the expected number of replacements per vehicle of component p during 

the warranfy, and Cp is the cost of the replacement. Note that the expected number of 

renewals, Mp (t^), during the warranfy, and the cost of replacing component p, Cp, have 

been taken to be independent so that cov [Mp (t^), Cp] = 0. 

Equation (5.32) can be evaluated for tiie exponential model, where Mp (t) is given 

by (5.20), In tiie Weibull model case, it can be found numerically using (5.25) and (5.24). 

An estimate of the cost, Cp, of replacing component p is obtained from (5.30), 
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5.8.2 Variance 

The variance of a product of independent variables is given by 

var {XY) = pi var {X) + pi var {Y) + var {X) var {Y). (5.33) 

(See, for example. Mood, GraybiU and Boes, 1963, page 180.) Assuming tiiat the number 

of replacements of a component is independent of the cost of replacing it, (5.33) holds. 

Applymg (5.33) to (5.32), tiie variance of the warranfy cost, Wp, on component p is 

given by 

var (wp) == var [Mp (t^,) x Cp], 

from which an estimate of the variance of the warranty cost of component p is 

var {wp) = Mp (t^,) var (cp) + clvar [M (t,^)] + var {cp) var [M (t^)]. (5.34) 

The expected number of renewals, Mp (t̂ y), and its variance, var [M (t^^)], can be 

evaluated for the exponential model using (5.20) and (5.21) respectively. An estimate of 

the cost of repair, Cp, and its variance, var {cp), can be obtained using (5.30) and (5.31). 

Thus, we get 

var {wp) = {Xptw) var {cp) + clt^var {Xp) + var {cp) var (Ap) tJ 

= {Xlvar {cp)-\-clvar {Xp)-\-var {cp) var {Xp)} tl. (5.35) 

For the Weibull model, the expected number of renewals and its variance can be 

found numerically using (5.25) and (5.26) and the method discussed in Section 5.6.3, 

Again, (5.30) and (5.31) can be used to obtain estimates of Cp and var {cp) respectively, 

5.8.3 Total Warranty Cost 

Summmg the pomt estimates over all components provides a point estimate of the overall 

warranty, \V. That is 

W = J2wp. (5.36) 
p 

This can be evaluated using (5.32). 

Using the fact tiiat tiie variance of the sum of variables is the sum of the individual 

variances, we can obtain tiie variance of the total warranty cost as 

var {W) = Y^ var {wp). (5.37) 
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This can be evaluated using (5.34), which can be evaluated for the exponential and Weibull 

models, as discussed in the last subsection. 

To obtain a confidence interval for the warranty cost, a normal approximation can be 

used. Thus, a 100(1 - 2 a ) % confidence inten^al for the warranty cost is W±Za ^/varJW), 

where Za is the lOOo: percentile point of a standard normal distribution. Alternatively, the 

gamma distiibution with shape parameter = r and rate parameter = A, such tiiat E {X) 

= J and var(X) = ^ can be used. The results from these two methods are compared in 

Section 6.7. 

5.8.4 Point and Interval Estimates Using the Bootstrap Method 

Background 

A less traditional approach in obtaining a point and interval estimate of the total 

cost of a warranty is the bootsfrap method. This technique can be used to obtain a point 

estimate and a confidence interval for any statistic, such as the mean, the median, the 

standard deviation, or indeed a function of the variables. The method uses sampling with 

replacement, which is repeated a large number of times, say, 1000. Inferences can then be 

made from the distribution of these samples. Details of the bootstrap theory can be found 

in Efron and Tibshfrani (1993). Following is a precis of some of the theory tiiat has been 

used in this warranty application. 

An estimate of the distribution of any statistic, m our case the warranty cost per 

vehicle, can be obtained from the distribution of that statistic obtained from the sam

pling. For a set of observed data points x = (xi, X2,. • •, Xn), a bootsfrap sample is 

obtained by random sampling n times, with replacement, from the observed data, and is 

denoted by x* = {xl,xl,..., x*). A large number, B, of independent bootsfrap samples, 

x*\ x*^,. . . , x*^ are then generated. For the desired statistic, s (x), such as the mean, 

a bootstrap replication of s, namely s (x*^), is obtained for each sample. The bootstrap 

estimate of the standard error is the standard deviation of the bootstrap replications. 

,^,.^Eta^^)-^(-)r^, (,33, 

where s {•) = ZLi s (x*") /B 
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A confidence interval for s (x) can be obtained from tiie percentile interval of the 

distribution of the value of this statistic, s (x*^), obtained from tiie bootsfrap samples. Let 

9* = s (x**") be the bootsfrap estimate of tiie required statistic for the bootstrap sample b. 

Then the 100(1 - 2a)% confidence interval for that statistic can be defined by the a and 

I- a percentiles of the distribution of ^ . This may be written as 

^ / , ^ u 
^ * ( Q ) - * ( l - a ) (5.39) 

By the cenfral limit theorem, as n -^ oo, the distribution of the bootsfrap statistic, 9 , 

will become normal. Further, for small n, the confidence interval defined in (5.39) has the 

following desirable properties: it has good coverage, that is, a proportion a of the 9 lie 

below this range, with the same proportion lying above; it is transformation-respecting, 

that is, the percentile interval for any monotone transformation (j) = m{9) is the percentile 

interval for 9 mapped by m {9); and it is range-preserving, that is, any restriction on the 

range of values that a parameter can have is also unposed on the bootsfrap statistic 0 . 

An improvement on the percentile confidence interval is the BCa (bias-corrected 

and accelerated) interval. The BCa interval corrects for bias in the percentile interval. It 

is given by 

^i,9u • 
^ * ( « i ) ^ * ( a 2 ) 

(5.40) 

where 

^2 = ^ ( 2 0 + 

Zo + z (a ) 

l-a{zo + z(°'))^ 
ZQ -t- 2(1-") 

(5.41) l-a{zQ + zi^-°'))J-

$ (•) is the cumulative normal distiibution function and 2:̂ °̂ ) is the 100a percentile point 

of a standard normal disttibution. The values of a i and a2 depend on the values of io and 

d. 

The value of the bias-correction, ZQ, is obtained from the proportion of bootstrap 

replications less than the original estimate 9, 

..-.r^Eii} ZQ = ^ 

B (5.42) 

where ^ ^ (•) is tiie inverse fiinction of a standard normal cumulative distribution fimc

tion, and # {•} refers to the number of elements in a set. 
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The acceleration, a, is calculated in terms of the jackknife values of a statistic 9 = 

s (x). Let X(i) be the original sample with the zth point Xi removed, and let 9(i) = s (x(i)). 

Define (̂.) = JJi^i ^(i)/n. Then an expression for the acceleration is 

ELi(^(-)-%))' 
a = — ^ 1—^^ (5.43) 

6|Er=i(^()-%)) I 

Warranfy Application 

The warranty cost per vehicle, W, can be obtained by generating a number of boot

sfrap samples, obtaining this cost for each sample, and then obtaining the mean warranty 

cost per vehicle of all the samples. However, a more direct approach is to obtain an esti

mate of this statistic from the observed sample of vehicles with claims. Thus we have 

r 

Z—/ ri 
3=1 

where Cj is the cost of repairing vehicle j , and r is the number of claims made during the 

warranty period. Alternatively, W can be obtained by considering the expected warranty 

cost per vehicle, and summing over all components, as in (5.36). 

An estimate of the confidence interval on the cost of a warranty can be obtained 

from tiie BCa confidence interval. Using (5.40), (5.41), (5.42) and (5.43), a BC, confi

dence interval can be constructed. However, a BCa interval can be readily evaluated in 

most statistical packages. 

5.9 Limitations of the Models 

It should be pomted out that the above modelling is subject to the assumptions discussed 

at the beginning of this chapter in Section 5.2. 

Moreover, in the previous sections, only the exponential and Weibull distributions 

have been discussed to model failure of components. Because of the vast range of com

ponents that go into making up a vehicle, it may be maccurate to model the reliabUity of 

all components using just these two distributions. However, as discussed in Section 6.3, 

there is not much difference in the log likelihood values amongst the various alternative 

models that have been considered. The Weibull model provides a good fit in the majority 
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of cases. It is a versatile model as it encompasses other models. For this reason, it is one 

of the preferred models. 

The analysis in tiiis stiidy has been based on time only. Since the vehicle warranty 

here is two-dimensional, the modellmg that has been investigated is a simplification of 

reality. This has been discussed in Section 5.2. 

It also needs to be pomted out that exfrapolating the models much beyond the war

ranty period could lead to erroneous predictions. This is because the parameters of the 

models are based on observations made during the warranty period, which allows for the 

observation of only the early failures of components, compared to mean life of most com

ponents. 

5.10 Conclusion 

This chapter has discussed models for the costing of a warranty. Identifying the assump

tions made in establishing the models was the first step of the process. Survival analysis 

techniques, which take into consideration the fact that not all components are observed un

til failure, have been used in developing the models. Both parametric and non-parametric 

models have been used. The cost models used in this chapter have been based on the ex

ponential and Weibull only. However, several other models have been considered, many 

of which are encompassed within the Weibull model. Renewal theory has been called 

upon to estimate the expected number of claims during the warranfy period. Both a point 

estimate of the number of renewals and an estimate of its standard error have been ob

tained. The costs of repairing components have been taken to be random variables, rather 

than fixed amounts, so that both point estimates and standard deviations have been ob

tained. Usuig tiie point estunates of the number of renewals and the cost of repairing each 

component, point and interval estimates of the warranty cost due to each component have 

been obtained, from which the total cost of a warranfy has been established. 

This approach has been complemented by the bootstrap approach of obtaining an 

estimate of tiie warranfy cost by resamplmg from the observed data. This approach has 

been far sunpler to unplement, as it does not rely on the analysis of each component 

mdividually. However, if more detail on uidividual components, or exfrapolation beyond 

tiie present Umits of tiie data, is required, then the former approach is more appropriate. 
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In the next chapter, the models discussed in this chapter are applied to the manu

facturer's data. Problems involved in dealing with the real data, and how they have been 

overcome are discussed. 



Chapter 6 
Implementation of the Survival Models 

6.1 Introduction 

The last chapter looked at the tiieory behind the survival models. This chapter discusses 

the application of these models to tiie manufacturer's database. The purpose of this chap

ter is to obtain the warranty cost and variance per vehicle manufactured, firstiy for each 

component, and tiien for the entfre vehicle, using data from a whole year's production. 

Preliminary data analysis of the manufacturer's database has revealed that a number 

of claims were paid after the warranty period. In cases of known manufacturing faults, 

the manufacturer honoured claims beyond the warranty period. However, the number 

of claims made after the warranty expired is not representative of the total number of 

failures at that time, as most owners would, at that point, pay for the repairs rather than 

make a warranty claim. After the warranty, the vast majority of vehicles are no longer 

being observed (that is, they become censored items), which greatly reduces the number 

of vehicles at risk. Therefore, an estimate of the probability of failure takes an enormous 

jump because of the reduced sample size. Thus, no clauns beyond three years have been 

used to model the failure of components. 

Section 4.6 discussed how a survival database containing the fields VIN, age2, 

dist2, part, partname and status had been created after cleaning the data. The database 

is in a suitable format to fit survival models for each part, which is the subject of this 

chapter Thus, tiie survival models discussed in the previous chapter are implemented in 

tiiis chapter Even though the previous chapter only discussed the exponential and Weibull 

parametric models, this chapter looks at various other models which are compared to these 

two models. 

This chapter starts by examining the distribution of the number of claims by compo

nent, and tiien discusses appropriate analysis for the number of clauns being made. A look 

at possible model candidates precedes a discussion of the exponential and Weibull models 

of component reliability. As in the last chapter, tiie reliability models for each component 

are used m conjunction with renewal theory to obtain point estimates and standard errors 

96 
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of the number of renewals during the warranty period. The repair cost models developed 

in the last chapter are also applied to the manufacturer's data. The individual component 

warranty-cost models that have been developed in the last chapter are tiien applied to the 

manufacturer's data. Using the model parameters obtamed from tiie manufacttirer's data, 

the cost of extending the warranty is estimated. The chapter ends with a test of the sen

sitivity to change of the warranty cost when the Weibull parameter estimates vary from 

their determined values. 

As in the previous chapters, a number of original S-Plus fiinctions and scripts have 

been written by the author for the analysis required in this chapter Many are presented in 

Appendix C. All the functions, scripts and data frames referred to in this chapter can be 

viewed on the accompanying compact disc. 

6.2 Frequency Distribution of Claims 

The purpose of this section is to examine the distribution of the number of claims. The 

number of different types of component that exist in the manufacturer's database, and the 

number of claims on each of these component types, are investigated. The distributions 

of the number of claims is then studied. It should be restated here that once a component 

fails, it is replaced with a new one. This new one could itself fail before the vehicle it is 

installed in reaches the end of its warranty. Thus, more than one claim per vehicle on a 

component type is possible during its warranty period. 

The manufacturer's database covers various configurations of one make and model 

of a passenger vehicle. The variants include different engines, body configurations, and 

equipment levels. Components that were provided by different suppliers have been iden

tified by different part numbers. Thus, a particular part-specification could have several 

different part numbers. These have all been analysed separately. Thus, it has not been 

assumed tiiat parts supplied by different vendors have identical reliability distributions. 

Therefore, although 3,040 different parts, as identified by unique part numbers, have been 

identified in the manufacturer's database, no one vehicle contains tiiat many components. 

The vast majority of parts m the manufacturer's database proved to be very reliable 

during tiie warranty period. Of the 59,934 claims made during the warranty, there were 
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Table 6.1. Number of parts with given number of claims. 

(a) All Claims. 
Number of Claims 

1-100 
101-200 
201-300 
301-400 
401-500 
501-600 
601-700 
701-800 
801-900 

900-1000 
>1000 

(b) Up to 100 claims. 
Number of Claims 

1-10 
11-20 
21-30 
31-40 
41-50 
51-60 
61-70 
71-80 
81-90 

91-100 

Number of part types 
2964 

43 
12 
5 
3 
3 
1 
2 
2 
0 
6 

Number of part types 
2498 
207 
91 
58 
45 
24 
11 
13 
8 
9 

(c) Up to 10 claims. 
Number of Claims 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Number of part types 
1159 
454 
262 
193 
141 
89 
63 
62 
44 
31 

1,159 parts that were replaced once only. Thus, it has only been possible to perform lim

ited reliability analysis on these parts. Table 6.1(a) shows the distribution of the number 

of different parts by the number of claims. The 'number of claims' refers to the number 

of times a warranty payment has been made on a particular type of component. It is clear 

from the table that 100 claims or fewer were made against the vast majority of parts. 

Table 6.1(b) shows a fiirther breakdown of the number of parts with up to 100 

clauns. This table again reveals that the vast majority of parts had very few claims made 
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against them. It can be seen, for example, that there were 10 or fewer claims made on 

2,498 different parts. 

Table 6.1(c) shows yet a further breakdown of the number of parts witii up to 10 

claims. It shows how few claims most parts had made agamst them. For example, 1,159 

parts had only one claim made against them during the warranty period, whilst 454 parts 

had two claims made against them. 

The above analysis was conducted in S-Plus using the script PartFreq.ssc, which is 

included on the accompanying compact disc. 

It is reasonable to use a simple model to describe the reliability of parts with few 

claims. An exponential model, which is based on a constant failure rate, is appropriate m 

this case. 

We shall refer to components with 1, 2, 3 , . . . claims occurring during the warranty 

period as one-claim, two-claun, three-claim,... components. 

6.3 Parametric Models of Reliability 

A number of distributions have been considered to model the reliability of the individual 

components. They are the exfreme, normal, logistic, Rayleigh, lognormal and loglogistic 

distributions. They have been selected not only because they are readily available in the 

S-Plus survival analysis function survReg, but also because these distributions have been 

used to various extents in the reliability literature previously. 

No one model was found to provide the best fit for all components. In fact, for 

most components all models fit the data reasonably well, with little difference between 

their log likelihood values. More than any other model, the lognormal, followed by the 

Weibull, have provided the best fit. However, the lognormal model proved to be umeliable 

for several components, with its log likelihood values being several orders of magnitude 

larger than that of the other models. The Weibull model appears to be the most suitable for 

components with a reasonable number of claims, as it is the most versatile. It encompasses 

many other distributions (Nelson, 1982, page 37). If ^ = 1, the Weibull simplifies to 

the exponential distribution, whilst if P — 2, it becomes the Rayleigh distribution. If 

3 ^ /? < 4, the Weibull distribution is close to the normal distiibution. For large values 

of p, say p ^ 10, the shape of the Weibull distiibution is close to that of tiie smallest 
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exfreme-value distribution. Nelson suggested tiiat the Weibull distiibution is the most 

suitable distiibution for life data. For components with fewer claims, tiie exponential 

disfribution is suitable to model reliability because of its mathematical fractability. 

As discussed in the last section, for tiie majority of parts, few claims have been 

made. From Table 6.1(b), it can be seen that tiiere is somewhat of a drop in the frequency 

in the number of components with more tiian twenty claims. By using the exponen

tial model for components less than twenty claims, before using tiie Weibull model, the 

amount of processuig can be greatly reduced. Thus, twenty claims is considered to be a 

suitable cut-off point to start using tiie Weibull model in this sttidy. In order to compare 

the results of the two models, tiie exponential model has been used to model all compo

nents, as discussed in Section 6.4 below. 

Table 6.2 shows the log likelihood values of the various models for a sample of 

components. A complete table can be found in the data frame logLike, which can be 

opened through the object explorer in an S-Plus session. The table show that in most 

instances tiie log likelihood values of the models do not vary greatly. However, there are 

some notable exceptions. For example, the log likelihoods of the lognormal models for 

components "GEAR ASSY P SXV" and "GEAR ASSY STEER" are several orders of 

magnitude smaller than the log lUcelihoods of the other models for the respective parts. 

Similarly, tiie extreme model's log likelihood value of the component "TRANSMITTER 

SET" is also vastiy different to the other models' values. This puts these two particular 

models at odds with all the other models. Table 6.2 and Figure 6.1 clearly show the 

discrepancy with the other models for the latter two components. Log likelihood values 

that are several orders of magnitude lower than the other models' respective log likelihood 

values have occurred with oiJy the extreme, normal and lognormal models. The reason for 

this has not been pursued. As the Weibull model is the most universal, it is the preferred 

model for components with twenty or more claims. The Weibull model's log likelihood 

values are not necessarily the largest, but they are of the same order of magnitude as the 

others. 

Of tiie components with twenty or more clauns, the Weibull model does not fit four

teen of tiie 347 components particularly well. This can be seen by the low log likelUiood 

values of tiie Weibull model compared with tiie other models' log likelUiood values. The 

fact tiiat tiie WeibuU model does not fit these fourteen components well can also be seen 

by examining the survival graphs of these components in Appendix D.l. It has been dis-
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Table 6.2. Log likelihood of various models for some components. 
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GEAR ASSY STEER SURVIVAL (log scale) 

2 
CO 

o o o 

O) • 

o 

00 

en 

o 

•~ 
""^ —^ -. 

Kaplaii-Meiei 
Weibull 
Lognormal 
Loglogistic 
Rayleigh 

1 1 1 1 1 

200 400 600 

Age (days) 

800 1000 

TRANSMITTER SET SURVIVAL (linear scale) 

CSI 
Oi -

Kaplan-Meier 
Extreme 
Normal 
Logistic 
Exponential 

— i — 

200 400 600 

Age (days) 

800 1000 

Fig. 6.1. Examples of ill-fitting models. 
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covered that a better fit could be obtained by removing one or more points with the highest 

values of a^e2, that is, the points representing the oldest non-censored components. In 

all but three cases of the fourteen, only one point has to be removed in order to obtain 

a closely-fitting Weibull model. In two cases, two points had to be trimmed, and in one 

case, three points, in order to obtain a closely-fitting Weibull model. These results can 

be seen in Appendix D.l. In all fourteen cases, the removal of these points had resulted 

in a Weibull model with a higher log likelihood value than the corresponding exponen

tial model's log likelihood. Although the ensuing Weibull model does not always produce 

the highest log lUcelihood values, they are very close to the maximum values amongst the 

considered models. 

There has not appeared to be any significant difference in the distributions of age2 

between components with an initially poor Weibull fit, and those with a good Weibull 

fit. This can be seen by studying the figures in Appendices D.2 and D.3, which show the 

distributions ofage2 of a sample of components from each of the two groups. Indeed, the 

only difference in the distribution ofage2 before and afl;er the removal of largest value(s) 

is the absence of the removed point(s). It is unclear as to why the removal of points with 

the largest values of a^e2 lead to a much better Weibull fit. Although this observation is 

worthy of fiirther investigation, it was not possible to pursue it in the current study. 

6.4 Exponential Model 

This section looks at the modelling of warranty costs using the exponential distribution. 

As previously discussed in Section 5.5, the exponential model is appropriate when there 

are few failures in a large sample. The resulting survival data will contain mainly censored 

items. All components, not just the ones with a low failure rate, have been analysed using 

the exponential model in order to compare it with the Weibull model. 

This section begins witii a discussion of a point estimate of the cost of a warranty 

when the reliability of components is modelled by the exponential distribution. This is 

followed by a discussion of the variance of this estimate. The metiiod of obtaining a point 

estimate and variance using S-Plus is discussed in the section after that. Following that, a 

simplified implementation is presented. The section ends with a discussion of the results 

of the two different approaches. 
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6 A.l Expected Warranty Cost of Components 

Point Estimate 

Equation (5.32) gives tiie warranty cost, Wp of component p as 

Wp = Mp ( i„) Cp, 

where Mp (t„) is the expected number of replacements of component p during the war

ranty period ty,, and Cp is the cost of the replacement. The expected number of replace

ments can be evaluated usmg (5.20). That is, 

Mp \ty,) = Xptyj, 

An estimate of Cp can be given by the mean cost in (5.30) as 

Cp 
1 """ 
~ Z_j^p,v 

^p • 1 

where rp is the number of claims involving component p. Thus, the warranty cost of 

component p is 

^^-Ecp,- (6.1) Wp = 

The warranty cost per vehicle over all components is given in by (5.36). Taking 

the sum over all components to be modelled by the exponential distribution and using 

(6.1), we get the total warranty cost of all components being modelled by the exponential 

distribution as 

^^ = *-ErX^^p>^' (6.2) 
peE P 0=1 

where E is the set of components being modelled exponentially. 

Variance 

An expression for the variance of the warranty cost of component p is given by 

(5.35), which is. 

t^ 
^w 

var {wp) = {Xlvar {cp) + clvar {Xp) + var {cp) var {Xp)} tl 

The mean cost of repaU, Cp, and the variance of this cost, var {cp), can be ob

tained using (5.30) and (5.31). By (5.37), the variance of the total warranty cost of the 

components bemg modeUed by the exponential distiibution is the sum of the individual 
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variances. That is, 

var {W) = E ^«^ iy^p) > (6-3) 
p 

where the sum is taken over all components being modelled exponentially. 

Once an estimate of the total warranty cost, W, and its variance, var {W),are ob

tained, a confidence interval of tiie cost of the warranty can be calculated. An approximate 

(1 — 2a) X 100% two-sided confidence interval is provided by the expression 

W ± Zavar {W), 

where Za is the standard normal value having a right tail area of a. 

6.4.2 Implementation in S-Plus 

The S-Plus fiinction/Cy^Ex/? implements (6.1) and (5.35), and it is included in Appendix 

C.l. The inputs to the fiinction include a data fi*ame of component failure times and a 

range of number of claims identifying which components are to be analysed. The fiinction 

returns a data frame containing each component's average repair cost and the standard 

deviation of this cost. The fimction also fits an exponential model to each component 

and returns both the failure rate and the standard deviation of the failure rate. Lastly, 

the fimction computes the warranty cost of each component together with the variance 

and standard deviation of this cost. Since the variance of the cost of repair of one-claim 

components cannot be calculated because there is only one observation, the cost of repair 

has been taken as a constant for these components and its variance has been taken to be 

zero. 

In the fCstExp fiinction, the unit of time is days. Consequentiy, the failure rate is 

the number of failures per day. Although this unit is somewhat awkward, it has been used 

so that a comparison witii the results of the Weibull modelling can be made. 

As fvtnction fCstExp is processor intensive, U is unable to process 2,000 records 

at once. The processor (in this case and AMD 1800 with 512MB SDRAM) runs out of 

dynamic memory. In order to process all the components, it is necessary to break up the 

task mto smaller jobs, and then combine the results. This has been done in tiie script 

RunCostExp.ssc, which can be found on the accompanying compact disc. The results of 

the calculations are discussed in Section 6.4.3. 
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Simplified Implementation 

Since the failure rate does not vary greatiy between components with the same 

number of claims, a simplified analysis mvolves modelling such components together, 

with the cost of repair being tiie sum of the average costs of repairing each component. 

Consequently, all one-claim components can be analysed simultaneously. Likewise, all 

two-claim, and then three-claim components, etcetera, can also be modelled together in 

groups. 

In order to investigate the differences in the failure rates of components with failures 

occurring at different tunes during the warranty period, the function fFailRate has been 

written (see Appendix C.2). Three scenarios of component failures are simulated in the 

fiinction: 

• All failures occur at the start of the warranty period; 

• All failures occur at the end of the warranty period; 

• Failures are evenly distributed throughout the warranty period. 

It was established that the timing of the failures has little impact on the failure rates. 

The script ExpRteCmpr.ssc, which is on the accompanying compact disc, was devel

oped to compare the results of the grouped approach with the individual analysis approach 

for components with up to fifty claims. In the script, for each A;-claims group, the individ

ual component's failure rates are compared with the mean of the group, and with the rates 

obtained fi-om the above three scenarios. The results are in the data firame expRteCmpr on 

the accompanying compact disc, and the conclusions that have been drawn are: 

• For each /c-claims group, the minunum and maximum failure rates are within 

0.05% of the mean rate of the group. 

• The mean failure rates of each A;-claims group are withm 0.001% of the rate when 

failures are evenly distiibuted throughout the warranty period. 

• The failure rates when aU claims are made at the start or end of the warranty period 

are witiun 0.01% of the rate when the failures are evenly distributed throughout the 

warranty period. 
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Thus, it can be concluded that for the shnplified analysis, witii little loss of accuracy, is 

the preferable approach. 

The function fCstExpGp uses the grouped-clamis approach (see Appendix C.3). 

This somewhat reduces the processing time, as all components with the same number 

of claims are analysed together. For example, tiie 1,159 one-claim components can be 

analysed as one group, with one calculation, as opposed to bemg analysed individually, 

which would require 1,159 calculations. 

The warranty cost obtained by the use of individual-component analysis was com

pared with the warranty cost obtained by the grouping of fc-clauns components togetiier 

Considering components with 50 or less claims, the difference m total warranty cost cal

culated by the two different methods was 0.05% of the total warranty cost of individual 

components. Similarly, the difference in the variance provided by the two methods was 

0,09% of the total variance of individual components. Thus, it can be concluded that it 

is more expedient to obtain an estimate of the warranty cost by grouping all A;-claims 

components and analysing them as one group. 

6.4.3 Results 

A table of results fi-om the individual-components analysis can be found in the data frame 

costExp on the accompanying compact disc. The results of the analysis involving the 

grouping of A;-claims components can be found in the data set cstExpGp on the compact 

disc. 

Table 6.3 shows the comparison of the warranty cost per vehicle, and the standard 

deviation of this cost, using the two different analyses for components with up to fifty 

clauns. The firequency of components with more than fifty claims is low, and in most 

cases there is only one component with a particular fi-equency. Thus, little is to be gained 

by grouping the components into same-fi"equency categories. The table shows that the 

two different metiiods produce very close results for both the warranty cost per vehicle 

and the standard deviation of this cost. 

For tiiose components having up to 50 claims, the total warranty cost per vehicle 

and variance of tiiis cost, using the two different methods, are shown m Table 6.4. It 

can be seen tiiat tiie two methods provide similar results. Later in Section 6.6, we have 

compared the results obtained from modelling the total warranty cost using the individual-
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Table 6.3. Comparison of individual and grouped warranty costs and standard deviations. 

Number 

of Claims 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

Individual 

Cost 

12.00711 

8.38868 
6.56014 

5.01652 
3.87094 

3,34195 
1.87243 
3.44628 
2.91179 

1.55199 
2.54064 
2.64094 
1.63462 
3.47424 
1.80178 
0.88828 
3.98320 
1.08326 
1.33202 
0.82204 
1.77583 
0.94539 
1.78654 
1.30345 
0.74982 
0.55613 
0.37103 
0.62016 
0.37830 
1.68519 
1.27277 
0.92457 
1.49763 
0.70032 
1.45376 
2.06584 
0.80630 
1.61239 
1.25653 
0.75721 

0.95832 
0.38258 
0.70621 

0.86015 
0.49257 

1.33501 

1.11428 
0.70865 

1.48290 
0.42345 

Grouped 

Cost 

12.00669 

8.38813 
6.55949 

5.01585 

3.87030 
3.34129 
1.87200 
3.44536 
2.91092 
1.55147 

2.53972 
2.63989 
1.63392 
3.47262 
1.80089 
0.88781 

3.98096 
1.08261 
1.33119 
0.82150 
1.77459 
0.94470 
1.78518 
1.30241 
0.74920 
0.55565 
0.37069 
0.61959 
0.37794 
1.68351 
1.27146 
0.92359 
1.49599 
0.69953 
1.45208 
2.06340 
0.80531 

1.61036 
1.25488 
0.75620 
0.95702 

0.38205 
0.70520 

0.85890 
0.49184 

1.33298 

1.11255 

0.70753 
1.48049 

0.42275 

Individual 

Std Dev 
1.43517 

0.86184 

0.76708 

0.63794 
0.49984 

0.92390 

0.20468 
0.56891 
0.38423 
0.21568 
0.48264 

0.38336 
0.24382 
0.50901 
0.26220 
0.17734 
0.57878 
0.25316 
0.22897 

0.14990 
0.31875 
0.17140 
0.24291 
0.27178 
0.16120 
0.10067 
0.12657 

0.16520 
0.11972 
0.21931 
0.17709 
0.19422 
0.57352 
0.21126 
0.19990 
0.60075 
0.17554 
0.45554 

0.31445 
0.14081 
0.25527 

0.07553 

0.25625 
0.20806 

0.19319 
0.21441 

0.32034 

0.37523 

0.18422 
0.15921 

Group 

Std Dev 

1.43513 

0.86179 

0.76700 

0.63785 

0.49976 
0.92371 
0.20464 

0.56876 
0.38411 
0.21561 

0.48246 
0.38321 

0.24372 
0.50877 
0.26207 
0.17725 
0.57845 
0.25301 
0.22882 
0.14980 
0.31853 
0.17128 
0.24272 
0.27156 
0.16107 

0.10058 
0.12646 
0.16505 
0.11960 
0.21909 

0.17690 
0.19402 
0.57289 

0.21102 
0.19967 
0.60004 

0.17533 
0.45497 
0.31404 

0.14062 
0.25492 
0.07542 

0.25588 

0.20775 

0.19290 
0.21408 
0.31984 

0.37463 
0.18392 
0.15894 
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Table 6.4. Warranty cost and variance due to components having up to 50 claims. 

Cost 
Variance 

Individual Grouped 
100.1521 100.1001 
8.905666 8.898051 

component and the grouped-component exponential models, with the results obtained 

from the Weibull model. 

Thus, good results for both warranty cost and variance were obtamed by modelling 

the failure of components either individually or in groups. It was shown that the results 

for the warranty cost and variance obtamed by either method are sunUar. 

6.5 Weibull Model 

This section discusses the development of a warranty cost model using the Weibull distri

bution. It begins with a lengthy discussion of the S-Plus fiinction survReg, which is used 

to fit a parametric model to survival data. This subsection has been included because the 

output of the fiinction needs some interpretation. Following this is a discussion of how 

the warranty cost models developed in the previous chapter are implemented in S-Plus to 

obtain a point estimate and its variance. The section ends with a discourse on the results 

of the analysis. 

6.5.1 The S-Plus Function survReg 

The standard S-Plus fimction survReg has been used to fit a model to a given set of sur

vival data. Before beginning the Weibull analysis, an interpretation of the meaning of the 

output of tiie survReg fimction, both in the S-Plus manuals and in the wider literature, has 

been sought. There appears to be a lack of clear documentation in either source. We have 

endeavoured to deduce the meaning of tiie survReg fimction output by interpreting ref

erences to parametiic survival models m tiie S-Plus manuals and in Venables and Ripley 

(1999). An examination of tiie contents of the section on lmear modellmg m tiie S-Plus 

manuals has also been undertaken. The following paragraphs discusses tiie findings. 

Firstly, survReg uses maximum likeUhood techniques to obtam estimates of the pa

rameters of the distiibution used to model the data. The exfreme-value, normal and logis-
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tic distributions, together with their log counterparts, tiie Weibull, lognormal, loglogistic, 

as well as the exponential and Rayleigh distiibutions are available in survReg. 

The S-Plus 2000 Guide to Statistics, Volume 2 (page 348), in its Chapter "Para

metric Regression in Survival Models" states tiiat the Weibull distiibution has a hazard 

fiinction of pA {Xt)P~\ This implies that tiie survival fimction for the Weibull distiibution 

is S{t) = e x p ( - (At)P). This is equivalent to (5.8) withp = P and A = 1/ry. It is not 

made clear m tiie S-Plus documentation how these parameters relate to tiie output of the 

survReg fiinction. Assigning fit to tiie output of survReg, the components of tiie output 

that relate to the Weibull parameters are fit$coeff and fit$scale. 

In the section on Paramettic Survival Models in tiie S-Plus 2000 Guide to Statistics, 

Volume 2 (page 370 ff.), a link fimction g{-) is used to identify a specific distribution from 

a family of distributions. Let 

. = 9MZJ^ (6.4) 
a 

be tiie random variable for the failure time y, where a is the scale factor, x is a vector of 

co-variates, and ^ is a vector of coeflficients. In our situation, we have x = 1, as there are 

co-variates. If we put g (x) = log x (referred to as the "log" link), we obtain the Weibull 

distribution from the smallest exfreme-value distribution, the latter having a density given 

by 

/ (z) = exp [z - exp {z)] . 

Using the log-link, the smallest extreme-value distribution becomes the exponential 

distribution when a = 1, and it becomes the Rayleigh distribution when a = 0.5. For 

all values of a, the smallest extreme-value distribution with a log-lmk becomes the two-

parameter Weibull distribution in which 

/ W = rT^TT^ f—4-^V'exp ( -cr exp (x/3) V exp (x^) y ^ \̂  \̂  exp {xP) 

Comparing this witii (5.7), we have P = - (shape parameter) and 77 = exp {xp) (scale 

parameter). Now a is the scale factor in (6.4), which can be interpreted as being equivalent 

to fit$scale, from which we obtain 

1 

^~fit$scale' ^^'^^ 
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Similarly, P is the vector of coefiicients in (6.4), which can be interpreted as being equiv

alent to fitScoeff, from which we derive 

T} = exp {fit$coeff), (6.6) 

since a: = 1. As the output parameters of survReg were not explicitly mentioned in the 

reference, confirmation of our interpretation has been sought from other sources. 

Venables and Ripley (1999) use the following parameterisation of the Weibull sur

vival fiinction (page 367): 

S{t) = exp{-{X.t)''), 

where A has the same usage as in the S-Plus manual and is the same as l/r] in our original 

parameterisation in (5.8), whilst a has been used in place of p in the S-Plus manual, 

this being equivalent to our P . (It can be appreciated that confiision with the Weibull 

distiibution is partly due to the inconsistency in the fimction's parameterisation.) Venables 

and Ripley consider tiie hazard fiinction in tiiefr section on parametiic models for survival 

data (page 373-), and they discuss only models based on co-variates. An interpretation 

for a model without co-variates is required. They stated (page 375) that for the Weibull 

model, the scale factor estimate is 1/a. Interpreting 'scale factor' as fit$scale, we have 

a = l/fitSscale, or in terms of our /?,/? = l/fit$scale, confirming (6.5). However, as this 

was not explicitiy stated, and no interpretation was offered for the meaning offit$coeff, 

we have sought verification from first principles. 

Starting witii (5.8), a lmear model relationship can be established by transfomung 

the scales. 

S{t) 

Letting x = log log {l/S{t)) and y = log t, then 

X = P{y-logT]) 
X 

y = •^+logr/. (6-7) 

Using S-Plus to assign a lmear model of y in terms of a;, we obtam two coefiicients, which 

can be obtained using tiie S-Plus fimction summary. The mterpretation of the output of 
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this fiinction is given on pages 169-71 m tiie S-Plus 2000 Guide to Statistics, Volume 

1. The coefiicient labelled "Intercept" is srniply tiie intercept (log 77) of tiie linear (6.7), 

whilst the coefiicient labelled with tiie variable name, x in our case, is tiie gradient y^j. 

Using a random sample of 1000 failure times generated from a Weibull distiibution with 

^ = 3 and 77 = 100, we have shown in Figure 6.2 tiie outputs from assigning fitLm to the 

linear model, and fit to the model obtained using survReg. (See accompanying compact 

disc for tiie S-Plus script, SurvRegParms.ssc, used to generate tiie random sample and fit 

the linear and survival models.) Comparing these outputs, it can be seen that the Intercept 

in fitLm is equivalent to tiie Intercept in fit. This component of the survReg model can 

be retrieved hy fitScoeff. This leads to the relationship for the intercept 

log Tj = fit$coeff 

7] = exp{fit$coeff), 

which confirms (6.6). It can be seen that the Log(scale) component of the survReg model 

(fit) is close in value to the logarithm of the x-coeflicient of the linear model (fitLm), 

with the difference being attributable to the different methods being used in the fiinctions 

to estimate these quantities. The component of the survReg model that exfracts this com

ponent is fitSscale, which is equivalent to the exponential of the Log(scale) component of 

the survReg model. This leads to the relationship for the gradient 

— = fit$scale, 

and so 
1 

/3 = 
fit$ scale' 

which confirms (6.5). 

Equations (6.6) and (6.5) can be verified numerically from the fact that the random 

sample has been generated using /? = 3 and ry = 100. This has been done m the S-Plus 

script SurvRegParms.ssc (see accompanying compact disc), the output of which is shown 

in Figure 6.2. The estunates of ^ = 2.980372 and 7) = 98.86798 are in close agreement 

to tiie assigned values. This supports the results obtained m (6.6) and (6.5). 

An alternative S-Plus fimction is available for survival analysis, namely censorReg. 

Venables and Ripley (1999) discuss this fiinction (page 379), and compare the parameter 

estimates obtained using censorReg witii those obtained using survReg. They conclude 

tiiat tiie estunates are tiie same. The S-Plus script CensSurv.ssc, which is included on 
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> summary(fitLm) 

Call: lm(formula = y - x, data = xy, na.action = na.omit) 
Residuals: 

Min IQ Median 3Q Max 
-0.2582 -0.003091 0.00211 0.007531 0.1225 

Coefficients: 
Value Std. Error t value Pr(>|t|) 

(Intercept) 4.5942 0.0007 6934.5437 0.0000 
X 0.3435 0.0005 722.8242 0.0000 

Residual standard error: 0.01911 on 998 degrees of freedom 
Multiple R-Squared: 0.9981 
F-statistic: 522500 on 1 and 998 degrees of freedom, the p-value is 0 

Correlation of Coefficients: 
(Intercept) 

X 0.41 
> summary(fit) 

Call: 
survReg(formula = Surv(time, status, type = "right") ~ 1, data = randSample, 

na.action = na.exclude, dist = "weibull", scale = 0, control = list(maxiter 
= 30, rel.tolerance = le-005, failure = 1)) 

Value Std. Error z p 
(Intercept) 4.59 0.0112 411.5 0 
Log(scale) -1.09 0.0249 -43:9 0 

Scale= 0.336 

Weibull distribution 
Loglik(model)= -4889.7 Loglik(intercept only)= -4889.7 
Number of Newton-Raphson Iterations: 6 
n= 1000 

Correlation of Coefficients: 
(Intercept) 

Log(scale) -0.311 

> l/fit$scale 
[1] 2.980372 
> exp(fit$coeff) 
(Intercept) 

98.86798 

Fig. 6.2. Comparison of outputs from a linear model and a Weibull model. 

the accompanying compact disc, has been written to compare the parameter estunates 

of fitScoeff and fitSscale obtained from each of the two S-Plus fiinctions using several 

components from our database. In the majority of cases there is close agreement in the 

respective values. However, for some components there is a significant difference. A dif

ference as high as 54% has been found in the estimates offitSscale, with a corresponding 

difference of 12% in fit$coeff. A correlation between the number of failures in the sample 

and the degree of agreement in the estimates has not been found. The difference between 
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the estimates appears to be inexplicable. We have chosen to use survReg in our analysis 

as this was based on a fiinction that has been tiied and tested for a much longer time than 

the newer censorReg fiinction. In addition, survReg is able to produce an output much 

more quickly than censorReg. 

6.5.2 Point Estimate: Implementation in S-Plus 

Having determined tiie meaning of tiie output of tiie survReg fimction, estimates of the 

warranty cost and its variance using Weibull modelling can now be obtained. A point 

estunate of the warranty cost, Wp, of component p can be calculated using (5.32). As for 

exponential modellmg, an estimate of the cost of replacing the component is provided 

by the mean cost of repair, Cp. In order to obtain an estimate of the expected number of 

replacements, the survReg fimction is firstiy used to fit a Weibull model to the survival 

data using maximum likelUiood. From the model parameters, the expected number of 

replacements is estimated using Xie's (1989) numerical methods. As discussed in Section 

5.6.3, this involves the solving (5.25) and (5.24). In order to achieve this, the S-Plus 

function, fRenew, which is included in Appendix C.4, has been written. 

The renewal program fRenew has been verified by comparing the results of this 

fiinction witii the output from Murthy and Iskandar's (1992) Fortran program. Their pro

gram's output contains four decimal places, which is identical to the results obtained using 

fRenew, correct to four decimal places. 

Further verification has been sought by setting the Weibull shape and scale parame

ters to unity. This reduces the Weibull distribution to the exponential with a failure rate of 

one, so that M {t) = t. With this result, it is possible to test the accuracy of the fRenew 

fimction. It has been found that by setting a step size, h, to 0.01, it is possible to achieve 

an accuracy of five decimal places. Reducing the step size to 0.001 increases the accuracy 

to seven decimal places. 

This study's data measures time in days for a warranty period of three years, which 

is equivalent to 1096 days. A step size of 1 has been used in the analysis, which effectively 

breaks up the warranty period into 1096 intervals. 

Further verification has been sought by comparing the results from fRenew with 

Baxter, Scheuer, Blischke and McConalogue's (1981) renewal tables. They used a cubic 

splme algoritiim to produce tiiefr tables, and have clauned a discrepancy of no more than 
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one digit in the fourth decimal place against the tables prepared by White (1964) and 

Soland (1968). Using the result that M {t;0,7]) ^ M (^•,P, iV Baxter et al. (1981) 

presented a comprehensive set of renewal tables with just a unity scale parameter For a 

three-year warranty period, t = 1096 days. The data in this study has yielded estunates 

of the shape parameter, P, of the order of 0.9 to 3, and of tiie scale parameter, r/, of the 

order of 4000 to 32000. Thus, the ratio of t/r] was of the order of 0.03 to 0.3. Agreement 

to the four decimal places quoted m Baxter's et al. (1981) tables in this vicmity has been 

found, in most cases. The most notable deviations have been with very small values oft, 

around 0.05, when P = 1.25, and witii small values of/3 (around 0.55), where agreement 

to three decimal places has been reached. 

The fiinction fCstWbl has been written to obtain the warranty cost estimates of 

(5.32), and is included in Appendix C.5. The function takes the failure data of one com

ponent at a time and uses the survReg fimction to fit a Weibull model to the survival 

data. Using the Weibull model parameters obtained by survReg, the expected number of 

replacements during the warranty period, Mp {tyj), is then calculated usingfRenew. 

6.5.3 Variance: Implementation in S-Plus 

When a Weibull model is fitted to the survival data using the S-Plus fiinction survReg, 

a confidence interval on the two parameters of the distribution is returned. From these 

intervals, a confidence region for the number of renewals can be obtained using (5.13), 

which requfres var (9], as given by (5.12). Assigning fit to the output of survReg, then 

fit%var [•, •] gives the variance-covariance matrix of fitScoeff and log {fit$scale), where 

the latter two components are related to the Weibull parameters as given by (6.5)) and 

(6.6). 

Using the Taylor series expansion, we have 

9{x) = 9 {fJ'x) + {x - l^x) 9'M + 

g{x) » g {p^) + {x- p^) g' {p^) 

g{x)-g{n^) w (a;-//Jp'(Aix) 

E [{9 {x) - g {p,)}'] « E [{x - p^f {g'{p,)y 

~ {9'il^x)}^ f^ar {x). 
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That is 

var[g{x)]^[g'{pJi\ar{x). (6-8) 

To find the variance of r), let x refer to fitScoeff. Using (6.6), put g{x) = T] = 

exp (x), so that g' (x) = exp (x). A value for fi^ is provided by fitScoeff. Thus 

^ ' (MX) = exp(/i^) 

= exp{fit$coeff) (6.9) 

A value for var (x) is obtained from fit$var [1,1], which is the variance of fitScoeff. 

Substituting into (6.8) an estimate of the variance of r/ can be given as 

var {j]) = exp (2 x fi,t$coeff) x fit$var [1,1] (6.10) 

To find the variance of/?, we use (6.5) can be used. However, fit$var [2,2] gives 

the variance of log {fit^scale). Thus, we wiU put y = log {fit^scale), rather than using y 

as fitSscale, before applying (6.8). Now 

/3 = {fit$scale)~ 

= exp (— log {fit$scale)) 

= e x p ( - y ) . 

Putting h{y) = exp(-y) , then h'{y) = -exp{-y). Using//^ = log {fit$scale), we 

have 

^'M = - e x p ( - / i j 

= - exp ( - log {fi,t%scale)) 

= - {fit%scale)~^. (6.11) 

A value for var (y) is obtamed usmg fit%var [2,2]. Substittiting frito (6.8) an estunate of 

the variance of ^ is given by 

var {p) = {fittscaley'^ x fit%var [2,2]. (6.12) 
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Having obtained expressions for the variance of r? and /3, an expression for their 

covariance is needed. Now 

cov {11, P) = E[{ri~p^){^-p^)] 

= E[{9{x)-g{p,)){h{y)-h{^^))] 

« E[{x-iJi.)g'{p,)(y-liy)h'{^i^)] 

^ 9'{li,)h'{i,y)xE[{x-pi,){y-lJiy)] 

~ 9' {l^x) h' (f^y) X cov {x, y). 

Using (6.9) and (6.11), and cov (x, y) = fit$var [1,2], an estimate for cov {rj, p) 

can be given as 

cov {r], p) = exp {fit%coeff) x - {fit%scale)~^ x fit%var [1,2] 
exp (/iacoe#)x/if$mr [1,2] 

{fit$scale) • ^ ^ 

Equation (5.13) can now be implemented usmg (6.6), (6.5), (6.10), (6.12) and 

(6,13), to obtam a 100(1 - a)% confidence region for the parameter set (r/,/3). Equa

tion (5.13) can be written as 

[ Tj-T] P~P] 
var (77) cov (ry, P) 

cov (77, P) var {/3) 

- I ' r]-f) ' 

[P-P\ 
^2F{l-a,2,n-3) 

[ T} — exp {fit$coeff) P — {fit%scale) ] 

X 2 F ( l - a , 2 , n - 3 ) , 

A set of points that lie on the boundary of this inequality can be found by using the output 

of fit. This is done by solving 

fit$var [1,1] fit$var [1,2] '' "^ 
fit$var [1,2] fit$var [2,2] 

7/ - exp {fit$coeff) ' 
(3 — {fit%scale)~ 

which has been implemented in S-plus in the fimction/Cow/Keg, presented in Appendix 

C.6. These pomts provide a 100(1 — a)7o confidence region for the parameter set (77, P). 

This can then be used in the renewal fiinction/Renew (using the techniques discussed in 

Section 5.6.3,) to obtain a confidence interval for the expected number of failures during 

the warranty period. 

The variance of the expected number of renewals can then be obtained using (5,26), 

For component p, Mpi {ty,) can be evaluated for each point i on the confidence region by 

passing the point to the fimction/Kenew, The point estimate of the expected number of 

renewals, Mp (t^), is obtained by passing the estimated values of the WeibuU parameters 
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to fRenew, as discussed in Section 6,5,2. The number of points in tiie confidence region 

is given by n. 

The variance of the cost of component replacement, var {cp), is given by tiie vari

ance of the cost of replacing component p. The variance of the warranty cost can be 

obtained usmg (5.34). This is implemented in the S-Plus fimction/Cs^IfZ)/, which is pre

sented in Appendix C.5.) 

As the function fCstWbl is processor intensive, taking about one hour per compo

nent on an AMD 1800, tiie script CallCostWbl.ssc has been written to run thefCstWbl 

fiinction by takmg selected components at a time. The script is included on tiie accompa

nying compact disc. 

6.5.4 Results 

For a table of results from the individual-components analysis, see the data frame costWbl 

on the accompanying compact disc. The Weibull model has provided a good fit to most 

of the components with at least twenty claims, as discussed in Section 6,3. 

For most components, the Weibull model has produced standard deviations of the 

warranty cost that are too large to be of any practical use. In only 59 of the 347 cases 

are the standard deviations less than the actual warranty costs themselves. This is due, in 

part, to tiie large variances in repair cost of some components. However, the exponential 

models are also affected by these large variances, and their total warranty cost variances 

are much smaller In fact, the standard deviation of the number of renewals was larger than 

the number of renewals themselves in all but 69 of the 347 components. Thus, the large 

variances in component-repair costs could only account for ten more cases of standard 

deviations m component warranty cost being greater than the actual component warranty 

cost, above the number of cases due to large variances in the number of renewals. 

In conclusion, the Weibull model does not provide a variance that could be used to 

evaluate confidence limits on the warranty costs. This points to a need to fiirther develop 

a means of evaluating the variance under this model. In order to obtain workable confi

dence lunits on tiie warranty costs in the current study, the variances obtained from the 

exponential models, as discussed m Section 6.4.3, and the variance obtained from the use 

of sunulation, to be discussed in the next Chapter, wUl be used. 
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A discussion of the total warranty cost under the Weibull model, and a comparison 

of this cost with the one obtained under the two approaches using the exponential model, 

follows in the next section. 

6.6 Comparison of Exponential and Weibull IModels 

To minimise processing time, and to facilitate the comparison of results, the two fiinctions 

that generate tiie component warranty costs, namelyfCstExp and fCstWbl, have been com

bined into the one function, fCstExWb. However, there is a difference in the processing 

in the functions fCstWbl and fCstExWb. As discussed in Section 6.3, there are fourteen 

cases where the Weibull model does not fit the data, so one or more of the oldest units 

have been trimmed off the data base to create a better fitting model. The function/Cs-

tExWb accommodates these changes, whilst the fimction/Cs^IFZj/ does not. The combined 

function, fCstExWb, is included in Appendix C,7. This fimction is called from the script 

RunCostExpWblssc, which can be found on the accompanying compact disc. 

Only the exponential model has been fitted to components with less than twenty 

claims. As discussed previously, this has been done because it is felt that a reasonable 

number of observations are needed to fit a Weibull model. It is also justified in terms of 

the computer-intensive calculations needed to fit a Weibull model, bearing in mind that a 

large number of components exist with fewer than twenty claims. Both exponential and 

Weibull models have been fitted to the 347 individual components with at least twenty 

clauns, so that the models can be directiy compared. The results can be seen in the data 

frame costExpWbl on the accompanymg compact disc. The data frame contams the log 

likelihoods, estimates of the warranty costs and the standard deviations for each compo

nent. The table reveals that the Weibull model provides a better fit than the exponential 

in all of the 347 cases, but that the differences in the log likelUioods are generally small. 

Thus, the exponential model also provides a suitable fit. There has been a problem with 

tiie Weibull model for most of these parts in that the standard deviations of the individual 

warranty costs are far too large to be usefiil. In confrast, the standard deviations from the 

exponential models are much more reasonable. Under the Weibull model, only in 59 of 

the 347 cases are the standard deviations less than the warranty costs tiiemselves. 
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Table 6,5, Comparison of exponential and Weibull warranty cost standard deviations. 

Part PIPE AS •EX.FR.M GSKT CYL HEAD 
Claims HI 133 
Exp. Cost $2,355 $2,238 
Exp. SD $0,516 $1,118 
Wbl Cost $2,355 $2,234 
WblSD $2,765 $1,445 
Exp loglikehd -1760.5 -1785.3 
Wbl loglikehd -1752.7 -1731.7 

_P 072 2̂ 87 

Let us examine a couple of components to illusfrate the situation. Table 6.5 shows 

the warranty costs and standard deviations of two components ("PIPE AS.EX,FR,M"-row 

2979 m costExpWbl and "GSKT CYL HEAD"-row 2980 m costExpWbl), together witii 

thefr log likelihoods. It can be seen that for both components, similar warranty costs are 

predicted by eitiier model, but tiiat the standard deviation from the Weibull model is larger 

than that of the exponential model. For the first component, the standard deviation from 

the Weibull model is larger than the cost, and does not provide a very workable figure. 

For the second component, the standard deviation from the Weibull model, although larger 

than the one from the exponential model, is a workable figure. Similarly, for all of the 

59 cases where the standard deviations are less than the warranty costs under the Weibull 

model, the standard deviations under the exponential model are smaller Table 6,5 also 

shows that the log likelihoods for each component are similar for the two different models. 

Thus, one would be tempted to use the exponential model in preference to the 

Weibull, However, if the exponential model provided as good a fit as the Weibull, then 

one would expect tiiat the Weibull parameter, 13, of the fitted model would have a value 

near one. For the components discussed in the previous paragraph, the values of P are 

clearly not one. Therefore, one can conclude tiiat the Weibull model provides a better 

fit tiian tiie exponential model for tiiese two components. The Weibull model would cer

tainly be preferable if warranty costs were to be extrapolated beyond the current warranty 

of three years. 

A sttidy of tiie values of the WeibuU parameter /3 reveals that a range of values 

between 0.1457 and 33.08 exists for components with at least twenty claims. Five of the 

348 components have p estimates that lie in the interval [0.99.1.01], indicating that the 

Weibull disttibution is dose to bemg exponential. This number increases to 25 when the 
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interval is expanded to [0.95,1.05]. A sensitivity analysis on the parameters of the models 

is discussed in the next chapter 

6.7 IModel Estimates of Warranty Cost 

6.7.1 Point Estimate 

In this section, the warranty cost, variance and a 95% confidence interval are estimated 

using the three different models of failure discussed previously. The first model is based 

on individual components failing exponentially. The second also uses the exponential 

distribution, but all components with the same number of claims are taken to have the 

same failure rate. The third uses the Weibull distribution to model the failure of individual 

components with at least twenty claims, and the exponential distribution to model the 

failure of individual components with less than twenty claims. The total warranty cost, its 

variance and a 95% confidence interval have been calculated by the fnncfionfWmtCstTot, 

which is presented in Appendix C,8, 

The warranty cost per vehicle, W, can be estimated using (5,36), Before applying 

(5.36), a method for handling the 4,715 cases where no part number is recorded in the 

database needs to be determined. These repafrs are cases of adjustinents where no part 

has been replaced. The nature of the adjustment has not been recorded, and so these 

repairs must be tteated as one-off claims and modelled individually. As such, the failure 

times can be modelled exponentially, and the warranty cost can be given by (6.1). Smce 

each repair is modelled separately, r^ = 1. An estimate of Ap is given by Ai, the estunated 

failure rate of one-claim components obtained in the fimction fCstExpGp. This is the 

failure rate when the single failure occurs in the middle of the warranty period. Putting 

Wb as the warranty cost per vehicle of these "blank" parts, c^^j as the cost of repairing the 

jth "blank" component, and ri as the number of "blank" repafrs, we have 

rx 

Wb = Xit^y ^Cbj, 

3=1 

The one-claim failure rate is given by Ai = 3.02458 x 10~ ,̂ the warranty period in days 

is tu, = 1096, and the number of "blank" repairs is ri = 4715. The sum of the cost 

of these "blank" repafrs can be obtained using the component cost field (CmpCst) in the 
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costExpWbl data frame. However, as this value is tiie mean cost of all 4,715 repairs, it 

must be multiplied by the number of repafrs to obtain the sum of the cost of all these 

repairs. Thus, 

Wb = 3.02458 X 10-* x 1096 x $112,535 x 4715 

= $17.59, 

which represents the warranty cost per vehicle of all the "blank" repairs. 

Under the first model, where failure of individual components is modelled exponen

tially, tiie total warranty cost is the sum of tiie warranty cost of the individual components. 

This can be obtained by summing tiie WrntExp field in the costExpWbl data frame, ex

cluding the record with no part recorded. These repairs have been tteated separately, as 

discussed in the preceding paragraph, and then have been added to the total. The total 

warranty cost with this model is $272.84 per vehicle for tiie tiiree-year warranty. 

Under the second model, where components with the same number of claims are 

assigned the same failure rate, the total warranty cost is the sum of the warranty costs 

of all the groups. This can be obtained by summing the Wmt field in the costExpGp 

data frame, which does not contain a record for "blank" components. The total warranty 

cost is obtained by adding the warranty cost for the grouped components together with 

the warranty cost of the "blank" components. This total is $266.91 per vehicle for the 

three-year warranty. 

Under the Weibull model, the failure of components with less than twenty claims 

has been modelled exponentially. This has been done in the same way as the first model. 

Failure of components with at least twenty claims has been modelled by the Weibull 

distribution, and "blank" components have again been modelled separately. The total 

warranty cost under this model is obtained by adding the warranty cost for the Weibull 

model witii tiie warranty cost of tiie "blank" components. The total cost under this model 

is $272.62 per vehicle for the three-year warranty. 

The actual total warranty cost that has been recorded on the manufacturer's data

base is $8,302,477 for the tiiree-year warranty. With a production of 30,138 in 1997, the 

warranty cost per vehicle is $275.48. This figure is in close agreement with the figures 

obtained from all tiiree models. Thus, it can be concluded that all three models provide 

a reasonable pomt estimate of the current warranty, and hence, tiie additional process-
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Table 6.6. Total warranty cost, variance and confidence limits. 

Exponential 
Grouped Exp 
Weibull 

Warranty Cost Standard Deviation 95% C.I. 
$272.84 $9.8278 [$253.58, $292.11] 
$266.91 $9.2278 [$248.82, $285.00] 
$272.62 $5185.17 [$0, $10435] 

ing to evaluate the Weibull model does not seem justified to model the cost of the current 

three-year warranty. 

6.7.2 Variance 

The variance of total warranty cost, var {W), is given by (5.37), namely 

var (yV) — ^ var (tOp). 
p 

As for the actual warranty cost, the variance of the total warranty cost is obtamed by 

summing the individual variances. This has been done for each of the tiiree models in tiie 

same way as U was done for the cost, witii "blank" components being tteated separately. 

The results of the calculations can be seen in Table 6.6. 

Lower and upper 95% confidence limits in Table 6.6 have been obtained using crit

ical values from the normal distribution with density 

{t - pf 
av2TV 2a 

where p is tiie mean of the distiibution and a^ is the variance. Thus, a 95% confidence 

interval for the total warranty cost, W, is given by 

W ± 1.96005, 

where S is the standard deviation of tiie cost, that is, the square root of the sum of tiie 

variances. 

Confidence intervals using tiie gamma distiibution witii density 

/(t) = %5^exp(-At), 

where A is the rate parameter and P is the shape parameter, have also been obtained. Since 

E (T) = P/X and var (T) = /3/A^ we have 

^__ E{T) 
var (T) 
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and 

, E \ T ) 
var (T) 

A 95% confidence interval can tiien be obtained by finding the [0.025,0.975] quantile 

friterval for the gamma disfribution witii the above parameters. Under the exponential 

model, the confidence interval is [253.58,292.11]. For the grouped exponential model it 

is [248.82,285.00]. These two confidence intervals are very close to the first two shown 

in Table 6.6, which are obtained using the normal distribution. The Weibull model does 

not provide suitable gamma distribution limits. 

The chi-square distiibution was also considered when estmiating a 95% confidence 

interval. However, as the chi-square distribution is a special case of the gamma distri

bution with A = i and P = \, where !»is an integer, it is not necessary to pursue this 

distribution further, as it is encompassed within the gamma distribution. 

We conclude that the most suitable estimate of the total warranty cost is obtamed by 

the Weibull model ($272.62 per vehicle) and that a 95% confidence interval for this value 

can be obtained using the individual exponential model's standard deviation and normal 

lunits. The result is tiie interval [253.58,292.11]. 

6.8 Costing an Extended Warranty 

In the preceding sections, three models were discussed, namely, the individual-component 

exponential model, where the failure of individual components was modeUed usmg the 

exponential disttibution, tiie grouped exponential model, where the failure of components 

witii tiie same number of claims was modelled together usmg the exponential distiibution, 

and the Weibull model, where tiie failure of individual components was modelled using 

tiie Weibull distribution. They were used to model the cost of the current warranty of three 

years. In this section, these three models are used to estunate the cost of the warranty 

should it be extended to five years. 

The distance lunitation will not be considered m this estimation. If it were to remain 

at 100,000 kilomefres, it would cover the average user of 20,000 kilomefres/year (See 

discussion m Section 5.2.8,) However, in this case tiie warranty costs predicted by the 

models should be over estimates since some claims would be eliminated by the distance 

limitations of tiie warranty before the time limitation was reached. Alternatively, the 
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Table 6.7, Total cost, variance and confidence limits of a 5-year warranty. 

Exponential 
Grouped Exp 
Weibull 
Adjusted Weibull 

Warranty Cost 
$454.57 
$444.69 
$770.86 
$589.59 

Standard Deviation 
$16.37 
$15.37 

$3.9826 x 10^2 
$3.9826 x 10^2 

95% C.I. 
[$422.48, $486.67] 
[$414.56, $474.82] 

— 
— 

distance limitation could be increased proportionately to 166,667 kilomettes, a somewhat 

awkward figure to work with. This could be rounded down to 150,000 kilomettes, a more 

workable figure, but keeping the distance limitation to the current 100,000 kilomettes 

would seem to be the fairest option for the average user By so doing, the lighter user 

would not subsidise the heavier user to the extent they are under tiie current warranty, and 

the manufacturer would have 'safer' cost predictions to work with. 

Exfrapolating the warranty costs to five years is a matter of using the models with 

a new time limit. As the model parameters have already been estimated in the previous 

sections, they can be used with the new time limitation in the models. This has been 

implemented in the function fExtWrnt (see Appendix C.9). The calling script for this 

fimction, CallExtdWmt.ssc, is on the accompanying disc. 

The results of this fimction can be seen in the data frame ExtWmt, which is included 

on the accompanying compact disc. It can be seen that the warranty costs of components 

modelled by the exponential distribution have increased linearly, smce the exponential 

model uses a constant failure rate. However, components that have been modelled by 

the Weibull distribution have increased in varying ways, depending on the values of the 

Weibull parameters. Similarly, the changes in the standard deviations depend on the val

ues of the parameters. 

The total warranty costs using the three models can again be obtained by the func

tion fWmtCstTot. The figures are shown in the first three rows of Table 6,7, It can be 

seen tiiat botii the warranty cost and the standard deviation for the two exponential mod

els are a linear exfrapolation of tiie tiiree-year warranty figures shown in Table 6.6, This, 

of course, is because tiie exponential models use a constant failure rate. The warranty cost 

under tiie Weibull model, however, has increased at more than a lmear rate. 

The ratio of extended warranty cost to current warranty costs of individual compo

nents has been exammed. These ratios are imrealistically large for some components. In 

the most exfreme case, the ratio is more than one thousand. Components with large ratios 
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are characterised by large values of P, (the maximum being 16.70,) and relatively small 

values of^, compared with the other components. Thus, these components' failures are 

concenttated within a narrow band, resulting in a steep increase in the cumulative num

ber of failures over a short period of time. When tiie majority of claims occur near the 

end of the warranty period, such as may be the case when non-urgent claims are held over 

to the end of the warranty, a steep rise in tiie failure rate can occur at that time. In such 

cases, the timing of the actual failure does not coincide with the occurrence of the claim, 

as has been assumed in this study. Thus, the modelling of component reliability will be 

inaccurate, and consequentiy, so will the modelling of the warranty cost. When the ratio 

is more tiian five, the Weibull model has been deemed to be inappropriate, and the expo

nential model has been used instead. This occurs in thirty-nine of the 347 components 

that have been modelled by the Weibull distribution. These thirty-nine components have 

the highest values ofp. 

The results of the adjusted Weibull model are shown in the fourth row of Table 6.7. 

It can be seen that this change lowers the total warranty cost to a more appropriate level. 

The standard deviation of the cost has not been affected. The acceptable level for the ratio 

of the extended warranty cost to the current warranty cost has been somewhat arbitrarily 

set to five. If this ratio is reduced to less than five, then clearly the warranty cost under 

the Weibull model would be fiirther reduced, as more components would be modelled 

by the exponential distribution. An alternative approach to setting this ratio is to set an 

acceptable level of/3 before the Weibull model is rejected in preference to the exponential 

model. The corresponding value of (3 when the ratio is set to five is 3.142. Thus, any 

components that have a /?-value larger than 3.142 have been modelled by the exponential 

distribution. 

We conclude that tiie adjusted Weibull model provides the best point estimate of the 

total warranty cost. The model estimate is $589.59. A 95% confidence interval cannot be 

obtained from the variance estimate of tius model. Nor can the confidence interval ob

tained by using tiie exponential model be used, as it does not encompass the point estimate 

obtained by tiie Weibull model. However, a crude confidence interval can be procured us

ing tiie standard deviation of the exponential model and a normal approximation to the 

disttibution of point estimates. That is, a 95% confidence interval on the Weibull model 

can be given by 

Mw i ^0.975Srfe, 
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where /̂ v̂ is the point estimate of the Weibull model ($589.59) and s 4 is tiie standard 

deviation obtained by the exponential model, the value of which is $16.35. Thus, the 

confidence interval is [557.55,621.63]. 

6.9 Sensitivity Analysis 

In this section, a sensitivity analysis on the estimated Weibull parameters for smgle com

ponents is conducted. The change in warranty cost when tiie Weibull shape parameter, 

P, and tiie scale parameter, TJ, vary from their estunated values mdividually and jointly is 

examined. 

6.9.1 Range of Parameter Values 

The range of /^-values that have resulted from the Weibull modeUing discussed in this 

chapter is 0.1457 to 16.70, with the lower and upper quartiles being 1.113 and 2.283 

respectively. The values of 77 range from 1,695 to 3.495e+023 (a somewhat imreaUs-

tic figure), with the lower and upper quartiles being 12,720 and 321,400 respectively. 

These figures represent very reliable components. For example, the component "4SPK 

RAD/CASS" (row 2965 in costExpWbl), with a value of 77 of 325 878, a value close to tiie 

upper quartile, has a mean life of almost 900 years! Although this may not necessarily be 

the tine mean value of the component, it does mdicate that the component should last the 

life of tiie "average" vehicle. The component "BODY STEER/RACK" (row 2929 in cos

tExpWbl), with an 7/-value of 12,804, which is near the lower quartile, has a mean life of 

31 years. This again represents a very reliable component. 

To test the sensitivity of the total warranty cost on the values of Weibull parameters, 

five parts representing the minimum, maximum, median and lower and upper quartiles of 

/3-values have been analysed. The fiinction/S'ew^^ has been written to do the analysis, 

and can be found in Appendix CIO, The parts and thefr respective values of/? and 7/ are: 

• "WHEEL ALIGNMENT", with P = 0.145726 (the minimum value of ^) and 

ri = 3.49515 x 10^^ (the maximum value of 77, row 2805 in costExpWbl); 

• "BRG,FNT SPRING", with /5 = 1.1173 (approximately tiie lower quartile of ^) 

and 77 = 606180 (row 2768 in costExpWbl); 



128 Chapter 6 Implementation of the Survival Models 

• "ABSORB.ASS.R,R/", with ^ = 1.6011 (approximately tiie median value of P) 

and 7/ = 25 443 (row 3005 in costExpWbl); 

• "GASKET KIT, POW", with P = 2.2949 (approximately the upper quartile of ^) 

and 7/ = 16482 (row 2921 in costExpWbl); 

• "CHECK FR DR 083", witii /3 = 16.704 (tiie maximum value ofp) and 77 = 1695.0 

(row 2713 in costExpWbl). 

6.9.2 Results 

The change in warranty cost as ^ changes can be seen by examining Figure 6.3. It can 

be seen that a decrease in the value of/? produces a non-linear increase in the warranty 

cost. A 10% decrease in (3 results in an increase in warranty costs in the representative 

sample of between 65% and 107%. Conversely, a 10% increase in the value of P pro

duces a decrease in warranty cost of between 46% and 52%. Thus, it can be seen that 

an underestimate of the shape parameter, /3, will result in an overestimate in the warranty 

cost. Conversely, an overestimate in the value of (3 will result, to a lesser extent, in an 

underestimate in warranty cost. 

Similarly, examination of Figure 6.4 reveals an inverse relationship between changes 

in warranty cost and changes in 77. It appears to be almost linear for most components, but 

not all. A 10%) decrease in r] results in an increase in the warranty cost of components in 

the representative sample of between 1.5% and 480%». Conversely, a 10%) increase in the 

value of ri produces a decrease in warranty cost of between a small 1.4% and larger 80%. 

The figure also shows that tiie extremes in these variations are displayed by one compo

nent. Thus, it can be seen that an underestimate of the scale parameter, 77, may or may not 

result in a significant overestimate hi the warranty cost. Conversely, an overestimate in 

the value of 77 may or may not result in a significant underestimate in warranty cost, but 

the effect will be less than if 77 is underestimated. 

Figure 6.5 shows the combination effect on warranty cost when both ^ and 77 are 

varied by ±10%. The largest increases m warranty cost occur when both P and rj are 

decreased by 10%, whilst tiie largest decrease in warranty cost occurs when both P and 77 
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WHEEL ALIGNMENT 
BRG.FNT SPRING 

% Change In Bota 
% Change in Beta 

ABSORB.ASS.R,R/ GASKET KIT POW 

% Change in Beta 

CHECK FR DR 083 

% Change fn Beta 

Fig. 6.3. Percentage change in warranty cost against percentage change in p. 
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WHEEL ALIGNMENT BRG,FNT SPRING 

% Change in Eta 

ABSORB ASS R.R/ GASKET KIT POW 
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CHECK FR DR 083 

% Change in Ela 

Fig. 6.4. Percentage change in warranty cost against percentage change in 77. 
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are increased by 10%). Of tiie representative sample of components, the largest percentage 

change is seen in the last plot of Figure 6.5. 

6.9.3 Interpretation of Results 

The degree of sensitivity of the estimates of the Weibull parameters on the estimate of 

the warranty cost depends upon which component is being analysed. That is, for some 

components, there is little change m the warranty cost when the parameters vary, whilst 

for other components, there is a significant difference. Hence, it is miportant to look at 

each component individually in order to draw any conclusions about the sensitivity of the 

parameter estimates. 

An overall trend, however, is that an underestimate in the value of the shape para

meter, P, will result in an overestimate in the warranty cost of a component. Similarly, 

an underestimate in the value of the scale parameter, 77, will also result in an overestimate 

in the warranty cost of a component. The converse of both of the last two statements is 

also true. For most, but not all, the estimate of the value of/3 is more sensitive than the 

estimate of the value of 77, 

6.10 Conclusion 

This chapter has dealt with the implementation of the cost models developed in the pre

vious chapter, using the manufacturer's warranty data. Issues, such as how to deal with 

components having only a few records of clauns, or how do deal with records with no part 

identification, have been discussed. Three different ways of modeUing the data have been 

presented: the individual-component exponential model, where tiie failure of individual 

components has been modelled using the exponential distribution; the grouped exponen

tial model, where the failure of components with the same number of claims has been 

modelled togetiier as a group, using the exponential distiibution; and the Weibull model, 

where the failure of individual components has been modelled using the Weibull distri

bution. The cost per vehicle of tiie tiu-ee-year warranty has been calculated under the 

three models, which have been found to be in close agreement. The variances obtained 

by tiie two exponential models are also in close agreement, but tiie variance obtained by 

the Weibull model is too large to be of any practical use for most components. The large 
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WHEEL ALIGNMENT BRG.FNT SPRING 

•'o AO ''0 AO 
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Fig. 6.5. Percentage change in warranty cost against percentage change in P andr). 
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variances obtained for the expected number of renewals for individual components under 

the Weibull model is the reason for the large variance in the overall Weibull model. Con

fidence intervals from each of the models have been presented, and fiirther confidence 

intervals are obtained through the simulations discussed m the next chapter The cost of 

extending the warranty to five years has also been discussed, as well as the variance and 

confidence intervals for each of the three models. The conditions under which the Weibull 

model would be inappropriate when extrapolating the cost models to five years have also 

been specified. 

The sensitivity-analysis has shown that the warranty cost is more sensitive to changes 

in the shape parameter (/3) of the Weibull model than it is to changes in tiie scale parame

ter (77). That is, a percentage change in the value of/3 produces a greater change m the 

warranty cost than does the same percentage change in the value of 77, Thus, it seems to be 

more important to accurately estimate the value of P than it is to accurately estimate the 

value of 77, However, the sensitivity of either parameter varies with each part, so it is im

portant to look at each part individually before reaching conclusions about the sensitivity 

of each of the parameters. 

The next chapter describes a number of simulations that are used to validate the 

models developed in this chapter. 



Chapter 7 
Simulation Studies 

7.1 Introduction 

In the last chapter, tiie manufacturer's warranty data were used to estunate the distribution 

of each components' reliability, its cost of repair, and subsequentiy, its warranty cost. 

Using a point estunate and the variance of each component's warranty costs, the total 

cost of the warranty was estimated, and a 95%) confidence interval was obtained. This 

was done for both the three-year warranty and an extended five-year warranty. However, 

the Weibull model did not provide a usefuU confidence interval, as the variances of the 

component costs were too large as a result of the large variance in the number of renewals. 

In this chapter, simulations are used to obtain confidence intervals for the warranty 

cost per vehicle using the Weibull models of component reliability. Simulated failures 

times are generated over a warranty period using the parametric models. By repeating the 

simulations hundreds of times, it is possible to obtam point and interval estimates for the 

cost of the warranty per vehicle. From the simulated data, it is possible to see whether the 

parametric models produce results that are close to the observed results. 

In the first simulation, non-parametric bootsttap sampling is used to obtain the total 

warranty cost per vehicle for the three-year warranty. Thus, the model parameters are 

not used in this particular simulation. The second simulation uses parametric models to 

generate warranty costs per vehicle for both the three-year and five-year warranties. The 

tiifrd sunulation also uses paramettic models to generate data, as in the second simulation, 

except that a distance limitation is imposed upon the warranty in addition to the time 

limiation. This last simulation tests the validity of our warranty cost model, which has 

been based on time alone. 

Apart from tiie above simulations which cover all the components in the database, 

titis chapter also mcludes sunulations of single-component failures. There are three simu

lations tiiat test for the lengtii of tune needed for data to be collected before the parameters 

of a WeibuU model can be accurately estunated. In the first of these simulations, all the 

products are tiie same age. In the second, continuous production is simulated, so new 

134 
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data is added to the database. In the third, continuous production is agam simulated, but 

the database is restricted to the first year's production. These last three simulations have 

been carried out to test the validity of the methods used in the modelling in tiie previous 

chapter 

As in the previous chapters, a number of origmal S-Plus scripts and fimctions have 

been written by the author to do the simulations. Many of these are included in Appendix 

E. All the fimctions, scripts and data frames tiiat are referred to m the text can be viewed 

on the accompanying compact disc. 

7.2 Bootstrap Estimate of Total Warranty Cost 

7.2.1 Purpose 

The aim of the simulation in this section is to use the bootsttap method (see Section 5.8.4) 

to obtain a point and interval estimate of the warranty cost per vehicle from one year's 

production. The purpose of the simulation is to compare the results obtained from the 

parametric models of the last chapter, and to obtain a non-parametric confidence interval. 

7.2.2 Method 

Using the manufacturer's data, a database of vehicles produced during one year, and the 

warranty cost paid for each of these vehicles, is established. Then, bootsttap samples, the 

same size as the year's production, are randomly selected, with replacement. The statistic 

of interest from each of these bootsttap samples is the warranty cost per vehicle. This is 

simply the total warranty cost for the sample divided by the number of vehicles produced. 

Repeating the sampling 10,000 times provides a distribution of warranty costs per vehicle 

that is normally distributed. The mean of all the samples provides a point estimate of 

the warranty cost and the 2.5 to 97.5 percentile range can be used for a 95% confidence 

interval. 

The script BootCost.ssc contains the S-Plus code to obtain the bootstrap estunates. 

The script is on the accompanying compact disc. In this script, the warranty cost of each 
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of the 30,138 vehicles produced during 1997 is calculated and stored in tiie data frame 

VINCost. A random sample of 30,138 vehicles, representing one year's production, is 

drawn with replacement from VINCost. The total warranty cost of tiiis sample is calcu

lated and an average cost per vehicle is obtained. The sampling is repeated 10,000 times. 

The BCa 95% confidence interval on the warranty cost per vehicle is obtained using the 

2.5 and 97.5 percentUes of the 10,000 repetitions. (See Section 5.8.4 for a discussion of 

the BCa confidence interval.) 

7.2.3 Results 

Botii the observed and the bootsttap estimate of the warranty cost per vehicle are $275.48. 

The BCa 95% confidence interval is [$269.07, $282.17]. It can be seen that tiie bootsfrap 

estimate of the total warranty cost is m close agreement with the observed cost of $274.98, 

and with the costs predicted by the three models reported in Table 6.6 of Section 6,7. The 

bootstrap 95% confidence interval gives tighter bounds than those obtained by the two 

exponential models (disregardmg the Weibull model bounds). This is because the models 

developed in the last chapter are based on the warranty data. The reliability of some 

components, and thefr cost of repair, exhibit skewness and large variances, which are 

characterised in the models of the last chapter However, they will not be as evident in the 

bootsttap confidence interval because the costs per vehicle of the bootstrap samples are 

taken from the one fixed set of vehicles. The warranty cost per vehicle of the bootstrap 

samples wUl be normally distributed because of the large number of samples (10,000). 

This is clearly seen m Figure 7.1, and is confirmed by the QQ plot in Figure 7.2. 

7.3 Simulated Warranty Costs: 3 and 5 Year Warranties 

7.3.1 Purpose 

The purpose of this sunulation is to obtain point and interval estimates of the warranty cost 

per vehicle from simulated data, usmg the parameters determined in the last chapter. By 

so domg, it will be possible to establish whether the parameter estunates obtamed in the 

last chapter result m similar point and mterval estimates usmg tiie simulated data. It will 
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Fig. 7.1. Distribution of warranty cost per vehicle of bootstrap samples. 

-2 0 2 

Quantiles of Standarii Normal 

Fig. 7.2. Plot of simulated sample quantiles against standard normal quantiles (QQplot). 
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also be possible to obtain an interval estimate for the Weibull model using the simulated 

results. 

7.3.2 Method 

In the Weibull model of the last chapter, tiie reliability of components with fewer than 

twenty claims are modelled exponentially, whilst that of components witii at least twenty 

claims are modelled using the Weibull disttibution. The reliability of components that 

have not been identified with a part number in the manufacturer's database are also mod

elled exponentially, as discussed in Section I. This procedure is again followed in the 

simulations of this section, so that the model used on an individual component in the last 

chapter is again used in the simulations of this chapter 

Failure times for each component in each vehicle in one production year are simu

lated using the parameters that were obtained in the last chapter for that component, and 

are stored in the data frame costExpWbl (see Section 6.6). If a component fails within 

the warranty period, a new failure time is generated for the replacement component. This 

process continues until the warranty runs out for each vehicle. 

The cost of repairing each failed component is obtained by randomly selecting, with 

replacement, the cost of repairing that component. These costs are obtained from the data 

frame, compAge, of component failure times and costs (see Section 4.5). 

The warranty cost per vehicle in the production year is then calculated from the 

total cost of replacing the parts that failed during the warranty period. As this simulation 

is processor intensive, the number of simulations has been set to 500, which is sufiicient 

to use the centtal limit theorem to make inferences about the mean value of the warranty 

cost per vehicle, and to obtain a confidence interval. The 95%) confidence interval is made 

up of tiie 2.5 to 97.5 percentile range. This procedure is followed for both the three-year 

and five-year warranties. 

The S-Plus functionfWCstSim has been written to produce this simulation. Its script 

(WmtCstSimulssc) is included in Appendix E. 1. The fiinction is used to simulate the war

ranty cost for both the three-year and five-year warranties. The inputs of the fiinction are 

tiie data fi-ame of tiu-ee-year warranty costs (costExpWbl), the data frame of five-year war

ranty costs (extdWrnt), the data frame of component fail tunes and costs (compAge), the 

length of tiie warranty, the number of vehicles produced in a year, the minimum number 
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Table 7.1. Simulated warranty cost per vehicle. 

3-year 
5-year 

Mean 95% C.I. 
$266.65 [262.27,271.46] 
$580.34 [574.03,586.38] 

of clauns a component must have for it to be modelled by the Weibull distiibution, the 

tiu*eshold for the number of times larger the five-year warranty cost has to be above the 

three-year warranty cost before the Weibull model is rejected in favour of the exponen

tial (see Section 6.8), and the form of the output that is required. The output can be in the 

form of either a data frame containing part number, the warranty cost and the number of 

replacements of each component, or it can simply be the overall warranty cost per vehicle 

that results from the simulation (the default). Since tiie creation of 500 repetitions takes 

a lot of computer processing, a script, callWrntCstSimul.ssc (see accompanying compact 

disc), has been written to call the funcfionfWCstSim, place the results in the vectors wrC-

stSim and wrCstSim5, and to calculate appropriate statistics. 

7.3.3 Results 

Using the Weibull model for both the three-year and five-year warranties, the mean war

ranty cost per vehicle of the 500 simulations, and the 95% confidence interval, made up 

of the 2.5 to 97.5 percentiles, are shown in Table 7.1. 

The cost per vehicle for the three-year warranty estimated by the Weibull model 

(Table 6.6) is $272.62, and the actiial warranty cost per vehicle for 1997 is $275.48. Both 

figures are similar to the three-year estimate of $266.65 obtained in the simulation. Like

wise, the warranty cost per vehicle for the five-year warranty obtained by the adjusted 

Weibull model (Table 6.7) is $589.59, which is also similar to the correspondmg estimate 

of $580.34 in Table 7.1. However, in both instances, the Weibull model estimates and 

the actual costs are outside the confidence interval obtained through the simulation. This 

could be explained by the skewness exhibited in the real data that is not displayed to the 

same extent in the simulation. Since the value of the parameters have been set to their 

point estunates in the simulations, the variation in the reliability of a component is as a 

result of tiie random variation around the set parameter However, there are confidence in

tervals associated with each parameter estunate. If the parameter values in the simulation 

were to be determined by sampling withm these confidence intervals, a greater variation 
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in the warranty cost estimate would result. Therefore, tiie confidence intervals would be 

wider Although this method has not been pursued in this stiidy because of the time con

straints, it is intended that this be pursued in a later sttidy. For the purposes of this study, 

however, there is sufiicient similarity between the model estimate of the last chapter and 

the simulated results, considering the sunplifications made in the modelling. Therefore it 

can be concluded that the sunulations support the results obtained by the Weibull model. 

7.4 Simulated Warranty Costs: Age and Distance Limitations 

7.4.1 Purpose 

The purpose of tiiis simulation is to extend the one of the last section by including dis

tance, in addition to time, to the faUure event. By so doing, the distance limitations of 

the warranty can also be imposed on the simulated data and a comparison of the warranty 

costs from the two simulations can then be made. 

7.4.2 Method 

The S-Plus fimction/>FCs/5'm£), the script of which (WrntCstSimulDist.ssc) is included in 

Appendix E.2, has been written to run this simulation. Its structure is similar to fWCstSim, 

except that a distance to failure has been included in the simulated data. If the failure 

occurs after the distance component of the warranty expires, then a warranty claim is not 

made in the sunulation. As in the previous simulation, the fiinction/B^Cs^^'zm is called 

using the script callWrntCstSimul.ssc (see accompanying disc), which houses the results 

in the vectors wrCstSimD and wrCstSimD5, and calculates appropriate statistics. 

As in the last simulation, the number of repetitions has been set to 500 for the same 

reasons. 

7.4.3 Results 

Table 7.2 shows tiie results of the simulation. It can be seen that the mean warranty 

cost per vehicle with a distance limitation, for both the three and five-year warranties, 

are ahnost the same as the correspondmg values for the mean warranty cost without the 
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Table 7.2. Simulated cost per vehicle with distance limitations on the warranty. 

Mean 95% CI 
3-year 
5-year 

$266.72 [262.52,271.38] 
$580.41 [574.95,587.02] 

distance limitation, shown in Table 7.1. Thus, there has been little impact on the estimated 

warranty cost per vehicle by not using the distance limitation in building up the models in 

the last chapter The reason this occurs was discussed in Section 5.2.8. 

7.5 Reliability Estimation Using Same-Age Data 

7.5.1 Purpose and Background 

The purpose of the simulation in this section is to determine how old a product has to be 

before one can make an accurate estimate of the lifetime distribution of a component. 

A similar simulation to the one in this section was reported by Summit, Cerone and 

Diamond (2002a). 

The simulations in this section generate data for one year's production of 30,138 

vehicles. The entire year's production is then allowed to age from one to five-years, in 

yearly increments. How accurately the reliability of a component can be estimated in each 

of these circumstances is tested. 

The simulations reflect situations where a manufacturer: 

• provides a one-year warranty, such as was offered by Austtalian car manufacturers 

in the early nineties; 

• provides a two-year warranty, as was the case for locally produced cars in the 

mid-nineties; 

• provides a three-year warranty, as is currently the case for locally produced 

vehicles; 

• provides a five-year warranty, as is the case for many imported cars; 

• has a new product on the market for a limited amount of tune of say, one to five 

years, with a warranty of at least the length of time of data observation. 
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Fig. 7.3. Kaplan-Meier and Weibull fits to the data. 

For the purpose of the simulations, the part "DISC,FT" was chosen as a typical 

part. The reliability of that part can be accurately modelled by the Weibull disttibution, 

as shown in Figure 7.3, which shows both the Kaplan-Meier fit and the Weibull fit. The 

estimates of the Weibull parameters are ^ = 1.462 377 and ^ = 17788.75. Although 

the simulations are set up with a specific part in mind, the results are equally valid for 

other parts, and for parts in other products, where the part is modelled by the Weibull 

disttibution. 

7.5.2 Method 

Five simulations are conducted to generate failure times of a component for one year's 

production (30,138 vehicles), using the Weibull distribution parameters stated above. The 

simulations generate failure times of components that are all one, two, three, four or five 

years old. From the simulated data, the parameters of a Weibull model are estimated, as 

would be the case if they were unknown and data were collected over the stated periods. 

In fittmg a model to the simulated warranty data, the assumptions outlined in Sec

tion 5.2 still apply. 
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The warranty is taken to be three years. This limit applies to the vehicle, not the 

component. Thus, the warranty ends when a vehicle is three years old. 

The simulation of failure times is conducted by tiie S-Plus fimction fSmpPrms, 

which is presented in Appendix E.3. The fiinction generates a failure time for each com

ponent. If the failure time is less than the warranty period, a new failure time is generated 

and each vehicle's age is noted. In uistances where the part fails again withm the warranty 

period, a new failure time must again be generated until the vehicle is out of warranty. The 

product is observed for one to five years, in yearly increments, so tiie data will be cen

sored at these times. From the simulated data, a database of failure and censored time is 

constincted, which is used to estimate the parameters of the Weibull model. This is done 

using the techiuques described in the last two chapters. 

Each simulation of warranty claims for a year's production is repeated 1,000 times 

for each observation period of one, two, three, four and five years. After each trial, the 

parameters of the Weibull distiibution have been estimated. Thus, for each warranty 

period, 1,000 estimates of the Weibull parameters have been generated. The mean of each 

of the Weibull parameters, together with their variances and 95% confidence intervals, 

made up of the 2.5% to 97.5% quantiles, are calculated in the script SimulDisc.ssc, which 

can be found on the accompanying compact disc. The script calls the fiinction/S'mpPrm5, 

and produces the relevant graphs. 

7.5.3 Results 

The means, variances and 95% confidence intervals of each parameter are shown in Ta

ble 7.3. The results are also presented m the boxplots of Figures 7.4 and 7.5. Clearly, 

the estimates from the one-year data are inadequate for both parameters. By two years, 

reasonable point estimates are obtained for both parameters. The variances are also quite 

reasonable. Further accuracy in parameter estimates is achieved, as would be expected, 

as the products' ages increase to five years. 

The improvement in the parameter estimates can be clearly seen in Figures 7.6 and 

7.7, which show the 3D density plots of the parameters over tiie observation times. The 

improvement from the two-year-old data over tiie one-year-old data is quite visible for 

botii parameters. Both the point estimate and its variance show a marked improvement 
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Fig, 7.4, (3 (shape parameter) boxplots. 

1 year 2 yeara 3 years 4 years 5 years 

Fig. 7.5. rj (scaleparameter) boxplots. 
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^ 0 

Fig. 7.6. P-time density plot. 

Fig. 7.7, r]-time density plot. 
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Table 7.3. Weibull parameter estimates. 

(a) /3 estimates. 
Period 3 sd(^) 95% CI for/? 
lyear 2.687 58 4.20662 [1.235 61,18.058 5] 

2years 1.47412 0.0883147 [1.308 86,1.662 96] 
3 years 1.47469 0.0670207 [1.34965 1.61630] 
4years 1.47276 0.0533557 [1.370 73,1.578 273] 
5years 1.46757 0.0465699 [1.383 20,1.56223] 

(b) T] estimates. 
Period rj sdjrj) 95% CI for T; 
lyear 27042.0 176539 [3 349.347,39912.59] 

2 years 17 913.2 3 679.70 [12 349.6,26 397.3] 
3 years 17642.5 2 374.76 [13 531.2,22 835.1] 
4 years 17 628.3 1681.56 [14615.5,21422.5] 
5 years 17 749.2 1351.12 [15 345.5,20 607.0] 

The QQ-plots are used to determine whether the parameter estimates are normally 

distributed. These are shown in Figure 7.8. It can be seen that neither P nor 7] display 

normal behaviour for the one-year data. By two years, the data is approaching normality, 

confirming that we can obtain reasonable point and interval estimates for the parameters. 

The three, four and five year data displays normal behaviour The QQ plots for five years 

are very similar to the four-year plots, and have been omitted for convenience. 

7.5.4 Interpretation of Results 

Weibull parameter estimates obtained from warranty data collected on one-year-old prod

ucts are not very reliable. This is true of both tiie point and interval estimates of both 

Weibull parameters. A vast frnprovement in both point and interval estimates of the pa

rameters is achieved if tiie product is two years old. Further accuracy is achieved with 

tighter confidence mtervals by allowing tiie product to age fiirther, but reasonable esti

mates can be obtained after just two years. These conclusions apply to products with a 

three-year warranty. 

The above conclusions apply to the fitting of a Weibull model under the assumption 

tiiat the Weibull model adequately represents the reliability of the component in the first 

place. Altiiough tiiis appears to be the case for the stated component, as is evident in 

Figure 7.3, tiie collection of fiirther rehability data on that component may have revealed 

a variation from the model in tiie longer term. Therefore, conclusions beyond three years 
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for the stated component may not be valid, although they certainly apply if the Weibull 

model is a good representation of the reliability of the component. 

Since most production occurs continuously over time rather tiian in yeariy batches, 

it is informative to analyse warranty data contmuously, ratiier tiian wait until all units 

have reached the requfred age. This is tiie subject of tiie simulations in the next sec

tion. However, the simulations of this section, although based on one-year data, may be 

applied to production that occurs in batches, such as between machinery adjustments or 

maintenance, or for runs with a constant component specification or supplier, where the 

time-frame would not usually be of one year's duration. 

7.6 Reliability Estimation Using Varying-Age Data 

7.6.1 Purpose and Background 

The purpose of the simulations in this section is to test if, and when, an accurate estimate 

of the Weibull parameters can be made in a continuous-production environment when 

data is collected continuously over an observation period of two to five years. 

In a continuous production envfronment, it is desfrable to analyse warranty data 

before all units reach the end of their warranty period. In so doing, items will have varying 

ages at a particular point in time. So for example, after two years of production, the age 

of vehicles will range from zero to approxunately two years. Simulations similar to the 

one of this section and Section 7,7 have been reported by Summit, Cerone and Diamond 

(2002b). 

7.6.2 Method 

The Weibull parameters used to simulate data in this section are the same as those used in 

tiie preceding section. Usmg these parameters, failure times are again simulated, as in the 

previous section. The difference in this sunulation is that the vehicles will not all have the 

same age, as contmuous production is bemg simulated. Thus, a production date, sale date 

and a component failure time are sunulated. Data is generated for observation periods of 

two to five years in one year increments. 
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0) 

Day 

Fig. 7.9. Daily production. 

In fitting a model to the simulated warranty data, the assumptions outlined in Sec

tion 5.2 have again been made. Yearly production has been set at 30,138 vehicles. The 

warranty period is again fixed at three years. 

The simulations have again been repeated 1,000 times so that inferences on the 

disfribution of estimated parameters can be made. 

Simulating Production 

The production figures of two one-year periods are used to determine a disttibution 

of production dates throughout the year. Figure 7.9 shows the production density for the 

1997 data used in the preceding chapter, together with 1999's production density, and the 

combined density. By using the combined density, any extremes in production that may 

be caused by occurrences such as machinery breakdowns, strikes, or the filling of large 

orders, have been smoothed out. However, seasonal influences affecting production, such 

as holiday breaks, have been retained, since they would be similar for the two production 

years. Sampling from this combined density is conducted to sunulate a year's production. 

Production dates for subsequent years have then been generated by adding multiples of 

365 to another set of simulated production days. 
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Fig. 7.10. Sales delay time densities. 

The S-Plus function, fProdDns obtains the combined production density, and ran

domly generates production dates for any one-year period from the combined density. The 

script for the function is included in Appendix E.4 Although production varies according 

to the day of the week, (for example, lower production on weekends,) the function does 

not distinguish which day of the week a vehicle is produced, since that amount of detail 

is not required. 

Simulating Sales 

Products are not usually sold immediately after they are produced. There is a delay 

between production and sale. We shall refer to this time as the sale-delay time. Figure 

7.10 shows the densities of sale-delay for the 1997 data from the preceding chapter, for 

the 1999 sale-delay tunes, and for the combined data. In generating these densUies, errors 

and outiiers have firstly been removed, as discussed previously in Subsection 4.4.2. It can 

be seen that the delay-time densities for the two years are very similar 

The S-Plus fimction/D/ayDra generates sale-delay times from this density. The 

script for tiie fimction can be found in Appendix E.5. 



7.6 Reliability Estimation Using Varying-Age Data 151 

Simulating Failure Times 

As in the previous section, failure times are assigned in this simulation by random 

sampling from the Weibull distribution with the specified parameter values. 

For each of the 30,138 vehicles produced each year m the simulation, a production 

day, a sale-delay and a failure time are assigned. If the failure time is within the war

ranty period, a new failure time is assigned to the replaced component. This process is 

continued until the warranty runs out. Thus, a situation is sunulated where a product is 

manufactured continuously over an observation period, and failure data is collected over 

a warranty period. From the simulated failure data, the parameters of the Weibull reliabil

ity model are estimated. This procedure is conducted by the S-Plus program fSmpCont, 

which is presented in Appendix E.6. 

The simulations are repeated 1,000 times for each observation period of two, three, 

four and five years. After each trial, the parameters of the Weibull distribution are es

timated. The script SimulCont.ssc, which can be found on the accompanying compact 

disc, calculates the mean, standard deviations and a 95% confidence intervals (2.5 to 97.5 

percentile range) of the Weibull parameters. It also produces boxplots, density and QQ 

plots. The script is also used to call the function fSmpCont and store the results of the 

simulations. 

7.6.3 Results 

The means, standard deviations and 95% confidence intervals, of both Weibull parame

ters, are shown in Table 7.4. It can be seen from Table 7.4(a) that the /3 estimates are 

biased downwards from the true value of 1.462 377. Similarly, Table 7.4(b) shows that 

the 7/ estimates are biased upwards from their true value of 17,788.75. The combined ef

fect of tiie two biases is to decrease the number of initial failures and increase the number 

of later failures. This can be clearly seen ui Figure 7.11, which shows the Weibull prob

ability density functions obtained by using the parameter estimates for 2 to 5 years from 

Table 7.4. 
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Table 7.4. Weibull parameter estimates with continuous production. 

(a) ̂  estimates. 
Period sd(/3) 95% CI for/3 
2 years 0.879805 0.0415940 [0.799686,0.963 523] 
3 years 0.894480 0.0254928 [0.844143,0.943 817] 
4years 1.09372 0.0272762 [1.03913,1.148 74] 
5years 1.19090 0.0252733 [1.14133, 1.23874] 

(b) 77 estimates. 
Period n sd(7?) 95% CI for 77 
2 years 506946 163 697 [265 508,901586] 
3 years 320725 54758.1 [233 538,452 948] 
4years 82281.3 9178.06 [65 931.2,102 365] 
5 years 50284.6 4238.61 [42682.0 59397.5] 

20000 40000 60000 

Days 

80000 100000 

Fig. 7.11. Probability density function for the estimated^ and 7] values. 

Because the sunulation produces vehicles continuously, there is a larger number 

of young vehicles than would be the case if the sample were not continuously added to. 

Thus, a large sample of early-censored data has been generated. If these early-censored 

items were observed for a longer tune period, almost all would be failure-free data. Their 

existence in the survival database inflates the number at risk at an early age. The result is a 

reduction of tiie probability of early failure, and an increase in the probability at later ages. 

Thus, tiie failure distribution is biased downwards with a resulting bias in the parameter 
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Fig. 7.12. P (shape parameter) boxplots using continuous data. 

estimates that reflects this underestimation. The simulation has been repeated using the 

exponential distribution instead of the Weibull, and the underestimation of the failure rate 

parameter has been evident there as well. 

The boxplots for the same data are shown in Figures 7.12 and 7.13. The figures 

clearly show that there is quite a bias in the estimates obtained from the two- and three-

year data, with a smaller, but still existent, bias by five years. There is a jump in the values 

of the parameter estunates at four years because by this time, most of the vehicles from 

the first year of production have reached the end of their warranty period, this being three 

years. Further improvement can be seen in the five-year data, because more vehicles have 

reached the end of the warranty period, and have been censored at that time. As more 

and more vehicles reach the end of the three-year warranty period, the influence of the 

bias in the earlier data decreases. However, the bias still exists at four years and beyond 

because production is continuous, and recentiy produced vehicles are still being censored 

at a young age. 
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Fig. 7.13. 77 (scaleparameter) boxplots using continuous data. 

1,1 Reliability Estimation Using Varying-Age Data From 1 
Year's Production 

7.7.1 Purpose 

The purpose of the simulations in this section is to consider whether or not the biases that 

exist in the parameter estimates obtained from the simulations of the previous section can 

be elimmated, or reduced, when the data is restricted to just one year's production. Thus, 

newer production, which results in more early censored items, is deliberately excluded. 

7.7.2 Method 

The metiiod used for tiie simulations in this section is the same as the one used in the 

previous section, except tiiat failure data for only one year's production is generated. This 

single year's production is followed for observation periods of two, three, four and five 

years, but new production data is not added to the database. 

As in the previous two sections, data from a WeibuU distribution witii /5 = 1.462 377 

and 7/ = 17 788.75, representuig failure data for the part "DISC,FT", are simulated. Data 
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Table 7.5. Beta estimates for one year's production. 

(a) /3 estimates. 

Observation Time /3 sdQg) 95% CI for ^ 
2years 1.00786 0.0527937 [0.909 816,1.10900] 
3years 1.12757 0.0451983 [1.04524,1.222 30] 
4years 1.46798 0.0652225 [1.33840,1.60121] 
5 years 1.47142 0.065 353 9 [ 1.343 94, 1.603 69] 

(b) rj estimates. 
Observation Time 

2 years 
3 years 
4 years 
5 years 

^ 
131261 
55 309.8 
17 858.6 
17715.9 

sd(^) 
39 382.6 
9 153.60 
2 304.15 
2276.49 

95% CI for ^ 
[76709.3,228197] 
[40124.5,75 750.9] 
[13 931.0 22 838.6] 
[13 946.7,22 688.6] 

representing one year's production of 30,138 are generated, from which the parameters 

of the Weibull model are estimated. This is done for each observation period of two to 

five years. The simulations are then repeated 1,000 times, so that the distributions of the 

parameters approach the normal distribution. This procedure is conducted in the S-Plus 

script SimulContlyrssc, which is presented in Appendix E.7, The fiinction that generates 

the sample, fSmpContlyr, is included on the accompanying compact disc. 

7.7.3 Results 

The mean, variance and 95%) confidence interval (2.5% to 97.5% quantile range) for the 

thousand simulations for each observation period are shown in Table 7.5. 

The data are also displayed ui the boxplots of Figures 7.14 and 7.15. The bias that 

can be seen in the two and three-year plots is not evident in the four and five-year plots. 

By four years, most of the vehicles would have reached the end of their warranty periods. 

Little is gained by continuing tiie observation to five years, as the data is censored at tiiree 

years, that being the end of the warranty period. The sUght gain is due to tiie fact that 

there are a few later selling vehicles, which would have reached the end of their warranty 

by five years. 

Comparing Tables 7.4(a) and (b) with Tables 7.5(a) and (b), or alternatively Figures 

7.12 and 7.13 witii Figures 7.14 and 7.15, it can be seen that the bias in each observation 

period has been reduced by limitmg the simulation to the observation of just one year's 

production. It can also be seen that by the fourth year of observation, the bias in the 

parameter estunates is no longer evident. This is a result of the maturation of the data to 
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Fig. 7.14. /3 (shape parameter) boxplots using 1 year production data. 
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Fig. 7.15. r? (scale parameter) boxplots using 1 year production data. 
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its warranty limit of three years. As explained above, by limiting the number of eariy-

censored data, the sample size is not allowed to become artificially inflated in the earlier 

periods. 

7.7.4 Interpretation of Results 

The results of the simulations in this and the previous sections show that a better estimate 

of reliability of a product can be obtamed by limiting the amount of data to be used 

to estimate the parameters of the lifetime distribution to a set amount, say one year's 

production, and then by allowing that data to mature. 

7.8 Conclusion 

The resuUs from the bootsfrap (non-parametiic) and parametiic simulations covering all 

component failures support the results obtained by tiie modelling in the last chapter Thus, 

it can be concluded that if components are modelled ui the way they have been in the last 

chapter, that we could expect results for the warranty cost that are consistent with the 

observed results. 

The last three simulations of this chapter have shown that reasonable Weibull-

parameter estimates can be obtained from warranty data of products that are all two years 

old or more. If data is continuously being added to a database, so that the age of the 

items varies from zero up to the end of the observation period, then a bias is introduced 

into the estimates. Better results can be obtained by observing just one year's production 

for a given length of time, rather than by using additional new data. When continuous-

production data is used, good parameter estunates can be obtained using an observation 

period of four years. By this time, all of the year's production have reached the end of 

their three-year warranty. Thus, the simulations validate the technique used in the pre

vious chapter of using one year's production data, and observing that data to the end of 

its three-year warranty, to estimate the parameters of the Weibull models of component 

reliability. 

From the last three simulations, some issues worthy of fiuther investigation arise 

that go beyond the scope and focus of this study. One would expect a larger sample size 

to produce better parameter estunates than a smaller one. However, it has been seen that 
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adding young-censored data infroduces a bias in the parameter estimates. The question 

arises as to where tiie balance is between sample size and maturity of the data, that pro

duces tiie most accurate parameter estimates. Looking at the older data, one question tiiat 

could be considered concems tiie bias in parameter estimates and whether or not tiiey 

could be reduced if all data were to be censored at a pre-determined age, thus providing a 

smaller range in product ages. 



Chapter 8 
Concluding Remarks and Future Directions 

8.1 Introduction 

In conclusion, the findings of this stiidy are summarised, and tiie limitations of the sttidy 

are restated. An indication of some extensions to tiiis study are also provided. 

This study has modelled the cost of an automobile warranty and has used the model 

to estimate the cost of an extended warranty. Having evaluated tiie parameters of the 

models based on the manufacturer's data, it is possible to estimate the cost of any length 

of warranty using these parameters. This has been demonsttated in Chapter 6 for tiie five-

year warranty. The simulations developed in Chapter 7 provide a means of estimating 

the warranty cost when both the time and distance limitations of the warranty are altered. 

Specific parameter estimates have been obtained from the manufacturer's data, which 

could be used for reliabiUty analysis of components. The techniques developed in this 

study could be applied to other automobile manufacturers' data. Indeed, it is possible to 

use the techniques to estimate the cost of a warranty of other manufactured goods. The 

methods used in this study would be usefiil to a manufacturer who wishes to estimate the 

warranty cost when the terms of the warranty are changed. 

8.2 Motivation For This Study 

It was pointed out in Chapter 1 that the cost of servicing a warranty is a significant portion 

of the cost of production. Thus, there is a need to obtam a reasonable estimate of a 

warranty cost, and to allow for this cost in a warranty reserve. 

IVIany different warranty-cost models have been developed in tiie literatiire, cover

ing various aspects that affect warranty-cost modellmg, and these have been reviewed in 

Chapters 2 and 3. However, as discussed in Chapter 1, a number of authors have ex

pressed the need to apply these models to real data. It has been difiicult to find such 

studies because of the proprietary nature of warranty data. This study has made available 

159 
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an Ausfralian car manufacttirer's warranty database covering one whole year's production 

over its entire warranty period, and has provided an extensive analysis of that data. 

Australian warranty data has not been found in the literattu-e previously. Of the four 

car manufacturers in Ausfralia, two showed no interest in sharing their warranty data, one 

showed mterest in any findings, but was reluctant to supply any data, and only one was 

willing to make the data available. A similar situation existed with car importers, where 

none of the unporters tiiat were approached showed a willingness to co-operate in a study 

of thefr warranty data. Thus, this study has only been possible because of the willingness 

of this one manufacturer The identity of the manufacturer has not been divulged in order 

to protect the manufacturer from any misuse of statistics derived from the data. 

8.3 Findings of This Study 

It was observed from inspection and analysis that the data needed to be cleaned before 

it could be used to make inferences. Consequently, extensive techniques for checking 

and cleaning the data have been developed in this study, as discussed in Chapter 4. A 

number of custom-written S-Plus fiinctions have been created in this study to conduct 

the necessary data cleaning. In order to conduct survival analysis with any accuracy, it 

has been important to obtain a true measure of a component's age. This has primarily 

been done from the recorded sale and repafr dates, but has then been verified against the 

age and distance fields recorded in the database. The result of checking and cleaning the 

manufacturer's data has been the creation of a data set that could be confidently analysed. 

Although the data checking and clearung in this study has been extensive, it should be 

pointed out that less than two percent of the claims data were in error 

After the data were cleaned, they were used both to calculate components' ages and 

to create a survival database of component failure and censored times during the warranty 

period. The details of this process have been discussed in Chapter 4, 

Warranty-cost models that can be appUed to survival data have been discussed in 

Chapter 5, ModelUng the warranty process as a renewal process, the expected number 

of replacements during the warranty period has been estimated and used to obtain an 

estunate of tiie warranty cost. Numerical methods have been employed to determine tiie 
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expected number of renewals for the Weibull distribution. Warranty-cost models based 

on the expected number of renewals have been developed to obtain point estimates and 

their variances. Various parametric models have been considered, with tiie log likelihood 

values of all models being fairiy close to one anotiier, as reported in Chapter 6. 

The total warranty cost per vehicle has then been modelled based on the sum of the 

individual components' warranty costs. This, of course, assumes independence amongst 

component failures, a necessary assumption to be able to analyse the large number of 

components mcluded in the manufacturer's database. Other assumptions have been dis

cussed in Section 5.2; tiie models developed in this study are subject to those assumptions 

being true. 

In addition to obtaining point estimates for the warranty cost per vehicle, techniques 

for obtaining interval estimates have been discussed in Chapter 5. These have been based 

on the variance of the number of renewals and the variance of the cost of repair The 

variance for the exponential model was readily evaluated, but that of the Weibull model 

relied on numerical methods for its calculation. 

8.3.1 Comparison of Models 

The exponential model provided the same point estimate of the warranty cost per vehicle 

for the current warranty of three years as did the Weibull model, as discussed in Chapter 

6. In fact, the bootsttap model also obtained the same results, as reported in Chapter 

7. Thus the additional processing requfred for the Weibull model is not deemed to be 

justified when estimating the cost of the current model. 

For the extended warranty of five years, the exponential and Weibull models gave 

quite different results. It was reported in Chapter 6 that for some components, the pa

rameter estimates of the Weibull model proved to be imrealistic. However, by removing 

one or two of the oldest failure times, a much better fit was able to be obtained. This "ad

justed" Weibull model predicted much higher warranty costs for the extended warranty 

as compared with the exponential model. Extrapolation using the exponential model ap

peared to be somewhat dangerous, based on these results. Caution needs to be taken even 

when extrapolating with tiie Weibull model. Attemptmg to exfrapolate beyond anything 

but a short distance from tiie observed pomts could lead to inaccurate predictions. This 

was evident for a number of components, where the extended-wartanty costs based on the 
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estimated Weibull models did not result in realistic costs predictions. Thus, the Weibull 

model was rejected for those components. It becomes increasingly clear that care needs 

to be taken when extrapolating beyond the warranty period when one considers that only 

a very small portion of a component's life is observed during the warranty period. 

The exponential model provided a reasonable confidence interval on the warranty 

cost. However, poor, unusable confidence intervals were obtained using the Weibull 

model. This occurred because of the large variances in the expected number of renewals 

for most components. This in turn, was due to the fact tiiat tiie interval estimates were 

obtained from a confidence region based on the confidence intervals of the two Weibull 

parameters. However, a workable confidence interval was able to be obtained using the 

variance of the exponential model. 

Existing knowledge of the theoretical warranty cost models has been extended 

through the development of techiuques that enable these models to be used with real 

data. Extensive computer coding, in the form of numerous S-Plus fiinctions, has been de

veloped in this study. This has been necessary as the existing S-Plus fimctions need to 

be supplemented to perform the modelling required in this study. The new functions are 

designed to transform the manufacturer's raw data into an estimate of the warranty cost. 

8.3.2 Findings of the Simulations 

In Chapter 7, sunulations have been used to compare the expected warranty cost based 

on the estimated parameter values of the models, with the observed warranty cost. The 

simulation of warranty cost for a three-year warranty provided similar results to that of 

tiie observed warranty cost, tiius supporting the parametric models developed in Chapter 

6. 

A second simulation used the parameters that were determined in Chapter 6, and 

imposed a distance limit on the warranty. The warranty costs for both the three-year 

and five-year warranties are not significantiy different to the results obtained from the 

simulation that did not have tiie distance linutation. Thus, it can be seen that using the one-

dimensional approach to modelling the warranty cost does not greatly aflfect the results. 

Other sunulations m Chapter 7 have shown that by collecting one year's warranty 

data untU tiie end of tiie warranty period, an accurate model of a component's reUability 

can be obtained. The simulations in Chapter 7 have also shown that parameter estimates 
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can be biased if data is not sufiicientiy matiire, leading to erroneous warranty cost esti

mates. 

8.4 Extensions to This Research 

It may be informative to model the early failure data separately from tiie later data. Sim

ilarly, modelling the post-warranty claims as a separate group could also provide further 

information. By so doing, the characteristics of these stratified groups could possibly be 

better catered to. 

Conversely, one may ask if the modellmg of components separately, as has been 

done in this study, is worth the greater expenditure in analysis and computation time. The 

techiuques used in this study have been expensive in terms of both the tune taken to set 

up the analysis and the processing time required to do the analysis. Linear exttapolation 

of monthly warranty claims figures is the most common approach used by manufactur

ers. It would be informative to compare the results of this approach with those obtained 

by the techniques outiined in this sttidy. It would also be worthwhile to compare the war

ranty cost obtained from modelling the reliability of subsystems, with that obtained by 

modelling the reliability of components separately. 

The reliability of parts obtained from diflferent suppliers can be monitored through 

the analysis of warranty data. It may be worthwhile to analyse warranty data of compo

nents from different suppliers in order to compare their reliability. Warranty data analysis 

could be used as part of the quality control process. It would be mformative to conduct a 

study that estimated the expected warranty savings of such analysis. 

An area that requires fiirther work is that of the mterval estimation of the warranty 

cost per vehicle, obtained by using the Weibull model, as developed in Chapter 5. As 

has been stated in Chapter 6, the results obtained from tiiis model are not usable. This is 

as a result of tiie large variances obtained for the expected number of renewals of most 

parts. The modifications that can be made to improve the interval estimates need further 

investigation. 

In tiie sunulations used in this sttidy, data has been generated from a set of fixed 

parameters. The values of tiie parameters have been estimated from tiie warranty data. 

However, these values are not known exactiy, and tiiis fact could be incorporated mto tiie 



164 Chapter 8 Concluding Remarks and Future Directions 

simulation. This would be achieved by firstly sampling tiie parameter values, and then 

generatmg sunulated data using tiiese sampled values. By so doing, tiie uncertainty in 

the parameters would be reflected in the simulated data. This would produce a greater 

variation in the warranty costs, as seen in the real data. 

It is intended tiiat fiittire sttidies by tiie autiior address some of these areas of further 

investigation. 

8.5 Conclusion 

In conclusion, this thesis has used the exponential and Weibull distiibutions to model the 

reliabiUty of components of a particular model of car usmg the manufacturer's warranty 

data. This has been done after comparing these models with various other models, which 

all produced similar results. For each component, the expected number of renewals was 

estimated usuig the exponential and Weibull models, which, together with the estimated 

cost of repairing the component, was used to estimate the cost of the warranty. The two 

models were used to estimate the cost of an extended warranty, and comparisons were 

made between the models. 

Simulations have been used to compare the predicted warranty cost from the models 

with the actual warranty cost. They were also used to validate some of the assumptions 

made, and the techniques used, in deriving the models for warranty cost. 

The reliability models that have been established in this study are specific to a par

ticular model from a specific manufacturer. The models would be very usefiil to this 

manufacturer in determining if variations from tius reliability are evident in the manu

facturing process when certain events occur, such as a change of supplier, batch lot, or 

a change in the manufacturing process. It is anticipated the findmgs of this study wUl 

be used in that fashion. Altiiough the results are specific to this manufacturer, the tech

niques tiiat have been developed are usefiil to other automobile manufacturers, and indeed 

to other complex products made up of a several components. 
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Appendix A: S-Plus Scripts for Chapter 4 
This appendix contains scripts of fiinctions, and a fimction's output, that are referred to in Chapter 4. They 
are included here for completeness and ready reference. Otiier scripts and datasets that are referred to in 
Chapter 4 that are not included here can be found on the accompanying compact disc. 

A.l Exploratory Data Plots and Summaries {PlotSummary.ssc) 
# FUNCTION TO PLOT AND SUMMARISE DATA IN A DATA FRAME 

# 
# DESCRIPTION 
# 
# OVERVIEW 
# ======== 
# This function is used for exploratory data analysis. It will produce: 
# (1) several plots, including boxplots and scatterplots; 
# (2) a statistical summary of the data in the data frame. 

# INPUT 
# ===== 
# A data frame for which plots and summaries are required. 

# 
# PROGRAM 
# 
"fPlotSmr"<-
function(ClaimsDF) 
{ 
# PLOTS 
# ===== 
# Boxplots of numeric data. 

boxplot( dates(ClaimsDF$prod, origin=c(1,1,1997) ), dates(ClaimsDF$sale, origin=c(1,1,1997)), 
dates(ClaimsDF$repr,origin=c(l, 1,1997)), names = cC'prod", "sale", "repr"), 
xlab = "Date", ylab = "Days since 1/1/97", style.bxp="old") 

title("Dates Boxplots") 

boxplot(ClaimsDF$dist/1000, names = "dist", ylab = "xlOOOkm", style.bxp="old") 
title("Distance Boxplot") 

boxplot(ClaimsDF$age, names = "age", ylab = "Months", style.bxp="old") 
title("Age Boxplot") 

boxplot(ClaimsDF$age2, names = "age2", ylab = "Days", style.bxp="old") 
title("Age2 Boxplot") 

boxplot(ClaimsDF$cost, names = "cost", ylab = "$", style.bxp="old") 
title("Cost Boxplot") 

# Matrix plot of Date Fields. 
pairs(cbind(ClaimsDF$prod, ClaimsDF$sale, ClaimsDF$repr), labels=c("Prod","Sale","Repair")) 

# Distance vs Age plot. 
plot(ClaimsDF$age, ClaimsDF$dist/1000, xlab = "age (months)", ylab = "dist (1000km)") 
title("Distance vs Age Plot") 

# Distance vs age2 plot. 
plot(ClaimsDF$age2, ClaimsDF$dist/1000, xlab = "age2 (days)", ylab = "dist (1000km)") 
title("Distance vs age2 Plot") 

# OUTPUT 
# ====== 
# A list of siimmary statistics, and a linear regression model through the origin for dist vs 
# age are provided. 

list(summary(ClaimsDF) , 
lm(dist ~ age+(-l), data = ClaimsDF, na.action = na.exclude)) 

174 
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A.2 Function to Check the Data {Checkssc) 
* FUNCTION TO CHECK DATA 

I 
I DESCRIPTION 
I 
I PURPOSE 
# ======= 

# To identify records that contain an error in the dates, age2, age and dist fields. 

# OVERVIEW 
# ======== 
t The input of this function is a claims data frame. 
# The output is a report of possible errors in the data frame. 
# This function should be followed by the cleaning function fClean. 

# 
t PROGRAM 
I 
"fCheck"<-
function (ClaimsDF) 
{ attach(ClaimsDF) # Enables variables in dataframe to be accessed directly. 

# This function assumes values in VIN for all cases. 
if(any(is.na(VIN))) 

stop(message = "This function will not work properly if VIN contains any NAs") 

# Convert date columns to numeric to remove date attributes from output. 
prod <- as.numeric(prod) 
sale <- as.numeric(sale) 
repr <- as.numeric(repr) 

# SET UP LINEAR MODELS OF dist BASED ON age AND age2 

# This establishes a linear model for dist based on age, to be used in a later section. 
model <- lm(dist ~ age+(-l), na.action=na.exclude) 
rate <- model$coefficients 
num <- length(VIN[lis.na(age) & !is.na(dist)]) 
s <- sqrt( sum(model$residuals''2) / (num - 1) ) 
sumSqrd <- sum(age^2, na.rm=T) 

# This establishes a linear model for dist based on age2, to be used in a later section. 
model2 <- lm(dist ~ age2+(-l), na.action=na.exclude) 
rate2 <- model2$coefficients 
num2 <- length(VIN[!is.na(age2) & !is.na(dist)]) 
s2 <- sqrt( sum{model2$residuals''2) / (num2 - 1) ) 
sumSqrd2 <- sum(age2'^2, na.rm=T) 

# This list will output required statistics 
result <- list( 

# IDENTIFY DATE FIELDS WITH NAs 
# ============================= 

"Production date is NA in these cases" = row.names(ClaimsDF[is.na(prod), ]), 
"Sale date is NA in these cases" = row.names(ClaimsDF[is.na(sale), ]), 
"Repair date is NA in these cases" = row.names(ClaimsDF[is.na(repr) , ]), 

# IDENTITY DATE FIELDS WITH 0 
# ============================, 

"Production date is 0 in these cases" = row.names(ClaimsDF[prod==0 & !is.na(prod) , ]), 
"Sale date is 0 in these cases" = row.names(ClaimsDF[sale==0 & lis.na(sale), ]), 
"Repair date is 0 in these cases" = row.names(ClaimsDF[repr==0 & 1is.na(repr), ]), 

# IDENTITY CASES WHERE SALE OR REPAIR IS BEFORE FIRST PRODUCTION DATE 
# =================================================================== 

"Sale is before first production date in these cases" 
= row.names(ClaimsDF[sale < min(prod, rm.na=T) & 1 is.na(sale), ]), 
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"Repair is before first production date in these cases" 
= row.names(ClaimsDF[repr < min(prod, rm.na=T) & 1 is.na(repr), ]), 

# IDENTITY RECORDS WHERE SALE OR REPAIR IS BEFORE PRODUCTION 
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 3= = = = = = , = = = = = = = = = , = = = = = .= =, = = = = =,= 

"Sale is before production in these cases" 
= row.names(ClaimsDF[sale < prod & !is.na(sale) & 1is.na(prod), ]), 

"Repair is before production in these cases" 
= row.names(ClaimsDF[repr < prod & 1is.na(repr) & lis.na(prod), ]), 

# IDENTITY CASES WHERE PRODUCTION < REPAIR < SALE 
# ======================,=====^==============.======= 

"The number of cases where production < repair < sale is" 
= length(VIN[repr<sale & repr>prod & lis.na(repr) & lis.na (sale)]), 

"These may be presale, dealer-initiated claims, where age = 0. Of those, age > 0 in case:" 
= row.names(ClaimsDF[repr<sale & repr>prod & lis.na(repr) & lis.na(sale) & age > 0 
& 1is.na(age),]) , 

"Also, distance should be small. Of those, distance > 100 in case" 
=row.names(ClaimsDF[repr<sale & repr>prod & lis.na(repr) & lis.na(sale) & dist > 100 
& 1is.na(dist),]), 

# IDENTIFY RECORDS WHERE SALE IS TOO LONG AFTER PRODUCTION 
# ======================================================== 
# There is a lag between production and sales. Records with a lag greater than 1 year may be in 
# error. However, if age2 matches age, then the sale date is probably correct, and there was 
# just a long lag. Exclude cases where sale or prod are NA. 

"The number of cases with sale delay (=sale-prod) > 1 year is" 
=length(VIN[sale>prod+365 & !is.na(sale) & 1 is.na(prod)]), 

# IDENTIFY CASES WHERE age2 DIFFERS FROM age BY > 1 MONTH 
# ======================================================= 

"Number of cases where age2 differs from age by > 1 month & repair is after sale is" 
= length(VIN[abs(age2 - age*30.4) > 31 & lis.na(age2) & age2 >= 0]), 

"The cases are" 
= row.names(ClaimsDF[abs(age2-age*30.4) > 31 & lis.na(age2) & age2 >= 0 & age == 0,]), 

# IDENTIFY CASES WHERE age2 DIFFERS FROM age BY > 2 MONTH 
# ======================================================= 

"Number of cases where age2 differs from age by > 2 months & repair is after sale is" 
= length(VIN[abs(age2 - age*30.4) > 61 & 1is.na(age2) & age2 >= 0]), 

"The cases are" 
= row.names(ClaimsDF[abs(age2 - age*30.4)>61 & 1is.na(age2) & age2>=0 & age==0,]), 

# CHECK age AND age2 AGAINST dist 
# =============================== 
# Using the linear models of dist based on age and ag62 established above, the value for dist 
# is checked against the 99% prediction interval for the values of age and age2. 

"Number of cases where distance is outside the 99% prediction interval based on age is" 
=length(VIN[abs(dist - rate*age) > 

qt (0.995, num - 2) * s * sqrt(l + age'^2/sumSqrd) & 
lis.na(age) & 1 is.na(dist)] ), 

"Number of cases where distance is outside the 99% prediction interval based on age2 is" 
=length( VIN[abs(dist - rate2*age2) > 

qt (0.995, num2 - 2) * s2 * sqrt(l + age2'^2/sumSqrd2) & 
!is.na(age2) & lis.na(dist)] ), 

# OBTAIN COSTS ABOVE $20,000 
# ========================= 

"The repair costs above $20,000 are" 
=cost[cost > 20000] 

) 

# CLOSING ROUTINE 

detach("ClaimsDF") 
# The next line returns the above list. 

result 
} 
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A.3 Output of fCheck 
> fCheck(c l a ims97) 
$"Produc t ion d a t e i s NA i n t h e s e c a s e s " : 
c h a r a c t e r ( 0 ) 

$"Sale d a t e i s NA i n t h e s e c a s e s " : 

[1] " 4 1 3 " "414" "1613" "2456" "2943" "11423" "12631" "39537" 

$"Repair date is NA in these cases": 
character(0) 

$"Production date is 0 in these cases": 
character(0) 

$"Sale date is 0 in these cases": 
character(0) 

$"Repair date is 0 in these cases": 
character(0) 

$"Sale is before first production date in these cases": 
character(0) 

$"Repair is before first production date in these cases": 
character(0) 

$"Sale is before production in these cases": 
[I] "4525" "4526" "10824" "10825" "23679" 

$"Repair i s b e f o r e p r o d u c t i o n i n t h e s e c a s e s " : 
[1] "8240" "12753" "13897" "18411" "19559" "25744" "27964" "27987" "28667" "31983" 

[ I I ] "33201" "33203" "43473" "50289" "52903" "58952" "61433" 

$"The number of cases where production < repair < sale is": 
[1] 753 

$"These may be presale, dealer-initiated claims, where age = 0. Of those, age > 0 in 
case:": 
[I] "2067" "34210" "39868" "60277" 

$"Also, distance should be small. Of those, distance > 100 in case": 
[1] "2067" "5579" "7763" "7843" "7844" "8108" "10767" "10768" "10770" "10775" 
[II] "13689" "14360" "25903" "28477" "28550" "30633" "30762" "35262" "35297" "35461" 
[21] "35640" "38504" "39865" "39868" "39923" "41298" "41855" "43121" "44958" "47312" 
[31] "58302" "58553" "59475" "60278" "61804" "62345" 

$"The number of cases with sale delay (=sale-prod) > 1 year is": 

[1] 120 

$"Number of cases where age2 differs from age by > 1 month & repair is after sale is" 

[I] 111 

$"The c a s e s a r e " : 
[1] "2192" "10825" "12135" "23258" "24872" "24873" "24874" "25743" "28704" "32987" 

[ I I ] "32988" "32989" "39447" "39448" "49117" "53164" 

$"Number of cases where age2 differs from age by > 2 months & repair is after sale is 

[I] 77 

$"The c a s e s a r e " : 
[1] "2192" "10825" "12135" "23258" "24872" "24873" "24874" "25743" "28704" "32987" 

[ I I ] "32988" "32989" "39447" "39448" "49117" "53164" 

$"Number of cases where distance is outside the 99% prediction interval based on age 

is": 
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[1] 585 

$"Number of cases where distance is outside the 99% prediction interval based on age2 
is": 
[1] 715 

$"The repair costs above $20,000 are": 
32166 53847 

23636.3 27193 

A.4 Function to Clean the Data {Clean.ssc) 
# FUNCTION TO CLEAN DATA 

# 
# DESCRIPTION 
# 
# OVERVIEW 
# ======== 
# This function is used to clean the data in a data frame. It should follow the check function 
# fCheck. It changes incorrect values in age2 and puts a flag indicating the change in the 
# "altered" field. Suspected errors where age2 has not been changed are flagged in the 
# "error" field. 

# OUTLINE 
# ======= 
# 1. Check for errors in repair date. 
# 2. Check for errors in sale. 
# 3. Check if age2 < 0. 
# 4. Compare age2 with age or distance. 

# 
# PROGRAM 
# 
"fClean"<-
function(ClaimsDF) 
{ 

attach(ClaimsDF) 

# ESTABLISH CONDITIONS FOR AGE AND DIST TO BE WITHIN OUTLIER LIMITS 
# ================================================================== 
# Use a non-plot box function to obtain the statistics for outliers 

ageBox <- boxplot(age, plot=F) 
distBox <- boxplot(dist, plot=F) 

# Set conditions for age and dist to be less than outliers. In many records where age=0, the 
# values in dist or age2 conflict with this value, so do not include these amongst the "good" 
# records containing non-outliers. Note: ageBox$out[1] is the smallest age outlier. 

ageGood <- age 1=0 & age < ageBox$out[1] & !is.na(age) 
distGood <- dist < distBox$out[1] & 1is.na(dist) 

# OBTAIN USAGE RATE (ie. dist = rate2 x age2) 
# =^================„==========.============ 
# Robust model used to remove the outlier effects. 

model2 <- ImRobMM(formula = dist~age2+(-1), data = ClaimsDF, na.action=na.exclude) 
rate2 <- model2$coefficients 

# CHECK FOR ERRORS IN REPAIR DATE 
# =============================== 
# Age2 has been calculated as repr - sale. Hence an error in either of these two fields will 
# result in an error in age2. Errors in repr are cleaned in this section, whilst errors in 
# sale are cleaned in the next section. Records where prod < repr < sale are looked at later, 

# If repr is NA, or if repr < prod (this covers repr=0), age2 will be in error, 
reprBad <- is.na(repr) | repr < prod 

# Age2 will be given a value as follows: 
#1. If age is not 0, 999 or an outlier, then age2 gets its value from age. 
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reprBadAgeOood <- reprBad & ageGood 
ClaimsDF$age2[reprBadAgeGood] <- round(age*365.25/12, digit=0)[reprBadAgeOood] 
ClaimsDF$altered[reprBadAgeGood] <- "reprErr.AgeUsed" 

#2. Else if dist is not an outlier, then age2 gets its value from dist. 
reprBadDistGoodAgeBad <- reprBad & distGood & 1ageGood 
ClaimsDF$age2[reprBadDistGoodAgeBad] <- round(dist/rate2, digit=0)[reprBadDistGoodAgeBad] 
ClaimsDF$altered[reprBadDistGoodAgeBad] <- "reprErr.DistUsed" 

#3. Else age2 gets NA. 
reprBadAgeBadDistBad <- reprBad & 1ageGood & 1distGood 
ClaimsDF$age2[reprBadAgeBadDistBad] <- NA 
ClaimsDF$altered[reprBadAgeBadDistBad] <- "reprErr.NAused" 

# CHECK FOR ERRORS IN SALE DATE 
I ============================= 
# Define delay as the difference between sale and prod. Look for outliers in delay. Because it 
# is skewly distributed, take log(delay) firstly. Remove cases where sale is NA or < prod. 

delay <- log( (sale - prod + 1) [1 is.na(sale) & sale >= prod] ) 
# + 1 ensures that we do not get log(O) 

delayBox <- boxplot(delay,plot=F) 
longDelay <- exp(delayBox$stats[1]) #This is the largest delay that is not an outlier 
medDelay <- round(exp(delayBox$stats[3]), digit=0) 

# Sale will be in error if it is NA, < prod (this covers 0) or if sale is too long after prod. 
# Exclude records where age2 was given a new value above because repr was in error. 

saleBad <- (is.na (sale) I sale < prod | sale > prod + longDelay) & 1reprBad 

# When sale is in error (and repr is okay), age2 will be given a value as follows: 
#1. If dist is not an outlier, age2 gets its value from dist. Dist gives the largest number of 
# correlations of two fields amongst age, dist and repr - (prod + medDelay). 

saleBadDistGood <- saleBad & distGood 
ClaimsDF$age2[saleBadDistGood] <- round(dist/rate2, digit=0)[saleBadDistGood] 
ClaimsDF$altered[saleBadDistGood] <- "saleErr.DistUsed" 

#2. If this new value of age2 doesn't match either age or repr - (prod + medDelay), and age 
# matches repr - (prod + medDelay), age2 gets repr - (prod + medDelay). 

saleBadDelayMatchAge <- saleBadDistGood & (abs(age*365,25/12-ClaimsDF$age2) >31 I 
abs(repr-(prod+medDelay)-ClaimsDF$age2)>31) & 
abs(repr-(prod+medDelay)-age*365,25)<32 

ClaimsDF$age2[saleBadDelayMatchAge] <-pmax(0,repr-(prod+medDelay))[saleBadDelayMatchAge] 
# If repr < (prod+medDelay), age2 gets 0, 
ClaimsDF$altered[saleBadDelayMatchAge] <- "saleErr.DelayUsed" 

#3. If dist is an outlier or NA, age2 gets repr - (prod + medDelay). 
saleBadDistBad <- saleBad & 1distGood .„. ^„ ^, 
ClaimsDF$age2[saleBadDistBad] <- pmax(0, repr - (prod + medDelay))[saleBadDistBad] 
ClaimsDF$altered[saleBadDistBad] <- "saleErr.DelayUsed" 

# CHECK FOR CASES WHERE REPAIR OCCURS BETWEEN PRODUCTlON^AND^SALE 

# If prod < repr < sale, and age2 has not already been changed above, age2 gets 0. 
reprB4sale <- repr < sale & repr >= prod & ClaimsDF$altered — 
ClaimsDF$age2[reprB4sale] <- 0 
ClaimsDF$altered[reprB4sale] <- "reprB4sale.0used" 

# LOOK FOR CORRELATION BETWEEN AGE2, AGE AND DIST 

# This is needed to obtain a 99% prediction interval for dist. 
num2 <- length(ClaimsDF$VIN[lis.na(age2) & !is.na(dist)]) 
s2 <- sqrt(sum(model2$residuals'^2) / (n\im2-l) ) 
sumSqrd2 <- sum(ClaimsDF$age2'^2, na.rm=T) 

# Create a model for dist based on age, 
model <- lmRobMM(dist~age+(-l), data = ClaimsDF, na.action=na.exclude) 
rate <- model$coefficients 
num <- length(ClaimsDF$VIN[lis.na(age) & 1is.na(dist)]) 
s <- sqrt (sum(model$residuals''2) / (num-1) ) 
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sumAgeSqrd <- sum(ClaimsDF$age^2, na.rm=T) 

# If age2 does not match either age or dist, check if age matches dist. In this case put age 
# in age2. Allow 32 days difference between age and age2 to cover several cases that are just 
# over one month. 

ageDistMatch <- abs(ClaimsDF$age * 365.25 / 12 - ClaimsDF$age2) > 32 & 
abs(ClaimsDF$dist - rate2*ClaimsDF$age2) > 

qt (0.995, nuiti2-2) * s * sqrt (l+ClaimsDF$age2'"2 / sumSqrd2) & 
abs(ClaimsDF$dist - rate * ClaimsDF$age) <= 

qt (0.995, nvim-2) * s * sqrt (l+ClaimsDF$age^2 / sumAgeSqrd) 

ClaimsDF$age2[ageDistMatch] <- round(age*365.25/12, digit=0)[ageDistMatch] 
ClaimsDF$altered[ageDistMatch] <- "age2~DistErr.ageUsed" 

# CHECK COST FOR ERRORS 
# ===================== 
# Flag cases where the cost < 0 or > $10,000. Cost outliers were not used because there were 
# a number of them. 

costBad <- cost < 0 | cost > 10000 
ClaimsDF$error[costBad] <- "costExtreme" 

# CLOSING ROUTINE 
I =============== 

detach("ClaimsDF") 
ClaimsDF 

} 

A.5 Function to Add Sales Records {AddSale.ssc) 
# CHECK IF ANY VEHICLES IN CLAIMS DATABASE NOT LISTED IN SALES DATABASE 

# PURPOSE 
# ======= 
# This function adds records to the sales database from records listed in the claims database. 

# PROGRAM 
# ======= 
# A logical vector that identifies which records in claims97 are not in sales97. 
notlnSales <- 1 is.element(claims97$VIN, sales97$VIN) 

if( length(table(notlnSales)) > 1 ) # This occurs only if there are Ts and Fs in the table. 
{ addSales <- cbind(claims97[notlnSales, c("VIN","prod")], region="",prodn="-l",age2=1096) 

guiModify( "double". Name = "addSales$age2", Precision = "0") 
dups <- duplicated(addSales$VIN) 
addSales <- addSales[1dups,] 

# Combine the original sales97 data frame with the records in claims not in sales. 
sales97 <- rbind(sales97, addSales) 
} 

# CLEAN UP 
# ======== 
# First check that sales970RIG has been successfully written to the set directory. 
rm(notInSales, addSales, dups) 

A.6 Function to Calculate Components' Ages {CompAge.ssc) 
# CALCULATION OF age2 & dist2 IN VEHICLES WITH REPEAT FAILURE OF A COMPONENT 

# 
# DESCRIPTION 
# 
# OVERVIEW 
# ======= 
# This function calculates the age and dist of components fitted to a vehicle for a second or 
# subsequent time. It assumes that the data frame is sorted by VIN, then by part, then by repr. 



A. 6 Function to Calculate Components' Ages (CompAge.ssc) 181 

# A data frame with an updated age2 and added dist2, the distance the component has travelled, 
# IS returned. 

# Note: The attach function makes copies of the fields of the data frame in the working 
# directory. To make changes in the data frame, you need to prefix the field names with the 
# data frame name. Likewise, any changes in the dataframe fields are not made in the "copied" 
# objects. 

# INPUT 
# ===== 
# 1. CleanDF = a data frame of cleaned data. Default = clean97. 
# 2. Wrnty = warranty length in years. Default = 3. 

# OUTPUT 
# ====== 
# A data frame with component ages calculated. 

I 
# PROGRAM 
# 
" fCompAge"<-
function(CleanDF= clean97, Wrnty=3) 
{ 

attach(CleanDF) 

# Convert warranty t o days . 
Wrnty <- round(Wrnty * 365.25) 

# CALCULATE DIFFERENCE IN age2 IN MULTIPLE REPAIR CASES 
# ===================================================== 
# The following identifies records that have the same VIN as the previous record. 

sameVIN <- duplicated(VIN) 

# The following identifies records that have the same part as the previous record. Note: the 
# function duplicated() is not suitable for use with part, because it will detect any previous 
# occurrences of the particular part, not just in the last record 

samePart <- vector(mode="logical", length=length(VIN)) 
n <- length(VIN) 
samePart[2:n] <- part[1:(n-l)]==part[2:n] 

# This identifies records that have the same VIN and part as the previous record, ie, records 
# where a component has been replaced a second or subsequent time. It excludes records where 
# part is blank or NA. 

sameVINpart <- sameVIN & samePart & part!="" & 1is.na(part) 

# To put the age of a component into age2, we need the differences in age2 between subsequent 
# records. This will have a length one less than the length of age2 itself, so add a dummy 
# record at the start, as this cannot be a subsequent repair. 

diffAge2 <- c(0, diff(age2)) 
# Assign these differences in age2 to the records where sameVINpart is true. 

CleanDF$age2[sameVINpart] <- diffAge2[sameVINpart] 

# Create field dist2 for the usage of a component. Set it to dist initially, then calculate 
# difference from previous repair in mulltiple repair vehicles. 

dist2 <- dist 
diffDist <- c(0, diff(dist)) 
dist2[sameVINpart] <- diffDist[sameVINpart] 

# There are errors in some of the data, where the second repair on a vehicle has a recorded 
# distance that is less than the previous record (ie, the last repair). As this cannot be the 
# case, we will change these to NAs. 

dist2[dist2<0] <- NA 

# If there are any records with 0 distance, make them 1 so that we can take log of them. 
dist2[dist2==0] <- 1 

# ADD AND FORMAT FIELDS 
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# Add this field to the data frame. 
CleanDF <- cbind(CleanDF, dist2) 

# ADJUST compAge TO EXCLUDE POST-WARRANTY CLAIMS 
# ============================================== 
# Some claims have been made after 3 years. These will be excluded becuase most vehicles' 
# repairs are unknown after 3 years. Using the post-warranty claim data introduces a bias. 
# Note that the analysis is based on age2 and not on distance, so no check is made on distance. 

CleanDF <- CleanDF[CleanDF$age2 <= Wrnty, ] 

# CLOSING ROUTINE 

detach("CleanDF") 
CleanDF 

} 

A.7 Function to Construct a Survival Database {Survive.ssc) 
# FUNCTION TO COMBINE CLAIMS AND SALES DATA FRAMES FOR SURVIVAL ANALYSIS 

# 
# DESCRIPTION 
# 
# OVERVIEW 
# ======== 
# This function is to be called by individual part (part numbers) . This can be done by indexing 
# the data frame on a part# (ie. CompDF[CompDF$part=="part#",]) or by using the S-Plus 
# function by(). 

# This function assumes that CompDF is sorted by VIN, and will not work properly unless this 
# is the case. This function is to be run after cleaning the claims data with fClean, and 
# obtaining the age of components in multi-repaired vehicles with fCompAge. 

# INPUT 
# ===== 
# 1. CompDF = a data frame containing data for one component. 
# 2. SalesDF = a data frame of vehicles produced. Default = sales97. 
# 3. Wrnty = the warranty length in years. Default = 3. 

# OUTPUT 
# ====== 
# This function returns a data frame of all vehicles and components and includes a status 
# field of failed (=1) or censored (=0), ready for survival analysis. 

# 
# PROGRAM 
# 
"fSurvive"<-
function(CompDF, SalesDF=sales97, Wrnty=3) 
{ 
# CHECK INPUT PARAMETERS 
# ====================== 

if(length(CompDF$VIN) == 0) 
stop(message="No components with that part number.") 

if(length(table(CompDF$part)) 1= 1) 
stop(message="This function requires the input CompDF to have only one part.") 

if(length(SalesDF$VIN) == 0) 
stop(message="The inputted sales database is empty,") 

if( all.equal(order(CompDF$VIN), 1:length(CompDF$VIN)) ) T 
else stop(message="This function requires the inputted database to be sorted by VIN.") 

# Convert warranty to days 

Wrnty <- round(Wrnty * 365.25) 

# DATA FRAME OF FAILED COMPONENTS FROM CLAIMS DATA FRAME 

# Each entry in the claims database represents a failed component, which is then written as a 
# failure record in the survival database. Pick up the fields VIN, age2, dist2, part, partname 
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I and add a status of 1. 

Failed <- cbind(CompDF[ ,c("VIN", "age2","dist2","part","partname","cost")], status=l) 

t Some of these failures occur after 3 years. If left in, these points result in a high 
# failure rate being evaluated beyond 3 years because the bulk of the data is censored by 
# then. Thus, to avoid this bias in the model, it is necessary to censor these failures at 3 
# years. The status needs to be changed to 0 for censored also. Note that fCompAge has already 
I restricted age2 to the warranty length, so don't need to do it here, but it has been left in. 

beyondSyrs <- Failed$age2 > Wrnty 
Failed$age2[beyond3yrs] <- Wrnty 
Failed$dist2[beyond3yrs] <- Failed$dist[beyond3yrs] / Failed$age2[beyond3yrs] * Wrnty 

Failed$status[beyondSyrs] <- 0 

# DATA FRAME OF CENSORED COMPONENTS FROM CLAIMS DATA FRAME 

f Each replaced component in the claims database that does not fail again needs to be written 
# as a censored item in the survival database. 
# The following identifies records that have the same VIN as the previous record. These are 
# vehicles that have had more than one repair on a particular part. Note that only one part 
t should have been passed to this function, so duplicate VINs identify subsequent repairs. 

sameVIN <- duplicated(CompDF$VIN) 

# Components that are subsequently replaced will have the same VIN as the next, rather than the 
# previous record. These cases can be identified by moving sameVIN up by one record. The last 
# record will not a subsequent repair, so it is given an F. However, if there is only one 
record 
# there is no need to do anything. (The next line works only if there are at least 2 records.) 

if(length(sameVIN) > 1) 
sameVIN<- c(sameVIN[2:length(sameVIN)] , F) 

# The censored items, where the replaced component has not yet failed, are the ones where 
# sameVIN is F. Pick up only the fields that are required for survival analysis. 

Censored <- CompDF[1sameVIN,c("VIN","sale","repr","age2","dist2", "part","partname") ] 

# Calculate max age of component whilst vehicle is still under warranty. Set componentAge to 
the 
# age of the component, for later use. 

componentAge <- Censored$age2 

# Set age2 to difference between warranty end date {= sales date + 3 years) and repair date, as 
# component may get repaired elsewhere after warranty ends. Note: 
# 1. pmaxO is used because repair date may be after warranty ends, which means that 
# (Censored$sale + Wrnty - Censored$repr) ends up negative. 
# 2. pminO is used in case the warranty end date is afer 21/5/2002, which was when the 
database 
# was read, 

Censored$age2 <- pmin(pmax(0,as,n\imeric(Censored$sale + Wrnty - Censored$repr)), 
as.numeric(dates("21/5/2002",format="d/m/y")-Censored$repr)) 

# Set dist2 to usage rate * age, with a limit of 100,000km. 

Censored$dist2 <- pmin(100000, round((Censored$dist2/componentAge)*Censored$age2) , 
digits=0) 

# Remove sale and repr, as they are no longer needed and add status = 0 and cost = NA. 
Censored<-cbind(Censored[,c("VIN", "age2","dist2","part","partname")], status=0, cost=NA) 

# CREATE A DATA FRAME OF CENSORED DATA FROM SALES DATA FRAME 

# Some vehicles have had no components fail. These can be obtained by finding VINs in SalesDF 
# that are not in CompDF. These are written into the survival database as censored items 
# with part = none. The age of these components should be the warranty length if the sales data 
# has been collected after the warranty has run out on all vehicles. If not, the sales data 
# contains an estimate of the vehicles' ages. The age of vehicles with claims can be obtained 
# from compAge using: "21/5/2002" (download date) - (repr - age2), where (repr - age2) is equal 
# to sale if sale has been correctly entered. 

NoClaims <- SalesDF[1 is.element(SalesDF$VIN,unique(CompDF$VIN)),c("VIN","age2")] 
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# Add dist2 = NA, since claims data will have this field, and add status = 0. 
NoClaims <- cbind(NoClaims, dist2=NA, part="", partname="", status=0, cost=NA) 

# COMBINE THE THREE DATA FRAMES FOR SURVIVAL ANALYSIS 

CombinedDF <- rbind(Failed, Censored, NoClaims) 

# Convert status to integer type. 
CombinedDF <- convert.col.type(target = CombinedDF, 

column.spec = "status", 
column.type = "integer" ) 

# Return CombinedDF ready for survival analysis. 
CombinedDF 
} 



Appendix B: S-Plus Scripts for Chapter 5 
This appendix contains the script of fiinction that has been used to establish the usage pattern of vehicles. 
The script is referred to in Chapter 5. 

B.l Calculation of Usage Rates {Usagcssc) 
# VEHICLE USAGE RATES 

# 
# DESCRIPTION 
I 
# PURPOSE 
I ======= 

# This function calculates the usage rates of vehicles in Claims and obtains limits for 
# usage that are not outliers. 

# INPUT 
I ===== 
# Claims = the claims data (default = claims97) 
# ageLmt = the minimtim age for usage rate calculation. (Default = 61.) Lower values than this 
# are excluded to increase accuracey of usage rate calculation 
# distLmt the minimum distance for usage rate calculation. (Default = 3300.) Again, this is 
# done to get a reasonable usage rate figure. 

# OUTPUT 
# ====== 
# 1. A boxplot and a density plot of vehicle usages. 
# 2. A list containing a table indicating the number of usable age2, dist and combined values, 
# and the maximum non-outlier value of usage. 

# 
# PROGRAM 
# 
"fUsage" <-
function(Claims=claims97, ageLmt=61, distLmt=3300) 
{ 
# Select only the columns needed to calculate usage. 

Claims <- Claims [ , c("VIN", "age2", "dist")] 

# Claims may contain vehicles with more than one claim. To pick up a vehicle once only, sort 
# Claims by VIN and age2 in descending order. This will give the biggest age2 first for a 
# given, which will be the one used to calculate usage. 

Claims <- sort.col(target = Claims, columns.to.sort = "@ALL", 
columns.to.sort.by = c("VIN", "age2"), ascending = F) 

# Records containing a vehicle's second or subsequent claim will be identified by a "T". 
dups <- duplicated(Claims$VIN) 

# Only use non-duplicated records to work out a vehicle's usage. 
Claims <- Claims[1dups,] 

# Select values of age2 that are not not outliers. As a number of claims are made before sale 
# of a vehicle, exclude values of age2 < ageLmt (default = 2 months), as these values will not 
# give accurate usage figures. 

age2Box <- boxplot(Claims$age2, plot=F ) 
goodAge <- Claims$age2 <= age2Box$stats[1] & Claims$age2 >= age2Box$stats[5] & 

Claims$age2 > ageLmt & !is.na(Claims$age2) 

# Similarly, select data where dist is not an outlier and is over distLmt, which is the 
# distance travelled in two months by a vehicle with an average usage rate of 19,700km/yr. 

distBox <- boxplot(Claims$dist, plot=F ) 
goodDist <- Claims$dist <= distBox$stats[1] & Claims$dist >= distBox$stats[5] & 

Claims$dist > distLmt & 1is.na(Claims$dist) 

# Select only the data where both age2 and dist have good values to calculate usage. 
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goodData <- goodAge & goodDist 
usage <- 365,25*Claims$dist[goodData]/Claims$age2[goodData] 
usageBox <- boxplot(usage, plot=F) 

Output. 
boxplot(usage, style.bxp = "old",ylab="Usage 
title("Vehicle Usage Rates") 

(km/yr)") 

plot(Claims$age2[goodData], Claims$dist[goodData]/lOOO, 
xlab="Age (days)", ylab="Distance (xlOOOkm) ", page="new") 

lines(c(1096,1096,0), c(0,100,100), col=8) 
lines(c(0,1.2*1096), c(0,1.2*100), col=6) 
title("Vehicle Usage Rates") 

numUsage <- length(usage) 
list( 

"Table of usable age2" 
"Table of usable dist" 
"Table of usable data" 
"Max non-outlier usage' 

table(goodAge), 
table(goodDist), 
table(goodData), 

= usageBox$stats[1], 
"Proportion of users above this value" = length((1:numUsage)[usage > 100000/3])/numUsage 
) 



Appendix C: S-Plus Scripts for Chapter 6 
This appendix contains scripts of fiinctions that have been used in establishing the parameters of the 
warranty cost models, and are referred to in Chapter 6. They are included here for completeness and ready 
reference. Other scripts and datasets that are referred to in Chapter 6 tiiat are not included here can be 
found on the accompanying compact disc, 

C.l Exponential Modelling {CostExp.ssc) 
# POINT & INTERVAL WARRANTY COST ESTIMATES USING AN EXPONENTIAL MODEL 

# 
# DESCRIPTION 
# 
# PURPOSE 
# ======= 
# The exponential distribution is used to model failure of components with claims frequency 
# between ClaimsFrom and ClaimsTo during the warranty period. An estimate of the warranty cost 
# and its variance are made. 

# OUTLINE 
# ======= 
# This program is in four parts: 
# 1. The number of components, the sum of the average costs of repair of these components and 
# an upper limit on these sums are obtained. 
# 2. The failure rate and an upper limit for it are obtained. These statistics depend on the 
# part chosen because there will be variations on the timing of failures. 
# 3. The expected warranty cost and an upper limit for it are obtained. 

# INPUT 
# ===== 
# 1. The data frame is passed in as the parameter "CompDF". (Default = compAge.) 
# 2. ClaimsFrom = The minimum number of claims to be modelled by the exponential distribution. 
# (Default =1.) 
# 3. ClaimsTo = The maximum number of claims to be modelled by the exponential distribution. 
# Should be no more than 20 (the default). 
# 4. warranty = The warranty length in years. (Default =3.) 
# 5. Production = The number of vehicles produced in a year. (Default = 30138.) 

# OUTUT 
# ===== 
# The output is a dataframe containing the following: 
# Part details: part id (Part), part name (Name), number of claims (Claims); 
# Repair cost details: cost of component replacement (CmpCst) and its SD (CmpCstSD); 
# Expoential model details: the failure rate (Rate) and its SD (RateSD), the expected number of 
# repairs during the warranty period (NumRep), and the expected warranty cost (WrntCst) 
# and its SD (WrntCstSD) and variance (WrntCstExp); 

# PROGRAM 

"fCs tExp"<-
function(CompDF=compAge, S a l e s D F = s a l e s 9 7 , Cla imsFrom=l , ClaimsTo=20, Wrnty=3, Produc t ion=30138) 
{ 

# CHECK INPUT PARAMETERS 
# ====================== 

if(length(CompDF$VIN) == 0) 
stop(message="No components with that part number.") 

if(length(SalesDF$VIN) == 0) 
stop(message="The inputted sales database is empty.") 

if(Wrnty <= 0) 
stop(message="The parameter 'Wrnty' (warranty period in years) should be positive.") 

if (Production <= 0 ) 
stop(message="The parameter 'Production' should be positive.") 

if(ClaimsFrom > ClaimsTo) 
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stop(message="The parameter 'ClaimsFrom' cannot be greater than 'ClaimsTo'.") 
if( ClaimsFrom 1= round(ClaimsFrom,0) | ClaimsTo 1= round(ClaimsTo,0) ) 

stop(message="The parameters 'ClaimsFrom' and 'ClaimsTo' must be positive integers.") 
if(ClaimsTo > 20) 

warning("Components have more than 20 claims. Exponential model may not be suitable") 

# CREATE VARIABLES AND PERFORM CHECKS 

# If table of parts doesn't already exist create it . 
if( 1 exists("partFrg") ) 

partFrq <- sort( table(CompDF$part), na.last=F ) 

# Create data frame to hold the data. 
output <- data.frame(Part=NA, Name=NA, Claims=NA, CmpCst=NA,CmpCstSD=NA, 

Rate=NA, RateSD=NA, NumRep=NA, WrntCst=NA, WrntSD=NA, WrntVar=NA) 

# Convert warranty length from years to days 
WrntDays <- round(Wrnty * 365.25) 

# PART DETAILS 
# ============ 
# Work out rows from partFrq that need to be read. 

start <- min(index.rowcol(partFrq, partFrq==ClaimsFrom, "rows")) 
end <- max(index.rowcol(partFrq, partFrq==ClaimsTo, "rows")) 

# Set index for output data frame to 1. 
i <- 1 
for( j in start : end ) 
{ thisPart <- names(partFrq[j]) # This gives the part id 

# If this entry in partFrq has no part id, go on to next value of i. 
if( thisPart=="" ) next 

# Fill the output data frame with part, number and cost information. 
output[i,"Part"] <- thisPart 
output[i,"Claims"] <- partFrq[j] 
output[i,"CmpCst"] <- mean(CompDF$cost[CompDF$part==thisPart]) 
output[i,"CmpCstSD"] <~ stdev(CompDF$cost[CompDF$part==thisPart]) 

# Choose partname that occurs most frequently. 
partsTbl <- table(CompDF$partname[CompDF$part==thisPart]) 
output[i,"Name"] <- names(partsTbl[partsTbl==max(partsTbl)]) 

# Issue a warning if part has no name. 
if( output[i,"Name"]=="" ) 

warning("Inputted part has no name. May be more than one part.") 

# SURVIVAL DATA FRAME AND EXPONENTIAL MODEL 
# ========================================= 
# Create a survival dataframe and fit an exponential model. 

SurviveDF <- fSurvive(CompDF[CompDF$part==thisPart,], SalesDF) 
ExpMdl <- survReg(Surv(age2 + 1, status, type = "right") ~ 1, data = SurviveDF, 

na.action = na.exclude, dist = "exponential", control = list(maxiter = 30, 
rel.tolerance = le-005, failure = 1)) 

# Assign failure rate and variance from the exponential parameter (lambda = failure rate). 
output[i,"Rate"] <- exp(-ExpMdl$coeff) # Daily failure rate 
RateVar <- ExpMdl$var*exp(-2*ExpMdl$coeff) 
output[i,"RateSD"] <- sqrt(RateVar) 
output[i,"NumRep"] <- output[i,"Rate"] * WrntDays * Production 

# Fill the output data frame with warranty cost infoirmation. 
output[i,"WrntCst"] <- output[i,"CmpCst"] * output[i,"Rate"] * WrntDays 

# For one-claim components, assign a value for variance of warranty cost based on variance of 
# failure rate. Variance of cost does not exist when there is only one cost. Take cost as a 
# constant. 

if(output[i,"Claims"]==1) 
output [i,"WrntVar"] <- (output [i, "CmpCst"] ̂ 2* RateVar) * WrntDays'^2 
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else 

output[i,"WrntVar"] <- ( output[i,"CmpCst"]-2 * RateVar + 
output[i,"Rate"]-2 * output[i,"CmpCstSD"]"2 + 
RateVar * output [i, "CmpCstSD"] ̂ 2̂ ) * WrntDays"2 

output[i,"WrntSD"] <- sqrt( output[i,"WrntVar"] ) 

# Increment i. 
i <- i + 1 

} 

# Return the data frame. 

output 
} 

C.2 Exponential Fail Rate {FailRate.ssc) 
# FAILURE RATES FOR DIFFERENT FAILURE TIMES 

# 

# DESCRIPTION 
# 
# PURPOSE 
# ======= 
# This function simulates component failure, with number of claims ranging from 1 to maxClaims 
# (input parameter). Three secenarios are depicted: 
# (1) all claims are made at the start of the warranty period; 
# (2) all claims are made at the end of the warranty period; 
# (3) claims are evenly distributed throughout the warranty period. 

# INPUT 
# ===== 
# The maximum number of claims for which the failure rate is required (default = 20) . 
# The length of the warranty in years (default = 3). 
# The sales data frame of sold vehicles (default=sales97). 

# OUTPUT 
# ====== 
# A matrix containing the number of claims and the fail rates for each of the above three 
# scenarios. 

I 
# PROGRAM 
# 
"fFailRate"<-
function(maxClaims=50, warranty =3, SalesDF=sales97) 
{ 
# Convert the warranty to days. 

wrnty <- round(warranty * 365.25) 

# Calculate how many vehicles produced. 
production <- length(SalesDF$VIN) 

# Create matrix to hold failure rates. 
out <- matrix(data=NA, nrow=maxClaims, ncol=5, 

dimnames=list(l:maxClaims, c("NumClaims","StrRate", "EndRate","UnfmRate","NumRep") ) 
) 

for( i in l:maxClaims ) # i is the number of failures 
{ 

# FAILURE AT START OF WARRANTY PERIOD 
I ========================^==^====_= 

# Set age at failure. 
failAge <- 1 

# Create dataframe of component failures. 
compDF <- data.frame(VIN=l:i, sale=rep(dates("1/1/97"),i), 
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repr=rep(dates("1/1/97")+failAge,i), age2=rep(failAge,i), 
dist2=rep(NA,i), part=rep("al",i), partname=rep("part al",i), cost=rep(NA,i)) 

SurviveDF <- fSurvive(compDF, SalesDF) 
# Since the failed vehicle(s) have made-up VINs, fSurvive() could not find them in SalesDF, so 
# an additional i records were written to SurviveDF which need to be removed. These can be 
# removed from the end of the data frame. 

SurviveDF <- remove.row(target=SurviveDF, start.row=production+i+l, count=i) 

# Fit exponential model to data. 
expMdl <- survReg{Surv(age2 + 1, status, type = "right") ~ 1, data = SurviveDF, 

na.action = na.exclude, dist = "exponential", control = list(maxiter = 30, 
rel.tolerance = le-005, failure = 1)) 

# Assign number of claims. 
out[i,"NumClaims"] <- i 

# Assign failure rate when all claims at start of warranty. 
out[i,"StrRate"] <- l/exp(expMdl$coeff) # Daily failure rate 

# FAILURE AT END OF WARRANTY PERIOD 

# Set age at failure to 1 less than warranty period. 
failAge <- wrnty-1 

# Create dataframe of component failures. 
compDF <- data.frame(VIN=l:i, sale=rep(dates("1/1/97"),i), 

repr=rep(dates("1/1/97") + failAge,i), age2=rep(failAge,i), 
dist2=rep(NA,i), part=rep("al",i), partname=rep("part al",i), cost=rep(NA,i)) 

SurviveDF <- fSurvive(compDF, SalesDF) 
# Since the failed vehicle(s) have made-up VINs, fSurvive() could not find them in SalesDF, so 
# an additional i records were written to SurviveDF which need to be removed. These can be 
# removed from the end of the data frame. 

SurviveDF <- remove.row(target=SurviveDF, start.row=production+i+l, count=i) 

# Fit exponential model to data. 
expMdl <- survReg(Surv(age2 + 1, status, type = "right") ~ 1, data = SurviveDF, 

na.action = na.exclude, dist = "exponential", control = list(maxiter = 30, 
rel.tolerance = le-005, failure = 1)) 

# Assign failure rate when all claims at end of warranty. 
out[i,"EndRate"] <- l/exp(expMdl$coeff) # Daily failure rate 

# FAILURE UNIFORMLY DISTRIBUTED DURING WARRANTY PERIOD 
# ==================================================== 
# Set uniformly distributed failure age as a vector of length i. 

failAge <- seq(from=round(wrnty/(i+1) ) , by=round(wrnty/(i+1)), length=i) 

# Create dataframe of component failures. 
compDF <- data.frame(VIN=l:i, sale=rep(dates("1/1/97"),i), 

repr=dates("1/1/97")+failAge, age2=failAge, 
dist2=rep(NA,i), part=rep("al", i) , partname=rep("part al",i), cost=rep(NA,i)) 

SurviveDF <- fSurvive(compDF, SalesDF) 
# Since the failed vehicle(s) have made-up VINs, fSurviveO could not find them in SalesDF, so 
# an additional i records were written to SurviveDF which need to be removed. These can be 
# removed from the end of the data frame. 

SurviveDF <- remove.row(target=SurviveDF, start.row=production+i+l, count=i) 

# Fit exponential model to data. 
expMdl <- survReg(Surv(age2 + 1, status, type = "right") ~ 1, data = SurviveDF, 

na.action = na.exclude, dist = "exponential", control = list(maxiter = 30, 
rel.tolerance = le-005, failure = 1) ) 

# Assign failure rate when claims uniformly distributed throughout the warranty. 
out[i,"UnfmRate"] <- l/exp(expMdl$coeff) # Daily failure rate 

# ESTIMATED NUMBER OF REPLACEMENTS 

# Using the rate obtained from uniformly distributed failures, estimate the number of 
# replacements during the warranty period 
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out[i,"NumRep"] <- out[i,"UnfmRate"] * wrnty * production 
} 

# Return matrix 
out 

} 

C.3 Exponential ModeUing with Grouping {CostExpGp.ssc) 
# POINT & INTERVAL WARRANTY COST ESTIMATES USING A GROUPED EXPONENTIAL MODEL 

I 
# DESCRIPTION 
# 
# PURPOSE 
# ======= 
# The exponential distribution is used to model failure of components with up to claimsTo 
# during the warranty period. An estimate of the warranty cost and an upper limit are made. 

# OUTLINE 
# ======= 
# This program is in three parts: 
# 1. The number of components, the sum of the average costs of repair of these components and 
# an upper limit on these sums are obtained. 
# 2. The failure rate and an upper limit for it are obtained. These statistics depend on the 
# part chosen because there will be variations on the timing of failures. 
# 3. The expected warranty cost and an upper limit for it are obtained. 

# INPUT 
# ===== 
# 1. claimsTo = The max number of claims to be modelled by the exponential distribution. 
# Should be no more than 20 (the default). 
# 2. confLvl = The two-sided confidence limit for the failure rate, cost of repair and warranty 
# cost. Default = 0.95. 
# 3. warranty = The warranty length in years. Default = 3. 
# 4. Plot = Logical variable indicating whether graphs of the costs are required. Default is F. 

# OUTUT 
# ===== 
# A data frame containing the number of claims (NumClaims), the number of components with 1 to 
# claimsTo (NumComp), the sum of the average cost of repair (TotCst), together with its 
variance 
# (TotCstVar), the fail rate (Rate) and its standard deviation (RateSD), the expeceted number 
of 
# repairs predicted by the model (NumRep), the warranty cost Wrnt) and its variance (WrntVar) 
# and a flag indicating whether the components were blank (BlnkPrt). 

I 
# PROGRAM 
# 
"fCstExpGp"<-
function(input=compAge, claimsFrom=l, claimsTo=20, confLvl=0.95, warranty=3, production=30138, 

Plot=F) 
{ 

# CHECK AND INITIALISE VARIABLES 

# Convert warranty length from years to days 
wrntDays <- round(warranty * 365.25) 

# Check the max number of claims that has been passed in. 
if(claimsTo > 20) 

warning("Components have more than 20 claims. Exponential model may not be suitable") 

# Check that claimsFrom < or = claimsTo 
if(ClaimsFrom > claimsTo) 

stop("ClaimsFrom is greater than claimsTo") 
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# 

# 1. NUMBER OF COMPONENTS, SUM OF AVERAGE COST AND VARIANCE 
# 

#1.1 CREATE A LIST OF part FREQUENCIES 
# ==================================== 
# Creates a table of parts that are in the input data frame & sorts these if it doesn't already 
# exist. 

if( 1 exists("partFrq") ) 
partFrq <- sort( table(input$part), na.last=F ) 

#1.2 CREATE A DATA FRAME FOR COMPONENTS WITH UP TO claimsTo 

# Create data frame to hold the data. 
output <- data.frame(NumClaims=NA,NumComp=NA,TotCst=NA,TotCstVar=NA, 

Rate=NA,RateSD=NA,NumRep=NA,Wrnt=NA,WrntVar=NA) 

# Set up variables. 
# i is the index of output. 

i <- 1 

# j is the number of claims. 
if( is.element(claimsFrom, partFrq) ) 

j <- claimsFrom 
else 

j <- min(partFrq[partFrq > claimsFrom]) 

partFrqTbl <- table(partFrq) 

# k is the index of partFrqTbl for the current number of claims (j). 
start <- index.rowcol(partFrqTbl, names(partFrqTbl)==j, which="rows") 

# Fill the output data frame. 
# start <- min(index.rowcol(partFrq, partFrq==claimsFrom, "rows")) 

end <- max(index.rowcol(partFrqTbl, as.numeric(names(partFrqTbl))<=claimsTo, "rows") ) 

for( k in start:end ) 
# while(j <= claimsTo) 
# for(i in claimsFrom:claimsTo) 

{ 
# Parts is a temporary vector (changes with each i) to hold parts with frequency i. 

Parts <- names(partFrq[partFrq==j]) 

# If there are no parts with frequency = i, go on to next value of i. 
# if( is.null(Parts) ) 
# next 

# If Parts contains a component without a name, then it has to be dealt with separately. 
if( is.element("",Parts) & length(Parts==l) ) 
{ #k <- k + 1 

j <- as.numeric(names(partFrqTbl[k+1])) 
next 

} 
if( is.element("",Parts) & length(Parts>l) ) 
{ Parts <- sort(Parts) 

Parts <- Parts[2:length(Parts)] 
) 

# costDF is a temporary data frame (changes with each i to hold parts with frequency i. 
costDF <-

sort.col(target=input[is.element{input$part. Parts) , c("part","partname","cost")], 
columns.to.sort="<ALL>", columns.to.sort.by=c("part","cost")) 

# Fill the output data frame. 
output[i,"NumClaims"] <- j 
output[i,"NumComp"] <- length(unique(Parts)) 
output[i,"TotCst"] <- sum(costDF$cost)/j 
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# Variance of the sum of variables is the sum of the individual variances. 
CstVar <- tapply(costDF$cost, costDF$part, var) 
output[i,"TotCstVar"] <- sum(CstVar) 

# If a cost density plot is required, run this: 
if(Plot==T) 
{ plot(density(costDF$cost, from=0),xlab="cost", ylab="", type="l", Page="New") 

title(paste(Cost: Part,"costDF$cost") ) 
} 

# 
# 2. FAILURE RATE AND STANDARD DEVIATION: UNIFORMLY DISTRIBUTED CLAIMS 
I — 
# Set uniformly distributed failure age as a vector of length j (the number of claims) . 

failAge <- round(seq(from=wrntDays/(j+1) , by=wrntDays/(j+1) , length=j)) 

# Create dataframe of component failures. 
compDF <- data.frame (VIN=l:j, sale=rep(dates("1/1/97") , j) , 

repr=dates("1/1/97")tfailAge, age2=failAge, 
dist2=rep(NA,j), part=rep("al",j), partname=rep("part al",j), cost=rep(NA,j)) 

SurviveDF <- fSurvive(compDF, sales97) 
expMdl <- survReg (Surv(age2 + 1, status, type = "right") ~ 1, data = SurviveDF, 

na.action = na.exclude, dist = "exponential", control = list(maxiter = 30, 
rel.tolerance = le-005, failure = 1)) 

# Assign failure rate and variance from the exponential parameter (lambda = failure rate). 
output[i,"Rate"] <- exp(-expMdl$coeff) # Daily failure rate 
RateVar <- expMdl$var*exp(-2*expMdl$coeff) 
output[i,"RateSD"] <- sqrt(RateVar) 

# Obtain the number of repairs during the warranty. 
output[i,"NumRep"] <- output[i,"Rate"] * wrntDays * production 

# 3. EXPECTED WARRANTY COST AND ITS VARIANCE 
I 
# Point estimate of warranty cost per vehicle. 

output[i,"Wrnt"] <- output[i,"Rate"]*output[i,"TotCst"]*wrntDays 

# Confidence limits on warranty cost. 
if(j==l) 

# Variance of warranty cost. 
output [i, "WrntVar"] <- sum(costDF$cost'-2) * RateVar * wrntDays 2 

else 

# Need the sum of squares of individual repair costs. 
Meanest <- tapply{costDF$cost, costDF$part, mean) 

# Variance of warranty cost. 

°T's;i\ranCr4)*"RateVar t output [i, "Rate"] ̂ 2 * output [i, "TotCstVar"] + 
RateVar * output[i,"TotCstVar"] ) * wrntDays-2 

} 
i <- i + 1 

# k <- k + 1 
j <- as.numeric(names(partFrqTbl[k+1])) 

) 
# Data frame may contain rows of NAs if there were no parts with a particualar number of claims 

# up to ClaimsTo. Select the non NA rows. 
output <-select.rows(output, 1is.na(output[, 1]) ) 

# Return the data frame. 
output 
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C.4 Renewal Function Solver {Renew.ssc) 
# RENEWAL FUNCTION CALCULATOR FOR WEIBULL DISTRIBUTION 

# 
# DESCRIPTION 
# 
# OVERVIEW 
# ======== 
# This function uses numerical methods as set out in Xie(1989) to return a matrix of expected 
# number of renewals, M(i), using a Weibull distribution. Beta and eta are passed in as 
# parameters. 

# INPUT 
# ===== 
# Values for the Weibull parameters eta and beta, the warranty length in years, and the step 
# size, h, for the numerical calculations. The default value of h is 2 for accurate and speedy 
# (calculations takes about 10 sees; h = 1 takes about 1 min). All four input parameters are 
# single numeric values, not vectors. 

# OUTPUT 
# ====== 
# The expected number of renewals by the end of the warranty period. 

# 
# PROGRAM 
# 
"fRenew" <-
function(beta, eta, warranty=3, h=2) 
( 
# INITIALISE VARIABLES 
# ==================== 
# Convert warranty length from years to days 

warranty <- round(warranty * 365.25) 

# The values of these variables may be changed here. (Could set them up as function 
parameters.) 
# The function works for 5,000 intervals (t/h), but not 10,000 intervals. Eg, could have 
# warranty = 1000 and h = 0,2. 
# Note: The function fCompCst, which calls this function, didn't work when h was set to 1. 

numlntrvls <- floor(warranty/h) + 1 

# SET VALUES OF F(t) 
# ================== 
# Set values of F(t) at interval ends. 

intrvls <- seq(from=0, to=warranty, by=h) 
Fend <- pweibulKintrvls, shape=beta, scale=eta) # Cumulative Weibull function 

# Set values of F(t) at interval midpoints. 
halfIntrvls <- seq(from=h/2, to=warranty, by=h) 
Fmid <- pweibull(halfIntrvls, shape=beta, scale=eta) 

# Note: Fmid[l] = F(t=h/2), 

# CALCULATE VALUES OF M(t) 
# ======================== 
# Initialise vector M to 0, Thus M[l] = M(t=0) is set to 0. 

M <- vector(mode="numeric", length=numlntrvls) 

# Set the value of M[2], which is M(t=h). 
Mt2] <- Fend[2]/(1 - Fmid[l]) 

# Set the values of the rest of M[i], 
for (i in 3:numlntrvls) 
{ 

sum <- 0 
for (j in 1:(i-2)) 

sum <- sum + F m i d [ i - j ] * ( M[j+1] - M[j] ) 
M[i] <- ( F e n d [ i ] + sum - Fmid [ l ] * M[ i -1 ] ) / ( l - F m i d [ l ] ) 
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} 

# Return M(warranty): 

M[numlntrvls] 
} 

C.5 W êibuU ModelUng {CostWblssc) 
# POINT & INTERVAL WARRANTY COST ESTIMATES USING A WEIBULL MODEL 

# 
# DESCRIPTION 
I 
# PURPOSE 
I ======= 
# Point estimates and standard deviations of: 
# 1. expected number of repairs of components, using a Weibull model, and 
# 2. the cost of repairing a component. 
# These are used to obtain an estimate of the warranty cost and its upper confidence limit. 

# OUTLINE 
# ======= 
# This function should be called by running the script runCostWbl. Alternatively, it can be 
# called using the function tapply() or by(), so that analysis can be carried out by component, 

# A survival data frame is created for a part and Weibull model fitted to the data using 
# survRegO. Estimates of beta and eta are then extracted, and passed onto fRenew() to obtain 
# estimates of the expected number of renewals during the warranty period. 

# INPUT 
# ===== 
# 1. CompDF = A subset of the data frame compAge, containing one part only. This can be done 
# by calling this function using tapply() or by(). 
# 2. SalesDF = A data frame of sales. Default = sales97. 
# 3. Wrnty = The warranty length in years. Default = 3. 
# 4. confLvl = The confidence level for the parameter estimates. Default = 0.95. 

# OUTPUT 
# ====== 
# The output is a dataframe containing the following: 
# Part details: part id (Part), part name (Name), number of claims (Claims); 
# Repair cost details: cost of component replacement (CmpCst) and its SD (CmpCstSD); 
# Weibull model details: parameter estimates (Beta, Eta), the expected number of renewals 
# (Renew) and its SD (RenewSD), the expected number of repairs during the warranty period 
# (NumRep), and the expected warranty cost (WrntCst) and its SD (WrntCstSD) and variance 
# (WrntCstVar). 

# 
# PROGRAM 
# 
" f C s t W b l " < -
function(CompDF, S a l e s D F = s a l e s 9 7 , Wrnty=3, P r o d u c t i o n = 3 0 1 3 8 , confLeve l=0 .95) 
{ 
# CHECK INPUT PARAMETERS 
# 

if(length(CompDF$VIN) == 0) 
stop(message="No components with that part number.") 

if(length(table(CompDF$part)) 1= 1) 
stop(message="This parameter 'IndCompDF' must contain only one part.") 

if(length(SalesDF$VIN) == 0) 
stop(message="The inputted sales database is empty.") 

if (Wrnty <= 0) . • ,., 
stop(message="The parameter 'Wrnty' (warranty period in years) should be positive. ) 

if(Production <= 0 ) 
stop(message="The parameter 'Production' should be positive.") 

# PART DETAILS 
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# Obtain part id from inputted data 
Part <- CompDF$part[l] 

# Choose partname that occurs most frequently. 
partsTbl <- table(CompDF$partname) 
Name <- names(partsTbl[partsTbl==max(partsTbl)]) 

# Issue a warning if part has no name. 
if( Name=="" ) 

warning("Inputted part has no name. May be more than one part.") 

# Calculate the number of claims on that part. 
Claims <- count.rows(CompDF) 

# Obtain mean cost of repairing a component. 
CmpCst <- mean(CompDF$cost, na.rm=T) 

# Obtain the standard error of the cost of repair. 
CmpCstVar <- var(CompDF$cost, na.method="omit") 
CmpCstSD <- sqrt(CmpCstVar) 

# SURVIVAL DATA FRAME AND WEIBULL MODEL 
# ===================================== 
# Obtain a survival data frame for a component. 

SurviveDF <- fSurvive(CompDF, SalesDF) 

# Weibull survival model. 
WblMdl <- survReg(Surv(age2 + 1, status, type = "right") ~ 1, data = SurviveDF, 

na.action = na.exclude, dist = "weibull", scale=0, 
control=list(maxiter = 50, rel.tolerance=le-005, failure=l)) 

# POINT ESTIMATE OF THE NUMBER OF RENEWALS AND WARRANTY COST 
j^ = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

# Obtain the expected number of renewals (point estimate). 
Renew <- fRenew(beta=l/WblMdl$scale, eta=exp(WblMdl$coeff), warranty=Wrnty, h=l) 

# Obtain the expected warranty cost. 
WrntCst <- Renew * CmpCst 

# INTERVAL ESTIMATES OF THE EXPECTED NUMBER OF RENEWALS AND WARRANTY COST 
# ======================================================================= 
# Obtain a confidence region for the Weibull parameters. 

degFree <- length(SurviveDF$VIN[SurviveDF$status==l])-3 
region <- fConfRgn(WblMdl, degFree, confLvl=confLevel, graph=F) 

# If fConfRgn returns "singular", WblMdl generated a singular matrix, so no inverse exits. 
# Therefore, confidence intervals cannot be obtained, 

if(region[[1]][[1]][1] == "singular") # This extracts the first element 
i RenewVar <- NA 

WrntCstVar <- NA 
WrntCstSD <- NA 

} 
else # if inverse matrix exists 
{ 

# Obtain the expected number of renewals for these points, 
num <- length(region[[1]]$x) 
renRegn <- vector (mode="n\imeric", length=num) 
renRegn <- rep(NA, nxim) 

# For loop needed here as fRenew() requires its parameters as single values, not vectors, 
for(i in seq(from=l, to=num, by=l) ) 

renRegn[i] <- fRenew(beta=region[[1]]$x[i], eta=region[[1]]$y[i], warranty=3, h=2) 

RenewVar <- sum( (renRegn-Renew)^2/length(renRegn[1 is.na(renRegn)]), na.rm=T ) 

# Variance of warranty cost. 
WrntCstVar <- Renew''2*CmpCstVar + CmpCst''2*RenewVar + CmpCstVar * RenewVar 
WrntCstSD <- sqrt(WrntCstVar) 

} 
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# OUTPUT 
# ====== 
# Create output. 

output <- data.frame( 
Part = Part, 
Name = Name, 
Claims = Claims, 
CmpCst = CmpCst, 
CmpCstSD = sqrt(CmpCstVar), 
Beta = l/WblMdl$scale, 
Eta = exp(WblMdl$coeff), 
Renew = Renew, 
RenewSD = sqrt(RenewVar), 
NumRep = Renew * Production, 
WrntCst = WrntCst, 
WrntCstSD = WrntCstSD, 
WrntCstVar = WrntCstVar, 

) 
# output <- convert.col.type(target=output, column.spec=list("part", "name") , 
# column.type="character") 

# Return output as a data frame. 

output 
} 

C.6 Confidence Region {ConfRgn.ssc) 
# CONFIDENCE REGION (ELLIPSOID) 

# 
# DESCRIPTION 
# 
# OVERVIEW 
I ======== 
# Letting 'WblMdl' be a Weibull model of survival data, point estimates of the Weibull 
# parameters eta (scale) and beta (shape) are obtained: 
# beta = l/WblMdl$scale. 
# eta = exp(WblMdl$coeff). 
# This function returns a confidence region for the Weibull parameters using the variances of 
# WblMdl$coeff and log(WblMdl$scale) from the inputted survival model 'WblMdl' 

# DETAILS 
# ======= 
# Reference: Cook and Weisberg (1994) pp 218-9. 
# For a two-predictor model (T written for theta): 
# y|x = aO + al.xl + a2.x2 + error 
# with independendent normal errors having mean 0 and constant variances, a joint (1-alpha)100% 
# confidence region for T = transpose (al, a2) is the set of all values of the 2x1 vector T that 
# satisfies the inequality: 
# transpose(T-T_hat).inverse(var(T_hat)).(T-T_hat) < or = 2.F(l-alpha ,2,n-3) 
# where F(l-alpha ,2,n-3) is the percentage point of the F-distribution with 2 and n-3 degrees 
# of freedom that leaves an area of alpha under the right tail. The points that satisfy this 
# inequality fall inside an ellipse with centre at T_hat. In the Weibull parameterisation, we 
# have al = eta and a2 = beta. 

# A grid of 100 values (xGrid) between beta +/- 3 standard deviations is generated and 
# a grid of 100 values (yGrid) between eta +/- 3 standard deviations is also generated. 
# Matrix multiplication is performed on each point (xGrid, yGrid) in turn. Thus, a 100x100 
# matrix is generated. Each element of the matrix is compared to 2.F(l-alpha ,2,n-3) to find 

the 
# points that are within the confLvl confidence region. 

# INPUT 

# WblMdl is a survReg object. It can be a Weibull fit to the survival data frame. 
# numFail is length(SurviveDF$VIN[SurviveDF$status==l]). It is needed to calculate the 
# degrees of freedom 2 parameter for the F-distribution. The formula is 
# df2 = length(SurviveDF$VIN[SurviveDF$status==l]) - 3. The -3 is done in this function. 
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# graph is a logical parameter indicating whether a graph should be produced (default=F). 

# 
# PROGRAM 
# 
"fConfRgn" <- function(WblMdl, numFail, confLvl=0.95, graph=F) 
{ 
# Obtain eta and beta estimates from WblMdl$coeff and WblMdl$scale, and estimates of their 
# variances and the variance/covariance matrix. 

beta <- l/WblMdl$scale 
varBeta <- beta''2 * WblMdl$var [2,2] 

eta <- exp(WblMdl$coeff) 

varEta <- eta^2 * WblMdl$var[1,1] 

covBetaEta < exp(WblMdl$coeff)*WblMdl$var[1,2]/WblMdl$scale 

# The variance/covariance matrix is: 
varCov <- matrix(c(varBeta, covBetaEta, covBetaEta, varEta), nrow=2,ncol=2) 

# Obtain the inverse of varCov manually. Solve doesn't seem to work. 
# If varCov is singular, return a warning message and exit this function returning -999. 

if(varCov[1,1]*varCov[2,2]-varCov[1,2]*varCov[2,1] == 0) 
{ warning(message="Singular matrix; inverse does not exist.") 

return("singular") 
} 

# If varCov is not singular, evaluate its inverse: 
# Generate grid points for the contour plot. Exclude any negative values of beta or eta by 
# limiting the start of the grid to le-5, as 0 is not a valid value for either parameter. 

betaGrid <- seq(max(beta - 3*sqrt(varBeta),le-5), beta + 3*sqrt(varBeta), length = 100) 
etaGrid <- seq(max(eta - 3*sqrt(varEta),le-5), eta + 3*sqrt(varEta), length=100) 

# Generate a 100x100 matrix of zeros. 
grid <- matrix(data=0, nrow=100, ncol=100) 

inverse <-
matrix(c(varCov[2,2],-varCov[1,2],-varCov[2,1] , varCov[1,1]) , nrow=2, ncol=2,byrow=T)/ 
(varCov[1,1]*varCov[2,2]-varCov[1,2]*varCov[2,1]) 

# else inverse <- solve(varCov) 
# Solve seems to to think some matrices are singular when the discriminant 1= 0. 

# Fill the matrix by performing matrix multiplication on every point (xGrid, yGrid). 
for (j in 1:100) 
{ for (i in 1:100) 

{ theta <- matrix(c(betaGrid[i] - beta, etaGrid[j] - eta), nrow=2, ncol=l) 
grid[i,j] <- t(theta) %*% inverse %*% theta 

) 
} 

# Generate a contour plot of points showing the inputted (confLvl) confidence region using the 
# F-distribution. Set the contour levels. 

FLevel <- 2*qf(confLvl, 2, numFail-3) 

# If pararmeter 'graph' = T, create a contour plot. 
if(graph==T) 
{ graphsheetO 

contour(betaGrid, etaGrid, grid, levels = FLevel, xlab="beta", ylab="eta") 
title("(beta, eta) Confidence Region") 
points(l/WblMdl$scale, exp(WblMdl$coeff), type="p") 

} 
# The following returns coordinates on (betagrid, etagrid) where the contour level (grid) = 
# the confidence level for the F distibution (Flevel) set above. These points can be passsed to 
# fRenewO to generate values of M(t), to obtain bounds on M(t), 

contour(betaGrid, etaGrid, grid, levels = FLevel, save=T, plotit=F) 
} 
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C.7 Combined Exponential and WeibuU ModeUing Function {CostExp WbLssc) 
# POINT & INTERVAL WARRANTY COST ESTIMATES USING EXPONENTIAL AND WEIBULL MODELS 

I 
# DESCRIPTION 
# 
# PURPOSE 
# ======= 

# This function obtains point estimates and standard deviation of the following: 
# 1. The mean cost of repairing a component; 
# 2. The failure rate using an exponential model; 
# 3, The values of the parameters of a Weibull model; 
# 4, The expected number of renewals of components using a Weibull model; 
# 5 . The expected number of repairs during the warranty period for a year's production for each 
# of the exponential and Weibull models; 
# 6. The expected warranty cost of replacing a component for each model. 

# OUTLINE 
# ======= 
# This function should be called using the script callCostExpWbl. 

# For each part passed into this function, the part details are extracted. Then a survival data 
# frame is created for each part and both exponential and Weibull models are fitted to the data 
# using survReg(). Using the models, the quantities listed in Purpose are estimated. 

# INPUT 
I ===== 
# 1. CompDF = A subset of the data frame compAge, containing one part only. This can be done 
# by calling this function using the script callCostExpWbl. 
# 2. SalesDF = A data frame of sales. Default = sales97. 
# 3. Wrnty = The warranty length in years. Default = 3. 
# 4. ConfLvl = The confidence level for the parameter estimates. Default = 0.95. 
# 5. Production = The number of vehicles produced in a year. Default = 30138. 
# 6. MinClmsWbl = The min number of claims to be modell by the Weibull distribution. 
# Default = 20. 

# OUTPUT 
# ====== 
# The output is a dataframe containing the following: 
# Part details: part id (Part), part name (Name), number of claims (Claims); 
# Repair cost details; cost of component replacement (CmpCst) and its SD (CmpCstSD); 
# Expoential model details: the failure rate (Rate) and its SD (RateSD), the expected number of 
# repairs during the warranty period (NumRepExp), and the expected warranty cost (WrntExp) 
# and its SD (WrntExpSD) and variance (WrntExpVar); 
# Weibull model details: parameter estimates (Beta, Eta), the expected number of renewals 
# (Renew) and its SD (RenewSD), the expected number of repairs during the warranty period 
# (NumRepWbl), and the expected warranty cost (WrntWbl) and its SD (WrntWblSD) and 
# variance (WrntWblVar). 
# Model comparison: Loglikelihood of the exponential fit (LoglikExp) and the Weibull fit 
# (LoglikWbl) and an indication as to which is the maximum of these (BestFit). 

# PROGRAM 
# 
"fCstExWb" <-
function(CompDF, SalesDF=sales97, Wrnty=3, Production=30138, ConfLevel=0.95, MinClmsWbl=20) 
{ 
# CHECK INPUT PARAMETERS 

if(length(CompDF$VIN) == 0) 
stop(message="No components with that part number.") 

if(length(CompDF$VIN) < 20) 
warning("Less than 20 claims on that component. Weibull model may be unsuitable.") 

if(length(table(CompDF$part)) 1= 1) 
stop(message="This function requires the input data frame to have only one part.") 

if(length(SalesDF$VIN) == 0) 
stop(message="The inputted sales database is empty.") 
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if(Wrnty <= 0) .^. „, 
stop(message="The parameter 'Wrnty' (warranty period in years) should be positive. ) 

if(Production <= 0 ) 
stop(message="The parameter 'Production' should be positive.") 

# Convert warranty to days. 

WrntDays <- round(Wrnty * 365.25) 

# INITIALISE WEIBULL MODEL VARIABLES 

# These variables will need to be NA if Weibull model is not fitted. 

Beta <- NA 
Eta <- NA 
Renew <- NA 
RenewSD <- NA 
NumRepWbl <- NA 
PtsTrim <- NA 
WrntWbl <- NA 
WrntWblSD <- NA 
WrntWblVar <- NA 
LoglikWbl <- NA 
BestFit <- NA 
SmlstSD <- NA 
WbSDLsCst <- NA 

# PART DETAILS 
# ============ 
# Obtain part id from inputted data 

Part <- CompDF$part[1] 

# Choose partname that occurs most frequently. 
partsTbl <- table(CompDF$partname) 
Name <- names(partsTbl[partsTbl==max(partsTbl)]) 

# Issue a warning if part has no name. 
if( Name=="" ) 

warning("Inputted part has no name. May be more than one part.") 

# Calculate the number of claims on that part. 
Claims <- count.rows(CompDF) 

# Obtain mean cost of repairing a component. 
CmpCst <- mean(CompDF$cost, na.rm=T) 

# Obtain the standard error of the cost of repair. 
CmpCstVar <- var(CompDF$cost, na.method="omit") 
CmpCstSD <- sqrt(CmpCstVar) 

# SURVIVAL DATA FRAME AND EXPONENTIAL MODEL 

SurviveDF <- fSurvive(CompDF, SalesDF) 
expMdl <- survReg(Surv(age2 + 1, status, type = "right") - 1, data = SurviveDF, 

na.action = na.exclude, dist = "exponential", control = list(maxiter = 30, 
rel.tolerance = le-005, failure = 1)) 

LoglikExp <- expMdl$loglik[l] 

# Assign failure rate and variance from the exponential parameter (lambda = failure rate), 
Rate <- as.numeric( exp(-expMdl$coeff) ) # Daily failure rate 
RateVar <- as.numeric( expMdl$var*exp(-2*expMdl$coeff) ) 
RateSD <- sqrt(RateVar) 
NumRepExp <- Rate * WrntDays * Production 

# Calculate warranty cost information. 
WrntExp <- CmpCst * Rate * WrntDays 

# For one-claim components, assign a value for variance of warranty cost based on variance of 
# failure rate. Variance of cost does not exist when there is only one cost. Take cost as a 
# constant. 
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if(Claims==l) 

WrntExpVar <- CmpCst"2 * RateVar * WrntDays"2 
else 

WrntExpVar <- (CmpCst'^2 * RateVar + Rate"2 * CmpCstVar + RateVar*CmpCstVar) * WrntDays'^2 

WrntExpSD <- sqrt(WrntExpVar) 

# WEIBULL MODEL 

# Do Weibull modelling only if number of claims is at least MinClmsWbl (inputted) . 
if(Claims >= MinClmsWbl) 
{ WblMdl <- survReg(Surv(age2 + 1, status, type = "right") ~ 1, data = SurviveDF, 

na,action = na,exclude, dist = "weibull", scale=0, 
control=list(maxiter = 50, rel,tolerance=le-005, failure=l)) 

LoglikWbl <- wblMdl$loglik[l] 

# ADJUST THE WEIBULL MODEL IF IT IS NOT A GOOD FIT 

# First arrange age2 in descending order to identify the highest values of age2. 
if(LoglikWbl < 1.5 *LoglikExp) 

ageDesc <- sort.col(target=CompDF$age2, columns.to.sort = T, 
columns.to.sort.by = T, ascending=F) 

# If the Weibull fit is much poorer than the exponential fit, knock off records with the 
biggest 
# age2 until the Weibull loglikelihood is within 1.5 times that of the exponential likelihood. 

j <- 1 # Initialise the counter j 
while(LoglikWbl < 1.5 *LoglikExp & j < length(CompDF$VIN) ) 
{ SurviveDF <- fSurvive(CompDF[CompDF$age2<ageDesc[j],] , SalesDF) 

wblMdl <- survReg(Surv(age2 + 1, status, type = "right") ~ 1, data = SurviveDF, 
na.action = na.exclude, dist = "weibull", scale=0, 
control=list(maxiter = 30, rel.tolerance=le-005, failure=l)) 

LoglikWbl <- wblMdl$loglik[1] 
j <- j + 1 

} 

# Assign the number of points trimmed in fitting the Weibull model. 
PtsTrim <- j - 1 

# WEIBULL MODEL: POINT ESTIMATES 
# ============================== 
# Weibull parameters. 

Beta <- l/wblMdl$scale 
Eta <- exp(wblMdl$coeff) 

# Obtain the expected number of renewals (point estimate). 
Renew <- fRenew(beta=Beta, eta=Eta, warranty=Wrnty, h=l) 

# Obtain the expected warranty cost. 
WrntWbl <- Renew * CmpCst 

# Expected number of repairs 
NumRepWbl <- Renew * Production 

# WEIBULL MODEL: INTERVAL ESTIMATE - EXPECTED NUMBER OF RENEWALS AND "^^^Y^COST 

# Obtain a confidence region for the Weibull parameters. 
degFree <- length(SurviveDF$VIN[SurviveDF$status==l])-3 

# Only if degrees of freedom > 0 can fConfRgn() be called, as it uses F-distribution. 

if(degFree > 0) 
{ region <- fConfRgn(wblMdl, degFree, confLvl=ConfLevel, graph-F) 

# If fConfRgn0 returns "singular", wblMdl generated a singular matrix, so no inverse exits. 
# Therefore, confidence intervals cannot be obtained. Should not get a singular matrix since 

# the Weibull fit is adjusted above. 
if(region[[l]][[1]][1] 1= "singular") # This extracts the first element 
{ 
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# Obtain the expected number of renewals for these points. 
num <- length(region[[1]]$x) 
renRegn <- vector(mode="numeric", length=num) 
renRegn <- rep(NA,num) 

# For loop needed here as fRenew() requires its parameters as single values, not vectors. 
for( i in l:num ) 

renRegn[i] <-
fRenew(beta=region[[l]]$x[i], eta=region[[1]]$y[i], warranty=Wrnty, h-2) 

RenewVar <- sum( (renRegn-Renew)'^2/length(renRegn[!is.na(renRegn)]), na.rm=T ) 

RenewSD <- sqrt(RenewVar) 

WrntWblVar <- Renew"2*CmpCstSD'^2 + CmpCst"2*RenewVar + CmpCstVar * RenewVar 
WrntWblSD <- sqrt(WrntWblVar) 

} 
BestFit <- if(LoglikWbl > LoglikExp) "Weibull" else "Exponential" 
SmlstSD <- if(WrntExpSD==WrntWblSD) "Equal" 

else 
{ if(WrntExpSD < WrntWblSD) "Exponential" 

else "Weibull" 

"No" 
} 

WbSDLsCst <- if(WrntWblSD < WrntWbl) "Yes" else "No 
ExSDLsCst <- if(WrntExpSD < WrntExp) "Yes" else "No 
} 

} 

# OUTPUT 
# ====== 
# Create output. 

output <- data.frame( 
Part=Part, Name=Name, Claims=Claims, CmpCst=CmpCst, CmpCstSD=CmpCstSD, 
Rate=Rate, RateSD=RateSD, NumRepExp=NumRepExp, 
WrntExp=WrntExp, WrntExpSD=WrntExpSD, WrntExpVar=WrntExpVar, 
Beta=Beta, Eta=Eta, Renew=Renew, RenewSD=RenewSD, NumRepWbl=NumRepWbl, PtsTrim=PtsTrim, 
WrntWbl=WrntWbl, WrntWblSD=WrntWblSD, WrntWblVar=WrntWblVar, 
LoglikExp=LoglikExp, LoglikWbl=LoglikWbl, 
BestFit=BestFit, SmlstSD=SmlstSD, WbSDLsCst=WbSDLsCst, 
ExSDLsCst=if(WrntExpSD < WrntExp) "Yes" else "No" ) 

# Return output as a data frame. 

output 
} 

C.8 Estimate of Total Warranty Cost {WrntCstTotssc) 
# TOTAL WARRANTY COST AND CONFIDENCE INTERVAL 

# 
# DESCRIPTION 
# 
# PURPOSE 
# ======= 
# The purpose of this function is to obtain the total warranty cost, its variance and a 
# confidence interval on the cost for a specified warranty period using (i) the exponential 
# model, (ii) the exponential model with components grouped by claims frequency and (iii) the 
# Weibull model and (iv) a restricted Weibull model, where if the warranty cost for 5 years 
# under the Weibull model is a certain (inputted) factor times the warranty cost for 3 years, 
# then the exponential model is used. 

# OUTLINE 
# ====== 
# The warranty cost and variance are worked out for each of the three models in turn. The 
# calculation is done specifically for the data frames "costExpWbl" and "extWrnt", which have 
# the required figures to be totalled. 

# INPUT 
# ===== 
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! ^!!^".^=:^,.'^^^K1"''^^/^.''°"'P°''^''^ warranty cost and variance. The two data frames to be used 
# are costExpWbl" (default) for a 3-year warranty and "extWrnt" for a 5-year warranty. 
# Wrnty = the warranty length in years. Default = 3 years 
# ConfLvl = Confidence interval for the warranty cost. Default = 0 95 
# IncFctr - The factor at which the Weibull will be rejected if the 5-year warranty cost is 
# that many times bigger than the 3-year warranty. Default = 5. 

# OUTPUT 
I ====== 

# A matrix with columns: Warranty Cost, Standard Deviation, Lower and Upper Confidence Limits; 
# and rows: Exponential Model, Grouped Exponential Model, Weibull Modeland restricte Weibull 
# model (if the warranty is 5 years). 

I 
# PROGRAM 
# 
"fWrntCst" <-
function(Input=costExpWbl, Wrnty=3, ConfLvl=0.95, IncFctr=5) 
{ 
# INITIALISE VARIABLES 
I ==================== 

wrntDays <- round(Wrnty * 365.25) 

# EXPONENTIAL MODEL 
# ================= 
# Total warranty cost under the exponential model. 

TotCstExp <- sum(Input$WrntExp[Input$Partl=""] , na.rm=T) 
CstBlankExp <-

costExpWbl$CmpCst[costExpWbl$Part==""] * costExpWbl$Rate[costExpWbl$Part==""] * wrntDays 
TotCstExp <- TotCstExp + CstBlankExp 

# Total warranty variance under the exponential model. 
TotCstExpVar <- sum(Input$WrntExpVar[Input$Part!=""] , na.rm=T) 
CstBlankExpVar <-

s\im(compAge$cost[compAge$part==""]^2) * cstExpGp$RateSD[cstExpGp$NumClaims==l]^2 * 
wrntDays^2 

TotCstExpSD <- sqrt(TotCstExpVar + CstBlankExpVar) 

# Lower confidence limit on warranty cost under the exponential model using normal 
distribution. 

LwrWntExp <- max(qnorm( 0.5-ConfLvl/2, mean=TotCstExp, sd=TotCstExpSD), 0) 

# Upper confidence limit on warranty cost of the exponential model using normal distribution. 
UprWntExp <- qnorm( 0.5+ConfLvl/2, mean=TotCstExp, sd=TotCstExpSD) 

# GROUPED EXPONENTIAL MODEL 
I =^===================^=== 
# Total warranty cost under the exponential model with components grouped by claim frequency. 
# In this calculation, "TotCstGpExp" is used, as it is the only place where the grouped 
# exponential model is used. Since the data frame contains data for a 3-year warranty, it needs 
# to be adjusted for the 5-year warranty. 
# Note that there is not an entry in cstExpGp when part = "". 

TotCstGpExp <- sum(cstExpGp$Wrnt) * wrntDays / 1096 
TotCstGpExp <- TotCstGpExp + CstBlankExp 

# Total warranty variance under the grouped exponential model. 
TotCstGpExpVar <- sum(cstExpGp$WrntVar, na.rm=T) * (wrntDays / 1096)-̂ 2 
TotCstGpExpSD <- sqrt(TotCstGpExpVar + CstBlankExpVar) 

# Lower confidence limit on warranty cost under the grouped exponential model using normal 
# distribution. 

LwrWntGpExp <- max(qnorm( 0,5-ConfLvl/2, mean=TotCstGpExp, sd=TotCstGpExpSD) , 0) 

# Upper confidence limit on warranty cost the grouped exponential model using normal 
# distribution. 

UprWntGpExp <- qnorm( 0 .5+ConfLvl /2 , mean=TotCstGpExp, sd=TotCstGpExpSD) 
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# WEIBULL MODEL 

# Use exponential model for total warranty cost for parts with < 20 claims. 
TotCstExp20 <- sum(Input$WrntExp[Input$Claims<20 & Input$Part!=""], na.rm=T) 

# Total warranty cost under the Weibull model for parts with at least 20 claims. 
TotCstWbl <- sum(Input$WrntWbl[Input$Claims>=20 & Input$Part1=""], na.rm=T) 

# Total warranty cost with exponential model for parts with less than 20 claims, and Weibull 
# model for parts with 20 or more claims. 

TotCstWbl <- TotCstWbl + TotCstExp20 + CstBlankExp 

# Total warranty variance under the Weibull model for parts with at least 20 claims. 
TotCstWblVar <-

sum(Input$WrntWblVar[Input$Claims>=20 & Input$Part!=""], na.rm=T) 
TotCstWblNAVar <-

sum(Input$WrntExpVar[Input$Claims>=20 & Input$Part!="" & is.na(Input$WrntWblVar)], 
na.rm=T) 

TotCstExpVar20 <-
s\im(Input$WrntExpVar[Input$Claims<20 & Input$Part1=""], na.rm=T) 

TotCstWblSD <- sqrt(TotCstWblVar + TotCstWblNAVar + TotCstExpVar20 + CstBlankExpVar) 

# Lower confidence limit on warranty cost under the Weibull model using normal distribution, 
LwrWntWbl <- max(qnorm(0.5-ConfLvl/2, mean=TotCstWbl, sd=TotCstWblSD), 0) 

# Upper confidence limit on warranty cost the Weibull model using normal distribution. 
UprWntWbl <- qnorm( 0.5+ConfLvl/2, mean=TotCstWbl, sd=TotCstWblSD) 

# OUTPUT FOR 3-YEAR WARRANTY 
# ========================== 
# Return this output of exponential and Weibull warranty costs, variances and confidence 
# intervals if the warranty is 3 years. 

output <- matrix( 
data=c (TotCstExp, TotCstExpSD, LwrWntExp, UprWntExp, TotCstGpExp, TotCstGpExpSD, LwrWntGpExp, 

UprWntGpExp,TotCstWbl,TotCstWblSD,LwrWntWbl,UprWntWbl), 
nrow=3, ncol=4, byrow=T, 
dimnames=list( c("Exp","GpExp", "Wbl") , c("WrntCst","WrntSD","LwrLmt","UprLmt") ) ) 

# ADJUSTED WEIBULL MODEL 
I ====================== 
# Some parts are not modelled well by the Weibull model; their costs become too large at 5 
# years, so instead, the exponential model will be used for those parts. 

if(Wrnty == 5) 
{ TotCstWblAdj <- sum(Input$WrntWbl[Input$Claims >= 20 & Input$Part != "" & 

Input$WrntWbl < IncFctr * costExpWbl$WrntWbl], na.rm=T) 
TotCstRjctWbl <- sum(Input$WrntExp[Input$WrntWbl >= IncFctr*costExpWbl$WrntWbl],na,rm=T) 
TotCstWblAdj <- TotCstExp20 + CstBlankExp + TotCstWblAdj + TotCstRjctWbl 

# Total warranty variance under the adjusted Weibull model. 
TotCstWblAdjVar <-

sum(Input$WrntWblVar[Input$Claims>=20 & Input$Part1="" & 
Input$WrntWbl<IncFctr*costExpWbl$WrntWbl], na.rm=T ) 

TotCstWblNAVar <-
sum(Input$WrntExpVar[Input$Claims>=20 & Input$Part!="" & is.na(Input$WrntWblVar)], 
na.rm=T) 

TotCstExpVar20 <-
sum(Input$WrntExpVar[Input$Claims<20 & Input$Part1=""], na.rm=T) 

TotCstExpVarAdj <-
sum(Input$WrntExpVar[Input$WrntWbl>=IncFctr*costExpWbl$WrntWbl], na.rm=T) 

TotCstWblAdjSD <- sqrt( 
TotCstWblAdjVar + TotCstWblNAVar + TotCstExpVar20 + TotCstExpVarAdj + CstBlankExpVar) 

# Lower confidence limit on warranty cost under the Weibull model using normal distribution. 
LwrWntWblAdj <- max(qnorm(0.5-ConfLvl/2, mean=TotCstWbl, sd=TotCstWblSD), 0) 

# Upper confidence limit on warranty cost the Weibull model using normal distribution. 
UprWntWblAdj <- qnorm( 0.5+ConfLvl/2, mean=TotCstWbl, sd=TotCstWblSD) 
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# OUTPUT FOR 5-YEAR WARRANTY 

I intervals!^ °''̂ '̂'̂  °^ exponential and Weibull warranty costs, variances and confidence 

T^^^r^r^^ matrix (data=c (TotCstExp, TotCstExpSD, LwrWntExp, UprWntExp, 
TotCstGpExp,TotCstGpExpSD,LwrWntGpExp,UprWntGpExp, 

TotCstWbl,TotCstWblSD,LwrWntWbl,UprWntWbl, 
TotCstWblAdj,TotCstWblAdjSD,LwrWntWblAdj,UprWntWblAdj), 
nrow=4, ncol=4, byrow=T, 
dimnames=list( 

} 
c("Exp","GpExp","Wbl","WblAdj"),c("WrntCst","WrntSD","LwrLmt","UprLmt") )) 

# Return output 

output 
} 

C.9 Extended Warranty Cost {ExtdWrntssc) 
# EXTENDED WARRANTY: POINT & INTERVAL WARRANTY COST ESTIMATES 

I 
# DESCRIPTION 
# 
# PURPOSE 
# ======= 
# The aim of this function is to obtain point estimates and standard deviation of the following 
# for each component for an extended warranty: 
# 1. The expected number of repairs, warranty cost and variance using an exponential model. 
# 2. The expected number of repairs, warranty cost and variance using a Weibull model. 

# OUTLINE 
# ======= 
# This function should be called using the script CallExtdWrnt. 
# The function uses the model parameter values from the inputted data frame to work out the 
# cost of an extended warrranty. Since the exponential model has a linear rate, the extended 
# warranty cost is a linear extrapolation of the current warranty. For the Weibull model, a 
# model has to be fitted. The log likelihood of the Weibull model is compared to the log 
# likelihood of the exponential model. If the Weibull's log likelihood is not close to that of 
# the expoential model, the model is adjusted by removing the oldest points, one at a time, 
# until a good fit is achieved. Once a good fit is achieved, the Weibull model parameters are 
# passed onto fRenew, and they, together with the variances, are passed onto fConfRgn, to 
# obtain point and interval estimates of the warranty cost. 
# If the 'WblMdl' parameter of fConfRgn could be broken up into its components, and if they 
# could be included in ParmsDF, then they could be read by this function instead of fitting 
# the model again, which would save a lot of processing time. 

# INPUT 
# ===== 
# 1. ParmsDF = a dataframe containing the parameters of the exponential and Weibull models. 
# Default = costExpWbl. 
# 2. CompDF = a data frame of components' ages. Default = compAge. 
# 3. SalesDF = A data frame of sales. Default = sales97. 
# 4. StartRow = the first row of ParmsDF to be read. It takes too long to process all rows 
# of ParmsDF at once. Default = 1. 
# 5. EndRow = the last row of ParmsDF to be read. Default = 2693, which is the last row of 
# ParmsDF containing components with < 20 claims, after which, the Weibull model parameter 
# exist in ParmsDF, and are used in this function. Processing is fast without Weibull 
# modelling. 
# 6. Wrnty = the warranty length in years. Default = 5. 
# 7. Production = the number of vehicles produced in a year. Default = 30138. 

# OUTPUT 
I ====== 
# The output is a dataframe containing the expected n\imber of repairs, warranty cost and 
# variances for both the exponential and Weibull models. 
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# 
# PROGRAM 
# 
"fExtWrnt" <-
function(ParmsDF=costExpWbl, CompDF=compAge, SalesDF=sales97, StartRow=l, EndRow=2693, 

Wrnty=5, Production=30138) 
{ 
# CHECK INPUT PARAMETERS 
# ====================== 

if(Wrnty <= 0) 
stop(message = "The parameter 'Wrnty' (warranty period in years) should be positive,") 

if(StartRow > EndRow) 
stop("The parameter StartRow must be smaller than EndRow.") 

if(StartRow 1= round(StartRow, 0) & EndRow 1= round(EndRow, 0)) 
stop("The parameters StartRow and EndRow must be positive whole numbers.") 

# Convert warranty to days. 
WrntDays <- round(Wrnty * 365.25) 

# SET UP OUTPUT AND INITIALISE WEIBULL MODEL VARIABLES 
# ==================================================== 
# Select the required rows from ParmsDF, attach this data frame and set up output data frame. 

data <- ParmsDF[StartRow:EndRow, ] 
attach(data) 
output <- data[, c("Part", "Name", "Claims", "NumRepExp", "WrntExp", "WrntExpSD", 

"WrntExpVar", "NumRepWbl", "WrntWbl", "WrntWblSD", "WrntWblVar")] 
numRow <- length(StartRow:EndRow) # Clear all calculated variables to NA. 
output [, 4 :11] <- as. numeric ( rep (NA, times = n\imRow) ) 

# EXPONENTIAL MODEL 
# ================= 
# Calculate warranty cost for an extended warranty. 

output$WrntExp[l:numRow] <- CmpCst[1:numRow] * Rate[1:numRow] * WrntDays 

# Calculate the expected number of repairs in 5 years predicted by the exponential model. 
output$NumRepExp[l:numRow] <- Rate[1:nximRow] * WrntDays * Production 

# For one-claim components, assign a value for variance of warranty cost based on variance of 
# failure rate. Variance of cost does not exist when there is only one cost. Take cost as a 
# constant. 

clmsl <- Claims == 1 
output$WrntExpVar[clmsl] <- CmpCst [clmsl]'̂ 2 * RateSD [clmsl] ̂"2 * 1826''2 

# Records with blank names will be included below, but will be dealt with in wrntCstO 
output$WrntExpVar[!clmsl] <- (CmpCst[1clmsl]^2 * RateSD[1clmsl]^2 + Rate[1clmsl] ̂"2 * 

CmpCstSD [ 1 clmsl] ̂ 2 + RateSD [ 1 clmsl]'^2 * CmpCstSD [! clmsl]'^2) * WrntDays'^2 
output$WrntExpSD <- sqrt(output$WrntExpVar) 

# WEIBULL MODEL 
# ============= 

for(i in l:n\imRow) { 
# If Weibull model exists for current record, proceed. 

if(WrntWbl[i] 1= "NA") { 
DF <- CompDF[CompDF$part == Part[i], ] 
SurviveDF <- fSurvive(DF, SalesDF) 
wblMdl <- survReg(Surv(age2 + 1, status, type = "right") ~ 1, data = SurviveDF, 

na.action = na.exclude, dist = "weibull", scale = 0, 
control = list(maxiter = 50, rel.tolerance = le~005, failure = 1)) 

IglikeWb <- wblMdl$loglik[l] 

# ADJUST THE WEIBULL MODEL IF IT IS NOT A GOOD FIT 
# ================================================ 
# First arrange age2 in descending order to identify the highest values of age2. 

if(IglikeWb < 1.5 * LoglikExp[i]) 
{ ageDesc <- sort.col(target = DF$age2, 

columns.to.sort = T, columns.to.sort.by = T, ascending = F) 
} 
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# If the Weibull fit is much poorer than the exponential, knock off records with the biggest 
# age2 until the Weibull loglikelihood is within 1.5 times that of the exponential likelihood. 

j <- 1 # Initialise the counter j 
while(IglikeWb < 1.5 * LoglikExp[i] & j < length(DF$VIN)) 

SurviveDF <- fSurvive(DF[DF$age2 < ageDesc[j], ], SalesDF) 
WblMdl <- survReg(Surv(age2 + 1, status, type = "right") ~ 1, data = SurviveDF, 

na.action = na.exclude, dist = "weibull", scale = 0, 
control = list(maxiter = 30, rel.tolerance = le-005, failure = 1)) 

IglikeWb <- wblMdl$loglik[l] 
j <- j + 1 

# WEIBULL MODEL: POINT ESTIMATES 

# Obtain the expected number of renewals (point estimate). 
Renew <- fRenew(beta = Beta[i], eta = Eta[i], warranty = Wrnty, h = 1) 

# Obtain the expected warranty cost. 
output$WrntWbl[i] <- Renew * CmpCst[i] 

# Expected number of repairs 
output$NumRepWbl[i] <- Renew * Production 

# WEIBULL MODEL: INTERVAL ESTIMATE - EXPECTED NUMBER OF RENEWALS AND WARRANTY COST 
I ================================================================================ 
# Obtain a confidence region for the Weibull parameters. 

degFree <- length(SurviveDF$VIN[SurviveDF$status ==1]) - 3 

# Check the value of degFree 
if(degFree < 1) 

stop(message="Degrees of freedom < 1, since survival df has less than 4 points.") 

region <- fConfRgn(wblMdl, degFree, confLvl = 0.95, graph = F) 
# If fConfRgn0 returns "singular", wblMdl generated a singular matrix, so no inverse exits. 
# Therefore, confidence intervals cannot be obtained. Should not get a singular matrix since 
# the Weibull fit is adjusted above. 

if(region[[1]] [ [1] ] [1] 1= "singular") # This extracts the first element 
{ 

# Obtain the expected number of renewals for these points. 
num <- length(region[[1]]$x) 
renRegn <- vector(mode = "numeric", length = num) 
renRegn <- as.numeric(rep(NA, num)) 

# For loop needed here as fRenew() requires its parameters as single values, not vectors. 
for(j in l:num) 

renRegntj] <- fRenew{beta = region[[1]]$x[j], eta = region[[1]]$y[j], 
warranty = Wrnty, h = 4) 

RenewVar <- sum((renRegn-Renew)^2/length(renRegn[1is.na(renRegn)]), na.rm = T) 

RenewSD <- sqrt(RenewVar) 
output$WrntWblVar[i] <- Renew"2 * CmpCstSD[i]"2 + 
CmpCst [i]-̂ 2 * RenewVar + CmpCstSD [i]'̂ 2 * RenewVar 

output$WrntWblSD[i] <- sqrt(output$WrntWblVar[i] ) 
} 

) 
} 
detach("data") 

# OUTPUT 
# ====== 

output 
} 
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C.IO Sensitivitiy Analysis {Sensitivity.ssc) 
# WARRANTY COST SENSITIVITY ANALYSIS FOR A WEIBULL MODEL 

# 
# DESCRIPTION 
# 
# PURPOSE 
# ======= 
# This function will calculate the percentage variation in warranty cost against the percentage 
# variation in each of the Weibull parameters, both seperately and jointly. Graphs of the 
# changes are produced. 

# OUTLINE 
# ======= 
# For the inputted Part, an inputted cost data frame (CostDF) is searched to extract the 
# corresponding values of beta and eta. A grid of percentage changes in beta and eta is then 
# used to find the corresponding change in the warranty cost, which is graphed against each of 
# the parameters seperately and then jointly. The warranty cost matrix is returned. 

# INPUT 
# ===== 
# 1. Part = The part id. 
# 2. CostDF = The cost data frame, eg, costExpWbl. 
# 3. Wrnty = The warranty length in years. Default = 3. 
# 4. StepSize = Step size to be passed on to fRenew(). 

# OUTPUT 
# ====== 
# The output is a matrix of the % change in warranty cost. 

# 
# PROGRAM 
# 
"fSenstv" <- function(Part, CostDF=costExpWbl, Wrnty=3, StepSize=4) 
{ 
# SET UP VARIABLES 
# ================ 
# Extract the row number in CostDF that contains Part. 

rowNum <- as.numeric(row.names( CostDF[CostDF$Part==Part,] )) 
# Set up grid to hold Beta and a warranty cost matrix. 

betaGrid <- seq(from=-0.1, to=0.1, by = 0.01) 
etaGrid <- seq(from=-0.1, to=0.1, by = 0.01) 
costGrid <- matrix(data=as.numeric(NA), nrow=length(betaGrid), ncol=length(etaGrid), 

dimnames=list(betaGrid,etaGrid)) 
WrntCst <- CostDF$WrntWbl[rowNum] 

# CALCULATE WARRANTY COST 
# ======================= 
# Fill costGrid by calculating the warranty cost on every point (betaGrid, etaGrid). 

for (j in 1:length(etaGrid)) 
{ for (i in 1:length(betaGrid)) 

{ 
# Obtain the expected number of renewals and warranty cost. 

renew <- fRenew(beta=(l+betaGrid[i])*CostDF$Beta[rowNum], 
eta=(l+etaGrid[j])*CostDF$Eta[rowNum], warranty=Wrnty, 
h=StepSize) 

costGrid[i,j] <- renew * CostDF$CmpCst[rowNum] 
} 

} 

# GENERATE GRAPHS 
# =============== 
# % change in cost against % change in beta. 

graphsheet() 
plot(betaGrid*100, (costGrid[,(length(etaGrid)+1)/2]-WrntCst)*100/WrntCst, 

xlab="% Change in Beta", ylab="% Change in Warranty Cost") 
title(CostDF$Name[CostDF$Part==Part] ) 
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# % change in cost against % change in eta. 
plot(etaGrid*100, (costGrid[(length(betaGrid)+1)/2,]-WrntCst)*100/WrntCst, 

xlab="% Change in Eta", ylab="% Change in Warranty Cost") 
title(CostDF$Name[CostDF$Part==Part]) 

# % change in cost against % change in beta and eta (3-D plot). 
# First calculate the range in cost. 

rangeCost <- (max(costGrid)-WrntCst)*100/WrntCst - (min(costGrid)-WrntCst)*100/WrntCst 
persp(betaGrid*100, etaGrid*100, (costGrid-WrntCst)*100/WrntCst, 

xlab="% Change in Beta",ylab="% Change in Eta", zlab="% Change in Warranty Cost" ) 
title(CostDF$Name[CostDF$Part==Part]) 

# OUTPUT 
# ====== 
# Return the cost grid. 

costGrid 
} 



Appendix D: Graphs for Chapter 6 
This appendix shows the survival plots of the fourteen components with initially ill-fitting 
Weibull models before and after the model is adjusted. Age density plots of all fourteen 
components are also shown. For comparison, age density plots of some components wdth good-
fitting Weibull models are shovm. See Section 6.3 for a detailed discussion of these components 
and the processing involved in obtaining the adjusted Weibull model. 

D.l Survival Plots of Components With Ill-fitting Weibull Models 
The survival plots showing the original Weibull model, the adjusted Weibull model and the 
exponential model of the fourteen components are shown below. 
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D.2 Age Density Plots of Components with Ill-Fitting Weibull Models 
The following are age density plots of the fourteen components where the Weibull model did not 
provide a good fit to the data initially. They can be compared to the age density plots of 
components with a good initial Weibull fit in Appendix D.3. There does not appear to be any 
significant differences in the distributions. 
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D.3 Age Density Plots of Components with Good-Fitting WeibuU Models 
The following are age density plots of some components where the Weibull model provided a 
good fit to the data. There does not appear to be any significant difference between these plots 
and the age density plots of the plots of the components with an initially ill-fitting Weibull 
models shown in Appendix D.2. 
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Appendix E: S-Plus Scripts for Chapter 7 
This appendix contains scripts of functions that have been used in the simulations. The scripts are referred 
to in Chapter 7. 

E.l Warranty Cost Simulation {WmtCstSimulssc) 
# SIMULATED WARRANTY COST USING PARAMETRIC MODELLING 

# 
# DESCRIPTION 
# 
# PURPOSE 
# ======= 
# This function creates a data frame of simulateci warranty cost, or the warranty cost per 
# vehicle. 

# OUTLINE 
# ======= 
# A random sample of size prod (inputted) is generated for each part using either the 
# exponetial or Weibull model. Parts with wblClms (inputted) or more are modelled using the 
# Weibull distribution. After generating the sample, the failure times are compared to wrnty 
# (inputted) to identify which parts fail within the warranty. A sample of replaced parts is 
# generated, which is again checked for failures within the warranty. This is repeated until 
# the warranty runs out. The total warranty cost for each part and the number of replacements 
# is returned. 

# INPUT 
# ===== 
# 1. wc3yr = The 3-year warranty cost data frame. Default = costExpWbl. 
# 2. wcSyr = The 5-year warranty cost data frame. Default = extdWrnt 
# 3. compDF = The component data frame, containing the cost of repair. Default = compAge. 
# 4. wrnty = The warranty length in years. Default = 3 years. 
# 5. prod = The number of vehicles produced in a year. Default = 30138 
# 6. wblClms = The minimum number of claims for a part to be modelled by the Weibull 
# distribution. Default = 20. 
# 7. factor. If the 5-yr warranty cost is 'factor' times bigger than the 3-yr cost, then the 
# Weibull model is rejected in favour of the exponential. This is done because for some 
# parts, the cost of the 5-yr warranty is too many times bigger than the 3-yr. 
# 8. out = The ouput required. The two options are the warranty cost data frame ("df"), or 
# just the total warranty cost per vehicle ("cpv") (the default). 

# OUTPUT 
# ====== 
# The total warranty cost per vehcile of the simulated sample, or a data frame of warranty 
# costs showing total warranty cost and total number of replacements, is returned. 

# 
# PROGRAM 
# 
"fWCstSim" <-
function(wc3yr=costExpWbl, wc5yr=extdWrnt, compDF=compAge, wrnty=3, prod=30138, wblClms=20, 

factor=5, out="cpv") 
{ 

# CHECK INPUT PARAMETERS AND SET UP VARIABLES 
# =========================================== 

if(wrnty <= 0) 
stop(message="The parameter 'Wrnty' (warranty period in years) should be positive.") 

if(prod <= 0 ) 
stop(message="The parameter prod (vehicles produced in 1 year) should be positive.") 

# Have to do this next one this way because the != doesn't seem to work properly 
if(out =="cpv" I out == "df") T 

# if(out != "cpv" I out != "df") 
else 
warning("The parameter 'out' must be either 'df (data frame) or 'cpv' (cost per vehicle)") 

220 
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I Convert warranty to days. 
WrntDays <- round(wrnty * 365.25) 

# Set up data frame for warranty costs. 
wc <- data.frame(Part=NA,Cost=0,Rep=0) 

# CHECK HOW MANY TIMES BIGGER THE 5-YR WARRANTY COST IS COMPARED TO THE 3-YR 
# ========================================================================== 
# When the 5-yr warranty cost is more than 'factor' times bigger than the 3-yr cost under the 
# Weibull model, use the exponential model instead. 

cond <- wc3yr$Claims >= wblClms & wc3yr$Part != "" 
extWr2big <- wc3yr$Part[cond][wc5yr$WrntWbl[cond] > 

factor * wc3yr$WrntWbl[cond] & !is.na(wc5yr$WrntWbl[cond])] 

# GENERATE FAILURE TIMES AND WORK OUT WARRANTY COST FOR EACH PART 
I =============================================================== 

for( i in 1:length(wc3yr$Part) ) 

{ 
t Initialise the total number of times current part is replaced in all production to 0. 

totRep <- 0 

# Counter to be used as an escape clause if while loop jams. 
counter <- 0 

# Set failure times using appropriate model. Note: Failure times of parts with no id number 
# are simulated using the exponential model with a rate covering all the parts. If it's a 5-yr 
# warranty simulation and the 5-yr cost was more than 'factor' times the 3-yr cost, use the 
# exponential model. 

if( wc3yr$Claims[i] < wblClms | wc3yr$Part[i] =="" I 
{wrnty==5 & is.element(wc3yr$Part[i], extWr2big)) ) 

carAge <- rexp(n=prod, rate=wc3yr$Rate[i] ) 
else 

carAge <- rweibull(n=prod, shape=wc3yr$Beta[i], scale=wc3yr$Eta[i]) 

i See which and how many vehicles fail on current part during warranty. 
inWrnty <- carAge <= WrntDays 
numRep <- length(inWrnty[inWrnty==T]) 

# The while loop will be entered every time current part fails in a vehicle until warranty 

ends. 
while(numRep > 0) 
{ 

# Add the number of repairs to the total. 
totRep <- totRep + numRep 

# Set vehicle age as sum of its previous age and time replacement part fails. 
if( wc3yr$Claims[i] < wblClms | wc3yr$Part[i] =="" I 
{wrnty==5 & is.element(wc3yr$Part[i], extWr2big)} ) 

carAge[inWrnty] <- carAge[inWrnty] + rexp(n=numRep, rate=wc3yr$Rate[i] ) 

else 
carAge[inWrnty] <- carAge[inWrnty] + ^ r•^^ 

rweibull(n=numR6p, shape=wc3yr$Beta[i], scale=wc3yr$Eta[i]) 

# See which and how many vehicles with replaced parts fail again during warranty. 

inWrnty <- carAge <= WrntDays 
numRep <- length(inWrnty[inWrnty==T]) 

# Increment counter and check its value. 
counter <- counter + 1 
if (counter >= 50) u'.,!^ »\ 
{ warning("While loop terminated after 50 part replacements on one vehicle. ) 

break 
} 

} 

# Randomly choose the cost of repair from the component repair cost in compDF. An alternative 
# would be to use a normal approximation to the distribution of the cost using the mean cost 



222 Appendix E 

# and sd in wc3yr, but the cost is not quite normally distributed for most parts. 
partWrtCst <-

sum( sample(compDF$cost[compDF$ofp==wc3yr$Part[i]], size=totRep, replace=T) ) 

wc[i,"Part"] <- wc3yr$Part[i] 
wc[i,"Cost"] <- partWrtCst 
wc[i,"Rep"] <- totRep 

} 

# OUTPUT 

# Return either the warranty cost data frame (wc) or only the sum of the warranty cost, 
# depending on what was chosen in the input parameter. 

if(out=="df") 
wc 

if(out=="cpv") 
sum(wc$Cost)/prod 

} 

E.2 Simulated Warranty Cost With Distance Limitation {WrntCstSmulDistssc) 
# SIMULATED WARRANTY COST WITH DISTANCE LIMITATION, USING PARAMETRIC MODELLING 

I 
# DESCRIPTION 
# 
# PURPOSE 
# ======= 
# This function creates a data frame of simulated warranty cost, or the warranty cost per 
# vehicle. 

# OUTLINE 
# ======= 
# A random sample of size prod (inputted) is generated for each part using either the 
# exponential or Weibull model. Parts with wblClms (inputted) or more are modelled using the 
# Weibull distribution. After generating the sample, the failure times are compared to wrnty 
# (inputted) to identify which parts fail within the warranty. A sample of replaced parts is 
# generated, which is again checked for failures within the warranty. This is repeated until 
# the warranty runs out. The total warranty cost for each part and the number of replacements 
# is returned. 

# INPUT 
# ===== 
# 1. wc3yr = The warranty cost data frame. Default = costExpWbl. 
# 2. compDF = The component data frame, containing the cost of repair. Default = compAge. 
# 3. wrnty = The warranty length in years. Default = 3 years. 
# 4. prod = The number of vehicles produced in a year. Default = 30138 
# 5. wblClms = The minimum number of claims for a part to be modelled by the Weibull 
# distribution. Default = 20. 
# 6. factor. If the 5-yr warranty cost is 'factor' times bigger than the 3-yr cost, then the 
# Weibull model is rejected in favour of the exponential. This is done because for some 
# parts, the cost of the 5-yr warranty is too many times bigger than the 3-yr. 
# 7. out = The ouput required. The two options are the warranty cost data frame ("df"), or 
# just the total warranty cost per vehicle ("cpv") (the default). 

# OUTPUT 
# ====== 
# The total warranty cost per vehcile of the simulated sample, or a data frame of warranty 
# costs showing total warranty cost and total number of replacements, is returned. 

# 
# PROGRAM 
# 
"fWCstSmD" <-
function(wc3yr=costExpWbl, wc5yr=extdWrnt, compDF=compAge, wrnty=3, wrntDist=100000, 

prod=30138, wblClms=20, factor=5, out="cpv") 
{ 
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# CHECK INPUT PARAMETERS AND SET UP VARIABLES 
I =========================================== 

if(wrnty <= 0) 

stop(message="The parameter 'Wrnty' (warranty period in years) should be positive.") 
if(prod <= 0 ) 

stop(message="The parameter prod (vehicles produced in 1 year) should be positive.") 
# Have to do this next one this way because the != doesn't seem to work properly 

if(out =="cpv" I out == "df") T 
# if(out != "cpv" I out != "df") 

else 
warning("The parameter 'out' must be either 'df (data frame) or 'cpv' (cost per vehicle)") 

# Convert warranty to days. 
WrntDays <- round(wrnty * 365.25) 

# Set up data frame for warranty costs. 
wc <- data.frame(Part=NA,Cost=0,Rep=0) 

# CHECK HOW MANY TIMES BIGGER THE 5-YR WARRANTY COST IS COMPARED TO THE 3-YR 
I ========================================================================== 
# When the 5-yr warranty cost is more than 'factor' times bigger than the 3-yr cost under the 
# Weibull model, use the exponential model instead. 

cond <- wc3yr$Claims >= wblClms & wc3yr$Part != "" 
extWr2big <- wc3yr$Part[cond][wc5yr$WrntWbl[cond] > 

factor * wc3yr$WrntWbl[cond] & !is.na(wc5yr$WrntWbl[cond] ) ] 

# GENERATE FAILURE TIMES AND WORK OUT WARRANTY COST FOR EACH PART 
I _=,============================================================ 

for( i in 1:length(wc3yr$Part) ) 

{ 
# Initialise the total number of times current part is replaced in all production to 0. 

totRep <- 0 

# Counter to be used as an escape clause if while loop jams. 

counter <- 0 

# Set failure times using appropriate model. Note: Failure times of parts with no id number 
# are simulated using the exponential model with a rate covering all the parts. If it's a 5-yr 
# warranty simulation and the 5-yr cost was more than 'factor' times the 3-yr cost, use the 

# exponential model. 
if( wc3yr$Claims[i] < wblClms I wc3yr$Part[i] =="" I 
{wrnty==5 & is.element(wc3yr$Part[i], extWr2big)} ) 

carAge <- rexp(n=prod, rate=wc3yr$Rate[i]) 

carAge <- rweibull(n=prod, shape=wc3yr$Beta[i], scale=wc3yr$Eta[i]) 

# Set usage rate. 
useRate <- sample(usage, size=prod, replace=T) 

# See which and how many vehicles fail on current part during warranty. 
inWrnty <- carAge <= WrntDays & useRate * carAge/365.25 
numRep <- length(inWrnty[inWrnty==T]) 

# The while loop will be entered every time current part fails in a vehicle until warranty 

ends. 
while(numRep > 0) 

{ 
# Add the number of repairs to the total. 

totRep <- totRep + numRep 

# Set vehicle age as sum of its previous age and time replacement part fails. 

if( wc3yr$Claims[i] < wblClms I wc3yr$Part[i] =="" I 
{wrnty==5 & is.element (wc3yr$Part [i] , extWr2big) } ) <; r • i \ 

carAge[inWrnty] <- carAge[inWrnty] + rexp(n=numRep, rate=wc3yr$Rate[i]) 

else 
carAge[inWrnty] <- carAge[inWrnty] + 
rweibull(n=numRep, shape=wc3yr$Beta[i], scale=wc3yr$Eta[i]) 
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# See which and how many vehicles with replaced parts fail again during warranty. 
inWrnty <- carAge <= WrntDays & useRate * carAge/365.25 
numRep <- length(inWrnty[inWrnty==T]) 

# Increment counter and check its value. 
counter <- counter + 1 
if(counter >= 50) 
{ warning("While loop terminated after 50 part replacements on one vehicle.") 

break 
} 

} 

# Randomly choose the cost of repair from the component repair cost in compDF. An alternative 
# would be to use a normal approximation to the distribution of the cost using the mean cost 
# and sd in wc3yr, but the cost is not quite normally distributed for most parts. 

partWrtCst <-
sum( sample(compDF$cost[compDF$ofp==wc3yr$Part[i]], size=totRep, replace=T) ) 

wc[i,"Part"] <- wc3yr$Part[i] 
wc[i,"Cost"] <- partWrtCst 
wc[i,"Rep"] <- totRep 

} 

# OUTPUT 
# ====== 
# Return either the warranty cost data frame (wc) or only the sum of the warranty cost, 
# depending on what was chosen in the input parameter. 

if(out=="df") 
wc 

if(out=="cpv") 
sum(wc$Cost)/prod 

} 

E.3 Sample Generating Function {SmpDiscssc) 
# RANDOM SAMPLE GENERATION OF ONE YEAR'S PRODUCTION 

# 
# DESCRIPTION 
# 
# PURPOSE 
# ======= 
# This function creates a sample with given Weibull parameters. 

# OUTLINE 
# ======= 
# Failure times for a sample of the inputted sample size (one year's production) are generated 
# using the inputted Weibull shape and scale parameters. If the failure times are less than 

the 
# inputted warranty length, new failure times are generated, until the warranty on all of the 
# sample expires. From the simulated failure times, a Weibull model is fitted and the 
# parameters returned. This can then be repeated many times to obtain a distribution of fitted 
# Weibull parameters. 

# INPUT 
# ===== 
# 1. sait^Size = the size of the generated sample, usually set to one year's production. 
# 2. wrnty = the warranty length in years. 
# 3. beta = the shape parameter of the Weibull distribution from which a sample is 

generated. 
# 4. eta = the scale parameter of the Weibull distribution from which a sample is generated. 

# OUTPUT 
# ====== 
# The values of the Weibull paramters of the fitted model to the generated data. 
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I 
# PROGRAM 

# 
"fSmpPrms" <-
function(sampSize, wrnty, b e t a , e ta) 
{ 
# Convert wrnty from years to days. 

wrnty <- round(365.25*wrnty) 
samp <- round( rweibull(sampSize, shape=beta, scale=eta) ) 

# Create a data frame with fields: ID, component's age at failure (compAge), failure/censored 
# status (fail=l), vehicle's age at failure (vehAge) and component's age (age), be it censored 
# or observed, at the end of the warranty. The field "age" will be set to wrnty, and adjusted 
# to a part's age if it fails before the warratny ends. 

sampleDF <- data.frame(cbind(ID=1:sampSize, compAge=samp, status=0, vehAge=samp, 
age=wrnty)) 

# Identify records where failure occurs within the warranty period and count how many there 
are. 
inWrnty <- sampleDF$vehAge < wrnty 
numFailed <- count.rows(sampleDF[inWrnty, ]) 

# Set status to 1 if part fails before end of warrranty. 
sampleDF$status[inWrnty] <- 1 

# Set age to compAge if part fails within warranty and wrnty if part has not failed. 
sampleDF$age[inWrnty] <- sampleDF$corapAge[inWrnty] 

# While there are vehicles in warranty, replace part, and add a new record. 
count <- 1 
while(numFailed > 0) 
{ 

newSamp <- rweibull(numFailed, shape=beta, scale=eta) 
newRecords <- data.frame(cbind(ID=sampleDF$ID[inWrnty], 

compAge=newSamp, status=0, vehAge=sampleDF$vehAge[inWrnty]+newSamp, 
age=wrnty-sampleDF$vehAge[inWrnty]) ) 

# Exclude records of parts that have been replaced from generating new records by changing 
# vehAge to 99999, which is beyond the warrnty. The vehicles's age will be kept by the 
# replaced part record. 

sampleDF$vehAge[inWrnty] <- 99999 

# Add the new records to the existing ones. 
sampleDF <- rbind(sampleDF, newRecords) 

# See which vehicles are in warranty in the new combined data frame. 
inWrnty <- sampleDF$vehAge < wrnty 

# Set status to 1 if part fails before end of warrranty. 
sampleDF$status[inWrnty] <- 1 

# Set age to compAge if part fails within warranty and wrnty if part has not failed. 
sampleDF$age[inWrnty] <- sampleDF$compAge[inWrnty] 

# See how many are still in warranty. 
numFailed <- count.rows(sampleDF[inWrnty,]) 

# Escape clause if there is a problem. 
count <- count + 1 
if(count==50) 

stop(message="Error: Generated 50 new samples already.") 
} 

# Fit a Weibull distribution to the sample. 
WblMdl <- survReg(Surv(age + 1, status, type = "right") ~ 1, data = sampleDF, 

na.action = na.exclude, dist = "weibull", scale=0, 
control=list(maxiter = 100, rel.tolerance=le-004, failure=l)) 
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# Return the Weibull parameters. The shape parameter (beta) is l/WblMdl$scale and the scale 
# parameter (eta) is exp(WblMdl$coeff). 

matrix(c(l/WblMdl$scale, exp(WblMdl$coeff) ), nrow=l, ncol=2) 
} 

E.4 Production Density {ProdDens.ssc) 
# PRODUCTION DENSITY 

# 
# DESCRIPTION 
# 
# INTRODUCTION 
# ============ 
# This function creates boxplots and density plots of vehicle production throughtout the year 
# if the input Plot parameter is set to T. 

# OUTPUT 
# ====== 
# A vector of the weekly median production using the sales 97 and 99 data frames. 

# 
# PROGRAM 
# 
"fProdDns" <-
function (Plot=T) 
{ 
# Calculate the day of the year that vehicles were produced in 97 and 99. 

prod97 <- sales97$prod - "12/31/1996" 
prod99 <- sales99$prod - "12/31/1998" 

# Convert these to densities. 
dens97 <- density(prod97, n=365, from=l, to=365) 
dens99 <- density(prod99, n=365, from=l, to=365) 

# Combine these two into one "average" production and obtain its density. 
prod <- c(prod97, prod99) 
prodDens <- density(prod, n=365, from=l, to=365) 

# Plot the density if the Plot parameter is T. 
if(Plot==T) 
{ 

plot(prodDens, ylim=c(0,0.0043), type="l", xlab="Day", ylab="Density") 
lines(dens97, col=2) 
lines(dens99, col=8) 
legend(-10, 0.0044, lty=l, col=c (2,8,1), legend=c("1997","1999","Combined")) 

# title("Production") 
} 

# Return the production density. 

prodDens 
} 

E.5 Sales Delay Density {DelayDens.ssc) 
# SALES DELAY DENSTIY 

# 
# DESCRIPTION 
# 
# PURPOSE 
# ======= 
# This function creates boxplots and density plots of the delay in selling a vehicle, if the 
# input Plot parameter is set to T. 

# OUTPUT 
# ====== 
# A vector of delay times from the claims97 and claims99 data frames. 



E.6 Random Samples With Continuous Production (SmpCont.ssc) 227 

# PROGRAM 
# 
"fDlayDns" <-
function (Plot=T) 
{ 
# Filter out records representing second or subsequent repairs. 

dup97 <- duplicated(claims97$VIN) 
dup99 <- duplicated(claims99$VIN) 

# Define dif as the difference between sale and prod. Look for outliers in delay. Remove cases 
# where sale is NA or < prod. 

dif97 <- (claims97$sale[!dup97] - claims97$prod[!dup97]) [! is.na (claims97$sale[!dup97] ) & 

claims97$sale[!dup97] >= claims97$prod[!dup97]] 
dif99 <- (claims99$sale[!dup99] - claims99$prod[!dup99]) [ lis.na (claims99$sale[!dup99] ) & 

claims99$sale[!dup99] >= claims99$prod[!dup99]] 

difBox97 <- boxplot(dif97,plot=F) 
difBox99 <- boxplot(dif99,plot=F) 
difOut97 <- difBox97$stats[l] 
difOut99 <- difBox99$stats[I] 

# This is the largest dif that is not an outlier 

# Sale will be in error if it is NA, < prod (this covers 0) or if sale is too long after prod. 
delay97 <- (claims97$sale[!dup97] - claims97$prod[!dup97])[!is.na (claims97$sale[!dup97] ) & 

claims97$sale[!dup97] >= claims97$prod[!dup97] & 
claims97$sale[!dup97] <= claims97$prod[!dup97] + difOut97] 

delay99 <- (claims99$sale[!dup99] - claims99$prod[!dup99])[!is.na(claims99$sale [ !dup99] ) & 
claims99$sale[!dup99] >= claims99$prod[!dup99] & 
claims99$sale[ldup99] <= claims99$prod[!dup99] + difOut99] 

# Combine these two into one delay vector. 
delay <-c(delay97, delay99) 
maxDelay <- max(delay) 
delayDens <- density( delay, n=maxDelay+l, from=0, to=maxDelay ) 

# Plot the graphs if graph parameter is T (default). 
if(Plot==T) 
{ 

boxplot(delay97, delay99, names=c("Study Year","Later Year"), style.bxp="old") 
title("Sales Delay Boxplots") 
plot(delayDens, ylim=c(0,0.025), type="l", 

xlab="Sales Delay Time (days)", ylab="Density", Page="New") 
lines(density(delay97, n=maxDelay+l, from=0, to=maxDelay), col=2) 
lines(density(delay99, n=maxDelay+l, from=0, to=maxDelay), col=8) 
legend(275, 0.025, lty=l, col=c(2, 8,1), legend=c("1997","1999","Combinded") ) 

# title("Sales Delay Time Density Plots") 
} 

# Return the delay density for the combined distribution: 
delayDens 

} 

E.6 Random Samples With Continuous Production {SmpContssc) 
# GENERATE RANDOM SAMPLES OF PRODUCTION, DELAY AND FAILURE TIMES: CONTINUOUS PRODUCTION 

# 

# DESCRIPTION 
I 
# OVERVIEW 
I ======== 
# This function simulates vehicle production, sales, and component failure. 
# This function assumes that the observation period starts on 1 January of a year. 

# INPUTS 
# ====== 
# yrProdn = the number of vehicles produced in one year. The sample size will be this figure 
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# multiplied by the length of the observation period. 
# wrnty = the length of the warranty in years. 
# obsPer = the observation period in years, simulating the time during which the data is 
# collected. 
# beta = the Weibull distribution shape parameter used to generate a sample of failure times. 
# eta = the Weibull distribution scale parameter. 

# OUTPUT 
# ====== 
# A matrix containing estimates of the two Weibull parameters obtained from the sample 

generated 
# in this function. 

# 
# PROGRAM 
# 
"fSmpCont" <-
function(yrProdn, wrnty, obsPer, beta, eta) 
{ 

# GENERATE PRODUCTION TIMES 
# ================.========= 
# Note: prodDens and cumProd are created in the script simulCont.ssc once and are available in 
# this function. This saves about 1 hour of processing time for the 1000 simulations called in 
# the script simulCont.ssc, which takes about 1 hour as is. 

# Provided that obsPer is at least 1 year, randomly select one year's production days. 
if(obsPer >=1) 
{ prod <- round( approx( 

cumProd, prodDens$x, xout=runif(n=yrProdn, min=min(cumProd), max=max(cumProd)))$y ) 

# If obsPer > 1 year, randomly select production days for subsequent years. Need to add 365 to 
# subsecjuent yea r s . 

yrsLeft <- obsPer - 1 
while(yrsLeft >= 1) 
{ 

nextYrProd <- round((obsPer-yrsLeft)*365.25) + round( approx( 
cumProd, prodDens$x, xout=runif(n=yrProdn, min=min(cumProd), max=max(cumProd)))$y 

) 

} 

yrsLeft <- yrsLeft -1 
prod <- c(prod, nextYrProd) 

# If observation period includes a decimal part, need to generate a part year's production. 
if(obsPer-floor(obsPer) > 0) 
{ 

rem <- round( (obsPer-floor(obsPer))*365.25 ) 
partYrProd <- round( approx(cumProd[1:rem], prodDens$x[l:rem], 

xout=runif(n=yrProdn*cumProd[rem],min=min(cumProd[1:rem]) ,max=max(cumProd[1:rem])))$y) 
prod <- c(prod, partYrProd) 

} 

# Compute the sample size over the entire observation period. 
sampSize <- length(prod) 

# CONVERT INPUT PARAMETERS FROM YEARS TO DAYS 
# =========================================== 

wrnty <- round(365.25*wrnty) 
obsPer <- round(365.25*obsPer) 

# GENERATE SALES DELAY TIMES 
# ========================= 
# Randomly select times from the delay densities. 

saleDelay <- round( approx( 
cumDelay, delayDens$x, xout=runif(n=sampSize, min=min(cumDelay), max=max(cumDelay)))$y 
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I GENERATE FAILURE TIMES 
# ====================== 
# Generate a random sample of failure times based on the Weibull distribution. 

samp <- round( rweibull(sampSize, shape=beta, scale=eta) ) 

# PUT THESE FIELDS INTO A DATAFRAME 
# ================================= 

# Create a data frame with fields: ID, component's age at failure (compAge), failure/censored 
# status (fail=l), vehicle's age at failure (vehAge) and component's age (age), be it censored 
# or observed, at the end of the warranty, production day (prod), the time it takes to sell 

the 
# vehicle (saleDelay), and calendar time (calTime). The field "age" will be set to wrnty, and 
# adjusted to a part's age if it fails before the warratny ends. 

sampleDF <- data.frame(cbind(ID=1:sampSize, compAge=samp, status=0, vehAge=samp, 
age=min(wrnty,obsPer), prod, saleDelay, calTime=prod + saleDelay + samp)) 

# Identify and count records where failure occurs within the warranty and observation periods. 
inPer <- sampleDF$vehAge < wrnty & sampleDF$calTime <= obsPer 
numFailed<- count.rows(sampleDF[inPer,]) 

# For parts that fail within the warranty and observation period, set status to 1 and age to 
# compAge, which is be the age at failure. 
# if(numFailed>0) 

{ 
sampleDF$status[inPer] <- 1 
sampleDF$age[inPer] <- sampleDF$compAge[inPer] 

# Set newRecords to sampleDF for use in the while loop below. 

newRecords <- sampleDF 
} 

# Set count to 0, which is to be used in an escape clause. 
count <- 0 

# REPLACE FAILED PART AND GENERATE RECORD FOR REPLACED PART 
# ========================================================= 
# To be done while there are failed parts on vehicles still in warranty and observation 

period. 
while(numFailed > 0) 
{ 

# Generate new records. 
newSamp <- rweibull(numFailed, shape=beta, scale=eta) 
newRecords <- data.frame(cbind(ID=newRecords$ID[inPer], 

compAge=newSamp, status=0, 
vehAge=newRecords$vehAge[inPer]+newSamp, 
age=min(wrnty,obsPer) - newRecords$vehAge[inPer], 
prod=NA, 
saleDelay=NA, 
calTime=newRecords$calTime[inPer] + newSamp ) ) 

# See which of these new records are within warranty and observation periods, and count. 
inPer <- newRecords$vehAge < wrnty & newRecords$calTime <= obsPer 
numFailed <- count.rows(newRecords[inPer,]) 

# For parts that fail within the warranty and observation period, set status to 1 and age to 
# compAge, which is be the age at failure. 

if(numFailed>0) 
{ 

newRecords$status[inPer] <- 1 

newRecords$age[inPer] <- newRecords$compAge[inPer] 
} 

# Add the new records to the existing ones. 
sampleDF <- rbind(sampleDF, newRecords) 

# Escape clause if there is a problem. 
count <- count + 1 
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if(count==50) 

stop(message="Error: Generated 50 new samples already.") 
} 

# Fit a Weibull distribution to the sample. 
WblMdl <- survReg(Surv(age + 1, status, type = "right") ~ 1, data = sampleDF, 

na.action = na.exclude, dist = "weibull", scale=0, 
control=list(maxiter = 100, rel.tolerance=le-004, failure=l)) 

# Return the Weibull parameters. The shape parameter (beta) is l/WblMdl$scale and the scale 
# parameter (eta) is exp(WblMdl$coeff). 

matrix(c(l/WblMdl$scale, exp(WblMdl$coeff) ), nrow=l, ncol=2) 
} 

E.7 Random Samples With 1 Year's Continuous Production {SmpContlyr.ssc) 
# GENERATE RANDOM SAMPLES OF PRODUCTION, DELAY AND FAILURE TIMES: 1-YEAR CONTINUOUS PRODUCTION 

# 
# DESCRIPTION 
# 
# OVERVIEW 
# ======== 
# This function simulates vehicle production and sales, and assigns a failure time for a 
# component. 
# This function assumes that the observation period starts on 1 January and is >=1 yr. 

# INPUTS 
# ====== 
# yrProdn = the number of vehicles produced in one year. The sample size will be this figure 
# multiplied by the length of the observation period. 
# wrnty = the length of the warranty in years. 
# obsPer = the observation period in years, simulating the time during which the data is 
# collected. 
# beta = the Weibull disrtibution shape parameter used to generate a sample of failure times. 
# eta = the Weibull distribution scale parameter. 

# OUTPUT 
# ====== 
# A matrix containing estimates of the two Weibull parameters obtained from the sample 

generated 
# in this function. 

# 
# PROGRAM 
# 
"fSmpConl" <-
function(yrProdn, wrnty, obsPer, beta, eta) 
{ 
# GENERATE PRODUCTION TIMES 
# ========================= 
# Note: prodDens and cumProd are created in the script simulCont.ssc once and are available in 
# this function. This saves about 1 hour of processing time for the 1000 simulations called in 
# the script simulCont.ssc, which takes about 1 hour as is. 

# Provided that obsPer is at least 1 year, randomly seclect one year's production days. 

prod <- round( approx( 
cumProd, prodDens$x, xout=runif(n=yrProdn, min=min(cumProd), max=max(cumProd)))$y ) 

# CONVERT INPUT PARAMETERS FROM YEARS TO DAYS 
# ========================================= 

wrnty <- round(365.25*wrnty) 
obsPer <- round(365.25*obsPer) 

# GENERATE SALES DELAY TIMES 
# ==================== 
# Randomly select times from the delay densities. 
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s a l e D e l a y <- round( a p p r o x ( 
cumDelay, d e l a y D e n s $ x , x o u t = r u n i f ( n = y r P r o d n , min=min(cumDelay) , max=max(cumDelay)))$y ) 

# GENERATE FAILURE TIMES 

# Generate a random sample of failure times based on the Weibull distribution. 
samp <- round( rweibull(yrProdn, shape=beta, scale=eta) ) 

# PUT THESE FIELDS INTO A DATAFRAME 

# Create a data frame with fields: ID, prod, saleDelay, fail, status, calTime (calendar time). 
# Note: As observation is for 2 years, all vehicles will be within the 3 year warranty, so 

there 
# is no need to keep track of the vehicle's age. 

sampleDF <- data.frame(cbind(ID=1:yrProdn, compAge=samp, status=0, vehAge=samp, 
age=min(wrnty,obsPer), prod, saleDelay, calTime=prod + saleDelay + samp)) 

# Identify and count records where failure occurs within the warranty and observation periods. 
inPer <- sampleDF$vehAge < wrnty & sampleDF$calTime <= obsPer 
numFailed<- count.rows(sampleDF[inPer,]) 

# If there are failures during the warranty and observation period, set status to 1 and age to 
# compAge, which will be the age at failure. 
# if(numFailed>0) 

{ 
sampleDF$status[inPer] <- 1 
sampleDF$age[inPer] <- sampleDF$compAge[inPer] 

# Set newRecords to sampleDF for use in the while loop below. 

newRecords <- sampleDF 
} 

# Set count to 0, which is to be used in an escape clause. 
count <- 0 

# REPLACE FAILED PART AND GENERATE RECORD FOR REPLACED PART 

# To be done while there are failed parts on vehicles still in warranty and observation 
period. 
while(numFailed > 0) 
{ 

# Generate new records. 
newSamp <- rweibull(numFailed, shape=beta, scale=eta) 
newRecords <- data.frame(cbind(ID=newRecords$ID[inPer], 

compAge=newSamp, status=0, 
vehAge=newRecords$vehAge[inPer]+newSamp, 
age=min(wrnty,ObsPer) - newRecords$vehAge[inPer], 
prod=NA, 
saleDelay=NA, 
calTime=newRecords$calTime[inPer] + newSamp ) ) 

# See which of these new records are within warranty and observation periods, and count. 
inPer <- newRecords$vehAge < wrnty & newRecords$calTime <= obsPer 
numFailed <- count.rows(newRecords[inPer,]) 

# If there are failures during the warranty and observation period, set status to 1 and age to 
# compAge, which will be the age at failure. 

if(numFailed>0) 
{ 

newRecords$status[inPer] <- 1 

newRecords$age[inPer] <- newRecords$compAge[inPer] 
} 

# Add the new records to the existing ones. 
sampleDF <- rbind(sampleDF, newRecords) 
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# Escape clause if there is a problem. 
count <- count + 1 
if(count==50) 

stop(message="Error: Generated 50 new samples already.") 
} 

# Fit a Weibull distribution to the sample. 
WblMdl <- survReg(Surv(age + 1, status, type = "right") ~ 1, data = sampleDF, 

na.action = na.exclude, dist = "weibull", scale=0, 
control=list(maxiter = 100, rel.tolerance=le-004, failure=l)) 

# Return the Weibull parameters. The shape parameter (beta) is l/WblMdl$scale and the scale 
# parameter (eta) is exp(WblMdl$coeff). 

matrix(c(l/WblMdl$scale, exp(WblMdl$coeff) ), nrow=l, ncol=2) 
} 


