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Abstract

Device power dissipation has grown exponentially due to the rapid transistor technology
scaling and increased circuit complexity. Motivated by the ultra low power requirements of
emerging implantable and wearable biomedical devices, novel power management schemes
are presented in this thesis to increase device run-time. The schemes involve several

techniques suitable for ultra low power biomedical integrated circuit design.

This thesis presents a combination of two novel power reduction schemes to reduce the total
device power comprising of dynamic and static power dissipation. One of the schemes used is
the supply voltage (Vq4q) scaling, also known as Dynamic Voltage Scaling (DVS). DVS is an
effective scheme to reduce dynamic power (Pgynamic) dissipation. The DVS architecture
primarily consists of a DC-DC power regulator which is customised to handle scaling
variability of the Vy4. The implemented DVS can dynamically vary the Vg from 300 mV to
12V.

The second scheme presented in this thesis to reduce static power (Pgaic) dissipation is
threshold voltage scaling. The variable threshold keeper technique is used to perform threshold
voltage scaling, which comprises of a keeper transistor whose threshold voltage is scaled by a

body bias generator. The use of the keeper transistor increases the device noise immunity.

This combination of supply and threshold voltage scaling techniques offers a further reduction
in the overall device power dissipation and enhances reliability without degrading circuit
speed. A power reduction of 23% to 31% is achievable with up to 90% efficiency. The thesis
discusses the primary design challenges of ultra low power biomedical devices. System and
circuit levels design techniques are described which help meeting the stringent requirements
imposed by the biomedical environment. This thesis presents a new DVS architecture and
investigates the effect of lowering the supply voltage combined with threshold voltage scaling
on dynamic power dissipation using 0.13 um ST-Microelectronic® 6-metal layer CMOS dual-

process technology.
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Chapter One:
Introduction

1.1 Background of This Research

Australia, as the world’s smallest continent, is located in the southern hemisphere of
the world. Demographically, Australia comprises of 5% of the world’s land area, at
7,692,024 km? of world’s total 149, 450,000 km?, and is the sixth largest country after
Russia, Canada, China, USA, and Brazil. However, Australia is 30 times smaller in
population when compared with Europe having a population density of just 2.5 people
per km?. The majority of Australia’s population and cities are spread along the coastal
areas [1]. As a consequence, primary infrastructure such as medical facilities are
located in coastal areas [2]. The infrastructure overlay makes it difficult for people

living in rural area to get medical attention.

Although, Australia is known to have adequate medical knowledge and technology,
the number of hospitals and medical practitioners are not sufficient to satisfy all
patients needs. The Australian government has tried to solve this problem by:
increasing the number of hospitals and medical professionals, by making
improvements to medical facilities, introduction of flying doctors for rural patients,
and increasing research activity in medical fields. However, all of these developments
have an impact on medical care cost. Australia needs a cheaper solution to this
problem. Therefore, the Australian government have encouraged medical research
activity in the field of biomedical engineering [3]. Biomedical Engineering is defined
as the application of engineering principles to the field of biology and medical
chemistry, as for example in the development of aids or replacements for defective of

missing body organs which cause problems to human health. Engineering in this
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context is the application of scientific and mathematical principles to the design,

manufacturing and operation of the practical devices.

One of the emerging fields in Australian engineering is Microelectronic engineering.
Microelectronic engineering, particularly Complementary Metal Oxide Semiconductor
(CMOS) integrated circuits, has shown its wide application in many key consumer
products from computers, automobiles, consumer electronics and telecommunications
equipment. Its wide use in our daily life, has enabled low production and material
cost. The Australian government has recognised CMOS technology as the solution for
the missing link in the medical field, and is encouraging researchers to investigate
CMOS biomedical portable devices [4, 5].

Some of the enhancements in biomedical technology due to CMOS implementation
are shown in Figure 1.1. A Home tele-monitoring system as shown in Figure 1.1a; it is
a personal home health monitoring system, which is capable of measuring heart rate,
pulmonary arterial pressure and breathing regularity [6]. The collected measurements
are then packaged and sent via an internet connection to the hospital and further
diagnosed by medical professionals. The medical professionals would then directly
provide, as appropriate, a prescription from the diagnosis or dispatch a medical team
for a critical patient. This medical system would be very beneficial for patients
residing in rural areas, and could potentially reduce general medical costs. Implantable
medical devices have improved in size, function and comfortableness. Electrical
pacemakers have replaced the mechanical pacemaker which was very bulky and
introduced an unpleasant experience to recipients, as shown in Figure 1.1b) [7, 8].
Another example, shown in Figure 1.1c), is a Response Drug Delivery (RDD) system
[9], which is implanted under the skin and is capable of detecting human’s blood
chemical inadequacy which then releases appropriate medication. The response drug
delivery system, or Smart-drug, has proven to be very efficient for diabetes sufferers
where constant medication is required. CMOS technology and Micro-Electro-
Mechanical systems (MEMS) have resulted in an implantable CMOS retina sensor for

sight impaired patients in Figure 1.1d) [10].
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Figure 1.1: Examples of Biomedical enhancements through CMOS technology.

1.2 Motivation

The motivation behind this research comes from the interest of the candidate in the
area of pervasive computing healthcare technologies and wearable biomedical devices.
Most of the applications proposed in these areas consist of a sensor, data collecting and

communication infrastructure for data transfer.



Chapter One: Research Objectives and Aims 4

A biomedical portable device primarily functions as a personal aid device. As the
name ‘portable’ indicates, it needs to be small in dimensions, battery operated and
preferably to have wireless capabilities for mobile use. The fact that the nature of
usage is either attached to or implanted in the human’s body, requires the device to

have very low power consumption in order to be efficient [7].

Very low power consumption is the primary criteria in biomedical devices and is the
driving motivation for this research. This research involves the design of circuits that
enable dynamic power management and dynamic leakage current management or
schemes, combined with low power logic design techniques at processor logic core
level, for CMOS biomedical devices.

1.3 Research Objectives and Aims

The objective of this research is to design and implement power management schemes
that will minimise power usage for application in biomedical devices. The specific
aims of this research are:
e To investigate CMOS transistor behaviour in the ultra low operating region
for biomedical devices,
e To develop ultra low power logic techniques,
e To design and implement dynamic voltage supply (Vqq) scaling to reduce
dynamic power dissipation,
e To design and implement dynamic threshold voltage (V;) scaling to reduce
static power dissipation, and
e To analyse the performance of the combined power management schemes on

a Fast Fourier Transform processor core.
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1.4 Research Design Methodologies and Techniques

The proposed research methodology and techniques to accomplish the afore mentioned

aims are as follow:

e Investigate transistor behavior in the low operating region (subthreshold).
Since minimisation of power is the primary aim of this research, the starting point for
ultra low power design is to investigate transistor behaviour and characteristics in the
low operating region (subthreshold). An extensive literature review regarding the
source of power dissipation has been undertaken prior to proceeding with the design
step. The CMOS transistor’s power dissipation characteristics, behaviour analysis and
performance limitations in subthreshold region were investigated by applying different
biasing techniques. The design and implementation was performed using Electronic

Design Automation (EDA) tool sets from the Cadence Corporation.

e Develop and investigate low power logic techniques
Ultra low power logic techniques were developed to reduce power dissipation as well
leakage current. The analysis of biasing techniques in the subthreshold region was used
to develop ultra low power logic schemes. The first step was to investigate and
combine several structures, power reduction techniques and range of power reduction
values achievable. The most suitable structure combinations were chosen, developed
and analysed for their use in the core design of biomedical applications. This step was
repeated to develop a small component library using a combination of material
parameters together with a range of values in the CMOS fabrication process. The
designs and their implementation were performed using Electronic Design Automation

(EDA) tool sets from the Cadence Corporation.

e Design and implementation of dynamic supply voltage scaling
A dynamic supply voltage (Vq4qg) scaling module makes use of a clock frequency signal
from the processor block. The module scales the power supply up or down, based on
the clock signal. In designing dynamic Vg4 scaling, initially a virtual clock is given to

the input and an observed stable analog voltage output must be maintained. Since the
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dynamic Vg scaling circuit controls the power supply of the whole core circuitry,
careful attention must be given to the current driving capability of the design. The
dynamic Vyg scaling was designed to respond at different frequencies and the
performance was analysed. The selected design was optimised for performance in

terms of minimizing power consumption and reducing physical area of the circuit.

e Design and implementation of dynamic threshold voltage scaling.
Designing a dynamic threshold voltage (V:) scaling block is critical, as the leakage
current is the main factor in static power consumption. Firstly, an appropriate transistor
technology model library must be used. Secondly, the V; scaling itself acts as a leakage
current monitor (LCM) block, so preferably the same transistor technology model as
the core logic is needed. The selected design was optimised for performance in terms

of minimizing power consumption and reducing physical area of the circuit.

e Performance analysis of the dynamic power management scheme.
The performance of the power management chip was analysed with the respective FFT
core logic, and compared in terms of reliability, speed, and power dissipation

reduction.

1.5 Originality of the Thesis

In this dissertation the design and implementation of a low cost, low power, power
management schemes for biomedical devices has been addressed. This research
therefore represents a contribution of knowledge to integrated circuit power

management in following key areas:

Power: Power reduction in dynamic and static power domains is the main topic in this
thesis. Improved power management reduces the power dissipated in the biomedical
device.

Performance: Bigger computation tasks require the processor to work harder, whilst

smaller tasks do not require the processor to work at the same performance levels. The
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performance of any particular device can now be varied according to the computation
tasks, thereby improving the efficiency.

Weight: Portability of biomedical devices is one of the issues being addressed in this
thesis. Improvement in transistor technology used for the development of biomedical
devices reduces the physical size and weight of the device.

Functionality: Power management schemes allow a reduction in the power and heat
generated by the device. As a result more functionality can be added onto the chip
which reduces the risk of overheating.

Cost: A biomedical device designed using CMOS technology has the potential
advantage of lower production costs.

1.6 Thesis Organisation

The Thesis is organised into 9 chapters. Chapter 2 introduces the literature review and
the background of this research. Several approaches to low power design are reviewed.
In Chapter 3, low-voltage CMOS implementations of the three basic switching
regulator topologies - buck, boost, and buck-boost - are introduced. A mathematical
model is developed to estimate the overall battery run-time enhancements that can be
effected by DC-DC converters. The requirements imposed on these regulators by the
portable environment are described. Design equations and closed-form expressions for
losses are presented for both pulse-width and pulse-frequency modulation schemes.
Alternative regulator topologies which may find use in ultra-low-power applications
where voltage conversion or regulation is required are introduced. Chapter 4 and 5
discuss the design techniques of each module involved in DC-DC conversion
technique and voltage scaling, respectively. Mathematical models and simulation
results of the optimized modules are presented. Chapter 6 discusses the possibility of
applying threshold scaling in conjunction with voltage supply scaling for better
performance, while Chapter 7 discusses the implementation aspect of the designed
threshold scaling scheme to reduce static power dissipation. Chapter 8 discusses the
integration results and layout implementation of the schemes in a FFT system. Chapter

9 is a conclusion which include of discussion of possible further work.
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1.7 Conclusion

This research dissert