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Abstract 

This work describes the development of a new type of "service robot" called "MROLR" capable 
of searching for, locating (pose determining), recognizing, and retrieving 3D objects in an 
indoor environment. Key related contributions include the development of 3D object-model 
creation and editing facilities, and the application of a vision enhanced navigation algorithm. 

MROLR comprises a mobile robot transporting a four degrees of freedom (DOF) stereo head, 
equipped with two calibrated charge-coupled device (CCD) video cameras, and a docking robot 
arm. The principal navigation mode utilises Simultaneous Localisation and Map-building 
(SLAM) to update and maintain a map of the robot's location and multiple navigational-feature 
positions as it steers towards specified coordinates. The algorithm is Kalman Filter based. 
Navigation-features comprise either of known (previously stored) or newly acquired, visible 
landmarks. During navigation, automatic navigation-feature selection and measurement is 
performed and the results of measurements used to substantiate or correct odometry readings. 

Objects to be retrieved from a scene have an associated (previously created and stored) object-
model Object-models are created by the integration of a sequence of 3D models constructed 
from stereo image pairs, each representative of the object in varying angular positions. The 
model of an object sought is retrieved from a database and matched against scene-models until 
recognition and pose is established. Scene-models are formed during the search while panning 
the scene. Both object-models and scene-models comprise 3D straight line and conic segments. 
Recognition is based on verifying the existence of mutual groups of 3D line and or conic edge 
features in both the scene and model object. Where the object has sufficient distinctive features, 
recognition is view independent and tolerant to both scale variations and occlusions. On finding 
the object, a six DOF robot arm, attached to a caster platform, is manually docked with the 
mobile robot. Using the object's pose transform the arm is able to grasp and place the object on 
the mobile base. The arm is manually de-coupled from the mobile robot and the object 
transported back to the home position. 

While it would be possible to mount the head and arm on one mobile base, the intention here is 
to ultimately have a light weight fast moving "scout robot" to seek and find using vision, and a 
slower heavy-duty transport robot to lift and carry. 

Finally a "3D Virtual Environment" for simulating MROLR, that could be useful for evaluating 
alternative map-building strategies, object grasping points, as well as for demonstration and 
educational purposes, has been implemented, although is not yet complete. 

Key Words: 3D modeling, recognition, stereo vision, mobile robot navigation. 
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f state transition fimction: The state transition fimction is a function of x 
andu 
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At step time interval 

z measurement vector, z is used to designate an actual measurement (i.e., 
using the active stereo head) 

CO 
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moi scalar length of vector moi 
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m, m(x) prediction of the measurement z, m(x) = mi(Xy,yi) 

X system state vector 
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X estimateof system state vector 

X (k+l/k) current estimation of system state vector (estimate of x at a time step k + 1 
based on an estimate at time, step k and an observation (measurement) 
made at time step 
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V innovation, v is the difference between the actual measurement z and the 
predicted measurement m 
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noise in the measurement 
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space 
S innovation covariance, represents the uncertainty in a measurement (i.e., 

the amount by which an actual measurement differs from its predicted 
value). 

SmGi innovation covariance of measurement associated with mci 
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U covariance matrix of control vector u, and a^ , o-„ are the 
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\^LJ 
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Object Modelling, Recognition and Associated Symbols 

(li, ij+i, Ci, mi) quadruple representing 3D line segment i, that is the two end points li and 
li+i, the direction vector between them ei ,and centroid ofthe line, its 
midpoint mi 

a orientation difference between two line segments 

h vector distance between two line segments 

h scalar distance between two line segments h = hd 

d the unit vector normal between two line segments 

Si scalar distance from the point of minimum distance between two line 
segments (i, i+1), to the start ofthe segment i, measured parallel to 
segment i. 

tj scalar distance from the point of minimum distance between two line 
segments (i, i+1), to the end ofthe segment i, measured parallel to 
segment i. 
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Pi permissible scalar error values 

mi+i' mj+i vector modified by the addition of -h to make it coplanar with mi 
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Chapter 1 About This Thesis 

1.0 Introduction 

The work presented in this thesis comprises the development and analysis of a mobile robotic 
system capable of visually locating specific 3D objects in an indoor enviroimient and 
transporting them to a given location. Its classification would fit into the category of "service 
robots" and it has been named "MROLR", A Mobile Robotic Object Locator and Retriever. 

1.1 Thesis Objectives 

The main objectives of this thesis are to: 

• gain a theoretical understanding ofthe problems relating to visually locating, identifying, and 
physically retrieving specified 3D objects in a knovm indoor environment, utilising mobile 
robotic platforms 

• develop feasible solutions for the implementation of a working system 
• evaluate implemented solutions 

Consider the requirements of a robotic system that can be given instructions to fetch a specified 
object in the current environment, at present confined to be indoors. If the object is visible this is 
of course a relatively simple task for a human, but still a difficult problem for a robot. Practically 
the problems involved can be identified as: 

• describing the target object to the robot 
• autonomously navigating in the environment (including avoiding obstacles) 
• visually being able to recognise the object 
• determining the object's pose (that is its position and orientation) 
• grasping the object 
• remaining both within financial and time constraints 

The robotics/machine vision discipline is now relatively mature and a significant number of 
authors have developed systems that can perform several of the above tasks, i.e. autonomous 
navigation, object recognition and pose determination, and visually guided object grasping by a 
robot arm. Many of the authors and systems are reviewed or mentioned in the following 
chapters. 

Putting together the desired system by building on the work of others, on the surface at least, 
appears quite sfraightforward, merely a matter of integrating and supplementing successfully 
proven concepts. Choosing from available leamed publications nevertheless poses dilemmas. 
Authors invariably claim improvements in one or more aspects of their work over previous 
attempts by others, claims that often are difficult to substantiate. Furthermore, interpreting their 
work, implementation, and finally reaching a satisfactory degree of operation, can prove 
difficult. By and large the above steps constitute a substantial part of this work. 
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Acknowledgement of the contributions made by others to this work is given in the various 
chapters where they occur. 

The incentive and motivation for developing "MROLR" and the contributions made by this work 
together with an outline ofthe thesis structure is given in sections 1.3,1.4 and 1.5 respectively. A 
brief survey of service robots is given below. 

1.2 Service Robots 

Historically robots were designed predominantly for use in factories for ptirposes such as 
manufacturing and transportation, but advances in technology have widened their applications, 
enabling them to automate many tasks in non-manufacturing sectors such as agriculture, 
construction, health care, retailing and other services. Broadly these systems, including the one 
being developed in this work, may be classified as "service robots", and fall into categories such 
as: 

Cleaning, Lawn mowing, and Housekeeping Robots 
Entertaining Robots 
Humanoid and Apprentice Robots 
Rehabilitation Robots 
Humanitarian Mine Disarming Robots 
Medical Robots 
Agricultural and Harvesting Robots 
Sheep Shearing Robots 
Surveillance Robots 
Inspection Robots 
Construction Robots 
Automatic Refilling Robots 
Fire Fighting and Rescue Robots 
Robots in Food Industry 
Tour Guides and Office Robots 
Flying Robots 
Space Exploration and Terrain Mapping Robots 

The list of service robots, v^th ever improving abilities, is growing at an impressive rate. 

1.3 Incentive and l\/lotivation for Developing "MROLR" 

As implied above, the catalogue of service robots is growing rapidly and it is anticipated that in 
the near future autonomous systems, providing safe, reliable navigation, search, and object 
recognition and retrieval abilities will join the list. The development of such a system was an 
incentive for commencing this work and has led to the creation of MROLR. MROLR is a 
navigating mobile robotic system capable of searching for, locating (pose determining), 
recognising, and retrieving 3D objects in an indoor environment. The system comprises a mobile 
robot transporting a 4 DOF stereo head, equipped with 2 calibrated charge couple device (CCD) 



Chapter 1 About This Thesis 

video cameras, and a docking robot arm. The principal navigation mode incorporates 
Simultaneous Localisation and Map-building (SLAM) that uses an Extended Kalman Filter 
(EKF) to update and maintain a map of the robot's location and multiple navigational-feature 
positions as it steers towards specified coordinates. Navigation-features comprise either of 
known or newly acquired visible features. Knovm features are a priori stored while newly 
obtained features are acquired while fracking. During navigation, automatic navigation-feature 
selection and measurement is performed. The results of these measurements in combination with 
odometry readings are used to obtain good robot and feature position estimates. Limited obstacle 
detection and circiramavigation (avoidance) is incorporated. 

Surveying ofthe scene for objects to be recognised occurs at specified locations termed waypoint 
stations. At waypoints associated with object locations (i.e., tables laden with objects), the head's 
gaze is lowered and it sweeps through a pan of -20 to +20 degrees in search of the desired 
object. At present (while panning for scene-objects) the tilt and vergence angles remain fixed 
during this sweep. This ensures the cameras' motion (and consequently the structure-from-
motion) is consistent with their calibration. It is proposed to vary the tilt and vergence angles in a 
sequence of movements in the future for a variety of different calibrated camera motions. 

The recognition system utilises a database of object-models from which sought objects are 
selected and subsequently matched against scene-models. Database stored object-models are 
individually constructed at a prior time. Object-model creation comprises the integration of a 
sequence of 3D models constructed from stereo image pairs, each representative of the object in 
varying angular positions. The object-model of an object of interest to be located in a scene is 
retrieved from a database and matched against scene-models until recognition and pose is 
established. Scene-models, unlike object-models are formed during searching, while panning the 
scene. Both object-models and scene-models comprise 3D straight line and conic segments. 
Recognition is based on verifying the existence of mutual groups of 3D line and or conic edge 
features in both the scene and model object. Where the object has sufficient distinctive features, 
recognition is view independent and tolerant to both scale variations and occlusions. On finding 
the object, a 6 DOF robot arm attached to a caster platform is manually docked with the mobile 
robot. Using the object's pose transform the arm is able to grasp and place the object on the 
mobile base. The arm is manually de-coupled from the mobile robot and the object transported 
back to the home position. In a future version of the MROLR, the arm will be mounted on a 
mobile transport robot, that will be signalled via a wireless modem, and on receiving this 
command navigate to and dock with the active vision base. The construction of this "transport 
robot" (at the time of this writing) is near completion (Figs 6.7.2). While it would be possible to 
mount the head and arm on one mobile base, the intention here is to ultimately have a light 
weight fast moving "scout robot", and a slower heavy-duty "transport robot". The scout would 
map and model the environment, and seek and find target objects using vision. When a target 
object was located, then its positional information and path directions would be relayed to the 
transport robot which would proceed with the task of object retrieval and transport. 

Motivation for this work also stems from the desire to ultimately develop a system capable of 
rapid and reliable retrieval of objects in both domestic and industrial enviromnents. It is believed 
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that potential applications for such an improved system range from simple domestic and 
industrial "robotic aids", to "assistants" for the severely physically disabled or visually impaired. 

A prolific collection of literature exists on each of the fields of 3D object recognition, pose 
determination, mobile robot navigation, and robot arm kinematics relating to object grasping. 
Each of these comprises significant areas of research and development for the machine vision 
and robotics fraternity. The merging of both related and unrelated scientific endeavors provide a 
wealth of design building blocks and opportunities for creative mechatronic engineering 
applications. The emergence of service robots is such an example. 

1.4 Contributions of this thesis: 

The major contribution made by this thesis is in the design and implementation of "MROLR", a 
new type of "service robot", comprising a navigating mobile robotic platform system with active 
vision and retrieval abilities. 

Related contributions stem from: 
• Development of a 3D object-model creating facility (design and construction of a motor 

driven turntable, and related software). 
• Development of a model editor to facilitate the manual removal and/or addition of 3D 

segments in formed models. 
• Extension and modification of existing recognition algorithms to facilitate automated 

recognition while searching and scanning the scene. 
• Extension and modification of existing active vision based navigation software to work with 

the designed mobile base. This included the writing of an obstacle detection and avoidance 
module. 

• Development of kinematic solutions from object pose information, to enable the robot arm to 
grasp and retrieve the desired object. 

• Preliminary design and construction of a "transport" robot base with moimted robot arm, and 
related software. 

• Preliminary implementation of a "3D Virtual Environment" for simulating MROLR, that 
could be useful for evaluating altemative map-building strategies, object grasping points, as 
well as for demonstration and educational purposes. 

As is common with many engineering projects, a substantial amount of ancillary software and 
electronic hardware is required and inevitably must be tailor designed and built to meet special 
requirements. An example is the software to enable handshaking and the exchange of both video 
and numerical data between the various intercoimected PC platforms, and hardware devices, 
comprising MROLR. These include the mobile base, active 4 DOF head, robot-arm, and frame-
grabber, and facilitated by the establishment of a local area network. Hardware examples include 
electronic boards required to drive rotating or moving items such as the computer controlled 
model creating facility, and "transport" mobile base. 

Much of the work carried out in this project was greatly assisted by the generous co-operation 
and advice given by colleagues acknowledged on page v, and throughout this thesis. 
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1.5 The Structure of this Thesis 

Chapter 2 commences with a review of historical developments and work related to this research. 
It is primarily a synoptic review. The areas covered include service robots, 3D object-
recognition, pose determination, and mobile robots with metric maps. 

Chapter 3 describes the system equipment comprising MROLR. Both hardware and software 
requirements are examined. Specific details such as hardware circuits designed and built, and 
software driver modules written, are given in Appendix B. 

Chapter 4 provides detailed background information on mathematical notation and concepts used 
throughout this thesis. A variety of models that form the preliminary analysis to following 
chapters are introduced. Models included are for the camera, stereo head, and mobile base. 
Algorithms and tools used for object and scene-modeling are also introduced. 

Chapter 5 develops algorithms for autonomous navigation from an initial coordinate frame. 
Navigational features facilitated through active stereo vision and odometry include simultaneous 
map building and localisation, and limited obstacle avoidance. The algorithms are based on and 
build upon those of Davison [Dav98], [DavOl] and use an Extended Kahnan Filter with 
maintenance of fiill covariance knowledge between sets of map-features. 

Chapter 6 comprises of four sections, the first outiines the 3D object-model producing facility 
developed to provide an object-model data base of objects that MROLR could be requested to 
locate and retrieve in the fixture. These objects would be searched for at designated stopover 
points (waypoints) along navigational routes. The facility also includes a 3D object-model editor. 

The second section outlines the development ofthe object recognition module that is responsible 
for (a) matching requested target objects with objects in a scene, (b) Obtaining appropriate 
transforms to graphically fransport the object-model into the scene, after successful matches. 

The third section establishes the transforms necessary to guide the robot arm to grasp and 
retrieve the located object. Grasping locations are contained within the data provided for each 
created object-model (i.e., handle of a cup, etc.). 

The Final section outiines the implementation of a "3D Virtual Environment" for simulating 
MROLR. 

Chapter 7 
Specific tests performed and results obtained, are described in this chapter. It is considered that 
these verify the methodology of this research. Tests include navigating to a variety of specified 
waypoints and recognising and retrieving requested target objects. During navigation, self-
localisation map building and acquisition and storing of navigational features (to become 
"known-feature" aids for future use) are also performed. 

Chapter 8, this final chapter concludes by summarizing the main contributions of tiiis work and 
outlines envisaged futiu-e directions and extensions. 
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Appendix A describes some early approaches and methods evaluated, but ultimately discarded 
by the author in the process of obtaining an effective recognition module for MROLR. 

Appendix B 
A substantial amount of ancillary software and electronic hardware was designed and developed 
for MROLR. Appendix B contains additional specific details relating to these designs. This is 
included for clarification and extension of information provided in various chapters. 

Appendix C continues with the algorithmic development for continuous tracking of multiple 
features using active vision commenced in Chapter 5. It concludes with the "Vs" criterion tiiat 
provides direction as to which navigational landmark feature is optimal to next track. 

Finally a comprehensive Bibliography is provided. This is a collection of references maintained 
and used by the author. 

1.6 Conclusion 

This introductory chapter has detailed the objectives, incentive and motivation, and contributions 
of this work. It concludes with a summary description ofthe content of each chapter that follows. 
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Chapter 2 Historical Developments and Related Work - A Synoptic 
Review 

2.0 Introduction 

Modem robot designs and applications extend well beyond the requirements of the 
manufacturing sector. Service robots are being utilised as aids and for tasks hither too 
unimaginable by most. MROLR is classified as a "service robot", its object recognition and pose 
determining modules are "model based", while navigation, a combination of landmark mapping 
(for route planning and localisation) and odometry based. Significant progress and advances in 
these fields have taken place over the past three decades, spurred undoubtedly by the quest for 
machines with greater autonomy. A vast quantity of literature relating to these developments has 
also emerged, with much of it now readily accessible via the Intemet. A synoptic review of 
associated historical developments and related work is given in the following sections of this 
chapter. 

Section reviews are organised as follows: 

• 2.1 Service robots and applications 
• 2.2 3D object recognition and pose determination 
• 2.3 Robots utilising metric maps (several of these are service robots) 
• 2.4 Mobile robots using vision sensors to aid navigation 

2.1 Service Robots 

2.1.1 Apprentice Robots 

Moderate success has been achieved in getting robot apprentices to leam 3D motions and tasks 
by visual observations (see for example Bentivegna et al [BA02], Atkeson and Schaal [AS97]). 
Wingate and Stoica [WS96], [WS97] developed a fuzzy-neural robot arm controller, based on 
the composition of triangular norms and co-norms (S-T norms). The system utilised 2 cameras to 
enable the robot to view (a) the motion ofthe Master's arm (human arm, or robot teacher's arm), 
and (b) the motion of its own arm (Apprentice's arm). Two leaming modes were developed. In 
the first the robot apprentice looked at the Master's arm and its own altemately, and attempted on 
each viewing to minimise position error variables. In the second mode, only the Master's arm is 
watched. The robot being free to issue arm joint commands more or less at random, such that its 
arm took up a variety of postures. For each position the Master attempts to place his arm in a 
corresponding posture to that of the robot. When arm positions are sufficientiy similar, the robot 
is advised, and a process of validation takes place. Association between images of the Master's 
arm, and joint motor commands that the apprentice robot gives to position its ovm arm (to arrive 
at similar postures) are leamt, and subsequentiy used as part of the apprentice robot's command 
set. 
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Apprentice robot leaming (a) from human Master's arm and (b) A Master (pre-programmed) robot. 

Fig 2.1.1.1 Apprentice robot 

As discussed in Chapter 8, under "Future Directions and Work", it is intended to revisit this work 
with a view to adding gesture recognition capabilities to MROLR. 

2.1.2 Template-Based Recognition of Pose and Motion Gestures On a Mobile Robot 

Waldherr et al [WTRM98] produced a vision-based interface that has been designed to instruct a 
mobile robot through both pose and motion gestures. An adaptive dual-colour algorithm enables 
the robot to track and, if required, follow a person around at speeds of up to one foot per second 
while avoiding collisions with obstacles. This tracking algorithm quickly adapts to different 
lighting conditions. Gestures are recognised by a real-time template-matching algorithm. This 
algorithm works in two phases, one that recognises static arm poses, and another that recognises 
gestures (pose and motion). In the first phase, the algorithm computes the correlation of the 
image with a pre-recorded set of example poses (called: pose templates). In the second phase, the 
results of the first phase are temporally matched to previously recorded examples of gestures 
(called: gesture templates), using the Viterbi algorithm Rabiner & Juang [RJ86]. The gesture 
template matcher can recognise both pose and motion gestures. The result is a stream of 
probability distribution over the set of all gestures, which is then thresholded and passed on to 
the robot's high-level controller. This approach has been integrated into their existing robot 
navigation and confrol software, where it enables human operators to: 

• provide direct motion commands (e.g., stopping) 
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• guide the robot to places which it can memorise 
• point to objects (e.g., rubbish on the floor) 
• initiate clean-up tasks, where the robot searches for rubbish, picks it up, and delivers it to 

the nearest wastebasket. 

2.1.3 LOLA 

LOLA: Visual Object Detection and Retrieval, is a project being undertaken at the Centie for 
Robotics and Intelligent Machines NC State University, USA, and commenced in 1995 
[LOLA95]. The project is aimed at the producing an indoor mobile robot with a high degree of 
autonomy and the ability to locate and retrieve objects. Features include multi-visual integration 
and data fusion, navigation, and real-time con^uter architectures. 

The recognition and detection algorithm utilises object features of colour and shape obtained 
from images generated from an onboard main camera. Processing is as follows: once correct 
colour is detected, a second camera is used to determine the shape of the object by analysing the 
distortion of a projected grid emitted by an infrared laser. The robot is equipped with a four 
degree of freedom arm and gripper, and if the colour and shape match required parameters, the 
robot will pick up the object and deliver it to a predetermined location. 
The hardware platform consists of a Nomad 200 robot-base and turret, from Nomadic Inc., and 
an Intel 80486 processor. 

The objectives ofthe LOLA project are in many respects similar to those aspired to by the work 
of this thesis. Significant differences however exist in the navigation and recognition paradigms 
used. 

2.1.4 Jumbo Jet Washing Robots-SKYWASH 

In a joint venture with AEG and Domier, the Fraunhofer Institute IPA, the Putzmeister AG in 
Aichtal, Germany have developed an aircraft cleaning manipulator titled "SKYWASH". Two 
SKYWASH robots working cooperatively clean Boeing 747-400 jimibo jets, in approximately 
3.5 hours, instead of 9 hours for normal manual washing. Huge cleaning brushes travel a distance 
of approximately 3.8 kilometies and a surface of around 2,400 m ,̂ about 85% of the entire 
plane's surface area, including the exterior of its engines. The main vehicle is a reinforced 
chassis made by Mercedes Benz and is equipped with a 380 horsepower diesel engine. Four 
supporting legs and a manipulator arm of 33 meters in length and 22 tons in weight are mounted 
on the chassis. The arm has five degrees of freedom (DOF) excluding the attached revolving 
brush. All the subsystems required for its operation are fransported on board including the main 
computer which is designed as an interactive man-machine interface for effective 
communications with the operator, sensors, and washing fluid controls. A compact disc read­
only memory (CD-R), contains aircraft-specific geometrical data. A 3D camera accurately 
positions the mobile robot as it travels around the aircraft. The purchase price is around 5 billion 
German Marks. It is claimed this is amortised vsdthin a few years. 
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2.1.5 NOMAD 

The planet rover "NOMAD" (a NASA project of 1997) was developed by CMU, its function to 
explore the landscape to test new ways of communication and control technologies. Weighing 
550 kg, it was supplied witii a 4-wheel drive enabling it to tum on the spot, and fitted with a 
chassis that could alter its tracks and wheel base to adjust to any kind of terrain. 
Visual tiansfer was enabled with an innovative "panospheric camera" supplying high quality 
pictures at an extiemely wide angle. Distorted images are corrected v^th specially developed 
software modules. Exact locating and positioning was carried out using a DGPS system 
(Differential Global Positioning System) which determined the position of the Nomad as 
accurately as 20 cm from its actual position in space. Sensed obstacles were recorded and plotted 
on a digital map. Travelling speed was limited to 0.2 meters per second. The rover completed its 
first mission in 1997 in Chile. 

2.1.6 RHINO the tour guide robot 

The Artificial Intelligence group at the Institute for Information Technology III, at Bonn 
University developed Rhino, an autonomously navigating mobile robot capable of interacting 
with people and performing duties. RHINO is based on the mobile platform B21, (US 
manufacturer Real World Interface in Jaffrey, NH). It is equipped with 56 infrared sensors 
reacting to touch. Two 2-D laser scanners and 24 ultrasound sensors, and a stereo colour camera 
system, provides measurements to generate maps of the surroundings. It is able to explore and 
map its surroundings. Path plarming is based on acquired maps. In 1997, Rhino guided some 
2,000 visitors around an exhibition held in the German Museum of Boim. 

2.1.7 HELPMATE 

A landmark service robot is "HELPMATE". While HELPMATE has been deployed at numerous 
hospitals throughout the world (King and Weinman [KW90]), it does not interact with people 
other than by avoiding them. HELPMATE finds its way by using a map of tiie facility that is 
stored in its memory. The map is created using AutoCad and contains information about halls, 
elevators, doors, and stations and is usually limited, in definition, to the areas where the robot 
will travel. The robot uses this map to determine the exact route that is required to navigate from 
station to station. 

A number of ulfrasonic transducers and a camera based vision system help the robot to detect 
obstacles. Using a spread spectrum radio link, HELPMATE controls elevators and door openers, 
but it is also possible to use this link for a remote control ofthe robot. 

Typical applications for the robot are: 
• pickup and delivery of interoffice mail, medical records and x-ray images 
• lab sample retrieval 
• pharmaceutical delivery 
• delivery of food plates and sterile supplies 
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2.1.8 JIJO-2 Mobile Robot for Office Services 

JUO-2 is an office robot currently being developed by at the Elecfro-technical Laboratory 
Tsukba, Japan (Matsui et al [MAFMAKH099]). fts purpose is to provide office services, such 
as answering queries about people's location, route guidance, and delivery tasks. Particular 
objectives of the project include leaming abilities, face recognition, and natural spoken 
conversation with the office dwellers. 

Fig 2.1.8.1.1 

www. etl.go .jp/~7440/ 

JIJO-2 mobile robot for office services 

2.2 3D Object Recognition and Pose Determination 

Numerous authors have carried out detailed reviews of the host of different recognition 
techniques that exist (e.g. Binford [Bin82]. Besl and Jain [BJ85], Grimson, [Gri90a ], Jain and 
Flynn [JF93 ], Reiss [Rei93], Weiss [Wei93], Andersson et al [ANE93], Arman and Aggarwal 
[AA93], Koschan [Kos93], Pope [Pop94], Rothwell [Rot96], Ulhnan [U1196], Forsyth and 
Ponce [FP02]). In light of these, only a selection of model-based recognition systems are 
reviewed in the section below. In the subsequent sections, a variety of existing methods of object 
modeling, recognition, pose determination, and hypothesis verification are described. Some of 
the descriptions below are summaries of sections ofthe references mentioned above. 

2.2.1 3D Recognition Systems. 

Perhaps the first model based recognition system was produced by Roberts [Rob66]. The system 
used line segments and comers to recognise polyhedral objects and was based on a prediction 
and verification sfrategy. A follow up system was later produced, Guzman [Guz79]. In the 
1970's interest focused on feature based techniques as in the prominent work of Waltz [Wal72]. 
In 1981 Brooks [Bro82] developed the ACRONYM system, which is regarded a landmark in 
model based vision. Using generalised cylinders as basic primitives for the different parts of the 
object models, a variety of objects (including articulated objects) could be modeled and 
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identified. Invariant and semi invariants from object models were calculated and matched to edge 
stmctures, ribbons and ellipses, in 2D images. Geometric reasoning and constraint manipulation 
were used to identify and position objects. Exan^les of objects recognised were aeroplanes (in 
an airfield) and engine assembUes. Limitations of ACRONYM were that time overheads were 
large and also that recognition of objects, such as aeroplanes, approximated a two-dimensional 
task. 

SCERPO constî icted by Lowe [Low87] used 2D line segments for die recognition of 3D 
objects. Perceptual organization was used to initially group lines according to proximity, 
parallelism and colinearity. Ultimately these grouped lines were matched to similar structures. 
The implementation used 3D models and 2D images. In the 3DP0 system by BoUes et al. 
[BHH84] range data was used, from which edges are exti-acted. These can be used to extract 
ellipses for example. The object models used were created using an extended version of a non­
commercial Computer Aided Design (CAD) system. Convenientiy making it possible to use the 
system in connection with different available CAD modelers. 

An edge-based system, which uses sparse visual data, titied TINA, was developed at Sheffield 
Univ. [PPPMF88]. Primitives used for recognition are 3D line segments and ellipses. A feature 
of this system is the possibility to match several 3D descriptions (views) of one scene to each 
other. In principle, this facility could be used to produce 3D models by combining multiple view 
matches. Faugeras and his co-workers [FH86], [Fau92], [MF92], [ZF92], [Fau93] also 
demonstrated similar work. 

Range data systems using surface information, have also been developed, for example 
IMAGINE I [Fis89]. For this, 3D surfaces and boimdary information are used. Objects 
recognised include robot arm assemblies, rubbish cans etc. A feature of IMAGINE I is that both 
articulated and occluded objects can be identified. A significant drawback however was that 
segmentation of surfaces was carried out by hand. 

An object recognition system not requiring the use of a stored model was developed by Fan et al 
[FMN88]. This system relies on a number of views of an object to be first matched, then at a 
later time, an object may be recognised by matching it to these views. 

Researchers have also considered CAD based computer vision. A system developed by Flynn 
and Jain [FJ91] also based on range images and surfaces, and obtains model information 
extracted from CAD models. This system unlike the 3DP0 system utilises a commercial CAD 
modeler. 

A novel system was developed by Dickinson [Dic91] who describes objects using geons 
(Biedman [Bie85]). By looking at the geons from different directions aspects are produced. 
Unlike most systems described, direct metric information is not used for recognition, instead 
statistics and graph structures consisting of 2D closed contours, obtained from the image aspect 
geons objects, are utilised. 

Another approach relying on view-direction, was developed Caparrelli [Cap99]. The system 
builds 3D object models from 2D views are collected from a single camera. During training. 
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images are pre-processed and object views represented in the system's memory using pairwise 
geometric histograms (PGHs). Image boundaries are first polygonized enabling the geometrical 
relationship between each pair of line segments to form a frequency-histogram that constitutes a 
feature vector during matching. PGH registers tiie geometric relationship between a line segment 
and each of the surroimding line segments, which lie within a circular region centred on the 
reference line, ft is claimed the characteristic makes the PGH technique a local shape descriptor 
that works robustly in occluded and cluttered scenes. 

2.2.2 Modeling 

Most machine vision recognition systems rely on model representations of one form or another, 
hi this section various aspects of object modeling are examined; initially different types of 
geometrical models are mtroduced, specific descriptions and details follow this. 

2.2.2.1 Geometric Modeling 

With the infroduction of CAD came the development of a significant number of geometric 
modelers. Systematic infroductions to CAD modeling can be foimd in Requicha [Req80] and 
Requicha and Voelcker [RV81], [RV83], who numerate factors such as: Domain, Completeness, 
Uniqueness, Conciseness, Ease of creation. Efficacy for applications, as important 
considerations in deciding on a particular modeling methodology. Unfortunately the principal 
needs of CAD systems are not commensurate with those of machine vision recognition systems, 
which essentially require that the models consist of primitives that can be identified from an 
image and that such primitives are easy to exfract from the model. Never-the-less partial CAD 
model representations have been used effectively in various systems (see section 2.2.2.9). 
Variations on different ways in which objects have been modeled for computer vision 
applications are briefly presented below. 

2.2.2.2 Wireframe 

The Wire frame model is one of the simplest representations and is commonly used where the 
primitives extracted from the images are edges or line segments. Early systems developed by 
Roberts [Rob75] and Pollard et al [PPPMF88] used Wire frame representation. 

2.2.2.3 Polygon Approximations 

Many object surface boundaries can be described or approximated by polyhedrals, and for this 
reason polyhedral model representation has been of significant interest in computer vision e.g. 
Lowe [Low91] and Dhome et al [DRLR89]. 

2.2.2.4 Generalized Cylinders 

Generalized cylinders [Bin87] comprise of (2D) surfaces swept along a spine (axis) according to 
a set of rules. Cubes, cones, cylinders, wedges etc. are some examples. Good representations of 
many objects can be obtained by combining "generalised cylinders". For example, legs of a 
human being can be modeled with two cylinders attached at the knee etc. Extensive use has been 
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made of generalised cylinders. Perhaps the best known application was in the ACRONYM 
system [Bro81]. 

Fig 2.2.2. 1 Generalized cylinders [Bin87] 

2.2.2.5 Octrees 

Like Quadtrees, which are areas decomposed into groups of four rectangular primitives. Octrees 
recursively divide volumes into eight smaller cubes known as cells. Sub-division stops if any 
one of the resulting cells is homogeneous, that is if the cell lies entirely inside or outside the 
object. If on the other hand, the cell is heterogeneous, that is intersected by one or more of the 
object's bounding surfaces, the cell is sub-divided fiarther into eight sub-cells. The sub-division 
process halts when all the leaf cells are homogeneous to some degree of accuracy (Carlbom et al 
[CCV85]). 

lO 11 12 

http://graphics.lcs.mit.edu/classes/6.837/F98/TALecture/ 

Fig 2.2.2. 2 Octrees 

One drawback in using Octrees to model 3D objects or scenes is that only an approximation can 
be made due to the use of blocks. See example below. 

http://graphics.lcs.mit.edu/classes/6.837/F98/TALecture/
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http://graphics.lcs.mit.edU/classes/6.837/F98/TALecture/ 

Fig 2.2.2.3 Octrees block appearance 

2.2.2.6 Superquadrics 

Superquadrics, see e.g. Solina and Bjelogrlic [SB91] are generalizations of quadrics (Quadratics 
take the form Ax̂  + Bŷ  + Cẑ  + Dxy + Eyz + Fzx + Gx + Hy + Jz + K = 0, and are the 3D 
analogue of conies. Conies are 2 dimensional curves described by the general equation Ax̂  + 
Bxy + Cy^+ Dx + Ey + F = 0). 

The general form of a superquadric is: (Ax)" + (By)"+ (Cz)" = K. By varying the choice of the 
five parameters (A,B,C,K,n), a wide variety of object surfaces can be modeled. One potential 
drawback of superquadrics representation is that sharp comers, planar surfaces etc, cannot be 
represented exactly but will be slightly rounded. Superquadrics have been used by Pentland 
[Pen87] ,Solina and Bjelogrlic [SB91] and Dickinson t [Dic91] and others. 

httD://www.okino.com/slidshow/suDer3wi.htm 

Fig 2.2.2. 4 Models produced from Superquads 

http://graphics.lcs.mit.edU/classes/6.837/F98/TALecture/
http://www.okino.com/slidshow/suDer3wi.htm
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2.2.2.7 Geons 

The modeling schemes above have all been of a quantitative natiire. Biederman [Bie85] proposed 
a qualitative description called geons (geometrical ions) that allows all objects to be segmented 
into a maximum of 36 elements. Each element consists of a unique combination of the four 
featiires edge (straight or curved), symmetry (rotational/reflective, reflective or asymmetric), size 
variation (constant, expanding or expanding/contracting) and axis (straight or curved). 

To achieve recognition, the scheme proposes a hierarchical set of 4 processing layers. Li layers 1 
and 2 data is decomposed into edges, component axes, oriented blobs, and vertices. In layer 3, 
3D geon primitives, i.e. cones, cylinders and boxes are labelled. In layer 4 the structure is 
extracted that specifies how the geon components inter-connect; for example, for a human figure, 
the arm cylinder is attached near the top ofthe torso cylinder, pummel and Biederman [HB92]. 
Examples of geons and components formed by them are shown below: 

(From: Pourang Irani & Colin Ware (2000)) 

Fig 2.2.2. 5 Example of Geons 

2.2.2.8 Multiview Representations 

The appearance of any 3D object is view direction dependent and can thus be represented by a 
number of images taken from different directions. One recognition approach is to construct an 
aspect graph, comprising nodes that represent a view in which identical features are visible. 
Graph matching methods can then be used to match features in the image. A drawback of this 
approach is that complex shaped objects may have very large and complicated aspect graphs. A 
variation on the above method, especially for complex objects, is the use of a view sphere 
comprising tesselated faces. Each face in the tesselation is used to represent an aspect, which is 
then used for matching Flynn and Jain [FJ91b]. Aspects are useful both for matching when parts 
of an object may be occluded and thus not visible, with applications to matching both to 2D 
images and to 3D range data. 
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2.2.2.9 CAD 

Considerable developmental efforts have gone into producing powerful CAD modeler packages 
for the manufacturing and building industries. Many manufactured objects as a consequence 
aheady have existing CAD produced models. Unfortunately, in general, CAD models are not 
produced for computer vision recognition tasks and thus obtaining suitable data from tiie CAD 
system directiy is often quite difficult. From the literature there appears to be two different 
approaches to using CAD information in computer vision. In the first, the output from tiie CAD 
system is used to exfract and calculate the information needed, while in the second modification 
to the CAD system itself is performed to produce the required output information. 

The work produced in Flynn and Jain [FJ91b] and Arman and Aggarwal [AA91] are examples of 
tiie first approach, while that in Bolles et al. [BHH84] and Park and Mitchell [PM88] are 
examples of the second. A current drawback in using CAD systems for computer vision is the 
numerous formats that exist. One attempt to standardize has been in the use of the IGES (Initial 
Graphics Exchange Specification) format, which many CAD modelers can produce. This format 
was usedbotii in [FJ91b] and [AA91]. 

A complication in using IGES, is that output can be in several different forms for the same 
object. For example GEOMOD, the modeler used in [FJ91b] can produce IGES outputs both in 
"analytic form" and in NURBS (Nonuniform Rational BSplines). Object features such as line 
segments, circular arcs, parametric spline curves, composite curves, planes and surfaces of 
revolution are often more easily matched using the "analytic form" output. 
In more recently image understanding packages such as [VXLOl], and TargetJunior [TJ] have 
been created which incorporate CAD like formats. 

2.2.3 3D Object Recognition 

The number of recognition techniques developed and described in the literature is quite vast, as 
already alluded to above. The following is therefore by necessity limited to approaches that are 
most relevant to the applications in this work. 
For a robotic vision system involving remote object retrieval, recognition must be accompanied 
by pose determination. To facilitate recognition, knowledge of how the objects may appear, plus 
images of the scene possibly containing those objects will be required. Knowledge of objects 
appearance is most often provided by way of "object models". Iirespective of the recognition 
approach used, it must be able to cope with extraneous, spurious, missing and inaccurate data, 
caused perhaps by poor segmentation, occlusion, image discretization, and inaccuracies in 
camera modeling. By and large the process of recognition involves "hypothesis generation and 
verification testing" 
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2.2 J.l Hypothesis Generation and Verification Testing 

The generation of initial hypothesis involves identifying which features on a certain model, 
matches that extiacted scene features, or altematively, to which object one or several extracted 
scene features belong to. If the model database is large, an exhaustive search approach is 
prohibitive, consfrained searches are therefore required. Features having invariant properties 
under perspective transformations can be used to constrain the search process. Nielsen [Nie85] 
used a certain ratio of the areas of triangles that were unique for each object. Colors have also 
been widely exploited (Koschan [ Kos93b]). 

2.2.3.2 Use of Invariants 

Features that are invariant under transformations, such as rigid motions, perspective projection, 
and scaling have been widely used in recognition systems for some time. Systems utilizing both 
3D object-models and 3D scene data can exploh invariants such as lengths, angles, surface areas, 
and volumes to aid the matching process. Invariant features or nearly invariant features were 
used in the ACRONYM system [Bro81] and also by Lowe [Low87] who used groupings of lines 
based on colinearity, parallelism and proximity. Projective invariants have also attracted interest 
particularly in work utilizing uncalibrated cameras. Rothwell et al. [RZFM91] use 4 invariants, 2 
calculated from 5 coplanar lines, another from a conic and 2 lines lying in the same plane, and a 
final invariant obtained from 2 conies. An elegance that stems from this work is that models can 
be acquired from a single view. For recognition, hypotheses as to which object is in the scene are 
formed by extracting lines and conies from the image, and these are used to establish groups of 
invariants in an indexed hash table. In circumstances where groups of lines and conies 
correspond to the same object, these are merged to form final hypotheses. A verification step is 
then used to narrow down the list to the most plausible object. 

2.2.3.3 Geometric Hashing 

Geometric hashing was first introduced by Lamdan and Wolfson [LW88] and has similarities 
with the Hough Transform. Grimson [Grim90a] claims that the method performs well with small 
scale recognition problems (i.e., models with small number of features and scenes with limited 
occlusion and clutter), but it tends to suffer from false positives when the problem size is 
increased. Fundamental to geometric hashing as with most recognition methods, is the 
assumption that the object can be represented by a number of features. Initially, it is required that 
several extracted features be used to define object based local coordinate systems, invariant to 
the fransformations applied to the object. To explain further, consider as an example the image a 
2D object. A two dimensional coordinate system is established as follows: Two convenient 
points on the object are chosen to define the x-axis, and the distance between these points is set 
to 1. The y-axis is taken as a perpendicular line through the centre of the two original basis 
points chosen. The remaining points on the object are now referenced to this coordinate frame. 
Essentially this procedure is repeated for each pair of points, i.e. all remaining point pairs on the 
object are chosen as basis points, and for each such pair the coordinates of the points on the 
object in each coordinate system used to build a hash table. This procedure is a preprocessing 
step and need be carried out only once. For the recognition phase, pairs of points in the image 
are chosen to define local coordinate systems and if a pair is chosen correctly, the coordinates of 
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the points will, when hashed, point to an entry in the hash table. These points are then used to 
vote for a certain model. A good match is evident when, a lot of points in the object vote for the 
same object. A detailed example may be found in Dijck et al [DKH98] 

2.2.3.4 Constrained Search 

Assuming a database of objects represented by features, in theory it would be possible to try to 
match every scene extracted feature to every model feature in every possible combination. The 
number of match combinations can be expressed as an interpretation tree, but in general, if more 
than a few features are to be matched, the resulting number of combinations will be prohibitively 
large. The constrained search approach is to prune the interpretation tree significantly and 
therefore the resulting combinations, by using relations among the matched features, or pairs of 
matched features. 

Typical constraints used : 
• The length (area) of a data fragment must be smaller or equal to the length (area) of a 

corresponding model fragment, up to some bounded measurement error, 
• The angle between the normals to a pair of data fragments must differ from the angle 

between the normals of the corresponding model fragments by no more that a bounded 
measurement error. 

• The range of distances between two data fragments must lie within the range of distances of 
the corresponding model fragments, where the model range has been expanded to account for 
measurement errors. 

Grimson [Gri90b] has shown that if all data features are known to belong to the same object, the 
degree of complexity of the constrained search is quadratic, whereas for the case that some 
features do not belong to the model, the complexity may increase to exponential. Pollard et al 
[PPPMFSS] constrained the matching process searches by exploiting several pair-wise 
relationships between 3D line segments obtained from stereo. While noting that from any pair of 
matches, all six pose parameters could be calculated by restricting matching to only several 
parameter related quantities, considerable pruning ofthe search time could be obtained. 

2.2.3.5 Aspect graphs 

Traditional features used in aspect graphs are lines and curves or surfaces. A cylinder for 
example has three characteristic views or aspects. Fig 2.2.3,1, 

http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/OWENS/LECT13/node4.html 

Fig 2.2.3. 1 Three characteristic views of a cylinder (Aspects) 

http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/OWENS/LECT13/node4.html
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These characteristic views divide 3-space into a finite class of volumes, and each volume 
represents a different aspect ofthe object. In essence these views define the aspect graph. The 
aspect graph also comprises of nodes and arcs. Nodes are the volumes in space while the 
associated arcs correspond to whether volumes are neighbours or not. The aspect graph of a 
cylinder is given in figure Fig 2.2.3.2. 

/ ^ 

http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/OWENS/LECT13/node4.html 

Fig 2.2.3. 2 Aspect graph of a cylinder 

Moving from one aspect to another is called an event. This corresponds to moving along an arc 
in the aspect graph. A drawback of the method of aspect graphs is that it is unwieldy for 
complicated objects. For example, for an object such for Michaelangelo's "David" it has been 
estimated that there are approximately 10'* different aspects (Owens [Owe97]). 

Various attempts have been made to reduce the search space (Eggert,et.al [EBDCG92]). An 
interesting approach has been used by Lowe [Low91] in which a simple hidden line algorithm 
eliminates most lines that can not be seen from certain viewing directions. For such cases aspects 
are generated on line as opposed to pre-computation, which is the more common method and 
quite time consuming. 

2.2.4 Pose Determination 

Determining the pose of an object for recognition based vision systems is important for a number 
of reasons. If physical retrieval ofthe object by a robot arm is desired then pose information is 
essential to direct grasping of the object. If pose can be calculated during the matching phase 
(say from 2, 3D line matches), this can be used to constrain the search process considerably. 

Methods used to calculate pose vary depending upon factors such as: type of recognition system 
(i.e., matching 2D objects from 2D data, 3D objects from 2D data or 3D objects from 3D data), 
the features used (i.e., points, lines, surfaces etc), and the imaging (i.e., range images, projective, 
orthographic etc). For some recognition systems pose can be determined during the matching 

http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/OWENS/LECT13/node4.html
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Stage. One example of this is mentioned above, another is the case of aspect graph matching, 
since each unique aspect corresponds to a unique view direction, position and scale is apparent. 
More commonly however pose is calculated either analytically or iteratively from a number of 
matched features. Solutions to pose determination have been given by authors Huttenlocher and 
Ullman [HU88], Dhome et al. [DRLR88], Lowe [Low85], [Low91], Faugeras and M. Hebert 
[FH86]. A number of these are be briefly discussed below. 

For recognition systems using the matching of 2D feattires to 3D models, Huttenlocher and 
Ullman [HU88] demonsfrated that for 3 point to point matches, under a weak perspective 
projection (orthographic projection + scale) a unique analytic solution exists. Dhome et al 
[DRLR88] also presented a method using 3 line correspondences under perspective projection. 
The solution, while analytical, requires that the roots of an 8th degree polynomial be determined. 
An ahemative iterative solution, using more than 3 lines and based on Newton's method 
suggested by Lowe [Low85] is also given. Lowe [Low91] developed another iterative solution 
using a Levenberg-Marquart technique and a stabilizing function, making it possible to solve 
under constrained conditions. The method is able to handle articulated objects as well as solving 
for object parameters, ie. size. In the case of recognition systems using 3D feature to 3D model 
matching, if line-features are used, a unique solution is possible from 2 matches, while for point 
features, 3 matches are required. 

2.2.5 Verification of Object Hypotheses 

To complete the recognition process, once a hypothesis of a matched object has been established 
it is necessary is to verify that the hypothesis is correct. Frequently the pose of the object will 
make it possible to predict the location of uiunatched model features in the image(s). TTiese can 
then be searched for and if matched verification accepted. Fisher [Fis89] argues that all features 
(surfaces) in a model should be accounted for, that is, either they should be found in the image, 
or predictably occluded behind some object. Other methods use an empirically determined 
threshold on the fraction of model features that must be matched to data features. 

2.2.6 Recognition Strategies 

Prior to implementing a recognition system, decisions need to be made relating to strategies in 
applying primitives and their use as features, as well as the order of matching. Often these 
choices are govemed by the specifics ofthe applications involved. Intuition, refined by trial-and-
error, also play a role in the decision making process. In more recent years, systems that 
automatically produce recognition stiategies for a given model, have been considered e.g. the 
classic works by Goad [Goa83] and Hansen and Henderson [HH89] in which automatic 
recognition stiategies were produced from CAD models of objects. A variation by Dceuchi and 
Kanade [IK88] demonsfrated that a recognition strategy could be achieved from an object model 
and, importantiy, a good model ofthe sensor. Draper [Dra93] in his "Schema Leaming System" 
(SLS), incorporates leaming knowledge-directed recognition stiategies from tiaining images 
(with solutions) and a library of generic visual procedures. In order to represent stiategies, 
recognition is modeled in SLS as a sequence of small verification tasks interleaved with 
representational transformations. At each level of representation, features of a representational 
instance, called a hypothesis, are measured in order to verify or reject the hypothesis. Hypotheses 
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tiiat are verified are then transformed to a more abstiact level of representation, where feattu-es of 
tiie new representation are measiu:ed and the process repeats itself. The recognition graphs 
leamed by SLS are executable recognition graphs capable of recognizing the 3D locations and 
orientations of objects in scenes. 

2.2.7 Choice of Recognition System for MROLR 

From the preceding review of the literature, and from a knowledge that target objects to be 
located and retrieved by MROLR are man-made, a conclusion reached is that matching 
techniques utilising features such as lines, curved segments, and/or comers, in a constrained 
search, is the most appropriate for this work. The system based on the work of Pollard et al 
[PPPMF88] was chosen to form the foundation buildmg blocks for the recognition module of 
this research. More specific details of the benefits of using 3D edge-based models are 
enumerated in Section 6.1. 

2.3 Robots with Metric Maps 

In recent years considerable advances have occurred in the area of automated mobile vehicles. 
The ultimate objective of much of the research is to build mobile robots capable of autonomous 
navigation without any human intervention. Duckett [DucOO, page 37] points out: Most 
roboticists are more mterested in building robots that work than in producing realistic cognitive 
models with knowledge acquisition capabilities. It is common practice in mobile robotics to 
incorporate in the design the necessary behaviours, feature detectors, etc., required for a 
particular application. If the robot is then transferred to a new environment the preinstalled 
conq)etencies may fail. By contrast a leaming robot need not be given all of the details of its 
environment by the system designer, and its sensors and actuators need not be finely tuned 
(Dorigo & Columbetti [DC98]). 

The robots described below (in some instances summaries of Duckett [DucOO] Surveys), were 
selected for their particular relevance to the problem in hand of concurrent map building and 
self-localisation. Each employ models of the environment in which an explicit Cartesian 
reference frame is used for referencing, and mapping is either feature-based or grid-based. No 
attempt is made to separate the systems on the grounds of the sensor types used for perception. 
Ideally any navigational system should be able to accommodate and integrate new sensor types if 
tiiey prove to be of benefit. 

2.3.1 Feature-Based Maps 

2.3.1.1 AGVs 

Leonard & Durrant-Whyte [LD92] using various Robosoft automatic guided vehicles (AGVs) 
were able to attain precise metric maps from sonar sensors. The maps were built from a set of 
pre-defined geometric features including planes, cylinders, comers and edges. These features 
were made up of primitives known as "regions of constant depth" (RCDs), and consisted of 
groups of sonar retums of similar range. While the robot was in motion, self-localisation was 
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achieved by tracking stationary features in the environment and applying an extended Kalman 
filter to combine the inferred position estimates. An important contribution of this work was the 
development of an improved sonar sensor model for robot navigation. 

A multiple hypothesis tracking technique to deal with the problems of map building in dynamic 
environments was proposed by Cox & Leonard [CL94]. Specifically the approach endeavoured 
to account for different possible interpretations ofthe robot's sensor data by maintaining multiple 
environment models at each time step. Models were associated with a probability, reflecting 
likelihood of it being the "correct" model. Testing was verified in selected environments. 

A map building mobile robot named ARNE equipped with a single rotating sonar sensor, was 
implemented by David Lee [Lee95]. Navigation utilised a feature-based metric map and self-
localisation obtained via an extended Kalman filter. An additional grid-based map was used for 
the purpose of path planning, and this was derived from the feature-based map. Evaluations of 
various exploration strategies, used by the robot to build its maps were performed (Lee & Recce 
[LR97]). The best results were achieved by a hybrid model-based reactive exploration strategy, 
consisting of wall following with some map-based interventions according to a predefined set of 
heuristics. Testing was carried out in a static, laboratory environment. 

Davison [Dav98] implemented a real-time feature-tracking autonomously navigating mobile 
robot system capable of exploration in unknown environments, using the OXFORD GTI mobile 
robot platform and Yorick active binocular vision system. Map building was carried out using 
information from measurements of arbitrary features and robot odometry. Map features were 
updated (i.e., added or deleted), in an automated systematic maintenance procedure. An 
emphasis of the work was in producing maps useful over long periods of time, permitting 
features to be re-detected/re-measured, in areas previously visited, even if the original tiajectory 
was not followed, and in addition to be able to recover accurate position estimation after periods 
of drift. A Kalman Filter-based method utilizing full-covariance was used. 

Testing in a real environment was carried out with ground truth comparisons performed using an 
accurate grid. Greater details of Davison's algorithms and approach are given in Chapter 6 of this 
thesis. 

Fig 2.3.1.1 Oxford's GTI vehicle (from [Dav98]) 
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2.3.2 Grid-Based Maps 

Grip-based maps utilise Cartesian occupancy grids, where each cell contains a measure of 
certainty that any object occupies the corresponding location in the robot's environment. The 
probabilities are obtained from pre-defined sensor models that project the robot's range-finder 
readings onto the corresponding grid cells. A Bayesian update rule is used to combine multiple 
readings over the same cell when necessary. Self-localisation is achieved through correlation of a 
grid constructed from the current sensor readmgs with a stored map, and then finding the 
displacement and rotation which produces the best match between the two grids. Early 
successfiilly implementations using grid-maps were carried out by Moravec and Elfes [ME85], [ 
Elf 87]. 

An advantage of the grip-base map approach is that it avoids the correspondence problem since 
there is no need to identify the source of the robot's sensor retums. In addition, occupancy grids 
provide a natural representation for combining different sensor modalities, provided that a good 
model is available for each different type of sensor. For example, Thnm et al [TFB98a] used an 
occupancy grid to fuse range information from stereo vision and sonar. The disadvantages ofthe 
approach are that it takes up a large amount of memory, requires precise position information for 
map building and depends on accurate range finder sensing. For example, the specular effects 
associated with sonar sensors often result in geometric errors in the map. 

2.3.2.1 ARIEL 

Yamauchi et al [YSA98] developed ARIEL an autonomous mobile robot built on a Nomad 200 
platform. ARIEL was equipped with a planar laser range finder, sonar and infrared sensors. 
During exploration of an unknown environment it built its own map using an integrated map 
building sfrategy known as frontier-based exploration (Yamauchi [Yam97]) which included a 
continuous localisation technique for correcting the robot's odometry (Schultz & Adams 
[SA98]). Regions between open and tmexplored space in a global grid model knovm as 
"frontiers" were detected using a process analogous to edge detection and region exfraction in 
computer vision. An interesting feature of the system was a sensor scanning technique in which 
specular reflections affecting the robot sonar sensors were corrected by the laser range finder. 

The exploration sfrategy encouraged the robot to navigate to the nearest frontier. If this was 
reached, a new sensor scan was performed and the map updated, with any new frontiers detected, 
added to the list of tmexplored locations. A short-term local occupancy grid, constructed from 
the robot's recent perceptions, was matched to the long-term global map to perform self-
localisation. Using this matching process the possible ttanslational and rotational errors were 
restricted to a small space in the global grid which cenfred roimd the current position estimate, 
produced by dead reckoning. Duckett [DucOO] points out that this dependence on prior position 
knowledge for self-localisation means that the system would be imable to recover from 
becoming lost. 
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http://wwfw.aic.nrl.navy.miL/~schultz/research/ariel/ 
Fig 2.3.2.1 ARIEL 

2.3.2.2 RHINO 

RHINO (also earlier referred in Sect 2.1.6) uses both vision and sonar sensors to build accurate 
metric maps. Occupancy probabilities for the grid-based map cells are obtained from a neural 
network fed from sonar readings which are trained to convert proximity readings into circular, 
metric maps. Increasing geometric accuracy of the maps is obtained by combining information 
from neighbouring sensors to reduce specular effects. Using vision sensors in addition to sonar 
sensors permits depth information of objects to be recovered from camera image edges, which 
may not be detectable using sonar alone. 

RHINO also produces a topological map that is used for path plaiming. This map is derived from 
the grid-based map by using critical points detected in a Voronoi diagram to partition the 
unoccupied space in the grid into a set of discrete locations (Thrun [Thr98b]). The benefit of 
using both metric and topological maps is that it allows the robot to exploit the "orthogonal 
strengths" of each. Localisation is estimated from a position probability density function by 
repeatedly matching the sensor readings with a model ofthe environment. 

Fig 2.3.2. 2 RHINO (From Univ. Bonn, Germany) 

http://wwfw.aic.nrl.navy.miL/~schultz/research/ariel/
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2.3.3 Robots with Topological Maps 

Topolopogical Maps utilise a graph of connected places to represent the environment; self-
localisation becomes the task of place recognition (Kortenkamp & Weymouth [KW94]). 
Pioneering work on navigation using topological maps carried out by Kuipers & Byun [KB91]. 
Systems incorporating topological maps have the advantage that the robot does not need to know 
its exact position for map building. Lee [Lee96] implemented Kuipers' "Spatial Semantic 
Hierarchy" on a real robot, but the system was only tested in a small-scale laboratory 
environment consisting of three cardboard corridors. 

2.3.3.1 TOTO 

TOTO, a wall-following mobile robot developed by Mataric [Mat91], used a topological map 
and explored its environment. Landmarks were classified according to a designer-determined set 
of categories and identified using sonar sensors and an electronic compass. The topological map 
comprised of nodes representing each distinctive landmark which were linked to adjacent 
landmarks on route during the exploration phase. While navigating, a path to a goal location was 
found by spreading activation from the destination node. 

www-robotics.usc.edu 
Fig 2.3.3.1 TOTO 

2.3.4 Self-Organising Robots 

2.3.4.1 ALDER and CAIRNGORM 

ALDER and CAIRNGORM, the name given to two Fischertechnik robots developed by 
Nehmzow [Neh92], utilise a reactive controller, and wall-following and robot-determined 
landmarks to identify places. A Kohonen self-organising feature map is used for map building, 
allowing the robot to construct its own internal representation of the environment by clustering 
together similar groups of sensor readings. All world models used in this system were acquired 
autonomously by the robots, and sensor-motor competences were leamed by a simple 
feedforward neural network. Others (e.g Owen & Nehmzow [ON97], Duckett & Nehmzow 
[DN98]) validated the efficacy of self-organising feature maps for route-learning, wall following, 
and relocalisation after becoming lost, utilising a Nomad 200 robot operating in untreated, 
middle-scale environments. One drawback of this approach is that it is that the robot is restricted 

http://www-robotics.usc.edu
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to following fixed paths because location recognition depends on visiting locations in the same 
sequence as used for map building. 

2.3.4.2 ALEF 

ALEF, a topological mapping system, developed by Kurz [Kur96] using a modified RWI-B12 
robot, utilises classification algorithms such as self-organising feature maps to group together 
similar sets of sonar readings obtained from sonar sensors. From resulting feature 
categorisations, the robot's environment is partitioned into contiguous regions known as 
"situation areas". A graph-based representation of the environment containing topological 
relations between the situation areas was constructed during map building. 

Using the so called A* algorithm (Nilsson [Nil80]), for path planning, the robot was also able to 
navigate to arbitrary locations in the map. Self-localisation was achieved using the average of 
odometry dead reckoning, and the coordinates obtained of observed situation areas via a Kalman 
filter. The approach used has the disadvantage that dead reckoning is soley relied upon when 
exploring unknown areas. 

2.3.4.3 ALICE 

Zimmer [Zim95a] developed ALICE, a concurrent map building and self-localisation mobile 
robot, built deliberately using only low resolution, low reliability sensors, to permit the 
investigation of poor quality sensor information when navigating in an unknown environment. It 
was equipped with passive light sensors and touch-sensitive whiskers for location recognhion, 
and a basic dead reckoning mechanism affected by drift errors of up to 25%. ALICE, in contrast 
to many other robots, had no separate phases for map leaming and navigation. Instead it was able 
to continuously adapt its intemal representations through a process of lifelong leaming. An 
interesting extension of the Growing Neural Gas network (Fritzke [Fri95]), consisting of a set of 
stored sensor prototypes augmented with Cartesian coordinates and the topological connections 
between them, was used for map building. Exploration was carried out using a reactive 
controller, which was subject to top-down influence from various "instincts", such as trying to 
reach areas of unexplored territory, or trying to improve localisation quality by moving through 
areas of previously charted territory. One of the most important contributions of this research 
was the handling ofthe concurrent updates to the robot's environment and location models. 

http://transit-port.net/Uwe.Zimmer/Projects/ALICE/ALICE,html 
Fig 2.3.4.1 ALICE 

http://transit-port.net/Uwe.Zimmer/Projects/ALICE/ALICE,html
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2.3.5 Hidden Markov Models 

2.3.5.1 DERVISH 

Nourbakhsh [Nou98] using a customised Nomad 100 robot, implemented a navigation system 
named DERVISH, in which predefined feature detectors were used to identify landmarks such as 
doors or junctions. It utilised a high-level self-localisation algorithm known as state set 
progression. The robot's location model consisted of a "state set", containing a subset of the 
possible locations in a pre-installed topological map. Features detected in the current sensor data, 
as determined by the landmarks associated with the locations in the map, were used to initialise 
the set. Updating of a state consisted of removing it from the set and replacing it with all of the 
possible subsequent states, derived from the new sensor data and the robot's direction of travel. 
Each state was assigned a probability value using a predefined "certainty matrix", which 
represented the likelihood of obtaining the observed features from the actual landmarks in the 
environment. During the set update, these values were propagated in Bayesian fashion. While 
Dervish used the most likely state to plan a path to a goal location, it would stop and re-plan if 
values suggested it was no longer on the correct path. A shortcoming of the approach was the 
necessity to use a preinstalled topological map, feature models and an uncertainty matrix. 

2.3.5.2 XAVIER 

XAVIER, a mobile robot system implemented on a RWI-B24 by Koenig «fe Simmons [KS96], 
[KS98], was specifically designed for performing delivery tasks in an office environment.While 
the methodology used for feature detection and self-localisation was similar to that used by 
DERVISH, the environment and location models were obtained from a Partially Observable 
Markov Decision Process (POMDP). A pre-installed topological map was also required, but the 
system had some ability to adapt its environment model through on-line leaming, the user-
defined map being augmented with distance information from the robot's sensors and actuators. 
A specially written compiler translated pre-installed models into the POMDP representation. 
During navigation an extended version of the Baum-Welch algorithm (Rabiner [Rab89]) was 
applied to improve the compiled distance, sensor and actuator models by adjusting the 
corresponding probabilities in the POMDP model. The Baum-Welch algorithm is an expectation 
maximisation (EM) method for acquiring Hidden Markov Models (HMMs) and POMDPs from 
data. As with the previous systems, the main disadvantage of this approach is its reliance on pre­
installed knowledge. 

Carnegie Mellon University, Robot Leaming Lab 

Fig 2.3.5. 1 XAVIER 
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2.3.5.2 RAMONA 

Shatkay & Kaelbling [SK97], using a modified RWI-B21 robot named RAMONA, applied an 
extended the Baum-Welch algorithm to perform off-line map building from pre-recorded sensor 
data. An extended HMM was used to incorporate odometric information, and an expectation 
maximisation algorithm maintained geometric consistency in the model. A clustering algorithm 
provided the initial model, which was based on local odometric relations extracted from the 
recorded sensor data. The final version of the algorithm produced better models from less data 
and fewer training iterations, and was capable of leaming models for environments containing 
loops. A drawback in the use of HMM and POMDP models is that the robot's environment 
model has to be quantized into a set of discrete states. 

http://www.cs.brown.edu/research/robotics/robots/ramona.html 

Fig 2.3.5. 2 RAMONA 

2.3.6 Robots with Hybrid Maps 

Integrated systems utilising both topological and metric representations have been investigated 
by researchers such as Edlinger & Weiss [EW95]; Yamauchi & Beer [YB96], Simhon & Dudek 
[SD98], Gasos & Saffotti [GS99]. In these systems, a graph of connected regions is used to 
represent the environment globally, and each region by a small-scale local metric map. Path 
planning and middle-scale navigation, rely on topological representation, while local metric 
maps are used for small-scale navigation. The advantage of this approach is that a globally 
consistent metric map is not required. 

2.3.6.1 ELDEN 

A navigation system, known as ELDEN was developed for a Nomad 200 robot, by Yamauchi & 
Beer [YB1996]. A reactive controller was used for exploration that included an arbitration 
mechanism to combine predefined behaviours such as obstacle avoidance and wandering, a 
topological map was constructed from odometry calculations, with new places augmented 
whenever the distance to the nearest stored place exceeded a preset value. Dead reckoning drift 
errors were corrected by periodically retuming the robot to its starting location and activating a 
special recalibration routine. The recalibration routine used an occupancy grid, constructed from 

http://www.cs.brown.edu/research/robotics/robots/ramona.html


Chapter 2 Historical Developments and Related Work- A Synoptic Review 30 

the current sonar readings, to compare a previously stored grid, and used a hill climbing method 
to find the transformation producing the best match between the two grids. Finally this 
transformation was used to update the robot's odometry. Yamauchi & Langley [YL97] 
subsequently extended ELDEN by incorporating stored occupancy grids, one for each place node 
in the map. These were used for recalibration thus removing the need for regular homing. 

A novel aspect ofthe system was the use of variable confidence links to represent the uncertainty 
in the topological relations, and then to use these to adapt the robot's map in dynamic 
environments. In essence, confidence levels were adjusted using simple rules, to strengthen or 
weaken them, subsequently enabling the system to use these values to plan altemative routes 
should obstacles or path blockages occur. 

http://w^ww.aic.nrl.navy.mil/~yamauchi/gallery.html 

Fig 2.3.6.1 ELDEN 

2.3.6.2 MOBOT-IV 

MOBOT-IV a mobile robot developed by Edlinger & Weiss [EW95], utilised a dynamically 
acquired intemal representation of unexplored environments. The navigation system used a 360 
degree laser range-finder to form a set of local metric maps which were linked via stored 
connections to a global topological map. A temporary metric map was first formed using the 
laser range finder, and then used for self-localisation and to detect areas of unexplored territory. 
In practice, a predefined threshold based on the distance of the robot to the nearest stored node, 
was determined whether the current sensor map was to be added to the global map. Cross-
correlation of the current sensor map with the nearest stored scan in the global map was then 
used to obtain self-localisation. Effectively the approach used was the same as that of Hinkel & 
Knieriemen [HK88], in that angle histograms were first constructed and convolved to find the 
most likely rotation of the robot then x and y histograms were matched to determine the most 
likely translation. A region of open space detected in the current sensor scan with a width greater 
than that of the robot, was defined as a "passage", ultimately detected passages were added to a 
stack of goal destinations. Path planning was carried out on the topological map using the A* 
algorithm (Nilsson [Nil80]). The system was tested in a static indoor corridor that demonstrated 

http://w%5eww.aic.nrl.navy.mil/~yamauchi/gallery.html
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both its reliability and scalability. A weakness ofthe system is its reliance upon prior positional 
information for self-localisation. 

__ .yi 

httn://ae-vn-www.informatik.uni-kl.de/Proiekte/MOBOT-IV/MOBOT-IV.html 
Fig 2.3.6. 2 MOBOT-IV 

2.3.6.3 TheDuckett Mobile Robot 

Duckett [DucOO], utilising a hybrid deliberative-reactive control architecture developed a mobile 
robot system in which all of the environment and location models, feature models, and sensor-
motor competences required for navigation are acquired independently by the robot. A 
significant distinction of Duckett's system is the claim that the robot could recover its position 
even after becoming lost. Leaming techniques include self-organisation, where no teaching 
signal is required, and self-supervised leaming, where all of the training examples are generated 
by the robot. The system is able to build its own maps and navigate in many different, indoor 
environments. During an exploration phase, the robot builds a graph-like representation of its 
environment, in which each location is identified by a description of the robot's sensory 
information known as a landmark. To determine an appropriate landmark recognition 
mechanism, an experimental procedure was developed which permitted different algorithms to 
be compared under identical experimental conditions. With this method existing approaches to 
landmark recognition were evaluated, and a new self-localisation system was developed. To 
overcome problems such as perceptual aliasing (the fact that landmarks may not be unique to 
individual places) a self-localisation algorithm was developed which accumulates sensory 
evidence over time so that the robot can recover its position even after becoming lost. The work 
was validated by testing in untreated environments, of several hundred metre square. 

Tu r r e t 
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Fig 2.3.6. 3 Duckett mobile robot [DucOO] 

http://www.informatik.uni-kl.de/Proiekte/MOBOT-IV/MOBOT-IV.html
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2.4 Mobile Robots using Vision Based Sensors For Navigation 

Desouza and Kak [DK02], and Zhang [Zha02a] carried out comprehensive surveys on "Vision 
for Mobile Robot Navigation". It is evident from these surveys as well as from the robots afready 
discussed in section 2.2 tiiat in the past 20 years very significant developments and progress in 
vision-based mobile robots for both indoor and outdoor appUcations has occurred. To a large part 
these improvements were facilitated by the very substantial improvement in PC speed, and video 
handling. Desouza and Kak point out that it is now possible to design a vision based navigation 
system that utilises topological representation of space, and an ensemble of neural networks to 
guide a robot through interior space. The topological representations helpmg the robot figure out 
which neural networks to use, and in which part of the space. Examples of mdoor robots are 
NEURO-NAV [MK93a], [MK93b] and FUZZY- NAV [PPKK95] and FINALE [KK92]. 
These robots can navigate at an average speed of 17 m/min using an ordmary PC-based 
architecture (Pentium II 450Mhz, with no special signal processing hardware). 

Desouza and Kak also cite the equally impressive progress that has been achieved in computer 
vision for outdoor robotics. Representative examples are the NAVLAB system (Thorpe et al 
[TKS87], [THK88], [Pom89], Tseng et al [TC92], Pomerieau [Pom94], [PJ96]), tiie work on 
vision-guided road-following for "Autobahns" (Dickmanns et al [DZ86], [DZ87], [DM92], 
[Dic99]), and the Prometheus system (Graefe et al [Gra89], [Gra92a], [Gra92b], [Gra93], 
[RG94]). 

Then fmdings suggest the following broad base categorisations: 

(i) Map-based Navigation. These are systems that depend on user-created geometric models or 
topological maps ofthe environment. 

(ii) Map building based Navigation. These are systems that use sensors to construct thefr own 
geometric or topological models ofthe environment and then use these models for navigation. 

(iii) Map-less Navigation. These are systems that use no explicit representation at all about the 
space in which navigation is to take place, but rather resort to recognising objects found in the 
environment or to tracking those objects by generating motions based on visual observations. 

They conclude their survey with a somewhat unexpected finding: "... if the goal is to carry out 
function-driven navigation ... an example being to fetch a fire-extinguisher that is somewhere in 
a given hallway or to stop at a stop sign under varying illumination and background conditions -
we are still eons away". 

To a large extent this last observation puts into context the difficulty of the work undertaken by 
this thesis. 
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2.5 Conclusion 

This chapter has highlighted the rapidly growing applications of robots for the non-mdustrial and 
manufacturing sectors these are the so-called "service robots". Brief details of some of these 
service robots and applications were given. 

A synoptic literature review of 3D recognition systems and modeling methods, and robots using 
autonomous navigation methods was also presented. It is from this review that 3D wire-frame 
models were decided upon as being the most suitable for the recognition module of this work. 
The literature survey concludes with a summary of a recent survey on mobile robots using 
vision-based sensors for navigation. A noteworthy conclusion reached in this survey is that the 
"machine vision fraternity" is still a long way off from being able to reliably use mobile robots to 
find and retrieve objects in "unmodified" settings. That may well be true, but then humans also 
need artificial aids such as good lighting, and a range of temperatures, to work well in. 

In the next Chapter, specifics of the hardware and software requfred to implement MROLR are 
discussed. 
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Chapter 3 System Equipment 

3.0 Introduction 

To meet the objectives of this thesis in building a robotic system capable of navigating with the 
aid of active vision, visually locating and physically retrieving real-world objects, requires 
considerable hardware and software resources, a substantial proportion of which is not readily 
obtainable "off-the-shelf. Unobtainable hardware was therefore specifically designed and built, 
and software coded. 

In this chapter brief details ofthe hardware and software modules developed and utilised for this 
work are described. 

3.1 Hardware and rela ted software 

The major hardware components of MROLR comprise: 

(a) A TRC* Labmate mobile robot base powered via 2xl2V fork lift truck batteries. 

(b) A BiSight 4 DOF pan-tilt-vergence stereo head, grayscale CCD cameras fitted with 13mm 
fixed focal lenses cameras (the head was also purchased from TRC). 

(c) A Win32 Imascan framegrabber residing in a win95 platform PC on board the mobile base, 

(d) Two computerised revolvmg horizontal tables (designed by the author and assistant technical 
staff-see appendix B), These tables facilitated the creation of object-models, 

(e) Camera Calibration Tile (Fig 3,1,2). 

(f) UMI RTX, 6 DOF robot arm, contioUed via a PC (docking robot), mounted on either a caster 
platform or mobile transport robot (refer to (g)). 

(g) Mobile Transport Robot: this hardware is in a state of partial completion (designed by the 
author and assistant technical staff -see appendix B), 

(h) Several PC's interconnected via a local area network. 

Figures 3.1.1 (a) and 3.1,1 (b) are sketches ofthe mobile base and docking arm and show system 
local network networked data flows. Numerous photo images of the hardware are provided in 
Chapter 7. 

Transition Research Corporation, USA. 
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PC Load Distribution 

The computational load is distiibuted using a number of PC's interconnected via a local TCP/IP 
network. This additionally accommodates platform specific requirements eliminating the need 
for the rewriting of third-party proprietary supplied equipment drivers. 

Further details are given below: 

(1.) Stereo head PC resides on the Mobile Base (platform: Win95/Dos ) . 
Main functions: 
Execution of head movements commands, 
Captiu"e, and fransmission of stereo scene-images, 

(2,) TRC Mobile Base PC (platform: Win3.11/Dos). 
Main fimctions: Execution of commands relating to mobile base movements. 
Monitoring and displaying of odometry positional information, 
Confrol of motorised model-creating tables. 

(3.) Principal Navigation and Recognition PC {platform: RedHat 7,0 Linux). 
Main functions: Processing of stereo image pairs for purposes of navigation, localisation, 
object recognition and object pose determination. 
Coordination of data sharing across the local-network. 

(4.) Robot Arm PC (platform: Win98 ; 
Main function: Accept object pose information via dynamic data exchange (DDE). DDE 
provides a convenient mode of data interchange for Win32 applications. 
Calculation of the necessary inverse kinematic solution to facilitate the grasping and 
retrieval of recognised object. 

(5.) Transport Mobile Base PC {platforms: Motorola HCl 1 and Win98). 
Main function: Respond to request to dock with the TRC mobile base, accept object pose 
information „. as for (4). 

Essential software links and patches were written to facilitate the communication, integration, 
and co-operation of each of the various platforms and items of equipment. This included image 
format converters and DDE programs running in the background. 

Processing time was not greatly considered as the PC's used were rather old (60-90 MHz, 
Pentiums with 32 MB RAM). At the time of writmg, PC clock speeds over ten times faster were 
available and consequently would produce a corresponding improvement in performance if 
obtained and utilised. 
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3.2 Navigation and Recognition Software 

The Navigation and Recognition Software has been largely developed around two software 
resources, namely "TINA" and "SCENE". 

TINA is a machine vision research envfronment, running under Unix (X-windows). It is written 
in C and includes a substantial collection of integrated image processing functions. The 
development of TINA commenced at the University of Sheffield and more recentiy continued at 
the University of Manchester. TINA has been written to provide a research environment for 
machine vision programmers. It utilises a mouse driven front end, and an integrated package of 
vision library routines, running under the UNIX operating system with Xwindows graphics 
support. The individual modules and display facilities are provided as tools under the control of a 
parent that also displays diagnostic messages. These sub-tools can be grouped in to two types, 
graphical infrastructure and research. 

The following sub-tools are used in this thesis: 
Stereo Tool 
Edge Tool 
Matcher Tool 
Calibration Tool 

The Matcher tool was modified and extended. In addition a 3D Model editor tool was added. 
Further details are given in Chapter 4 

SCENE is a flexible open-source C++ library for sequential localisation and map-building 
(SLAM), It is suited to 2D/3D mobile robot navigation, this being accomplished by the 
estimation of the states of the moving robot and numerous stationary features. In general 
measurements are made via one or more sensors mounted on the robot, A feature of SCENE is 
its modular modeling system, which is used to represent the specifics of a particular system. New 
model classes can be "plugged in" to the main system with relative ease. Model classes suitable 
for MROLR were implemented and incorporated into SCENE. In addition a vision based 
obstacle avoidance function was added. Details are provided in subsequent chapters. 

Both TINA and SCENE are significant contributions to the Scientific Community and 
generously made freely available at the web sites indicated in the Bibliography at the end of this 
thesis. 

3.3 Conclusion 

A complex system such as MROLR requires considerable hardware and software resources. 
While a policy of using available resources where obtainable was adopted, tailor designed 
specific hardware was required to be designed and built, and software written. This chapter 
outlined the resources required and utilised. Subsequent chapters elaborate on how these 
resources are used or developed. Chapter 4 details the mathematical notation and models used 
throughout this work. 
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Chapter 4 Background on Models and Notation 

4.0 Introduction 

In this chapter, mathematical notation, concepts, and a variety of preliminary models used and 
extended in subsequent chapters are outlined and developed. 

The chapter is effectively divided into three sections. The first introduces the mathematical 
notation and conventions adopted throughout this thesis. The second considers modeling of: 
• cameras and the Bisight stereo head 
• the mobile robot base 

The third section considers algorithms and tools used for: 
• stereo camera calibration 
• object and scene-modeling, 
• object recognition 

4.1 Mathematical notation and conventions adopted 

4.L1 Vectors, Matrices, and Coordinate Frames 

Vectors and matrices will in general be distinguished by boldface type. 
Examples: 

vector P = Pxi +Pyj +Pzk represents a 3D point in space having 
coordinates Px, Py, Pz respectively. 

Coordinate frames are designated by capital letters. Where several frames are related, an 
additional index integer, or subscript is used (i.e., Co, Cl). Vector point P in frame Co is defined 
by the 1 X 3 matrix given below. (Note CO and Co designate the same frame). 

Co 

>Co _ 

(pCo^ 

p 0̂ 

Fig 4.LL 1 Vector point P in frame CQ 



Chapter 4 Background on Models and Notation 39 

4.1.2 Partial Derivatives 

The V (del) operator is used for partial differentiation. V(y)x is used to represent —. If eitiier >; 
dx 

or X is non-scalar, bold typeface is used. For example the following are equivalent 
representations: 

5f, V _ 

au 

dz(t + At) dz(t + At) 

dv, 

dv, 

5v, I ^ " 2 

dx(t + At) dx(t + At) 
5v, 

d(p(t + At) d(p(t + At) 
dv. dv. 

= V(f,)„ = 

Vz(t + At)^^ Vz(t + At)^^ 

Vx(t + At)^^ Wx(t + At)^^ 

y(p(t + At)^^ V(p(t + At)^^ 

4.2 Camera, Bisight Head, and Mobile-Base Models 

In this section notation and preliminary models used for cameras, 4 DOF Bisight head, and 
mobile-robot base, will be infroduced. The modeling is based on the work of Davison [Dav98] 
which was designed and unplemented for Oxford's (Yorick) stereo head, and GTI mobile-robot. 
Davison has generously made his work publicly available and in light of possible continuing 
collaboration (see Wmgate & Davison [WD02a], [WD02b]) and benefits of standardisation, the 
following (and later derivations) relating to MROLR's architecture, have wherever possible used 
notation and equations consistent with those of Davison. 

MROLR's stereo-head appears somewhat different to Oxford's Yorick 8-11 (Fig 4.1.2.1), but 
geometrically the differences are relatively minor, both having 4 degrees of axial movement. 
Consequently both can be modeled in a similar way. 

The TRC mobile-base used by MROLR differs significantly from that of Oxford's GTI mobile-
vehicle. The GTI base is 3 wheeled, with the motor driven rear wheel being responsible for 
steering. In comparison, the TRC (Fig 4,2,6,2) utilises 2 centie positioned motor driven wheels 
and 4 comer stabilising casters. An advantage ofthe TRC's configuration is that rotations about 
its central axis are possible, in some instances simplifying the "shortest route navigation contiol" 
to a rotation followed by a tianslation followed by a final orientation rotation. In modeling the 
TRC base, the full range of possible movements will be included. 
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(a) Bi-Sight head (b) Oxford's Yorick 8-11 head 

Fig 4.L2.1 BiSight and Yorick 8-11 stereo heads 

4.2.1 Camera Model 

Fig 4.2.1.1 shows the basic geometry of the widely accepted pinhole camera model, used 
throughout this work. Effectively the pinhole model is an ideal camera model in which the rays 
from world points to image points pass through the camera's focal point, producing an inverted 
image on the cameras image plane. For ease of modeling, a virtual image plane may be placed in 
front of the optic centre (as in Fig 4.2.1.1), resulting in projected upright image. Consider a 
Scene point P. 

World Frame 
W 

Scene Point 
,P 

Virtual Image Plane 

Camera Frame 
F 

Optic Centre 

Fig 4.2,1.1 Geometry of pinhole camera model 

In world frame W, and camera frame F, this has coordinates 
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w 

r pw \ 
X 

.W 

V 

and 

r pF\ 
X 

, p'' 

respectively. 

To save case confusion (i.e., P'' not to be confused with p^), m^ will be used in place of P^, and 
p*" to designate the corresponding position vector of the image point (Xc, yc, f ) as shown m the 
above camera model. Thus: 

r pF\ 
X 

. p'^ . 

m = m 

y^z J 

For the pin hole camera model, with the virtual image plane in front ofthe focal point. 

'x^ 

yc 

f 

f 
m 

' m, ^ 

m 

v'«z y 

-tm^ 
m 

4.1 

Light rays impinging on discrete charged couple device (CCD) cells, which make up the 
camera's image plane, are responsible for the camera's image. This image is mapped to pixels on 
the computer screen via the computer's frame buffer, and it is from this buffer that the software 
will normally obtain image information, A point p = (x,y,f)^ in camera coordinates, projects to 
computer pixel coordinates of: 

" = «o-^«^c ^ = ^o-Kyc 4.2 

Where horizontal and vertical scaling parameters ku , ky accommodate the mappmg from the 
camera's CCD image plane to computer screen via the computer's frame buffer, ku and ky 
represent the "effective" number of horizontal and vertical pixels/mefre respectively, and are 
obtained via the calibration procedure outlined in 4.3.2.1. The pixel position (Uo,Vo) corresponds 
to where the optic axis passes through the optic centre of the lens. In the ideal case (Uo,Vo ) will 
also correspond to the image centre (i.e., for an image size 600 x 400, Uo=300, Vo=200 pixels, 
respectively, and u = 0,v = 0 corresponds to the top left hand comer ofthe unage). 

In matrix form equation 4.2 become: 
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'u^ 

V 

.K 
= 

-K 0 
0 -k^ 

0 0 

" o ^ 

vo// 
1// 

'x,^ 

yc 

[f. 

or 

f"l 
V 

.K 
= 

_ ; 

0 

0 

^u 0 

- ^ v 

0 

Uo/f 

Vo/ / 

1// 
4.3 

And since vector m is proportional to p , it is evident that 

^u^ 

Kh 
a 

- A 0 Mo 

0 - A Vo 
0 0 1 

m 4.4 

or 

^ M ^ 

vly 

a Cm 4.5, and m^ a C ' 

^u^ 

vly 

4.6 

where 

C = 
- A 0 Mo' 

0 - A Vo 
0 0 1 

4.7 C = 0 
- 1 

^ 0 - ^ 
#„ A 

A A 
0 0 1 

4.8 

Intrinsic camera parameters f, ku, ky, uo and vo are normally obtained by a calibration routine 
involving a tile. The calibration procediu-e used in this work is described in section 4.3.2. 
Matrix C is referred to as the camera calibration matrix, and contains the camera's intrinsic 
parameters. Equation 4.5 is the well established perspective projection equation relating a 3D 



Chapter 4 Background on Models and Notation 43 

scene-point, in the camera's reference frame, to the homogeneous vector 

the pixel location of its image point. 

''u^ 

v l y 

which describes 

Thus, knowledge of matrix C permits the 3D location of point m to be determined in the 
camera's reference frame, up to an unknown scale factor (equation 4.5). That is, it lies 
somewhere along the light ray that is coincident with vector m. To obtain its actual location 
along the light ray, using a single camera, requires at least two sequential views of the point, 
Altematively a pair of cameras may be used in a stereo configuration as formulated in the 
following section, 

4.2.2 Stereo Head Model and Frames 

The TRC Bisight, four DOF pan-tilt-vergence stereo head, is mounted dfrectly above the central 
axis of the base. The head is equipped with encoders that provide accurate information on 
angular movements, A model of this active head is formulated below to facilitate the calculation 
of 3D Scene points from corresponding, left and right camera image coordinates, and the joint 
angles necessary for fixation on known 3D Scene feature points. 

Each joint motion of the stereo head is initially monitored in an assigned reference frame and 
defined by an appropriate homogeneous transform. The motion of the active head is obtained 
from the product of these transforms. The respective reference frames are shown in Fig 4.2.2.2. 
The head-centre coordinate frame CO has its origin at the intersection of the pan and the tilt axis. 
This point remains fixed relative to the mobile base for all head movements. All measurements 
carried out on the mobile base are referenced with respect to CO, it is the vehicle frame. Its Z-
axis lies in the forward direction, with the Y-axis pointing up and the X-axis to the left. This 
reference frame is also used for the robot arm in obtaining the transforms necessary to guide the 
gripper for grasping and retrieving of the object. Accurate modeling of the stereo head is thus 
essential for navigation and object retrieval. 

Vectors Mh, PL, PR> CL, CR, UL, UR represent the head's intrinsic parameters, their scalar 
magnitudes remaining constant. Subscripts L and R refer to the Left and Right Camera frames 
respectively, PL, CL, HL represent the Left Camera offsets from the origin of frame CO, while PR, 
CR, DR denote the corresponding offsets for the Right Camera. Vector HIG represents the location 
of a Scene feature measured in frame CO, Vectors mL, and mR are vectors from the camera's 
optical centies. When all head angles are zero, both the right and left camera will be pointing 
sfraight ahead and all head axis will be aligned 
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Right Vergence Pan 

Ĉ  
-^^ 

CO , i-'--:] 

'̂ CO 

Head coordinate frame 
X ^ , 1 co> Z{^ 

T:) -3 eft Vergence 

Vectors Mh, PL, PR, CL, CR, HL, HR, represent the head's intrinsic parameters, 
their scalar magnitudes remaining constant. Subscripts L and R refer to the 
left and right camera frames respectively, mc a 3D scene vector point. 

Fig 4.2.2.1 Stereo Head showing Intrinsic Parameters 

Right 
vergence 
frame 

head rotation anele 
YL, YR = vergence 
a = pan 
e = tilt 

vergence 
frame 

"-%i 

Fig 4.2.2. 2 Stereo head joint motion reference frames 
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4.2.2.1 Mobile Base Mh and Head-frame CO 

In this frame 

Mf = 
^0 ^ 

vO J 

C co\ 

w^CO 

m^ = m. 
CO 
Gy 4.9 

Mh is the vertical scalar distance ofthe head centre from the centre ofthe mobile base. 

4.2.2.2 Pan Framed 

The pan frame Cl is fixed relative to those parts ofthe head that move as the head pans around. 
Its y-axis remains vertical and the corresponding x and z-axes remain in the horizontal plane 
while the x-axis remains parallel to the head's tilt axis. It is horizontally rotated with respect to 
CO by the pan angle a. 

[n this frame: 

P I = 

7/2^ 
0 

<p J 

. P/? = 

(-I/t 
0 

< p > 

4.10 

Where I is the horizontal distance between the vergence axes and is the inter-ocular distance 
between the camera optic centres if both cameras are facing forward. PL = PR = p are the 
horizontal scalar offset distances between the intersection ofthe pan and tilt axes, and respective 
vergence axis. The respective p vectors will rotate with a pan movement. 

4.2.2.3 Tilt Frame C2 

This frame remains fixed relative to parts of the head that move when the tilt angle changes. Its 
Y-axis remains parallel to the left and right vergence axes and its X-axis is aligned with the tilt 
axis. It is vertically rotated with respect to Cl by tilt angle e. 

In this frame: 

^ 0 ^ 
, C 2 

v O y 

C 2 

^0^ 

v O y 

4.11 

CL = CR =C is the scalar offset along either vergence axis between the intersections with the tilt 
axis and the camera optic axis 
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4.2.2.4 Left L and Right R Frames 

The left and right camera frames L and R remain fixed relative to the camera's respective optic 
centres, Thefr Z-axes are aligned with the cameras optic axes and their X and Y-axes lie parallel 
to thefr image planes. These frames are rotated with respect to C2 by vergence angles Jt and 

JR-

In these frames: 

n , = 0 

v«y 

m 

^m' ^ 

m 

Lx 

L 

Ly 

L 

\^U J 

4.12 

n„ = 

^0^ 

0 

v « y 

m 

m 

m 

^m 

R 
Rx 

R 
Ry 

R 
Rz 

\ 

) 

4.13 

UL = UR = n is the scalar offset along either optic axis between the camera optic centre and the 
intersection with the vergence axis 

In summary, vectors PL, PL, CL, and UL combine to represent the vector offset from the head 
cenfre to the left camera's optic centte. PR, PR, CR, and UR represent the same offset for the right 
camera. 

The following rotation matrices permit transformation between the various head-frames. 

Note a clockwise rotation is +ve (axis of rotation arrow pointing at observer). 

lOO J^C.U ^ 

,LC2 
R"̂  = 

cos a 0 -sina 

0 1 0 

sin a 1 cos a 

cos yL 0 - sin yi 

0 1 0 

sin yt 1 cos y 1 

4.14 

4.16 

R " ' = 

R " " = 

"l 

0 

0 

cos ytt 

0 

sin yx 

0 0 

cos e - sin e 

sin e cos e 

0 - sin yR 

1 0 

1 cos yR 

4.15 

4.17 
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4.2.3 Calculation of Image Coordinates from a Known 3D Feature Point 

With the above framework and reference to Figure 4.2.1.1 it is apparent that: 

niG = P L + CL + UL + mL 4.18 

mc =pR + CR + UR + mR 4.19 

Assume for the moment that m^ the 3D position of a pomt m the vehicle reference frame CO is 
known and visible in both cameras. 
From equation 4,18 in the left camera frame L: 

m^ = m ^ - p i - m i - c i - n i 4.20 

Or in the desired frames: 

^L =^ ™G - R P i - R ^L-^L 4.21 

Rearranging the transformations into relevant simple components, 

mi = R ^ ^ ^ ( R " ' ( R ^ ' ° m ^ ° - p f ' ; - c ^ ^ ; - n i 4.22 

Similarly for the right camera: 
^R D ^C2/T> C21 /-T* C10,„ CO „ C 1 \ „C2 \ „R . « , 
m ; j = R ( R ( R m G - P / j ; - C / , ; - n ^ 4.23 

Equations 4.22 and 4.23 allow the vectors from the left and right optic cenfres to the scene point 
in the respective camera coordinate frames to be calculated. Furthermore, equation 4.5 (applied 
to the left and right camera, see equation 4.24 below) permits the point's image coordinates to be 
determined. Further details are given in section 4.2.5, 

ru ^ ru \ 
"L 

VL 

V J 

a Cm2 

Uj, 

Vy? 

V' J 

a Cm J 4.24 

4.2.4 Head Angles to Fixate a Known Point 

A frequent task requfred during navigation and map building is to fixate on a known 3D point. 
This consists of knowing m^° relative to the head-frame, and driving the head so the image of 
the 3D point passes through uo, VQ the principal point, in both left and right cameras. To simply 
the task, vergence angles are assigned to be equal and opposite. This form of symmetric fixation 
is further simplified by tuming the pan axis to view the scene point such that mo in pan frame 
Cl, ties in vertical Y, Z plane. 

hi this state: 

m a.' = 0 

Furthermore: 
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^ C l 

i.e. 

= R 

cos a 

0 

sin a 

CIO 

0 

1 

1 

^ CO 

m c 

-sin a 

0 

cos a 

HO 
mS 

V"GZ) 

= 

"'GX 

< 

K°j 

4.25 

4.26 

Solving the top line of this equation for a gives 

CO 

a = tan 
1 ma. 

m 
CO 
Gz 

4.27 

To find the remaining frame angles e, YL, YR, use is made of the fact that as the optic axes of both 
cameras ideally pass through the scene 3D point, therefore m ^ and m " are both non zero in 
the z coordinate: 

mt=mty=ml=ml=0 

Writing equation 4.18 in frame L: 

r^t- _ t> iC2/-D C21 /TO CIO_, CO „ Cl \ „C2 > „l 
m^ = R (R (R m^ -PL )-^L )-^L 

Solving for e by setting m^^ = 0 yields: 

4.28 

4.29 

e = tan 
m 

Cl 
Gy 

^G! - P 
- sin 

^fm^; )'+(mg'-p)' 
4.30 

Note the components of m *̂ are determined from knovm a. The remaining vergence angles y 

are found by using e to form m " 

„ i t > i C 2 , „ C 2 

Setting nij^ = 0 , / ^ is solved from: 

.C2 

4.31 

yi = tan 
-X^Lx 

m 
Cl 
Lz 

4.32 

And fmally Y^ obtained from: 

yR-ri 4.33 

4.2.5 3D Point Location from Image Coordinates UL, VL, UR, VR 

Given the left and right image coordmates UL, VL, UR, VR of a scene pomt, its 3D location is 
determined as follows: 



Chapter 4 Background on Models and Notation 49 

Choosing the head-frame CO from equation 4.18 , 

m 
CO .CO , „C0 CO 

= Pi +c^ +n^ + m 
, CO 

and rearranging this by fransforming the vectors into their desired frames. 

m 
CO COl^Cl , C02„C2 i C O i ^ Z , = R^"'p^' + R^"^c^^ + R^"^n^ + R^"^mi 

then regrouping; 

m 
CO C01/„C1 C12/„C2 C 2 I „ Z , = R^"Ypi' + R^'Yci" + R^'^nJ ;; + R^'^R^'^R^'mJ 

Similarly for the right Camera: 

m 
CO . C01/_C1 C12/„C2 C1R„R CQXnCn-nClR^R = R^"YP« + R'-'Yc^ + R '̂̂ 'n^ ;; + R^ '̂R '̂̂ R^ '̂̂ m^ 

4.34 

4.35 

4.36 

4.37 

(^0 I R 

While these give two expressions for m^ , neither is sufficient as m^ and m^ are calculable 
only up to an unknown scale factor by inverting equations (4,24) i,e, rewriting equations 4,36 
and 4,37 in the form: 

m^ aC 

^UL^ 

VL 

V y 

, m^ a C -1 

fuR^ 

VR 

V y 

4.38 

.CO 
m ̂  = a -i- /Lb CO .CO 

4.39 

^ C O „C0 , „ j C O 

m ĵ =c +//a 
Where 

.CO C 2 I _ i 
(Pi + R (Ci + R ^LJ) 

4.40 

4.41 

.CO T>C01 „ C 1 . x>C12/„C2 , T>C2/?„/? M 

' = R (P/f + R (̂ ĉ  -HR n^)) 
4.42 

CO c o i n C\2 -n ClLi^ -\ = R ^ " ' R ^ ' ^ R 

r,j \ 

V '• J 

4.43 

I CO 1^ COl | i C12 | i C 2/? p - 1 

U,^ 

V '• y 

4.44 

Where X and p are the unknown scale factors. Effectively each camera contains a ray along 
which the scene point must lie. Ideally the scene point will be at the intersection of these two 
rays. In practice, because of errors the rays may not intersect and consequently the best estimate 
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of the scene point will be the mid-point of the rays closest approach to each other. That is, the 
mid-point ofthe vector normal to both rays (Figure 4,2,5.1), 

r = a + ;ib 

Mid point of 
Normal between 
rays 

r = c-hjUd 

Pa 

Fig 4.2.5.1 Mid-point of normal between 2 rays 

The coordinates of the mid point of the normal between these two camera rays is readily 
obtainable in terms of vectors a b c and d by calculating X and p for pouits Pi and Pi.. A method 
for calculating these follows. 

Common perpendicular between two rays and location of mid point 

given {aP^} = known location on ray 1 
{li il = knovm unit direction of ray 1 
{ c^ } = known location on ray 2 
{ii 2} = knovm unit direction of ray 2 

Note enclosing {} brackets imply column vectors. 

Calculating unit dfrectional vectors: 

{u,}=b^Vr«om(^b^°;; 4.45 

iCO CO 
{U2}= d ^ V ^ ^ r m ^ d ^ V ^ 4.46 

y = angle between rays sin y = norm( {ui}x{u2}) = norm( [ u 1] {u 2}) 
{ii 3} = unit direction along common perpendicular {ii3}=[ui]{ii2}/sinv|/ 
di2 = directed distance (length of common perpendicular) along {ii 3} from ray 1 to ray 2 

{a^'} + Mul}+d{U3} = {c^°} +H{U2} 

[{u .} { - u j {^3}] 

A 

12 J 

>= ({c-}- {a-}) 

4.47 

4.48 
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= [{«i} {-U2} {63}]-' ({c^14"}) 

or 

4.49 

find midpoint of common perpendicular using confluence of 2 rays. 

{mf } = ( [ i i i ] ' + [ir2]')-' ( [ui] '{a^'} + [u2]Mc^°}) 4.50 

Note 

[11] = skew-symmetric matrix for {u} 

{u}= 
Ux 

•S' 
. " z . 

[u] = 
0 - u , 

u, 0 

Uy 

- u . 

-u.. u. 0 ' y - X 

i T _ [if] '=-[u] 

[ U f = { u } { u r - [ l 3 ] = 
U x - 1 U^Uy U,U, 

X V V y z 

^ x ^ z ^ y ^ z z 
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4.2.6 Mobile Base Model 

The configuration differences between Oxford's GTI mobile-base and MROLR's base mentioned 
in Section 4.10, amount to a difference in the control variables. The 3 wheeled GTI base is 
steered via its economical single motor driven rear wheel. Consequently the control inputs are 
the velocity and rear wheel relative angle. By contrast MROLR's base is controlled by 2 motor 
driven wheels as shown in Fig 4.2.6.3. Optical encoders provide feedback for control and 
odometry information. This has the advantage that by setting vi= -V2 the robot is capable of 
rotating on the spot about its own central axis. In addition, shortest path movements are simple to 
achieve by an initial on the spot rotation, followed by a linear translation to the desired location 
and then a final on the spot rotation to end up in the required orientation. The analysis begins by 
defining the angular velocity of motion co in terms of the vehicles rate of change of angular 
position (see Figs 4,2.6.1/2). 

(O = 
de 
dt 

4.51 

Robot Position (z, x, ^ ) z' ,00 

Robot X 
Coordinate 
Frame V, A 

(/Vorld Reference 
Coordinate Frame 

Robots Initial 
Position (0.0,0) 

V2^ 

Fig 4.2.6.1 MROLR moved to position (z,x (j)) 

Assuming inner wheel and outer wheel tangential velocities of vi and V2 metres/sec respectively, 
the centre vehicle velocity v can be obtained from: 

Vl + V2 _ 
V = = o)R 4.52 
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For a given angular velocity © ofthe centre ofthe base, the tangential velocity of each wheel is 
related via vi=(]i)(R+Di), and V2=CD(R-D]), the radius ofthe arc moved through by the base can be 
derived as follows: 

The arc length moved through in time / seconds is R0, thus 

^ J ^ V1 + V2 

dt ^ 2 
4.53 

Solving for R from vi=a)(R+Di)/ V2=co(R-Di) gives: 

R^ Dx(^x+^2) 

(^1-^2) 

4.54 

Robot Base at time k+1 

Head Centre 
Coincides with 
Robot Base 
Centre 

R 
Robot Base at time k 

Posiiion(|<-i-i) 

For Comparison: 
Oxford's GTI Mobile Robot Geometfv 

Fig 4.2.6. 2 Oxford's mobile robot geometry 

Using equation 4.54 to replace R in equation 4.53 and using a time increment of At, leads to 
. „ V I - V 2 ^ 

A0 = At 
2Z), 

For a constant time interval At the change in ^, will be represented by ^in place of A^ 

^ V 1 - V 2 ^ 
I.e., 0 = At 

2D, 
4.55 
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4.56 

Consider a circular arc trajectory increase of 0 degrees (Fig 4.2.6.3), the changes in z, x, (j> are 
readily seen to be : 
z(t+At) = z + R( sin ((j) (t)+e) - sin(<t) (t)) ) 
or rearranging 

z(t+At) = z(t) + R(cos(|)(t)sine + sin(|)(t)(cose-l)) 

x(t+At) = X + R(cos (<|)( (t) - cos ((j) (t) +0)) 
or rearranging gives 

x(t+At) = x(t) + R(sin(t)(t)sin0 + cos<|)(t)(l-cos0)) 

and 

(t)(t)(t+At) = (|)(t) + 0 

When Vl = V2 = v (i.e., straight line case) 0 limits towards 0 and R limits towards oo, the equations 
may be rewritten in the form: 

z(t+At) = z(t) + vAtcos<t>(t) 

4.57 

4.58 

x(t+At) = x(t) + vAtsin<|)(t) 

(t)(t+At) = (t)(t) 

4.59 

4.60 

4.61 

z + R(sin ((t»+6) -sin((t()) 

World 
Q Q Coordinate 

X + Rcos (if) -Rcos ((((+6) 

Fig 4.2.6.3 Geometry of a circular arc trajectory 
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In general the position ofthe robot base can only be estimated to a degree of uncertainty witii the 
use ofthe above equations. This is because: 
(1) Wheel slippage may occur due to uneven terrain. 
(2) The confroUer will have some calibration error both in terms of distance movement and 
velocity. 
(3) Wheel diameter differences will exist due to tyre pressure variations. 
(4) A collision with an obstacle may have occurred. 

Additional positional information to that available from wheel odometry is thus essential for 
reliable robot localisation estimates. In this work additional positional information is obtained 
with the use of active stereo vision to acquire landmark visual features, which in tum are used for 
map-building of the local envfronment, and also self-localisation. The availability of a map is a 
usefiil tool when navigating in a previously explored envfromnent, and can considerably reduce 
the risk of becoming lost. 

Landmark visual-feature acquisition, map building and navigation are covered in Chapter 5. Of 
paramoimt importance to this work is the ability to identify and accurately locate a target object. 
Identification is reliant on having accurate model descriptions ofthe object so that matching can 
be effected. Two models are used, a 3D object-model created from the integration of multiple 
views of the object, and a 3D scene-model created from only a single view of the scene 
(sometimes referred to as a 2,5-D model). In the following tools and algorithms required for 
building these models are described. 

4.3 3D Object and Scene Modeling and Recognition 

As outiined in Section 3.2, TINA, Sheffield's Machine Vision Research platform with its 
comprehensive suite of libraries and tools was adopted as the software environment for 
developing the model building and recognition modules used by MROLR. Other competing 
image processing environments such as TargetJr/IUE [TargetJr], Khoros [KHOROS], and 
Horatio [HORATIO] were also considered as potential platforms, but ultimately were judged not 
as convenient to use, or in other instances not chosen because of their lateness in arrival on the 
scene, A view ofthe TINA main interface module window is displayed in Fig 4.3.1 It will be 
noted that as typical in Windows type program environments, the software is essentially event 
driven, with the events consisting of mouse button presses. This is very usefiil when studying 
isolated sections of work or specific options, but not conducive to a stand-alone system, 
requiring essentially only one "initialising" mouse click. A considerable portion of the effort 
behind this work was in writing and integrating all of the modules (incorporating three different 
software platforms) to obtain an autonomous system controlled by input events arising from 
MROLR's physical environment. 
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- •#! tinatool D X 

Display NewTvtoolJ View) Terrain) Exit) Help 
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Fig 4.3.1 TINA's main interface window 

Prior to outlining the modules/sub-tools utilised, the relevant algorithmic and programming 
approaches incorporated in TINA will be briefly reviewed. Some of these descriptions are 
summaries of work in [Tin97a], [Tin97b], [Tin99]. It should be pointed out that much o f t h e 
following is now well understood and has been incorporated in numerous machine vision 
applications for some time. This specifically refers to camera modeling and calibration, epipolar 
geometry, image rectification, edge-extraction, stereo matching, depth recovery, disparity 
gradient constraints, 3D model-creation and the like. In light of this, the following descriptions 
are intentionally brief; their inclusion here is purely for the sake of completeness. 

4.3.1 Parallel Camera Geometry For Non-Parallel Stereo 

Using parallel camera geometry (i.e., parallel optical axes, and image planes constrained to be in 
the same plane) can considerably simplify both stereo correspondences matching problems, and 
the subsequent 3D reconstruction. This simplification arises as the epipolar lines of images are 
parallel to the baseline, and disparity analysis can now be restricted to a one-dimensional search 
along these horizontal lines. If calibrated cameras are used, it is possible to construct an 
equivalent (virtual) parallel camera geometry by a process of epipolar rectification (refer Fig 
4.3.1.1). The rectification process can be implemented by projecting the original images onto the 
new image plane such that pairs of conjugate epipolar lines become collinear and parallel to one 
of the image axes (usually the horizontal one). The rectified images can be thought of as 
acquired by a new stereo rig, obtained by rotating the original cameras, (See for examples, 
[Aya91], [PPPMF88], [FP02]), 
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XJ/jjXJ/j parallel to base line C1--C2 Note the epipolar lines I j , I j are re-projected as the common scanline I i , l 2 
and are also parallel to the baseline. 

Fig 4.3.1.1 Convergent to rectified stereo re-projection 

At the additional cost and associated overheads of a third camera (i.e., trinocular vision)) or even 
a fourth camera, it is possible to eliminate the uncertainty associated with a one-dimensional 
search. See for example Ayache and others [Aya91], [Jar94].[FP02] ). Eariy trials using 
trinocular vision were evaluated (Wingate [Win99], also Appendix A) but later abandoned in 
favour of binocular stereo for computational cost reasons. An interesting comparative study on 
disparity analysis based on convergent (i.e., non-rectified) and rectified stereo was carried out by 
Schreer et al [SBKOO]. They concluded that each method had additional overhead costs that 
needed to be considered prior to deciding whether the advantages of implementing rectification 
outweighed these computational costs. 

4.3.2 Modelling and Recognition Software Environment and Associated Tools 

A compelling reason for using the TINA Machine Vision Research Environment is the diverse 
range of software tools provided. The following modules were found to be of particular value: 

(i) Calibration Tool 
(ii) Edge Tool 
(iii) Stereo Tool 
(iv) Matcher Tool 
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Brief details of these tools are discussed in the following sections, greater details are available in 
[Tin97a], [Tin99] from which much of this description arises. Details of supplementation to 
these tools, which is considered an original contribution of this work is outimed in Ch5. 

4.3.2.1 The Calibration Tool. 

This tool is provided for estimating the intrinsic and extrinsic camera parameters of a stereo 
vision system, (the widely applied pin hole camera model is used). A calibration tile is utilised 
and several altemative calibration algorithms are available. These are briefly mentioned below. 
Arbifrary parameter selection and adjustment, radial distortion parameters, estimation of 
calibration parameter covariances, for purposes of optunal combination, are features also 
provided. 

Calibration Methods 
The following calibration procedures are included: 
Tsai. This widely used routme, first developed by R.Tsai [Tsa87] is initially used on each 
camera, and while retuming satisfactory parameter estimations, improved results may be 
obtained by additional processing (i.e., following Tsai with IP min etc). 

IP min. This is a direct image plane minimisation routine that operates on the difference between 
the observed and predicted locations of selected data. An iterative minimization algorithm 
relying on initial estimate values is used. Left and right camera calibration is performed 
separately. 

IS min. This routine also performs dfrect image plane minimisation of the difference between 
the observed and predicted locations of selected data. Left and right cameras are calibrated 
simultaneously, unlike the routine above, 

EPI min. This routine performs an off epipolar minimization. The routine retums the left and 
right camera models that are most consistent with the observed stereo geometry. A limitation of 
the routine is that only information on the ratio of the two focal lengths and the relative 
fransformation between the camera coordinate systems up to a scale factor is possible. 
Furthermore, a covariance estimate from a previous calibration must be used to constrain the 
minimization process. Additional supporting covariance estimation routines are also provided 
with the tool. 

The procedure for calibration of a stereo rig requires a calibration tile to be placed in front ofthe 
two cameras, inclined at approximately 30 degrees to the cameras focal axis, and fully visible in 
both images. These images are then pre-processed with the Caimy operator (Edge Tool). Using 
an initial estunate ofthe pin hole camera model, the Tsai algorithm is used to obtain an improved 
estimate. Following this calibration, residual distributions can be examined and re-calibration 
appUed as necessary, using any ofthe above routines until good results are obtained. 

Fig 4.3.2.1 illusfrates the process of calibrating the stereo cameras using a planar tile. Accurate 
location and matching of all comers is essential for good parameter estunation. The "adequacy" 
of results can be visualised by performing a 3D reconstruction ofthe tile itself. 
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4.3.2.2 Stereo Tool 

The fimction of the stereo tool is essentially input/output generic file manipulation and display 
fimctions for stereo image data and derived geometric features. It controls 3 display tools, one 
for each of the left image, right image and resultant 3D stereo matched line/coiuc (i.e., wfre 
frame) data obtained following processing with the Edge Tool. 

4.3.2.3 Edge Tool 

This tool is used primarily as an interface for performing edge detection, and edge based stereo 
processing. Its main application for this work has been in the recovery of 3D wire frame 
geometrical scene descriptions used in conjunction with the stereo tool. It utilises the following 
procedures: 

Canny edge detection: This edge detection routine comprises of a two-stage process: In the 
first, edges with intensity gradients above a low threshold are identified, while in the second the 
edges are linked into strings. (Edge strings that are entirely below an upper threshold are 
eliminated). Final linked canny edges are obtained, to sub-pixel accuracy. 

Edge rectification: The position of the edge data, obtained from use of the Canny edge 
extractor, are recalculated to be consistent with parallel camera geometry. The process is 
followed with stereo matching, and 3D geometrical recovery. 

Stereo: An effective matching algorithm, derived from the "PMF" stereo algorithm [PMF85] is 
used, which relies strongly on support provided by local disparity gradient consfraints. It utilises 
the list edge-string structures provided from Canny edge extractor. Refer to section 6.2,1 for 
details of TINA geometric list structures, 

Geoni2 and Geoni3: Standard polygonal algorithms are applied to matched linked-edges to 
identify and obtain 2D and 3D Une and conic structures respectively. The resulting 3D geometry 
is with respect to the left camera (virtual parallel camera geometry) coordinate frame, the origin 
of which is at the optical centre. 
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Fig 4.3.2.1 Calibration of stereo cameras using planar tile 

4.3.2.4 Matcher Tool 

This tool was designed to provide 3D model creation and matching facilities, but at the time of 
initial introduction (1999), it was only partially operational. N. Thacker [Tha99] in consultation 
with M.Wingate, contributed by removing a number of limiting programming bugs, and the tool 
was subsequently modified and added to by M.Wingate, as part of this work, to incorporate a 3D 
object-model builder and recognition module. Greater detail of this work is given in chapter 5, 
The model matcher algorithms provided and modified, are used in the recognition module both 
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to perform 3D matching of object-model features to scene-model features and to compute the 
transformation which takes the model mto the scene. 

4.3.2.5 TINA Generic List Structures 

A significant feature of TINA's system libraries is the consistent use of generic list structures to 
provide coimectivity amongst the various data types. These provide the means of building 
software with good modularity, regularity and robustness. Two basic representative list 
stmctures are used. These are (a) the singly connected list structure and (b) the doubly 
coimected list structure. Each type may be applied recursively. Doubly connected lists, indexed 
by thefr start and end are termed strings and are a widely used structure to store and process 
segmented image edges (edgels). Five 3D geometric stmctures frequently used in this work are 
vectors, pomts, lines, planes and conies (curve geometry i.e. arcs, ellipses, cfrcles etc). Detailed 
code of these structures is given in section 6.2 where thefr usefiilness in the development of a 
"3D Model Editor", is more explicit. 

4.4 Conclusion 

This chapter has outlined the mathematical notation and models used throughout this thesis. An 
important outcome was the development of a stereo head model that enables feature 
measurements to be referenced to a head frame that remains stationary with respect to the mobile 
base reference frame. Model motion equations were developed for the mobile base, and a 
summary ofthe models and methods used in the vision research platform "TINA" was described. 

hi Chapter 5 the motion equations for the mobile robot base are extended to include the robot's 
estimated position vector fv and confrol vector u. These together with the camera and stereo 
head formulations, developed in sections 4.2.1 to 4.2,5 are used to describe a "Simultaneous 
Localisation and Map Building" algorithm suitable for autonomous navigation, utilismg active 
vision. 
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Chapters Navigation 

5.0 Introduction 

This chapter commences by restatmg the preliminary mobile robot model equations of motion 
developed in chapter 4, and then describes a Sunultaneous Localisation and Map-buildmg 
(SLAM) algorithm suitable for autonomous navigation ui previously uncharted environments. 
The algorithm utilises the well known Extended Kalman Filter and is based on the map-building 
and sequential localisation algorithm developed by Davison [Dav98], [DavOl] for the Oxford 
GTI Mobile Base, and the collaborative work of Wingate and Davison [WD02a], [WD02b]. For 
this work, in its current phase, navigation in a totally unknowoi envfronment is not requfred. The 
system is intended to be capable of navigating to given sets of world coordinates where there is 
some likelihood ofthe targeted object being in relative close proxunity, (e.g. to a table in a room, 
with recognition of the table not being a requirement). A limited obstacle avoidance module 
based on visible feature detection has been implemented to enhance navigational reliability. If an 
obstacle is detected, information relating its distance from the robot is retumed and so movement 
around the obstacle can be scheduled. A limitation in the current implementation is that many 
obstacles do not have detectable features. For greater robustness in obstacle detection the fiiture 
addition of a sonar sensor mounted on a miniature pan/tilt platform is plarmed. Details of the 
design and constmction of the motorised pant/tilt platform are given in Burley and Wingate 
[BW02]. 

In general because of possible wheel slippage, calibration and measurement errors, the position 
of tiie mobile-base, calculated from odometry, can only be estimated to a degree of uncertainty. 
Appropriate modeling can ameliorate location uncertainty due to noise and measurement errors. 
For instance, wheel-velocities vi and vi (subsequently used as control input parameters) may be 
modelled assuming their errors to have a Gaussian variation with standard deviations 
proportional to the velocity demands themselves. Values of ai=0,14 vi, and 02= 0.14 V2 were 
found by trial and error to give good results. These expressions for uncertainty are incorporated 
in position estimation modeling m the derivations to follow. For circumstances where severe 
wheel slippage or obstacle collisions occur, additional positional information to that available 
from dead reckoning is essential for reUable robot self-localisation estimates. 

In this work additional positional information is derived via the use of active stereo vision that 
acqufres landmark visual features, which in tum are used for map-building of the local 
envfronment, and self-localisation. A feature map is a powerful tool when navigating in either 
previously explored or unexplored environments. For the situation of navigating in new 
environments, provided suitable features can be found from the commencement of motion, these 
features can be used for improving self-localisation estimates, as well as map building. Once 
several features are available for tracking they substantially reduce the risk of becoming lost, in 
the same way as a land-map can assist a human in fmding their bearings. Known mapped 
features (i.e., features mapped during a previous voyage through the terrain) can likewise be 
helpfijl in the prevention ofthe loss of bearings. 
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5.1 Preliminary Mobile-Base Model Equations Revisited 

Referring to Figs 4. 2.6.1/2/3 m Chapter 4, the following equations were arrived at and are 
reformulated here for clarity: 

For constant time intervals At (see equ. 4.55), the change in angular orientation 0 is obtamed by: 
VI - V 2 ^ 

e = At 5.1 
2 D , 

Ifthe mobile robot's position at timet is: x^ = x(t) 

\<Kt)j 

5.2 

Following a constant time increment At the robot's estimated new position will be: 

z(t+At) = z + R( sin ((t)(t)+e ) - sin((|)(t))) 5.3 

rearranging to separate out variables ^ (t) and 9 

z(t+At) = z(t) + R(cos(t)(t)sin0 + sin(t)(t)(cose-1)) 5.4 

x(t+At) = X + R(cos ((|) (t) - cos ((!> (t) +8)) 5.5 

rearranging to separate out variables (|)(t) and 0 

x(t+At) = x(t) + R(sin(t)(t)sme + cos<t)(t)(l -cosB)) 5.6 

and 

(t>(t+At) = (l)(t) + 0 5.7 

when Vl = V2 =v (i.e., sfraight line case) 9->0 and R ->co and these equations can be written m a 
simplified form 

z(t+At) = z(t) + ((vi+V2)/2)Atcos(t)(t) = z(t) + vAtcos(j)(t) 5.8 

x(t+At) = x(t) + ((vi+V2)/2)Atsin(|)(t) = x(t) + vAtsin(|)(t) 5.9 

(l»((t+At) = (t)(t) + ((vi-V2)/(2Di)) At = (t)(t) 5.10 
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Defming the robot's estunated position vector fv and the input control vector u as: 

fv = x(t + At) 

[^(t + At) 
u = 

Ŝ  
^ ^ 2 ; 

5.11 

fv is a fimction of both Xv and u (refer equations 5,8-5,9) and will be normally be designated as 
fv(xv,u). 

The covariance matrix Q of fv expressing the first order uncertainty in fyis: 

Q=vrfv)„uvrf,): 
Where 

5.12 

V(fv)u = 

V(z(t + At))^^ V(z(t + At)),^ 

V(x(t + At))^^ V(x(t + At)),^ 

V(tP(t + At))^^ V(<P(t + At))^^ 

V = 
0 

0 v2 

5.13 

U is the covariance matrix of control vector u, and a and a are standard deviation estunates ofthe 
*'i 2̂ 

errors in the velocity control input parameters vi and V2. V(fy)„ is obtained from: 

V(fv)u = 

V(zj^v(/?),, +v(z)^v(^;,, v(z)^v(i?;,^ +v(z)^v(^; 
V(^;^V(i?),, + V(x)^V(^;,, V{X)J,V{R),^ +V{x)e^{0), 

" 2 

2 

v(^;v, v(^;v, 

Where 

V(R)^^=-.2^lJ^, V(7̂ ) = ^^^^^ 
rv,-vĵ  r^i -^2) 

(̂'̂ ,̂ =TTr-^^ vr6/;,, = - - ^ A ? 
5.14 

2D, 2Z), 

'^(Z)Q = R( cos (j) cos 6 - sin (j) sin 6) ^(z)^ = ( cos (f) sin 6 - sin (f) ( cos 0-1)) 5.15 



Chapter 5 Navigation 65 

V(x)g^ =(sin^sin 0 + cos <l>(\ - cos 0) ^(X)Q = R(sin<t)cos0+cos(f>sin0) 

's/{z{t + M))^ W{z{t + At)), V{z{t + At))/ 

Wy)x..= ^i<t + ̂ ))z V{x{t + At)), V{x{t + At))^ 

y{tP{t + At)), V{^{t-^At)), V{,/>{t + At))^_ 

'l 0 -R(sm (^t) sin 0 + cos <^t)(^ cos ̂  - l)f 
0 1 i?('cos^jf)sin^-sin^ir;n-cos6!); 
0 0 1 

For sfraight line travel v = vi = V2 the previous associated expressions sunplify to: 

V(z)^^ = Atcos ̂ , V(z)^^ = Atcos ip V(x)^^ = At sin t^, V(x)^_^ = At sin 

W^A, =1^^' ^(^K = - ^ ^ ' while Vrf,)„ and V(f,),^ sunplifyto: 

5.16 

5.17 

Wfv)„ = 

At cos (p At cos ̂  
At sin ̂  At sin <j> 
0 0 

and 

5.18 

V(fv)x. = 

1 0 -vAfsin<^(0 

0 1 vAtcos^{t) 

0 0 1 
5.19 

respectively. 

5.2 Landmark Features For Map-Building and Navigation 

For a vehicle relying on active vision to navigate autonomously in an uncharted environment, a 
methodical map-building process to include surrounding stable landmarks is essential. This map 
can then be used to calculate the location of the vehicle with reference to a convenient reference 
point. 

Essential for any feature-based active vision navigation system is a reliable feature detector and 
discrete landmark features that are easily detectable from a wide range of locations and angles. In 
this work, feature detection for map building and localisation is performed automatically using 
the Z operator described by Shi and Tomasi [ST94], The Z operator locates patches in an image 
that are easy to frack due to their large intensity variations across a patch, the associated feature 
is the cenfre pixel ofthe patch. 
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2 = 1 
patcti 

SrS 

S yS X 
5.20 

where gx and gy are the horizontal and vertical gradients of image pixel intensities. 

Image patches of size 13 xl3 pixels are used. Being larger than requfred makes them readily 
distinguishable and thus more reliable, albeit at the cost of greater computational overheads. 
Patches usmg the equation for Z above are calculated about each pixel point. Eigenvalues ^i and 
X2 are next calculated and patches classified in ascending orders of interest accordmg to the 
values of the X pairs. Optimal feature patches are those with the largest small eigenvalues of Z, 
The significance of the smaller eigenvalue being large, is that the patch has high variations in 
intensity making it more visible and thus making the point feature easier to track. 

5.2.1 Feature Detection and Matching 

To perform a measurement on a feature requires that it first be located in both the right and left 
image. In the sections that follow, it is shown that it is possible to ascertain a region in the left 
and right unages comprising an ellipse within which a sought feature should lie with a high level 
of probability. Restricting the search to this ellipse considerably reduces the search overhead. To 
fmd a required feature, scanning in raster order of both the left and right image is performed and 
for each pixel in the ellipse region, a patch is calculated and compared with saved patches that 
represent target features. The comparison is performed using equation 5.21, which represents a 
normalised sum-of-squared-difference measure. 

N'^Y. 
patch 

gx - gx go g (. 
cr^ 

5.21 

go and gi are image mtensity values corresponding positions in the saved patch and image patch 
respectively, and go'̂ i'̂ o ^*^ ^1 ̂ ®̂ means and standard deviations ofthe intensities across the 
patches, n is the number of pixels in a patch. This expression is 0 for a perfect match, and 
measures the average difference in standard deviations of values above the patch mean intensity 
between corresponding pixels in the patches being compared. Davison found a threshold value 
for N of 0.9 to be a suitable choice (see [Dav98, page 45]. For consistency this manually set 
threshold value for N was also used (i.e. the lowest value for N below 0.9 is accepted as the best 
match in the search zone). Note that any patch representation is intrinsically viewpomt variant, as 
features look different when viewed from new distances or angles, A criterion for expected 
visibility of the featiue based on the differences between the original viewpoint and a new 
viewpomt, is formulated below 
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The feature is expected to be visible ifthe length ratio ——— lies in the range 0.7 to 1.4, and the 
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Fig 5.2.1 Scene feature as seen from two viewpoints 

5.2.2 More elaborate feature types 

Rather than representing scene feature points as a two-dimensional image patch, some authors 
[ZF94], [Ruc97] use planar regions in 3D world coordinates. Many real features would fit this 
planar description (i.e., wall marks, door panels etc). An added overhead with this type of feature 
is the need to obtain an accurate transform from world plane to image plane. This transform 
would ensure the image plane obtained varied in shape and size appropriately with each new 
view location, giving greater confidence in matched features. With small inter-occular base lines, 
obtaining accurate transforms is however difficult and is not used here for this reason. 
Other possibilities include line features and comer features. Fixating on either of these however 
is more difficult due to possible line fragmentation. 

5.3 Feature Acquisition and Fixation 

Fixation is the process whereby the optic axis of the camera passes through the scene feature 
point. Fixation ensures image processing occurs near the centre of the image where lens 
distortion is at a minimum, and also minimises the likelihood of part ofthe feature lying outside 
the bounds of the image plane. Acquiring a new feature consists of finding the best patch in the 
left-image and then fixating on the feature by moving the head so the optic axes of both left and 
right cameras pass through it. The process is as follows: once the left image patch has been 
located, the corresponding epipolar line is generated in the right image from knowledge of the 
head angles (camera motion). The epipolar line in the right image, is the image ofthe light ray on 
which the feature must lie. A match in the right image is sought in close proximity to this line 
(typically within ±7 pixels of the line), and if successful the 3D location of the feature is 
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calculated as outlined in section 4.2.3. From the 3D location, the head angles required for 
fixation are calculated and the head positioned accordingly. If the feature is located within a 
small radius (i.e., 2 pixels) of the principal point in both the left and right image, fixation is 
successful; else the feature position is recalculated and the process repeated. If after several 
attempts fixation fails, the feature is discarded. 

5.3.1 Uncertainty of Fixation Measurements 

Camera image plane 

Scene image 
point V 

Scene feature 

Principal point 
• vo 

Optic axis 

Fig 5.3.1,1 Uncertainty of fixation measurements 

Fig 5.3.1.1 shows a feature point with a small error in fixation. An accuracy of ±1 pixel would 
normally be expect in image measurements of detected features. To determine how this error is 
translated into angular errors in fixation, the vertical difference between v and vo in terms ofthe 
angle error e is examine as follows: 

tanf = 
V-Vo 
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Where/is the focal lengtii and ky the vertical pixel density m pixels/mefre. 

The effect of a small change 8v in v can be ascertained by differentiating the above equation as 
follows: 

2 i: ^ 

sec 806 = 

At fixation 8 will be small, approaching zero consequently sec^e tends towards 1 thus: 

=> Ss = 

For a fixation with an accuracy of 2 pixel (i.e., dv=2) ,fkv=807, 
S£^2/{S01) «0,0024rad ^C.15 degrees. 

Head movements are repeatable to within the order ±0,1 degrees, consequently errors introduced 
by head movement motion are negligible in comparison to Se, 

Essentially the implication of the previous analysis is that an angular uncertainty value of ,0024 
rad must be added to all head fixation angle measurements. The effect of this uncertamty on 3D 
scene measurements can be quite significant when depth is large as shown in Fig 5,3,1,3. Error 
values were obtained using Fig 5.3.1.2 which shows the stereo cameras having an inter-occular 
spacing I metres, angular vergence uncertainty e rad, fixation angles YL= -YR, angular fixation error 
8 rad =Ay rad, error in Z of AZ=Bd, error in X of AX=Ad, 

Consider triangle ABC, Angle B = YL. Angle C = YL - e, 
Angle A = 7t- (B+C) = 7t - 2YL + s. 
The error in Z, is AZ = Bd, while the error in X, is AX = Ad, 
SideBC = (tan(B) - tan(C))/(I/2), 
Using tiie sme mle SideAB=SideBC*sin(C)/sin(A), 
AZ= Bd = sideAB*cos(B) 
and AX= Ad =AZ*tan (B) 

The significance of these uncertainties with I = 0,25 m (the mter-occular distance for our BiSight 
head) and vergence uncertainties of 0,005 rad is highlighted in the graphs of Fig 5,3.1.3. 
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Fig 5.3.1. 2 Converging stereo cameras showing potential measurement errors in X and Z 

Examination of Fig 5.3.1.3 reveals that transverse errors (AX) are quite small, reaching a 
maximum of 0.04m at a depth of 10m, whereas the corresponding uncertainty in depth 
estimations (AZ), is in the order of 3.1m. This is not unexpected, as for large Z values the camera 
optical axes are near parallel, and consequently small uncertainties in the vergence angles 
translate into large depth uncertainties. An ellipse with (AZ) as the major axis and (AX) as the 
minor axis, is a usefiil pictorial way of portraying these uncertainties. Accounting for them 
during localisation and map building is covered in the next section. 
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Transverse errors (AX) are quite small, reaching a maximum of 0.04m at a depth of 10m, whereas the 
corresponding uncertainty in depth estimations (AZ), is in the order of 3.1m. 

Fig 5.3.1.3 Fixation error estimations for I=0.25m and vergence uncertainties of .005 rad 

5.4 Navigation: Map Building and Localisation 

To be reliable a map-building and localisation process must account for the uncertainties due to 
noise in any measurements made. An effective tool that incorporates the modeling of noise and 
provides optimal estimations of location, is the Extended Kalman Filter. As with earlier authors 
[New99] [Cso97] [CDTOO], MROLR's map-building and localisation algorithms use an 
Extended Kalman Filter. 

5.4.1 Extended Kalman Filtering 

Considerable literature exists on both the Kalman Filter (KF) and Extended Kalman Filter 
(EKF), see for example [Sor85], [Gel96]. The KF addresses the general problem of trying to 
estimate the state of a linear discrete-time controlled process in the presence of noise. The EKF 
is an extension ofthe KF to permit its application to non-linear systems with state transitions and 
whose fimctions contain non-Gaussian noise. 
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5.4.1 Notation 

The following briefly outiines the notation used for the Extended Kalman Filter. Further 
explanations accompany the subsequent formulations. 

State transition function f: The state fransition fimction is designated by f. This fimction 
incorporates the system dynamics and facilitates the estimation of the "current state" during a 
time step At during which no measurements are made. 

State vector x: The state vector models the system, it contains the best estimate of quantities of 
interest as the system evolves with time. Importantly it incorporates any measurements (z) ofthe 
quantities made during a time interval At. The expected evolution of the state vector with the 
passage of time is encapsulated in f, the state transition fimction. 

Current state estimation vector x: The current state estimation is stored in this vector and the 
covariance matrix P. 

Covariance matrix P: The covariance matrix represents the uncertainty in x due to noise Q m 
the state transition. P is a square symmetric matrix, with a dimension equal to the number of 
elements in x 

Noise Q: This variable provides a means of allowing for random or unaccounted effects in the 
dynamic model. 

Measurements z and m: z is used to designate an actual measurement (i.e., using the active stereo 
head), and m for a prediction ofthe measurement. 

it (k+l/k): An estimate x of the state x at a time step k + 1 , based on the estimate at tune step k 
and an observation (measurement) made at time step k + 1. 

Innovation v: The innovation v is the difference between the actual measurement z and the 
predicted measurement m calculated from the current state. 

Covariance matrix of the noise R: This matrix represents the covariance of the noise in the 
measurement. 

Gain W and innovation covariance S: W designates the Kahnan gain and S the innovation 
covariance. The innovation covariance represents the imcertainty in v (i.e., the amount by which 
an actual measurement differs from its predicted value). 
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5.4.2 The Extended Kalman Filter 

Prediction 
hiitially, m a step of time At m which no measurements are made, an estimate of tiie state ofthe 
system x may be obtamed from the state transition fimction f and the system dynamics as 
follows: 

x(^+l/^) = f(x(M),u(^)) 5.22 

Where u is the vehicle's control vector specifying the wheel velocities and indfrectiy the steering 
angle (see equation5.1). 

¥(k +l/k) =V(f)Jk/k)V(k/k) V(f)^(k/k) +Q(k) 5.23 

During the state fransition the covariance matrix changes reflect the increase in uncertainty in the 
state due to noise Q. f and Q both depend on u, the current mobile-robot control vector which is 
a fimction ofthe wheel demand velocities vi and V2. 

State Update 

Followmg a reliable measiuement, the state estimate will improve with this new information and 
the uncertainty represented by P will reduce. In the following update equations, the innovation v 
is the difference between the actual measurement z and the prediction m calculated from the 
current state. R is the covariance matrix of the noise in the measurement, W the Kalman gain, 
and S the innovation covariance, which represents the uncertainty in v (i.e., the amount by which 
an actual measurement differs from its predicted value). 

X {k+Vk +1) = X {k+l/k)+W{k+l)v{h-l) 5.24 

P {k+Vk+l) = P {k+Vk)-W{k+l)S{k+l)W\k+\) 5.25 

Where the iimovation v (the difference between the actual measurement z and the predicted 
measurement m) is obtained from: 

v(A+l) = z(A+l)-m(x {k+l/k)) 5.26 

The Kalman gain W is given by: 

y^(k + l) = ?(k + l/k)V(m)l(k/k)S'fk + l) 5.27 

and the innovation covariance S (which represents the imcertainty in v) from: 

S(k + l/k) = Vf m), (kA) V(k + \/k) V(m)l(k/k) + Rf/c + \) 5.28 
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5.5 Localisation and Map-Building 

5.5.1 Formulation ofthe State Vector and its Covariance 

At any given time, estunates of mobile-robot and scene-feature locations (in the world reference 
coordinate frame) are stored in the system state vector x and the corresponding uncertainty of 
these estimates in the covariance matrix P. Equation 5.8 shows these in partitioned form; x̂  is 
the mobile-robots position estimate, and y, the estimated 3D location of the rth feature. The 
dimensions of both vector x and matrix P change as scene-features are added or deleted. Note 
that for brevity frame subscripts have been dropped. 

x = 

^x ^ 

Si 

\ '• J 

p = ' y\^ 

' yix 

' m 
' y\y\ 

' yzy\ 

'xy2 

' yiyi 

' yiyi 

5.29 

Where 

x = 

f̂̂  

K^. 
. y ,= 

/ " \ 
^ ^ , ^ 

V 'J 

5.30 

Note X comprises 3(n+l) elements, while P is of size 3(n+l) x 3(n+l), where n is the number of 
mapped features. The dimensions of both x and P change as features are added or deleted, 

5.5.2 Initialization 

The filter's mitialization occurs when the mobile-robot is m the starting position 
(f = 0, X = 0, (̂  = 0) at the origm of the world reference frame and aligned with it, and no known 
scene-featiu"es have yet been acqufred, Smce the state is knovm with certainty: 

X = 

ro] 
0 

l o . 
p = 

0 
0 

0 

0 
0 

0 

0 

0 

0 

5.31 
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5.5.3 State Estimation following a Movement 

A new estimate of state i and covariance P, followmg movement of the mobile-robot over a 
constant tune increment At, designated by the label k is: 

x(k + lA) = 

(f/k/k).u(k)^ 
y,(k/k) 
y,(k/k) 

5.32 

? (k + l/k) 

w.)x.^xxOc/k)ax+Q(k) w.)x.^^,m) (f.)x.K.(k/k) " 
KJk/k) yiVi 

V....,(k/k) yiy2^ 5.33 

Where fv and Q(k) are defined in Equations 5.11 and 5,12, 

(Equation 5,33 is obtained from f(k + l/k) = V(i)^V(knc)V(i)l +Q(k). Note S7(f)^ is tiie fiiU 
state transition Jacobian (equation 5,34)). 

vrf),= 
WJx, 0 0 
0 I 0 
0 0 1 

5.34 
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5.5.4 Measurement and Feature Search 

Recall that both the mobile-robot and scene-feature positions are specified in world reference 
coordinates, however scene-features are physically measiu^ed relative to the Head cenfre. The 
tme zth feature position (relative to the Head) is thus given by: 

W^ 
m. 

Gix 

CO 
Giy 

CO 

(Xj -x)cos^-(Z. -z)sin(p 

Y.-M, 

(Xi -x)sin^+(Z. -z)cos^ 

5.35 

An estimate of the rth feature position at the current mobile base location is obtained by 
substituting estimated values for the above variables (i.e., x ,̂and y,). 

Following a measurement of this vector, the innovation covariance is: 

S _ . = V r m G , ) , P V r m G , ) ^ + R i mGi 

Vrmc , ) . ^P , ,Vrmc , )^^+2Vrmc , ) , ^P ,^ ,Vrm^ , )^ , 

+ VrmG,)y.P,,y,.Vrmc,)J^,+Ri 

5.36 

Note in equation 5.36, the measurement noise RL, is transformed into Cartesian measurement 
space. For fransformation into angular form see section 5.5.5 

The process of measuring a scene-feature is as follows: from the above estimated relative scene-
feature location, the head angles necessary for fixation are calculated (see Section 5.5.3) and the 
head moved to them. The vectors m^ and m^f and their covariances P„^ and P„^ are next 

calculated from transformed Smci- At fixation both m^ and m ĵ will have zero x and y 
components as the camera's optic axes pass through scene-feature. 

For the left camera: 

" i = - A ^ + " o and V i = - A % + V o 
m Lz m Lz 

5.37 

The establishment ofthe covariance matrix ofthe image vector u^ = 

u. = vruj„,Pn.,vruj:^ 

u ̂  is obtained from 
\^L. 

5.38 
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The Jacobian Vfu^ j„ contains mostly zero values since ^ = ? ? ^ =0 

vruj„, = 

-Au 0 0 
m Lz 

0 - ^ ^ 0 
m, 

5.39 

UL defines an ellipse m the left image whose size is govemed by the declaration ofthe number of 
standard deviations. This defined area can be searched to locate the patch representing the scene-
feature in question. The procedure is repeated in the right image. Restricting the search areas in 
this manner is computationally efficient as well as minimizing mismatches. Following a 

CO successfiil feature match in both images the final measurement of m^, is calculated 

5.5.5 State Vector Update following a Measurement 

There are considerable computational savuigs if prior to processing a measurement of a scene-
feature, it is transformed into angular coordinates (see Davison [Dav98, page 68]). This 
fransformation of m ̂ f , resulting in measurement vector m, is given in equation 5.40, 

m, = 

^a ^ 

Vri) 

tan moix 

tan 

moiz 
_i maty 

tan 

moip 

I 
Imai) 

5.40 

Where mci is the scalar length of vector mci and map = ̂ J(mGix^ + motz^ is its projection onto 
the xz plane. I is the inter-ocular separation ofthe head. These angles represent the pan, elevation 
and vergence angles respectively of an ideal active head positioned at the head centre and 
fixating the feature (i.e., head offsets =0). 

The advantage obtained by the use of angular measurement is that it allows measurement noise 
to be represented as a constant diagonal matrix. For a successfiil fixation, lock-on is achieved if 
the feature is located within a specified radius from the principal point (typically two pixels) in 
both images. For a specified radius of two pixels his represents an angular uncertainty of around 

0 

0,3 (see section 5,3,1) and hence errors with this standard deviation (assumed Gaussian) can be 
assigned to ai, e/, yi. (i-e,, Aai Ae/, Ayi). The measurement noise covariance matrix R is given in 
Equation 5,41, and it is a diagonal matrix in which ai e,- yi, are mdependent variables, making it 
simpler to represent measurement noise as Gaussian, consequently eliminating potential bias 
during filter update. In addition the measurement vector mi can be decoupled, permitting scalar 
measurements to be used to update the filter. Computationally this has the substantial advantage 
that m updating the filter, matrix inversion is not required. 
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R = 

Aaf- 0 0 

0 Zk̂  0 

0 0 lAy' 5.41 

The Jacobian for each scalar part ofthe measurement m, for the current scene-feature is: 

Where scalar component mi is one of ai e, yi. The scalar innovation S is calculated from equation 
5.42 in which P ^ ,^ ^. ""d P „ ̂  are 3 x 3 blocks of the current state covariance matrix P, 

^ , > ' , • > ' , • 

9 7 9 

and R is the scalar measurement noise variance (Aai , Ae, or Ayi .) of the measurement. The 
Kalman gain W is now calculated by equation 5.43, enablmg the filter to be updated (equations 
5.44 and 5.45). In equation 5.44, Zj is the actual measurement component obtained from tiie head 
and mi the corresponding prediction component. 
S=S/(m,),'PV(mX+R 

=W^)Ax'^(^/.+2V(mJ,V,^V(mX^ +^(mJ^^^^^^W(mX +R 
5.42 

/ p A 

yi'' V r m , A , + 5 

rp ^ 
yi",-W = PVrm,.;,5-' = 5- ' 

'^3'2'' ^ y 2 y 

Note in equation 5.43 smce S is scalar S'' =1/S. 

Zi is the measured quantify from the head while mi the predicted 

K. = P./. - wsw' 

v r ^ , ) , y,-
5.43 

5.44 

5.45 

5.5.6 New Feature Initialization 

For first tune observation of a new scene-feature i, the vector mci relative to the head centre is 
obtained and the state ofthe new feature yi, initialised as: 
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y , = Y, 
X^iJ 

X + m gi^ cos (j) + m g,^ sin (p 

^ h+ m^,^ 

z - m e,̂  sin p + m <,„ cos (j) 

5.46 

The total state vector x and covariance P are updated to: 

X = 
new 

^x.^ 

Yl 

y2 
5.47 

P-„ = 
y\^ 

yi^ 

•9'l 

y\y\ 

yiy\ 

' 'Vl 

ym 

' yiyi 

V(y,X,P. V(y,.X̂ P̂ ^ V(y,X^P 
xy2 

P.V(y,.):^ 

P>3.V(y,):^ 

P...V(y,.):^ 

V(y,X^P.V(y,.X>V(y,X^R,V(y,X^ 
5.48 

5.5.7 Scene-Feature Deletion 

Deleting the rth scene-feature simple requires its removal from the state vector, and rth row and 
column from the covariance matrix. The example below applies for i = 2. 

^x ^ 

yi 

y2 
- > 

^x ^ 
-*-v 

yi and 
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w 
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5.49 

5.5.8 World-Coordinate Frame Zeroing 

For cfrcumstances when it is more convenient to use the current mobile-robot position as the 
reference coordinate frame, this can be accomplished at any stage by simply zeroing the world 
coordinate frame and assigning the new state to: 

X = 

Xv 
new 

y 
•/ new 

y2 
•/ new 

V ''• J 

^ 0 

m c i + M , 

^ 0 2 + M H 

V • 

5.50 

mp, is the vector to the ith feature from the head centre, and Mh the constant vertical offset 
vector from the ground plane to the head cenfre. The correspondmg state covariance and 
Jacobian matrices are calculated using equations 5.51 and 5.52 

vrx„^ ;. 
old 

0 0 

0 

0 

0 

^2 

5.51 

Pr«ew; = vrx_;_Po«vrx_;[^,^ 
new ^XQW 

5.52 
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5.6 Map-Building 

With the above analysis, the framework for estimating the location of the movmg mobile-robot 
and observed stationary features is now available. The trackmg of a scene-feature proceeds as 
follows: 

Assume that a target feature has been fixated during a measurement phase ofthe filter. At 
the commencement of movement, the prediction step ofthe filter will provide an estimate 
of the new position of the mobile-robot on reaching the next measurement point, as well 
as the expected relative position of the target feature. Using this information tiie stereo 
head is driven to fixate on the feature m readiness for the next measurement at the end of 
the current time increment. 

The actions required are: 
• Using current control inputs, carry out the prediction step and provide an estimate of the 

robot's new position. 
• Select the feature for tracking and calculate the estimated head angles for fixation. Move 

the head to this position in preparation. 
• Move the robot to the new calculated position based on its odometry. 
• Capture new images, 
• Perform feature matching in both images using correlation as in section 5.2.1 
• If a match is found, carry out a measurement and update the filter. 

It is sensible to make repeated fixated measurements of a single feature as the robot moves past, 
the issue is when to search for a new feature, or track an altemative feature. It is not difficult to 
envisage situations arising where a large number of features with full covariance need to be 
stored and maintained during navigation. The computational overheads of updating the filter at 
each step would significantly impinge on the filter's ability to perform real-time tracking. A 
solution to this situation that does permit continuous tracking without compromising the integrity 
ofthe filter is: during motion, update only those parts ofthe filter that are required for the current 
fracking task. A fiill update of the filter can subsequently be carried out when the robot stops 
moving at the next step, as ample processing time is then available. 

The previous expressions lend themselves very efficiently to this type of update, because only 
those parts of the state vector and covariance matrix which are directly involved in the tracking 
process at that time need to be updated. These are the estimated states ofthe sensor and observed 
feature, x̂  and y,. and the covariance elements P^̂  .P^y , and Py y . 

The algorithmic development for the continuous tracking of multiple features is continued in 
Appendix C, There it is explamed that by storing a small amount of information at each 
fransition step, the state and covariances can be updated in a generic way at the completion of 
each tracking motion. A criterion is also provided as to which feature to frack during navigation, 
this is referred to as the "Vs criterion", and is based on known innovation covariance values of 
the features imder consideration. 

In Section 5.7 further details ofthe map-building process, and the strategies adopted are outluied. 
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5.6.1 Distance Increments in Place of Time Increments 

hi tiie precedmg analysis, events are govemed by constant tune increments of At. However, a 
more useful mcrement to trigger measurements is vehicle odometry (i.e., the trajectory being 
divided into steps of fixed wheel encoder coimts, for this work the step size nommally used is 
20cm). Distance mcrements are preferable to tune mcrements, as these elfrninate accumulation of 
errors due to velocity fluctuations during a time mterval. 

5.6.2 Advantage of Known Features 

Incorporating Known-Features into the map building process has considerable advantages, akin 
to using recognised landmarks to remforce one's own position when travellmg in relatively 
unfamiliar territory away from home. The process of acquiring a known-feature consists of 
manually drivmg the robot to a suitable position and pointmg the head m the dfrection of a likely 
suitable feature (i.e., one with high contrast). If the feature is successfiilly matched and 
measured, its unage patch is saved. Several examples of such feature patches are shown in Fig 
5,6,2,1. The saved patch together with its world coordinates and the robot's position are stored in 
a file of known-features. Known features are initialised into the state vector in the same way as 
naturally found features (i.e,, as feature i, having coordinates yi). The covariance P however is 

set with all elements equal to zero, along with the cross-covariances between the feature-state 
and that ofthe vehicle and other features. This is justified as it is assumed that the location ofthe 
known feature is 100 percent certain. 
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(a) 

(b) 

Fig 5.6.2.1 Example of saved known features (a) Light fitting ends and (b) Fire extinguisher sign 

5.6.3 Simplified Mobile Base Trajectory Motions 

Motion of the mobile base is govemed by the control vector u = 
\^2. 

and while the analysis in 

the preceding sections places no restriction on the movement of the mobile base, motions 
comprising pure rotations and linear path trajectories are the simplest and most effective in 
practice. A pure rotation is accomplished by setting vi = - V2 while for tianslation vi = V2. In 
tests of the mobile base navigating to designated waypoints, the magnitude of the steady state 
velocity is set to a constant value with angular rotations and number of steps the only trajectory 
variables required to be calculated by the software controller. Generally, trajectories from one 
waypoint to the next consist of an initial rotation about the central axis ofthe base, a translation 
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dfrectly to the waypoint, followed by a fiirther rotation about tiie cenfral axis ofthe base, to align 
tiie it with the specified orientation. Occasionally when differences between odometric and 
position estimates, based on feature measurements exist, the assiunption is made that the 
odometry is in error and corrective movements are made, 

5.7 Map-Building Strategy Adopted 

The final map-building and fracking sfrategy adopted and the rational for the decision making 
process, are outlined in this section. These stem from the derivations detailed m Appendix C. 

The map-building process commences when the robot is about to move for the first time. In 
searching for suitable scene-features, ui an effort to ensure a wide selection is fotmd, the stereo 
head is pointmg slightly up, and is first directed to the left, then straight ahead and finally to the 
right. In principal, during this search up to three new features could be found and added to the 
map. While this is unlikely in view of suitable features being somewhat scarce, the rule that a 
new feature be added if less than 2 features are visible at any given location has been adopted. 
This mle ensures a sparse map is created, fijrthermore in maintaining the map it is unportant tiiat 
obsolete features be removed. Features are deleted if out of 10 measurement attempts more than 
half are unsuccessful. 

Which features are subsequently chosen for state vector updating, is determined by assessing the 
uncertainty of their position relative to the robot. This measure of uncertainty is obtained by 
comparing the scalar space volume measure Vs, which is related to the innovation covariance 
values of the feature. The principle adopted is that the 'best' feature to measure (for the long-
term integrity of the map as a whole) is the one with the least certainty, as the measurement 
process will improve its estimated position, thus reducing the overall uncertainty of the state 
vector. For instance if a feature is knovm with zero uncertainty, a fiirther measurement of the 
feature cannot improve on the uncertainty of its position. While tracking a feature however, some 
cost needs to be attributed to saccading to a new feature as each saccade encroaches on the total 
navigation time. 

The approach adopted is to decide while the robot is moving, whether to switch to a new feature 
or stay tracking the existing one. The choice is based on the predicted robot and map-state that 
would exist in a short fiiture interval of time if (a) the saccade and measure ofthe chosen feature 
was made or (b) tracking ofthe existing feature continued. The "short fiiture interval of tune" is 
the estimated time it would take to saccade and measure any ofthe features. 

Formally the decision process is implemented according to: 

1. Ni, the number of measurements that would be lost while saccading to each of the visible 
features is calculated. To determine this, an estunate of head movement time to correctly move 
to and locate each feature is requfred, 

2 Ascertain the largest Ni (Nmax), this represents the largest number of measurements lost during 
the longest saccade. 
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3 If an immediate saccade is to be made, estimate for each feature i the state that would exist 
after Nmax + 1 steps, 

4. Evaluate Vs(max) for each of the above estimated states and saccade to the feature with the 
lowest Vs(max) unless the Vs(max) ofthe feature being tracked is the lowest. 

5.8 Software Development 

5.8.1 Development and Modification of Navigation Software 

As previously stated the development ofthe navigational software is based on SCENE [DavOl], 
The motion models outlined in this Chapter and Appendix C were developed for the TRC mobile 
base and Bisight head, and these replaced SCENE'S existing "default" models where appropriate. 
Furthermore, because of tiie trajectory simplifications outimed in Section 5,6.3 the "Confrol 
Parameter Section" ofthe interface GUI was able to be reduced to contain only the Displacement 
(m). Steering Increment (degrees) and Number of steps. (Velocity, Turret increments, and Time 
step slide adjustments confrols were removed). 

In addition to the above and title name changes, the following functions and associated interface 
buttons were added: 
(a) Obstacle Avoidance (Navigate around obstacles), 
(b) Recognition 

The interface GUIs are shovm in Figs 5.8.1.1 to 5,8,1,3. 

5.8.1.1 Navigating to Specified Destinations (Waypoints). 

The Waypoint Browser (Fig 5.8.1.3) holds the locations of sequential stopping destinations. 
Navigation to the next waypoint commences on the mouse click of button " Navigate to Next 
Waypoint" (Fig 5.8.1,2). In this case the route is assumed obstacle free. 
Scanning for target objects commences on the mouse click of button "Recognition" (Fig 5.8.1.2) 

5.8.1.2 Obstacle Avoidance Function. 

If obstacles are likely, then instead of clicking " Navigate to Next Waypoint", the button 
"Navigate Around Obstacles" is selected. With this selected, prior to the commencement of each 
step the head tilts down and checks for an obstacle. If one is detected within a depth of 1 mefre 
an additional waypoint is automatically inserted. Fig.5.8.1.4 illustrates this process 

Since the search for obstacles occurs at each step, the time taken to navigate between waypoints 
increases proportionally to the distance ttavelled. 
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5.8.1.3 Dead Reckoning Option 

A command line option has also been provided for use when neither mapping nor obstacle 
avoidance is required (i.e., SLAM not requfred). For this "Dead Reckonfrig Option", tiie base 
simply relies on its odometry encoder values for localisation. It is the fastest mode of path 
navigation, and is quite reliable when the terrain is a level floor. Flow Chart Fig 5.8.1.5 
summarises the options. 

MROLR ROBOT 

n" 

Grab images I Resici Images 

Show Head Odometry 

Feature Acquisition 

Initialise Manually-Selected Point Feature 

Initialise Automatically-Selected Point Feature 

Fig 5.8.1.1 Head control GUI 
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W MROLR COM D X 

Fig 5.8.1. 2 Navigation GUI 

-M MROLR BROV/S D X 

Waypoints 

0 0.00 0,00 0.00 
a 0.45 1.00 0.00 
2 0.30 1.00 0.00 

Add Before I Add After I Delete I Delete I 

To add: 

-̂ SHSSSSI 

Fig 5.8.1. 3 Waypoint browser GUI 
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Waypoint n 
(becomes n+1) 

4 \ 
1 Inserted 

Obstacle^ ..i* waypoint (n) 

Mobile H 
base M 1 dotted lines indicate 

path travelled 
Waypoint n-1 • 

If an obstacle is detected, an additional waypoint is inserted to the right or 
left side ofthe obstacle, depending on perceived space 

Fig 5.8.1. 4 New waypoint creation for obstacle avoidance 
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(a) Choose target object-
model from data base 

(b) Input destination 
Z,X,(|) 

Navigate to 
specified 
Z,X,<|) using 
robot odometry 

No Yes 

Activate SLAM 
module 
and navigate to 
specified Z,X,(j) 

Activate recognition 
module, scan scene 
with active 
stereo head 

Await further 
instructions 

Yes 

(a) Request docking of robot 
arm. 
(b) Following docking, drive 
arm to grasp object using 
object's estimated pose 
(c) Place object on vehicle 

Fig 5.8.1. 5 Flow chart 
illustrating SLAM or dead 
reckoning modes 

Navigate back home 
(using SLAM if SLAM 
module activated) 
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5.9 Data Measurement Examples 

Examples of data measurements, for a map size of 2 features, at step 3 are given below. Note tiie 
number of significant figures printed do not reflect the accuracy ofthe data. 

Step 3 

No of features 2 

State vector 
X — 

0.884382 
0.993516 
0.0305666 
1.04299 
1.04177 
6.24433 
-1.04419 
1.04236 
4.1569 

Covariance Matrix 

p = [ 
0.000472303 0.000224005 -2.74943e-05 8.00617e-05 5.45943e-05 0.000602076 -0.00023809 0.000196054 0.000953954 
0.000224005 0.000289892 -2.07999e-05 0.000187995 0.000195976 0.00127189 -0.000198764 0.00020446 0.000867573 
-2.74943e-05 -2.07999e-05 1.33371e-05 3.07865e-05 1.31344e-05 .2439e-05 5.32473e-07 3.16899e-06 6.16399e-06 
8.00617e-05 0.000187995 3.07865e-05 0.00036703 0.000285048 0.00166124 -0.000203065 0.000229519 0.00093282 
5.45943e-05 0.000195976 1.31344e-05 0.000285048 0.000701177 0.00211657 -0.000166389 0.000184586 0.000733035 
0.000602076 0.00127189 5.2439e-05 0.00166124 0.00211657 0.0124287 -0.00109314 0.00117172 0.00475933 
•0.00023809-0.000198764 5.324736-07 -0.000203065 -0.000166389-0.00109314 0.000313161 -0.000255231 -0.00107892 
0.000196054 0.00020446 3.16899e-06 0.000229519 0.000184586 0.00117172 -0.000255231 0.000393117 0.000984229 
0.000953954 0.000867573 6.16399e-06 0.00093282 0.000733035 0.00475933 -0.00107892 0.000984229 0.00420907 

] 

Eigenvalues associated with each feature measurement 

0.000112516 4.36763e-05 4.2331 le-06 
0.000110681 4.42953e-05 4.26137e-06 

Best score found: 6.0545e-07. 
Auto-selected feature with label 1. 

Covariance matrix of noise 

R=[ 
4e-06 0 0 

0 0.0001 0 
0 0 4e-06 

] 

Innovation Covariance Matrix 

S = [ 
4.42963e-05 -3.15737e-07 -1.4381e-07 
-3.15737e-07 0.000110679 4.00568e-08 
-1.4381e-07 4.00568e-08 4.2619e-06 
] 
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5.10 Conclusion 

With the navigational formulations in this chapter complete, the remaining algorithms that still 
require to be developed relate to: 

• target object-modeling, 
• scene-modeling. 

target object recognition, 
target object retrieval, using the docked robot arm. 

Each of these tasks, together with the provision of a "3D Virtual Environment" for simulating 
MROLR, are considered in the following chapter. 
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Chapter 6 Object Modeling, Recognition and Retrieval 

6.0 Introduction 

This chapter considers object and scene modeling, recognition, and retrieval ofthe located object 
from the scene. 

Section 6.1 outlines an automated 3D object-model producing facility, designed to produce an 
object-model data base comprising all objects that MROLR is likely to be requested to locate and 
retrieve on command. Section 6.2 includes the development of a 3D object-model editor. 
Sections 6.3 to 6.5 outiine the development of the object recognition module that is responsible 
for matching the requested object with objects found in the scene. For a successful match, the 
appropriate tiansform (and consequently the object's pose) to transport the object-model into the 
scene is also provided. 

Sections 6.6 and 6.7 deal with the docking of the robot arm, and the establishment of the 
additional transforms necessary to guide the arm towards the specified object's grasp-point and 
fmally retrieve the located object. 

Section 6.8 discusses the development of a "3D Virtual Enviromnent" for sunulating MROLR. 

6.1 Automated Model Creation 

The recognition process involves the matching of an a prori specified object-model with a scene-
model. Methods of building object-models were reviewed m Chapter 2 where it was concluded 
that for the current application, a 3D wire-fi*ame (edge-based) model was a suitable choice 
(section 2.2.7). Reasons for this choice of modeling are: 

(a) Matching is carried out in 3D Eucledean space which ensures angular and linear 
measurement invariance (i.e., relative angles between Imes, and arc lengths remain fixed). 
This is essential, as the object in the scene will in general have an unknown orientation. 

(b) Matching in 3D Eucledean space permits positional information to be calculated in terms of a 
homogeneous tiansform giving orientation and translation details ofthe matched scene-object 
relative to the model-object. This transform is available for transporting the model into the 
scene allowing visual verification of the quality of the match. It is also a necessary component 
for obtaining the resulting transform that guides the robot arm towards the object m the scene 
for retrieval. 

(c) It requires only sparse data matching thereby keeping search and computational costs to a 
minimum. Given the large number of items available in any given scene, a non-sparse data 
modeling would be prohibitive. 
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One obvious disadvantage of this modeling approach is the small number of available features 
for matching (i.e., lines and conies). Additional local characteristics such as object colour, 
texture and surface properties could be added to the list of features to increase the robustness of 
the matching process. The addition of these will be considered for future work when faster 
processors should become available. 

The following briefly describes the need for models created from several views and then 
describes the methodology of the model creating process. If two images of a scene are captured 
using a pair of calibrated cameras, edge based binocular stereo triangulation can be used to 
obtain a partial 3D edge outline ofthe scene as depicted in the left (or right) camera image. This 
is of limited use for 3D recognition however as local features associated with the object (or 
scene) are only depicted from one view. Thus if a solid cube object (Fig 6.1.1) has letters 'A' 
printed on the front and 'B' on the back, the letter 'B' may not be visible from a particular view. 
If both letters were required for recognition, the block would not be identifiable. 

Fig 6.1.1 Features remain static w.r.t object's frame 

A 3D outline ofthe complete cube (i.e., hidden edges included) on the other hand, would ensure 
all its surface features were visible, and would thus constitute a suitable object-model for 
recognition. 

To facilitate automated object 3D-model creation, a PC controlled rotating horizontal table and 
two cameras mounted on extended rails, was used to obtain a sequence of stereo images of 
desired objects (Fig 6.1.2). Two smaller portable PC controlled tables, described below, were 
also subsequently built and used. 

Fig 6.1. 2 Models created on computerised rotating table 



Chapter 6 Object Modeling, Recognition and Retiieval 94 

From each stereo pair of images corresponding to a rotated view, a 3D partial edge outline was 
derived and then mtegrated to form a complete model. The coordinate frame for each view was 
(by default) with respect to the left camera's optical centre. Merging the independent views 
requires all re-constructions to be with respect to a unique (although arbittary) coordinate frame 
attached to the object. As the object rotates with the table, so too does its coordmate frame, 
thereby ensuring the object's physical dunensions and features remain static with respect to that 
frame (Fig 6.1.1). These would however change with respect to any stationary reference frame. 
The world reference was chosen so that its Z-axis coincided witb the table's central axis of 
rotation. The object's arbitrary coordinate frame is aligned with the world coordinate frame for a 
table rotation angle of zero. 

As the fmal object's reconstruction is required with respect to its ovm coordmate frame, two 
transformations of 3D edgels are required. The first from the left camera coordinate frame to the 
static world reference frame, and then a sunple rotational transformation (about the world Z-axis) 
to tiansform the edgels to the object's coordinate frame. Using a calibration tile (Fig 3.1.2) whose 
Z-axis also comcides with the table's centre, and a knowledge of subsequent angles of table 
rotation, enable the required 4x4 (homogeneous) left camera to world, and world to object 
transformation matrices to be determined. Each edgel of the reconstmction is subsequently 
tiansformed to the desired rotating reference frame and combined to form the 3D models. 
The final stage of model creation requires the manual formation of: 

(a) Groups (termed cliques) consisting of a distinctive focus feature (such as an arc length or 
long line) and any number of surrounding features in close proximity. 

(b) Grasping location data. Each object-model is given a nominal (X, Y, Z) point together with 
optional yaw, pitch, roll, guidance angles. This kinematic information in the form of a 
homogeneous transform is supplied to the robot arm at the time of retrieval. 

The clique size and number is essentially determined by the availability of features, moreover, a 
focus feature in one clique may be used as a surrounding feature of another clique. Cliques are 
stored and associated with the model, and they provide the features to be matched during the 
recognition phase. Fiuther details are given in section 6.3. Examples of cliques are given in Fig 
7.1.12. Fig 6.1.3 depicts created 3D-models of a cup and an alphabet cube. 

The above procedure was coded and added to TINA's Matcher tool source code. Fmther details 
of this are provided in appendix B. Initially, three objects, an alphabet cube, a mug, and a teapot 
were produced for test purposes. These models comprised a simplified database of objects to be 
recognised in a scene. Fig 6.1.4 shows the stereo images of a scene containing these 3 objects 
and the subsequent scene-model produced from the images. 

For most cases gripper orientation angles of 0° or 90° are specified. 
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fa) (b) 

Fig 6.1.3 3D created model of (a) cup and (b) cube 

(a) (b) 

Fig 6.1. 4 (a) Stereo images of scene (b) 3D scene model 

Portable Tables for Model Creation 

Two portable computer-controlled tables considerably smaller than the one shown in Fig 6.1.2, 
were later designed and constructed. One being light and easy to move (Fig 6.1.5 a), the other 
robust, and fitted with level and height adjustment (Fig 6.5.1 b). These permit the cameras 
mounted on MROLR's stereo head to be used for the automated model creation. The main 
benefit of these tables is their portability, and the elimination for the need of a duplicate set of 
cameras. Subsequent models were created using these. Appendix B provides additional details. 
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(a) two views ofthe lightweight model creation turntable 

(b) Two views ofthe heavy duty model creation tum table with adjustable height level 

Fig 6.1. 5 Portable model creation tables 
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6.2 Model Enhancement - Model Editor 

A Model Editor was developed to facilitate the manual removal and addition of 3D segments in 
formed models. This editor utilises many of the 3D geometric list structures library functions 
provided with TINA and in particular those associated with TINA's geomstat tool. At the 
commencement of this work, the geomstat tool was at an incomplete stage having no 
input/output stream facility. However numerous functions for 3D line manipulation were coded, 
and a relatively small amount of supplementation made it useable as a model editor. This 
additional code was added and linked to form a module titled "Model Editor". 

Editing of models is desirable on occasion as double lines or conies arise as a result of camera 
lens distortions and/or calibration inaccuracies, or lines are fragmented or omitted altogether due 
to occlusions. An example of the editor's application to one ofthe test cubes is shown in Fig 
6.2.1. While such enhancements are aesthetically pleasing they provide an additional processing 
overhead and in general are found to provide little or no improvement in recognition capability. 
This stems from the fact that scene-models (produced while panning and therefore not available 
for editing) frequently contain broken or missing edge segments (Fig 6.1.3). 

--U|Mo<M_E<IKlir • X 
Size r j Houga ^ ) W)l ̂  J ProJ ^j 

Install } clone ) init ) ropoint j 

null 

a X 
Display NewTvtool) View j Terrain J J<ilP,'' 

Macro File: default^ apoenJ j close i rmj 

File I/O Mono I stereoj Sequence} 

Tools Edge ,i Cornerj Imcalc ,i 

Matcher ) stereo Test) ModeLEdltor ) SmartBOl; Callb 

nearest font 6x10 

Model EdUirToal a X 
pick: Edit V) Bdd T-J liyoM ^1 Coanetlc --j »etch f ) 

Pick Ceo, r ) Print r ) Metric r ) 

J Verbose J Do correct o°rrect) 

Directory Name: .^ 

Base Name: vcUjej, , 

File input i tlreed input} Save Edits J j y list: ketfte 

(a) Editor (Edited Model, Conies not displayed) 

=p=; 

Fig 6.2.1 

(b) Resulting Model 

Application of model editor to a raw 3D cube model 
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6.2.1 TINA'S Geometric List Structures 

Five 3D geometric list structures used throughout much of this work, in particular for model 
creation, editing and object recognition are: vectors, points, lines, planes and conies (i.e., curve 
geometry such as arcs, ellipses, circles etc). TINA's software infrastructure encourages the use of 
these list structures. Details (extracted from TINA's User Guide) are given in Fig 6.2.2. 

typdef struct vec3 
{ 
Tsjd ts_id; 
float el[3]; 
}Vec3; 

typdef struct lines3 
{ 
TsJd tsJd; 
unsigned int type; 
unsigned int label; 
struct vec3pl,p2; 
struct vec3 p; 
struct vec3 v; 
•/ 
float length; 
struct list *props; 

} Line3; 

/* Tina structure identifier •/ 
/* point in 3D coordinates */ 

/* Tina structure identifier */ 

/* end points */ 
/* point on line */ 
/* direction vector 

/* line length */ 
/* property list used to associate 

extra specific information*/ 

typdef struct plane 
{ 
TsJd tsJd; 
unsigned int type; 
unsigned int label; 
struct vec3 p; 
struct vec3 n; 

/* Tina structure identifier */ 

/* point on the plane */ 
/* a normal to the plane*/ 

struct list *props; /* property list used to associate 
extra specific information */ 

} Plane; 

typdef struct conic 

( 
Ts id ts id ; unsigned int type; 
unsigned int label; 
intfillerl; 

double a, b, c, d, e, f. 

/• Tina structure identifier •/ 

/* SUN platform dependance 
parameter fix*/ 

/• algebraic formulae •/ 
double theta, alpha, beta; 
struct vec2 center; 
int fitler2; 

double tl,t2; 
int branch; 
List •props; 

} Conic 

typedef struc conic3 

Ts-id tsJd; 

int type; 
struc conic *conic; 

struct vec3 origin; 
struct vec3 ex, ey, ez 

} Conic3; 

/* SUN platform dependence 
parameter fix*/ 
/* conic params of pl and p2 */ 
/* for hyperbola only */ 
/* property list used to associate 
extra specific information */ 

/* Tina structure identifier */ 

/* describes the conic 
in the plane */ 

/* origin point on plane */ 
/* define x,y,z axes: 

ez = normal */ 

The coordinate frame in which the conic lies is at origin and has axis ex, ey and ez. Note the 2D conic lies in the xy plane. 

In conic the arc covered by the curve is between angles tl and (2 in radians. All angles are positive with 0 along the x axis and times ¥'tf2 
along the y axis. The arc goes from tl to t2 in strictly ascending order, tl will be less than 2*Pi but t2 may be larger than 2*Pi ifthe arc 
passes back through the x axis. 
The implicit algebraic equation that represents its form is given by ax̂  + 2bxy + cŷ  +2dx +2ey + f = 0; 
Theta is the angle ofthe major axis, alpha and beta are the lengths ofthe sem-major and semi-minor axis respectively. 

The conic type can be any one of: 
ELLIPSE 
HYPERBOLA 
DEGENERATE 

The field branch is used to differentiate which part ofthe hyperbola the data lies on. 

Fig 6.2. 2 TINA 3D geometric list structures 
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6.3 Recognition Algorithm 

The recognition algoritiun, in TINA's Matcher-tool module, written by Pollard et al [PPMF87]. 
[PPM91] was extended by the addition of code to both automate the recognition process and to 
include it as an integrated module of MROLR. This was necessary to facilitate the autonomous 
operation of the system. Recognition is based on pairwise matching of primitive geometrical 
features associated with a model and the scene (termed cliques). For object-models cliques are 
manually chosen following their creation (refer section 6.1), and consist of a distinctive focus 
feature (such as an arc length or long line segment) and a number of surrounding local features in 
close proximity. Object models in general require sufficient cliques so that adequate features 
maybe matched in a scene, irrespective of the object's orientation. Focus features provide a basis 
for determining maximal consistency of neighbouring elements within a clique. Features 
comprise 3D line segments and or 3D conic segments. 

During matching three pairwise relationships are tabled. These are (a) orientation, (b) minimum 
distance apart, and (c) distance from minimum distance apart. These geometrical 
relationships are illustrated for a line feature in a model and a scene in Fig 6.3.1. TINA 3D 
straight-line segment structure formats, in addition to an Id label identifier, are represented by the 
qua(kuple (h, I2, ei, mi) (see Fig 6.2.2 for code details). These parameters represent the two end 
vector pomts li and I2, the direction vector between them ei and the centroid of the line, its 
midpoint mi =(li +12)/2. 

Fig 6.3.1 Matching of line segments 

(a) Orientation difference between two pairs of potential matches a : This is obtained from 
the dot product of Ci and 62 ie a = cos "' (e, -Cz). 

(b) Minimum distance apart between (extended) lines d: 
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This is represented by the unit vector (normal to each line) d, where: 
d = (ei X e2)/|ei x 621 and the scalar distance between the Imes h, where: 
h = (m2-mi) • d. If the Ime segments are close to parallel the distance used is the 
perpendicular distance between the Imes: 
h = |(m2 - mi) - [(m2 - mi) • ei]ei|. 

(c) Distance from minimum distance apart s, t, q: For non-parallel lines, the distances along 
the Imes to the start and finish of each line, from the pomt of minimum distance apart is used. 
From the above, the vector between the pomts of minimum distance apart is given by: h = hd. 
Movmg m2 to m'2 by adding -h produces a line (e2, m'2) such that lines (ei, mi) and (62, m'2) are 
coplanar and meet at the point of minimum distance apart on (ei, mi). 

qi = {(62 X ei) • [62 X (m'2 - mi) ]} / |62 X 61 p 
is the signed distance to that point from mi in the direction 61. Scalar distances from li,i and li^ 
to that point are given by 

si = qi + (mi - li,i) • 61 and 
tl = qi + (mi -11,2) • 61, respectively. 

Similarly the distances to the point of minimum distance apart along line2 are 
S2 = q2 + (m2 - l2,i) • 62 and 
t2 = q2 + (m2 -12,2) • ©2 

Prospective matches for each pair of elements {(si,ti), (Si+i,ti+i)}from the object model description 
can be tested for geometrical correspondence with each pair of elements m the scene model. 

6.3.1 Stored Table of {(si,ti), (si+ijti+i )} 

An advantage ofthe use ofthe pairwise elements {(si,ti), (si+i,ti+i)} is that they can be calculated 
separately for each pair of lines and stored in look-up tables. To accommodate errors and scale 
differences, an overlap range is provided. Errors are accounted for as follows: 
Pairs of lines are allowed errors | r|i ) < Pi and | ri21 < P2 on the location of their centroids (mi 
and m2) and direction vectors (ei, 62). The latter allowable errors are in terms of angles 0i mid 02. 
On orientation differences, the interval is : 

[max (a - 01 - 62, 0), min(a + 0i + 02, TI)], 
while for the minimum distance apart between (extended) lines, the interval is 

h ± (p, + p2+lqi|tan(pi) 

For si, tl, and S2, t2 the permissible range is: 
si ± (pl + p2 + |q2| (tan 02/sin a)) 
tl ± (pl + p2+|q2|(tan02/sma)) 
S2 ± (Pl + P2+|qi|(tan0i/sina)) 
t2 ± (Pl + P2+|qi|(tan0i/sina)) 

A similar range of overlapping intervals is provided for pairs of coruc features (i.e., arc lengths 
and radii etc). 



Chapter 6 Obj ect Modeling, Recognition and Retri eval 101 

6.3.2 The Matching Process 

Object model focus features are selected m sequence, closest matches to the selected focus 
feature in the scene model are considered as potential matches, and neighbouring features 
considered m terms of thefr pairwise geometrical relationships. Found cliques are ranked 
accordmg to the highest number of neighbourhood matches consistent with the object model 
group size. 

Transformations to place each found clique into its corresponding position in the scene are 
calculated using the method described by Faugeras et al [FHPP84]. Cliques that produce near 
identical transforms are considered as belonging to the same object. The mean transform that 
will transport the model mto the scene is retumed, facilitating the calculation of the pose of the 
object m the scene. The tiansform retumed is the commonly used 4 x 4 homogeneous matrix 
comprising a 3x3 rotational submatrix and a 3x1 column translational vector. 

The current sequence of matching a model with a scene is: 
1. Build pairwise geometric tables 
2. Match cliques 
3. Compute the tiansform ofthe object model to carry it into the scene. 
4. Transform the model into the scene (placing and displaying it over the recognised object. This 
provides visual verification ofthe quality ofthe match). 

Associated with the matching process are seven parameters whose values can be adjusted to 
reflect tiie confidence in the scene data namely: 
(a) Clique size, (b) position error, (c) rotation, (d) length threshold, (e) maximum rotation, (f) 
maximum tianslation, (g) length ratio. 

6.4 Automation of Recognition Process 

To automate the recognition process the "current matching sequence" mentioned above was 
formulated into several nested iterative loops in which the 7 parameters are systematically 
modified in a "fiizzified" like, fine-to-course adjustment, to reflect a reduction in data confidence 
levels. Iteration contmues until either recognition occurs, at which stage the process is exited, or 
the set number of iteration step levels is exceeded, and recognition is deemed to have failed. If 
recognition failure occurs, the next captured scene model is entered into the loop. This process 
proceeds as the pan-tilt-vergence head sweeps through a pan arc of-20 to +20 degrees.) tilt and 
vergence angles being held fixed. This is repeated at each scheduled observation station 
(waypoint). 

Fig 6.4.1 depicts the recognised cup and alphabet cube transformed into the scene, note that pose 
and scale have been correctly identified. 
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Fig 6.4.1 Model Cube and Cup scaled, and placed over objects in the scene 

6.5 Model Creation (An Alternative Method) 

With the above matcher soflware it is possible to create a 3D model generating facility without 
the use of a rotating table. All that this requires is to form a sequence of single view models of 
arbitiary orientations (by manually tuming the object about), and to match each to the first 
(reference) view. The retumed transform for each match would be used to sequentially integrate 
tiie matched model with the reference. This method certainly has appeal as it makes the whole 
scheme more portable (in not needing the extra hardware) and more robust in that the orientation 
retumed by the tiansform is likely to be quite precise. The drawback of this method is that it 
requires laborious manual intervention because as the model grows with each sequenced 
integration of single model views, new focus features and clique groups need to be found and 
stored, to ensure matched features in the next sequenced view. With the current model creating 
method, sequenced views are integrated automatically, and clique groups required to be found 
only for the Mly mtegrated finished model. 

6.6 Pose for Object Retrieval 

Pose information to carry the object-model into the scene (as outlined in section 6.3.2) is 
retumed in the form of a transformation matrix. This matrix provides the necessary rotational 
and translation information to transport the 3D model into the scene. Observing the object-model 
correctly aligned with the object in the scene is usefiil for visual verification of a correct match. 
To provide a suitable grasping point for the robot arm's gripper, each object-model has a 
designated X,Y,Z location and angular Yaw, Pitch, Roll, information stored at liie tune of object-
model creation. This positional information is also transformed into the scene along with the 
model, the numerical value is obtained by multiplication of the grasp pomt vector by the 
transform, the resulting vector being m^ (see Fig 6.7.1). It is unportant to appreciate that the 
model points transformed into the scene are all iiutially referenced to the left camera's coordinate 
frame, which does not remain fixed because of head motion. The head-centre frame Co, having 
its origin at the intersection ofthe pan and tilt axis does remain fixed wdth the heads movement ( 
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Fig 6.7.1). Using the head-model derived m Chapter 4 (and more specifically equation 4.3.6) all 
transformed model points are referenced to frame Co, m^ thus ti^nsforms mto m^". 

6.6,1 An Alternative Method For Object Grasping. 

The method described above relies on precise alignment and scalmg of the transformed object 
into the scene. This stems from the fact that the grasping mformation originates from the object-
model and needs to be accurately transported into the scene. A simpler altemative approach is to 
obtain an estimate of only the translation necessary for object grasping and subsequently pick up 
all objects from the top, using a wide opening gripper. Translational information can readily be 
obtained from the 3D centroid ofthe matched scene-object features (i.e., Imes and conies) i.e: 

m, 
For n matched centie points mi, Centroid = (=1 

n 
Unfortunately, wide opening and closing grippers are not readily obtainable. 

6.7 Retrieval of the Object 

As our robot arm cannot be moimted onboard the mobile base due to space considerations, it is 
currently moimted on a caster platform and manually docked with the mobile base to facilitate 
the testing and development of the algorithms. The construction of a second (transport) robot 
mobile base is in progress (see Fig 6.7.2) and appendix B for design details), and in the next 
phase of this work, this will be summonsed by a wireless link to dock (automatically) with the 
main (scout) mobile base following object recognition. 

When docked, the base frame of the robot arm remains at a fixed distance relative to the head-
frame Co, consequently since the located object's pose is known in this head-frame, it is a simple 
matter to obtain the pose ofthe object in the base frame ofthe arm. 

Let 
rpCfl 
'^Object 

lArrn rpArm 
'^ Object Co ' "^ Object respectively represent the homogeneous transforms ofthe object 

with respect to the main head-frame, the main head-frame with respect to the robot arm base, 
and the object with respect to the robot arm base. 

fpCo _ 
^Object ~ 

«^<, 

0 

0,o 

""yo 

0 

«x„ 

^zo 

0 

P^c 

r yo 

Pzo 

1 

«.„ 0.a «..„ 

nya Oy, a^^ 

0 0 0 

Pxa 

Pya 

«Z. O, fl,„ p. 

I 

Where the 3 x 3 sub matrix comprising of column vectors n o a represent the orientation of the 
frame of mterest (i.e., subscripted frame, object) with respect to the reference frame (i.e., 
superscripted frame, Co) and column vector p represent the translation between the two frames. 
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The object m the base frame ofthe robot arm is obtainable from: 

—, Arm _ r p Arm rp CQ 

*• Object ~ '•Co *• Object 6.1. \ 

lArm 
If however T^ is not easily measured, it can be obtamed with the aid of a test object from: 

rpArm rpAnn / T P C O \-X 
^Cn ~ '•Obiecti '^ Object / 6.7.2 

To find T^CQ 't is simply a matter of manually guiding the arm to pick up the test object, noting 
the arm X, Y, Z coordinates to achieve this, and then using equation 6.7.2. In the docked 
position the robot arm's reference coordinate frame was aligned parallel to the head-frame so that 
^CQ "^ Y^,^ y^o ~^ '^ Arm . •^Co ^Arm • The relative orientation of the head-frame with respect 

to the robot arm is shown in Fig 6.7.1. The associated transform '^cT was determined to be: 

0.0 0.0 1.0 -627.0 
1.0 0.0 0.0 -1040.0 
0.0 1.0 0.0 711.0 
0.0 0.0 0.0 1.0 

, distances specified in mm. 

The tiansforms were verified by gasping an object with the following position variables, supplied 
by the arm's contioUer, and comparing the results obtained from transform products. 

X 
220.0 

Y 
(-570.0) 

Z 
270.0 

Roll 
* 

Pitch 
if 

Yaw 
« 

• as required for grasping 

Choosing a local object coordinate frame (i.e., frame attached to object) v/ith the orientation 
shown in Fig 6.7.1, 

'^Arm 
Object 

-1.0 0.0 0.0 220.0 
0.0 1.0 0.0 -570.0 
0.0 0.0 -1.0 270.0 
0.0 0.0 0.0 1.0 

and 
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rpCo 
*• Object 

using 

results 

rr\Arm 

'^ Object 

= 

0.0 1.0 

0.0 0.0 -

-1.0 0.0 

0.0 0.0 

rp Arm rp Arm 
'^ Object ~ Co 

m 

= 

"-1.0 0.0 

0.0 1.0 

0.0 0.0 

0.0 0.0 

0.0 

-1.0 -

0.0 

0.0 

rpCo 
*• Object 

0.0 

0.0 

-1.0 

0.0 

47.0 
-441.0 
847.0 

1.0 

220.0 
-570.0 

270.0 
1.0 

as expected. 

Several test runs were carried out using this "parallel" arm orientation (see Fig 7.2.12), however 
the arm's reach restricted the retrieval of scene-object to being in very close proxunity. 

To obtain greater reach, the robot arm was rotated 45 degrees towards the head. 
(i.e., T^°^ requiring a 3x3 orientation sub matrix as below, ? values to be determined). 

T*-" — 
^Arm ~ 

-.101 0.707 0.0 ? 

0.0 0.0 1.0 ? 

0.707 0.707 0.0 ? 

0.0 0.0 0.0 1.0 

lArm 
Once agam T^^ ĝ , was determined from the arm controller: 

rp Armi 
Object 

-.707 0.0 0.707 545.0" 
0.707 0.0 0.707 0.0 
0.0 1.0 0.0 429.0 
0.0 0.0 0.0 1.0 

The object with respect to the head was manually measured to give 
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rpCo _ 
'Object 

1.0 0.0 0.0 747.0 
0.0 1.0 0.0 -246.0 
0.0 0.0 1.0 1003.3 
0.0 0.0 0.0 1.0 

(Note this tune, an object-frame parallel to head frame Co has been arbitarily chosen, resulting m 
a unit 3x3 submatrix). 

Using: 

rpCo _ 
'Arm ~ 

rpCo _ 
Arm 

rpCo rp Object rpCo 
Object 'Arm ~ 'Object 

'-.707 0.707 0.0 

0.0 0.0 1.0 

0.707 0.707 0.0 

_ 0.0 0.0 0.0 

i'rp Arm \ -i 
( 'Object / 

460.0' 

-675.0 

618.0 

1.0 

Manual measurements confirmed these values to be correct. 

This r̂ ^̂  transform was used in all subsequent scene-object retrieval trials. 

Others i.e. Jagerand et al [JFN97] use visual servoing rather than joint contiol to successfiilly 
manipulate objects. This method requires the establishment of a visual-motor Jacobian, obtained 
by visually observing changes during object movements and relating these to particular 
controller commands. 

In this work the object grasping transform T^^^^ is obtained directly once the object's pose, 
relative to the main head-frame, is obtained. 
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Aim 

Fig 6.7.1 Relative position and orientation of head and arm coordinate frames remain fixed 
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The addition of wireless communication and auto docking capability, a future task 

Fig 6.7. 2 Partially completed transport mobile base 
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6.8 MROLR System Simulator 

The development of a "MROLR System Sunulator" was undertaken and is at an early stage of 
completion. The Simulator will be provided with models representing the mobile base, landmark 
features, a target-object and a docking robot arm. In its present state, it consists of two non-
integrated modules. Each module is based on, and builds upon the work of existing sknulators. 
The first module utiUses and builds upon the code associated with a sunulator that is part of A. 
Davison's SCENE package [DavOl]. The second module is based on and builds upon Gurvinder 
Pal Singh's "Virtual Robotics Lab" [Sin99]. As Gurvinder's software did not mclude a robot 
compatible to the UMI RTX, this robot was coded and added. In addition the software extended 
to provide the necessary additional degrees of freedom (an increase from 5 to 6) required by the 
RTX. Inverse kinematic solutions were also not included with the simulator; these important 
algorithms were coded and added to facilitate direct movement to specified "x,y,z" positions with 
"yaw, pitch, roll" gripper orientations. Details of these additions are given in appendix B. Extra 
push buttons were also added to the "Contiol Pad" to facilitate these new movements (see Fig 
6.8.4). 

Module 1 graphically models the moving vehicle navigatmg to specified waypouits with the aid 
of displayed (selectable) landmark features. It utilizes the same EKF and mapping algorithms 
used by MROLR (with full covariance estimations of vehicle location and landmark features). A 
random generator is incorporated to simulate wheel slippage, and noise. Other features include 
the display of true positions in yellow and estimated positions in green. Landmark features can 
become selected or deselect by mouse clicks. Selected features change to red. Various control 
options and data outputs are provided with the associated GUI 's that are part of the simulator 
(see Fig 6.8.2). It is envisaged that this simulator will provide a usefiil facility for evaluating 
altemative feature selection and mappmg and navigational stiategies. 

Module 2 is intended (ultimately) for evaluating proposed grasping points of selected 3D target 
object-models to ensure they can be retrieved. Even with precise modeling of the robot "end-
effector" this is quite a difficult study, and one which the author believes has had insufficient 
attention. For instance, how does one design a generic set of rules for successfiilly picking up the 
vast number of assorted shapes and sizes of domestic objects with handles? Standard kinematic 
modeling incorporating consideration for size, volume, distribution of weight, balance of forces, 
and surface normals is possibly a start. Such analysis could be incorporated into this simulation 
unit. An mitial attempt at accessing the suitabiUty of a "grasping site" on an object, based on 
gripper opening size and the surface normals was added to the module. The requirement for a 
suitable "grasp" is that the object's dunensions be appropriate, and that the surface normals at the 
points of contact, and the gripper's surface normals, are in close (opposing) alignment (Fig 
6.8.1). For situations where the grasping site was deemed unsuitable the gripper "slid" over the 
surface in an attempt to locate a suitable area. See Fig 6.8.6 for an example of the gripper 
attempting to pick up a teapot at an unsuitable location, and the gripping slipping "laterally" 
towards the teapot handle. This approach was later considered unrealistic as it took no account of 
the surface roughness, texture, or fiictional forces involved, and was abandoned. Object physical 
dimensions only are currently considered in assessing grip ability. 
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Fig 6.8.1 Gripper normals (brown) non aligned with object surface normals (blue). 

Both modules, in addition to uses outlined above will make useful tools for "MROLR System" 
teaching and demonstration. Where used solely for simulating MROLR, the modules have had 
their caption title modified to display "MROLR". 

Module 1 is shovm in Fig 6.8.2. (a) shows the mobile robot navigating to a specified way point 
with six landmark features, (b) depicts an example with ten known landmark features added. 
Examples of "Auto Feature Selection" and Covariance Outputs from the Simulator are given in 
Fig 6.8.3. 

Module 2 is displayed in Fig 6.8.4 through Fig 6.8.9, illustrating the "controller" and "arm" 
retrieving a difficult object to grasp (the small teapot), and moving it to several locations. Fig 
6.8.10 displays the arm after having transported an object (the red sphere) some distance from 
the table. {Both the teapot and sphere model objects were borrowed from the MS DirectDraw 
SDK). 
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(a) Scene with 6 
unknown landmark 
features 

(b) Scene with 16 features (10 known known features ) 

Fig 6.S. 2 Several simulated views ofthe mobile base navigating to waypoints 
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fidded known feature with known feature label 
Added known feature with known feature label 
fidded known feature with known feature label 
fidded known feature with known feature label 
Added known feature with known feature label 
Added known feature with known feature label 
Added known feature with known feature label 
Added known feature with known feature label 
Added known feature with known feature label 
Added known feature with known feature label 
Read 8 waypoints* 
»»» SLOW PREDICTION «*« 
Best score found: 5»16285e-07. 
fiuto-selected feature with label 2, 
»*» SLOW UPDATE **» 
R_tot: 

4e-06 0 0 
0 0.0001 0 
0 0 4e-06 

S = C 

3.79788e-05 -3»25407e-24 4a7903e-23 
-3.25407e-24 0,0001 -4.00216e-42 
4.17903e-23 -4.00216e-42 4e-06 
] 
»»» SLOW PREDICTION »** 
Best score found: 6,23208e-07, 
fiuto-selected feature with label 9. 
*** SLOW UPDATE «** 
R_tot: 

4e-06 0 0 
0 0.0001 0 
0 0 4e-06 

S = C 

5.53167e-05 -2.37655e-06 4.57195e-07 
-2,37655e-06 0.000100123 -2.36034e-08 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

S = C 

6.44373e-06 -2.47343e-07 3.11819e-08 
-2.47343e-07 0.00010016 -2.0121e-08 
3.11819e-08 -2.0121e-08 4.00254e-06 

i_
i 

**» SLOW PREDICTION **» 
Best score found: 2.13885e-07. 
fiuto-selected feature with label 3. 
*** SLOW UPDATE *** 
R_tot: 

4e-06 0 0 
0 0.0001 0 
0 0 4e-06 

S = C 

6.50338e-06 -2.81064e-07 3.54218e-08 
-2.81064e-07 0.000100175 -2.20106e-08 
3.54218e-08 -2.20106e-08 4.00277e-06 
: 
*** SLOW PREDICTION *»* 
Best score found: 2.64448e-06. 
fiuto-selected feature with label 5. 
»** SLOW UPDATE *** 
R_tot: 

4e-06 0 0 
0 0.0001 0 
0 0 4e-06 

s = : 
0.000993588 -8.00296e-07 7.71573e-08 
-8.00296e-07 0.000100232 -2.23564e-08 
7.71573e-08 -2.23564e-08 4.00216e-06 
] 

Fig 6.8.3 Examples of auto-feature selection and covariance outputs from simulator corresponding to 
Fig 6.8.1(b). 
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Stepping angle 

Teach Mode On 

Run IrvKin 

Fig 6.8. 4 Robot arm at table with target object (small teapot) 

Notice the X, Y, Z positions ofthe gripper are displayed on the Controller. 
iOLH 3D Simiil.itiii 

'tile ypw Qptions Help 

Fig 6.8. 5 Arm with gripper over target object 
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R P G 

Fig 6.8. 6 Gripper closes and slips over surface of object towards handle in search of 
more appropriate grasping location. 

MHOLR 3D Simulator 

Fig 6.8. 7 Target being raised 
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MROLR 3D Simulatoi 
file View Uptionj Help 

Fig 6.8. 8 

• MROLH 3D Simulaloi 

Arm showing joint movements 

Hnc 
Fik View OpHoriv He-lp 

Fig 6.8. 9 Arm showing joint movements 
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MRULR 3D Simulator 

Fife View Qptioni yelp 

Fig 6.8.10 Arm moving away from table with retrieved red sphere 

A useful possible extension to the simulation modules (discussed further in Chapter 8 ) would be 
for all created objects to be positioned in the simulated scene, mouse selection of the target 
object (or verbal selection, if voice recognition was added) could then initiate a simulation run. 

6.9 Conclusion 

This chapter commenced by citing the advantages of using wire frame outline models created 
from multi-views, and describes a simple and effective method for their production. For poorly 
formed models an editor is provided that enables both the addition and removal of 3D segments. 
Paramount to this work is the ability to reliably recognise objects in a scene, whose models have 
been created and maintained in a database of objects. A recognition algorithm based on the work 
of Pollard et al was implemented, and extended to automate the recognition process. The 
recognition module also provides the essential 3D pose parameters, relative to the stereo head, to 
guide the docked robot arm towards the sought object's grasping point. 
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With the conclusion of this and previous chapters the framework to perform tests to ensure a 
fully functioning MROLR have been established. Testing and verification is carried out in 
Chapter 7. 
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Chapter 7 Testing and Verification 

7.0 Introduction 

The algorithmic development and modeling of the previous chapters is now complete and the 
necessary tools to create and edit 3D object-models that may be requested for future retrieval 
have been developed. The means for navigating the enviroimient exist. Searching for and 
mapping landmark features with the aid of active vision at each step, and using the resulting data 
for self-localisation purposes reduces the likelihood of "loss of bearings" due to wheel slippage 
or collision. Once in close proximity to a scene containing any ofthe objects for which a created 
model exists, a search by panning the stereo head can be performed. If the object is successfully 
recognised, its 3D position in the scene with respect to a docked robot arm can be ascertained. 
The resulting homogeneous transform formulated, together with the a priori specified handle 
location or grasping point, should guide the arm to pick up the object and place it on board 
MROLR. Limited simulations of MROLR can also be performed using the "virtual 
environments" of module 1 and 2 described in section 6.8. 

The vital task of testing MROLR to vindicate the methodology of this research remains. Tests 
need to include the creation of a significant nimiber of typical domestic or industrial object 
models as well as navigational, recognition and retrieving trials. These are described in this 
chapter. 

The results ofthe creation often representative domestic object-models are given in section 7.1. 
The results of object location and retrieval trials are given in section 7.2, the scope and 
limitations of tests, their evaluation, and methods of overcoming some of those limitations are 
disctissed in the subsections. 

7.1 Creation of Da tabase Models 

Ten representative domestic object-models were created using the portable (level adjustable), 
model creating table described in section 6.1. These were: 
* large cup, 

vice, 
shaver 
bottle 
Solo can 
cube 
hole punch 
stapler 
drink package 
cup 

Their creation is shown in Figs 7.1.1 to 7.1.11. Note that for conservation of space, only one 
stereo view of each object is shown from Fig 7.1.3 onwards. 
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Fig 7.1.1 Object model creation 
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Fig 7.1. 2 (a) 3 Stereo views of "Large Cup", (b) Model of "Large Cup" 
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(b) 
Fig 7.1. 3 (a) Single stereo view of "Vice", (b) Model of "Vice' 

Fig 7.1.4 (a) Single stereo view of "Shaver", (b) Model of "Shaver" 
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Fig 7.1. 5 (a) Single stereo view of "Bottle", (b) Model of "Bottle" 
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Fig 7.1. 6 (a) Single stereo view of "Can", (b) Model of "Can' 
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(a) 

(b) 

Fig 7.1. 7 (a) Single stereo view of "Cube", (b) Model of "Cube" 
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Fig 7.1. 8 (a) Single stereo view of "Hole Punch", (b) Model of "Hole Punch" 
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Fig 7.1. 9 (a) Single stereo view of "Stapler", (b) Model of "Stapler" 
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Fig 7.1.10 (a) Single stereo view of "Drink Package" , (b) Model of "Drink Package" 
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(a) 

(b) 

Fig 7.1.11 (a) Single stereo view of "Cup", (b) Model of "Cup" 

7.1.1 Storage of Focus Features and Cliques 

Fig 7.1.12 illustrates the stored format of focus features and cliques. The first number (10 in this 
example of the model cup) is the total number of cliques for the model. Following lines contain 
(in order) the focus feature identification number (i.e., 560) the number of features in the clique 
(i.e., 9) followed by the Id number of each feature. The focus feature is also normally listed as 
the end feature of a clique. 

10 
560 9 1490 556 568 3086 1122 554 550 564 560 
564 8 564 550 1098 1122 1096 568 556 1490 
554 12 570 568 3086 1112 1098 1096 556 564 1490 3080 1122 554 
554 7 1104 564 1132 560 1488 3076 554 
1482 7 1482 1132 556 554 1102 1488 546 
564 7 1490 556 1102 3080 560 1482 564 
1488 5 1488 1132 554 1122 1112 
564 5 1490 1482 556 554 564 
554 4 554 1488 564 1482 
1482 5 1490 1482 556 554 564 

Fig 7.1.12 Table of focus feature and cliques 
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Several of these created models will be targeted in the tests that follow in Section 7.2 

7.2 Tests 

Trials were arranged to substantiate MROLR's ability to navigate to specified waypoints, and 
recognise, locate and retrieve (grasp) a variety of target objects in various orientations and 
locations on a table at each waypoint. Lengthy tests to demonstrate the validity of the 
navigational algorithms were not deemed necessary, as others (i.e., [Dav98], [DavOl]), have 
akeady done these using the Oxford GTI mobile platform. While our active stereo head, and 2 
wheel drive mobile base are different to those of the Oxford project, resulting in the modeling 
and reformulation outlined in chapters 4 and 5, the methodology and principal algorithmic 
constructs used are identical. The navigational, self-localisation and mapping-building tests 
performed here, can be regarded as reinforcement of those obtained by A. Davison. The major 
testing carried out in this section concentrates on object recognition, pose determination and 
retrieval. 

It is worth mentioning that locating objects in positions other than an "expected region", such as 
a waypoint, is beyond the present ability of MROLR. To overcome this limitation and enable 
objects randomly located in a room to be found would require vastly superior cameras and 
lenses, perhaps with auto focus, zoom and accurate focal point re-calibration. In addition, a path-
planning module capable of mapping open spaces that could negotiated would need to be 
incorporated. 

For each test devised, MROLR commenced its journey in the laboratory from a fixed world 
coordinate (waypoint 0). Following initialisation, the vehicle navigated autonomously using 
odometry, and visual navigational features, mappmg the enviroimient as it travelled. On reaching 
its destination the head commenced panning for the target object and if this was located, the 
robot arm was docked with the platform and the desired object grasped and retrieved. If the 
object could not be fotmd (perhaps because the object was not on the table), MROLR retumed 
empty handed to waypoint 0. 

Initialisation data supplied to MROLR consisted of known-features, waypoints to navigate to, 
and the target object and its associated grasp point (if applicable). As MROLR autonomously 
navigated towards each waypoint the following behaviour was observed: 

(a) head fixation angles for the nearest known-feature were calculated (fî om stored x, y, z 
positional information), and the head cameras driven to gaze in the direction of the feature. A 
search for a corresponding "patch match" (within a narrow spatial window whose size was 
determined by map imcertainty) ensued. 

(b) if a fixation could not be attained, an altemative mapped or new feature was sought. The 
decision as to which feature to choose, was based on two criteria: expected visibility, and the 
value of the measurement. Once a measurable subset of features in the map was identified, the 
value of measuring each one is evaluated in terms ofthe uncertainty of its position relative to the 
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vehicle. The choice was then made on the basis of the highest innovation covariance (i.e., "the 
Vs rule" see section 5. 7). 

(c) the map continued to be updated sequentially as the robot moved about in its environment, 
making measurements of features and updating the state vector and related covariances, 
according to the rules ofthe Extended Kalman Filter. 

Several views of MROLR navigating to the "Table" waypoint are shown in Fig 7.2.1, The 
subsequent "lock on to" known-feature the " fire extinguisher sign" is shown in Fig 7.2.2. 
Additional features used for mapping the laboratory environment are also displayed in Fig 7.2.3. 

(a) Robot navigating 
towards specified 
waypoint 

(b) Robot closer to 
specified waypoint 
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(c) Head pointing at known-
feature "Fire Extinguisher" 

Fig 7.2.1 (a), (b) and (c) Several views of MROLR navigating towards specified 
waypoint, "the Table". 

Featurelocation(W.r.t Head) x=0.123,y=1.345, z^L732 (metres) 

Fig 7.2. 2 Lock on achieved for "Fire Extinguisher" sign feature patch. 
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Fig 7.2.3 

(b) 

Two additional mapped features (a) light fitting edge (b) clock face, intersection of hands 

In Fig 7.2. 4 (a), the robot is at a waypoint panning for the hole-punch. Fig (b) shows the left 
image of a scan sequence search for the hole-punch in the scene, while Fig (c) shows the 
database model of the hole-punch. Fig (d) illustrates the resulting created scene-model 
corresponding to the scene-view in Fig (b), and Fig (e) the model transformed into the scene 
following recognition. Pose information relating to the found "hole-punch" is given in Fig 7.2. 5. 
The process leading to the recognition and grasping of the "bottle" and 
sequences Fig 7.2. 6 through Fig 7.2.12. 

"cup" are shown in 
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4 L « 

(a) (b) 

(c) 

(a) Panning robot at a waypoint,(b) Table scene: Captured left image, (c) Model of hole-punch 
(d) Scene-model of(b), (e) Hole-punch found and model transformed into the scene. 

Fig 7.2. 4 Hole-Punch search 
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0.555833 0.315053 -0.7G3280 
-0,351152 0.9277G9 0.12G241 
0»753487 0.199965 0.62631G 

493,333318 -154,193161 270,673859 

Rotation about x axis= 17,706822 degrees 
Rotation about y axis= -48,893348 degrees 
Rotation about z axis= -32,282987 degrees 

Transformation matrix and related rotations 

Fig 7.2. 5 Pose information of "Hole Punch" 

r ^msssa^sais^csT^^^i^s^?^ 

I 
Fig 7.2. 6 Left image of "Bottle" in scene 

Fig 7.2. 7 3D models of "Bottle" and "Cup" 
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(a) 

(b) 

Fig 7.2. 8 (a) 3D model of "Bottle" in scene (b) Recognised "Bottle" transported into the scene 
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(a) 

(b) 

Fig 7.2. 9 (a) Left image of "Cup" in scene, (b) 3D model of "Cup" in scene, (c) Recognised "Cup' 
transported into the scene 
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t eonputea tl̂ ^riStorî t wrt camera ^rsme 
computed tranform is 
-0,769674 0,220012 -0.599330 
-0,294048 0,711089 0,638662 
0,566689 0,667793 -0,482613 

563,264954 -596,585205 1412,442627 
Scene Object Found with Head at X=-47,397186 Y=-411,613678 
Z=980,958069 

(a) 

-1.00 0.00 0.00 353.96 
0.00 1.00 0.00 -664.40 
0.00 0,00 -1.00 299.39 

(b) 

(a) Pose of Cup in Scene 

(b) T /̂J 

Fig 7.2.10 Cup transforms for transportation into scene and grasping 

Fig 7.2.11 (a) Head gazing at scene (b) Docked robot arm 
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(a) (b) 

Fig 7.2.12 Robot retrieving located objects 

7.2.1 Processing Times 

At present the average navigation time for a trip to waypoint 2 (approx. 1.49m), including 
recognition and object retrieval, is 13.5 minutes.' 

The journey consisted of 2 angular base rotations and 9 translations. The linear step size chosen 
for the mobile base was 200mm. Final linear step size was halved until the remaining distance 
less than 32mm, i.e., for a linear movement of 1490mm, linear steps consist of 7 x 200nim 1 x 
45mm, 2 x 22.5 mm). EKF measurements were performed at each step, these included up to 3 
head adjustments to achieve feature lock on. Objects sought were the bottle, cup and cube (the 
cube can not be grasped with current grippers. 

The average time is based on 6 runs, time to manually dock the arm is not included. 
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Average processing times: 

(i) feature measurement and localisation during navigation 40 sec 
(ii) object recognition^ 4 min 
(iii) object retrieval̂  35sec 

For a viable commercial system, fast processing and operating times are crucial. The work 
carried out in this research is essentially only at a prototype stage and processing times have not 
been a major consideration for the following reasons. Emphasis has been on proving algorithms, 
integrating system modules and establishing a working system with the hardware resources 
available. The fastest PC used for MROLR has only a 90MHz processor. This however has not 
been the greatest limiting factor to processing speed. Our BiSight head has an undesirable low 
frequency mechanical resonance that is often excited following either the head or mobile base 
movement. A delay of several seconds following either the head movement or base movement is 
necessary to allow such head oscillations to dissipate and prevent blurred images. 

In addition, several images formats are currently being used and converted on the fly to the 
required format. Images are also transmitted serially fi-om the on board PC to a stationary one. 

Each of these overheads can be eliminated with new hardware and software rewritings and 
improvements. It is worth noting that Davison [Dav98] attained real-time tracking of 
approximately 5 measurements/second during navigation and map building. MROLR should be 
able to achieve a similar performance. Given that PC processors now operate in excess of 1.5 
GHz, it is not difficult to envisage a possible time reduction of at least an order of magnitude 
(i.e., from 13.5 minutes to 1.35minutes). 

7.2.2 How Reliably can Target-objects be Retrieved? 

Successfiil recognition and retrieval outcomes will in general occur if the following rules are 
adhered to: 
• objects are be with reach ofthe arm (approx. 500mm) and graspable 
• spacing between objects is sufficient to allow the gripper to move between them. 
• spacing between objects is at least as great as the largest linear dimension of tiie object. This 

will ensure clique features of one object, do not overlapped with cliques of another during the 
matching process 

• ambient lighting is sufficient and remains relatively constant 
• the surface on which the objects lie is of a dark non reflective texture that minimises glare 

and formation of shadows 

2 

From time the head is in the correct position (i.e., pan search times not included) 

^ Following recognition 
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Following recognition the object's pose is determined via precise geometric computations and 
well established analytical methods, therefore given perfect data, its location and orientation will 
be accurately found. 

This data consists of: 
• camera calibration parameters, 
• stereo head calibration parameters, 
t 3D object models, 3D scene-models, 
• a homogeneous (4 x 4) transform ofthe object-model with respect to its position in the scene, 
• grasp location data (in terms of x, y, z, yaw, pitch, roll), obtained from the 3D object-model, 
• a homogeneous (4 x 4) transform of the head coordinate frame with respect to the robot arm's 

base coordinate frame, 
• a homogeneous (4 x 4) fransform relating the object's grasping location with respect to the 

robot arm's base coordinate frame. This final fransform directs the arm (driven by its 
controller) to retrieve the object. 

It is not feasible to accommodate all possible requested gripper grasping orientations, as the 
robot arm has a limited reach and range of movements. In addition the propagation of data errors 
that will inevitably accumulate, may also on some occasions preclude successful object retrieval. 
Quantification of this imcertainty is of course desirable, the considerable number of variables 
that may affect outcomes however make this task difficult. Consider for example just 3 variables, 
lighting conditions, object local surface features, and textures. These affect the quality of the 
scene-model obtained, and consequently the accuracy of recognition and the resulting fransform. 

The dependence on a fransform of high precision to solely guide the robot arm is undoubtedly a 
fimdamental weakness of the retrieval system. In effect the object retrieval system is an open 
loop one. An improvement in the form of visual feedback (visual servoing) could be added to 
make the retrieval process more robust, either by more effective use of the existing stereo head 
and/or with the supplementation of a miniature camera attached to the gripper (i.e., an eye in the 
hand). 

Further testing to obtain comprehensive quantitative and qualitative performance metrics of 
MROLR, i.e., bounds on recognition and retrievablity, will be performed once the automated 
docking fransport base with arm, is an integral working part of the system. It is likely that visual 
servoing, as described above, will also have been added by then. These enhancements are fiirther 
discussed in Chapter 8. 

7.3 CD with Video Clips of MROLR Performing 

Three short video clips of MROLR performing several routines are provided on the 
accompanying CD. 

The first shows the automated model production of the alphabet cube on the lighter of the 
portable modeling table. The completed model is finally rotated about its axes to show typical 



Chapter 7 Testing and Verification 141 

duplication of edge lines following integration. The cleaner model, after their removal, is also 
shown. 

The second shows MROLR navigating to the table of objects, waypomt 2, fracking two known-
features as it travels. On reaching the table the target-object, in this instance, the alphabet cube is 
recognised and the model is correctiy fransported into the scene. The mobile base then navigates 
home (waypoint 0) again fracking the same two knovra features. A black coloured ellipse of 
measurement uncertainty is displayed in close proximity to the feature being tracked. 

The third video clip commences with the mobile robot at the table of objects; it then proceeds to 
recognise the target object, the bottle in this instance. The robot arm is manually docked and the 
bottle retrieved. Next the bottle is manually relocated to two additional positions on the table, 
and the process of recognition and retrieval repeated. Of these two additional attempts, only one 
retrieval was successful, the other being close (within 1 cm of success). 

A fourth video clip showing the "transport mobile robot" under test, carrying the arm has also 
been provided. This vehicle is not yet able to be remotely communicated with or to dock with the 
"scout master mobile base". 

7.4 Conclusion 

The tests carried out in this chapter commenced with the creation of a small database of ten 3D 
models of commonly found household items. MROLR was then directed to autonomous navigate 
to selected waypoints in search of objects selected from the database. It successfully performed 
these navigational tasks, mapping its way while simultaneously tracking several knovm landmark 
features. 
On reachmg the waypoint destination (in each case a table laden with objects), the active head 
panned the scene in search of the object. With the object present and in range of the arm, 
recognition, pose determination and retrieval occurred. Obstacles avoidance was not attempted 
during these tests as MROLR has only limited ability to detect obstacles (refer section 5.8.1.2). 
These results confirm the methodology of this research and are sufficiently encouraging to 
support continuation ofthe project. 

The contributions of this work, and planned future improvements and extensions (several of 
which are currently in progress), are summarised in Chapter 8. 
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Chapter 8 Conclusions and Further Work 

8.0 Introduction 

\n this, the final chapter, the main contributions of this work are summarised and proposed 
extensions for continuation in the future outiined. 

8.1 Main Contributions of This Work 

The major contribution made by this research is in the design and implementation of a new type 
of "service robot", comprising a navigating mobile robotic platform with active vision and object 
retrieval abilities. Given a specified destination (with reference to a home base coordinate 
frame), its navigational capability enables it to reliably localise and map-build in an unknown 
indoor environment, using information from measurements of arbitrary landmark-features and 
robot-odometry. The resulting map is also available for future navigational purposes such as the 
retum joumey, or recovering from accumulated positional errors that are a result of estimation 
errors and wheel slippage. 

The specified destination is required to be in close proximity (< 0.5 metres) to a surface, such as 
a table, on which a desired object is to be located and retrieved. The recognition ability of the 
MROLR enables it to compare a 3D (a prior developed) model to scene-objects modeled while 
surveying the location, and if a suitable match is obtained (based on 3D geometric features) 
verify its pose by aligning the 3D model with the 3D matched scene-model. Using information 
from pose measurements, a fransform is established locating the sought object with respect to the 
active head. This fransform is then available to guide the docked robot arm to grasp, retrieve, and 
to place the object on the platform, for transport back to the base home position. 

8.1.1 Related Contributions 

Related contributions stem from: 

• Development of automated 3D object-model creating facilities. This consisted of the design 
and construction of two, portable motorized turntables, and related software modules. An 
object to be modeled is placed on the table and the active stereo head forms 3D view 
dependent wfre frame models as the table is accurately rotated. These sequences are finally 
integrated to form a complete (view independent) 3D model suitable for storage in a 
database. The establishment of a model database of sought objects is a prerequisite for thefr 
use in the recognition process. 

• Development of a model editor to facilitate the manual removal and/or addition of 3D 
segments in formed models. The editor was built on the incomplete "geomstat" module of 
TINA. The major contribution to the geomstat software module was the addition of an 
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"edited model" output facility. The need for the addition of 3D lines to models arises on 
occasion as a result of poor lighting conditions, or edges that are difficult to match. More 
commonly, line duplication occurs due to slight misalignments during the integration 
process, and the editor now allows these to be removed. 

Preliminary design and construction of a "slave transport" mobile robot base and related 
software has commenced. This mobile robot will carry the robot arm that ultimately grasps 
and retiieves tiie target object. Once the "master scout" mobile base has accomplished its task 
of navigating to and locating the desired object, the "transport" base will be sent a command 
to dock with the "master". Docking ensures that a known, predetermined distance exists 
between the gripper and the head coorduiate frame. 

Extension and modification of existing recognition algorithms to facilitate automated 
recognition while searching and scanning of the scene. The added algorithm utilises nested 
iterative loops in which the seven parameters are systematically modified (in a "fiizzified" 
like, fine-to-course adjustment) to reflect a reduction hi data "confidence levels". 

Extension and modification of existing active vision based navigation software to work with 
the designed mobile base. This included the vmting of an obstacle detection and avoidance 
module. 

Development of kinematic solutions from object pose uiformation, to enable the robot arm to 
grasp and retrieve the desired object. 

Preliminary implementation of a "3D Virtual Environment" for simulating MROLR. This 
will be useful for evaluating altemative map-building sfrategies, object grasping locations, as 
well as for demonsfration and educational purposes. 

8.2 Future Directions and Work 

As stated at the conclusion of Chapter 1, motivation for this work stems from the desfre to 
ultimately develop a system capable of rapid and reliable retrieval of objects in both domestic 
and industrial envfronments. Potential applications for such an improved system range from 
simple domestic and industrial "robotic aids", to "assistants" for the severely physically disabled 
or visually impaired. 

The work completed to date goes a considerable way to meeting the objectives of this thesis. 
However, MROLR is a prototype, and to develop it into a useful product requfres improvements 
in several areas. Presently, self-localisation and map building is quite a slow process. There are 
several reasons for this. Navigational feature measurements are only performed while the base is 
stationary, and several image format conversions are required. The stationary base requfrement is 
in partly dictated by the Extended Kalman Filter algorithm requiring constant distant increments 
for measurements. Also occasionally severe stereo head motion-vibration occiu-s, producing 
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bltirred images when the head moves concurrently with the base. Elimination of the need for 
several image formats is a relatively straightforward task, and tiie existing software modules will 
be modified to accept a single standard image formats in the near future. The stereo head 
vibrations appear to be a structural problem resulting from natural harmonic motions. The 
purchase of an improved head may be the simplest solution to overcome this problem. With 
faster computers, it is not unreasonable to expect measurement updates at better tiian eight per 
second. Of course these time delays do not arise if the mobile robot utilises the navigational 
mode that relies solely on odometry. For most mdoor envfronments where floor levels are even 
and wheel slippage negligible, this simpler mode of operation is acceptable and quite reliable. 

Currentiy only one scan and search sequence has been implemented. Effectively the target object 
must reside on a surface in close proximity to the specified destination. An experiment with 
multiple scan and search sequences has been done. The mobile robot was guided around the 
perimeter of a table while searching for an object. This proved successful when the object was 
eventually located at the far end of the table. The ability to move around the boundary area of 
benches and other objects will requfre additional navigational algorithms to be incorporated, to 
determine and negotiate complex path frajectories ~ a challenging future project. 

In the more immediate future, it is intended to improve on the current method of object 
recognition. One simple improvement would be to add colour to the object feature list. This 
could greatly help discriminate between objects of similar shape (i.e., white cup instead of green 
cup). More complex model building algorithms will also be considered, perhaps using 
Generalised Cylinders or Ocfrees. 

The use of a separate "slave transport" mobile base has both potential advantages and drawbacks. 
Placing a robot arm on the master mobile base was not a feasible option with the current 
equipment, due to size and weight constraints. The advantage of using two vehicles is that a 
relatively lightweight fast acting, low energy mobile base, equipped with active cameras, can 
initially be used to navigate about, in a search, recognition and location phase. This is followed 
by a second phase, during which the slower mobile-crane like vehicle is instructed to 
automatically dock with the "master" and then guided to pick up the object (a" braui and brawn" 
collaboration). Substantial progress on the design and construction ofthe "transport" mobile base 
has been made (details are given in appendix B). 

Adding "gesture recognition" capabilities to MROLR has also been considered. This would build 
on tiie work of Wingate and Stoica relatuig to Apprentice Robots [WS96], [WS97]. A Master 
could point towards the target-object thus making it easier to request the retrieval of an object. 
There is little doubt that as the methods of communicating with and dfrecting robots becomes 
more "natural" for humans, such as with speech and hand gestures, tiie use and appeal of robots 
will grow. Speech confrol trials on several robots have afready been undertaken by Moyssidis 
andWuigate[MW02]. 

As acknowledged in chapter 7, the sole dependence on a fransform of high precision to guide the 
robot arm is a fundamental weakness of the retrieval system. In effect the object retrieval system 
is an open loop one. An improvement in the form of visual feedback (visual servoing) to make 
the retrieval process more effective and robust, was suggested in chapter 7. This could be 



Chapter 8 Conclusions and Further Work 145 

accomplished by more effective use of the existing stereo head and/or with the addition of a 
miniature camera attached to the gripper (i.e., an eye in the hand). The concept of using cameras 
attached to robots is not new. Researchers such as Smith et al [SBP97], Hauck et al [HPRSF99], 
Wijesoma et al [WWR93] and others have successfully utilised them for end effector guidance. 
A future software module and micro camera could be added to incorporate dfrect "hand-eye" 
coordination. 

hi thefr current form the simulation modules described in Chapter 6 would be useful for teaching 
and demonsfration purposes. A possible extension to the simulation modules (briefly mentioned 
in Chapter 6) would be for all created objects to be positioned in the "virtual" scene (in close 
proximity to their real world x y z location). Mouse selecting the target object (or verbally 
selecting it, if voice recognition was added) could then initiate a simulation run. Ifthe simulation 
run proved successful this could be linked with the physical task of navigation and object 
retrieval. On retrieval by the "physical" docked arm, the objects would be removed from the 
"virtual" scene. This would provide a dfrect way of target object selection as well as a visual 
means of readily establishing the proximity of the desfred object position, thus considerably 
simplifying the navigation, search and retrieval tasks. 

8.3 What Follows? 

Three appendices follow this final chapter, provided to expand upon the work outlined in the 
preceding chapters, as well as to outiine some interesting preliminary work undertaken fri search 
of suitable algorithms to meet the needs and objectives of this thesis. 

Appendix A describes early approaches and methods considered and evaluated, but ultimately 
not followed. 

Appendix B provides specific details of ancillary software and hardware developed ui support of 
this contuiuing work. 

Appendix C continues with the algorithmic development for continuous frackuig of multiple 
features using active vision commenced in Chapter 5. 

A comprehensive Bibliography follows the appendices. This is a collection of references 
maintained and used by the author. 
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Appendix A Early Attempts to Obtain Object Modeling Algorithms 

A 1.0 Introduction 

The work of this thesis commenced in 1995 and at that time, obtaining object boundary outiuies 
with metiic information suitable for 3D object modeluig and recognition was still relatively in its 
infancy. The problem still atfracting a great deal of attention from eminent researchers, as is 
evident from the vast array of publications being produced, for example Z. Zhang and otiiers, 
[Zha02b], [YZ02], [SZOO], [SNWGH99]. fri the process of obtafrung an effective recognition 
module for MROLR a number of novel approaches were considered. Although algorithms were 
developed and tested, and results published and presented, ultimately these were not utilised in 
the recognition module. 

This section reviews the work carried out and contributions made during that research period. 

A 1.1 Structure Recovery of Objects Using Multiple Camera Views. 

An early approach using "line features fri multiple camera views", Wingate [Win97a], [Win97b], 
was formulated aroimd the algorithm of Taylor and Kriegman [TK95]. This work differed to that 
of Taylor and Kriegman in that it did not rely on a priori knowledge ofthe cameras focal length. 

An absfract from "3D Structure Recovery of Objects Using Line Features in Multiple Camera 
Views", [Win97a] is reproduced below: 

Abstract 
The work carried out represented an initial attempt to recovery the 3D structure of rigid objects 
from multiple views. The concept involved images captured from a roving mobile robot equipped 
with a single camera whose pan and tilt are controllable. The algorithms formulated use 
straight-line feature correspondence obtained from a minimum of 3 views and an objective 
function that minimises the squared difference between projected edge segments and image 
segments. The structure ofthe object in terms of a scaled 3D-line drawing as well as the position 
ofthe cameras is retumed and available for use as a scene model. Edge outlines were obtained 
using a Canny edge detector and straight lines fitted to these using a recursive line fitting 
algorithm. Results of simulated data are provided using a pin hole camera model and these are 
compared with results using real images in which line correspondence matching is carried out 
manually. 

A 1.2 Trinocular Stereo 

A trinocular stereo vision, rectifying images to enhance epipolar matching was another method 
investigated. Algorithms were developed and results compared with those of two camera stereo. 
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The work performed was presented in Wingate [Win99]. Details are outlined in Section A 1.2. 1 
below. 

A 1.2.1 Trinocular Vision (3 Camera Stereo) 

The notion of using trinocular stereo vision is appealing because the additional camera provides 
a second epipolar line in each image and the intersection of these lines correspond to a match. 
False matches are readily eliminated by verification of correspondences in each image (A 1.2. 1 
below). Rectification of the images such that the image planes are coplanar and parallel to the 
lines joining the focal centres results in the epipolar lines between images 1 and 2 becoming 
horizontal, and also vertical epipolar lines between images 1 and 3. The advantage of using 
trinocular stereo over binocular stereo comes at the cost of increases in algorithmic complexity 
and overhead processing time. Ayache [Aya91] states that the rectification of k images 
necessitates storing k 3x3 matrices, and forming six products, six additions and two divisions per 
rectified point. R. Jarvis and others [Jar94] have used quad stereo. An advantage of four cameras 
is that testing for vertical, horizontal and diagonal matches can be performed simultaneously 
thereby reducing the likelihood of matching outliners even fiirther. 

Fig A 1.2.1 Trinocular stereo: corresponding matches at intersection of epipolar lines 
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Fig A 1.2. 2 Epipolar lines and corresponding matches following image rectification 

Ayache's procedure [Aya91, pp.30-41, (outiined below)] was implemented for trinocular 
rectification. Initially coding was carried out in Matlab and subsequentiy in 'C. The theoretical 
basis ofthe approach is outlined in the following sections. 

A 1.2. 2 Image Modeling 

The standard pin hole camera is used, and for clarity of notation this is redrawn in Fig A 1.2.2.1. 

P(x,y,z) 

Fig A 1.2.2.1 Standard pin hole camera, optical centre C, image point I focal plane P 
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The fransformation from P to I is modeled by a linear fransformation T in projective coordinates. 

Letting 1* =(U, V.S)'be the projective coordinates of I and {x,y,z) be the coordinates of P, 

1 = V 

rx^ 

= T y 
z A 1 

Where T is a 3 x 4 matiix, generally called the perspective matrix ofthe camera. 

ForS 9t 0 the image coordfriates of I are defined by: 

1 = 
fu^ (u/s^ 

V/S \^j 

A 2 

T is generally determined by analysing the image of a calibration grid where the positions fri the 
image of the intersection points are knovm with precision. Various established calibration 
procedures exist for determining T (The Tsai routine [Tsa87] was used for this work). The 3x4 
matrix T consists of twelve parameters, but these are defined up to a scale factor only. Thus, an 
additional constraint must be fotmd. The simplest is to assume that T^^ is non-zero and to set it 

to 1. Following calibration, the 11 parameters comprise ofthe intrinsic and extrinsic parameters 
ofthe pinhole model. 

For later use the following notation fritroduced by Ayache is defined. 

ty is the (/,y') element of T , and t,. is the vector composed ofthe first three elements ofthe 

row /of T: 

The coordinates ofthe optical cenfres C,. {xcf,yc^,zc,) are obtained by solving the system 

0 = T, 

Uc^ 

zc, 

vl J 

A 4 
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A 1.2.3 Image RectiHcation 

Image rectification is performed by a linear transformation in projective coordinates normally 
resulting in either horizontal or vertical conjugate epipolar lines, points with coordinates (M,,V,.) 

are transformed to new coordinates (M.,V,'). By appropriate choice of coordinate frames, a point 

(«],vj in image 1 has the line segment V2 = v\ of image 2 as its conjugate epipolar line, 
FigA 1.2.3.1. 

Fig A 1.2.3.1 Rectification of two images. 

Initially rectification for binocular stereo will be considered and extended for a trinocular stereo 
system. To begin it is necessary to define two new perspective matrices M and N which 
preserve the two optical centers Cj and C j . These facilitate the transformation from coordinates 

{u,,v.) to new coordinates (w,,vj in each image /. 

The following constraints on the new perspective matrices M and N are imposed: 

1. The optical centers of Mand N are C, and Cj respectively (to give a unique match 

between image points I,, and l] before and after rectification). 

2. The focal plane of M is identified with that of N (to produce parallel epipolar lines in 
both images). 

3. For any point P(not in the optical plane), the image points l\ and I'2 obtained by Mand 

N respectively are such that vj = vj. 
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Let 

M = 

/ t ^ 

/«2 m24 

^,'"3 '^34 J 

N = 

f t \ 
«1 «14 

«2 «24 

V«3 « 3 4 ; 

The application of these consfraints lead to matrices M and N defined by: 

\{C,xC^)xC,)' 0 ^ 

M= (C.ATCJ)' 0 

((C.-C^MC.^cC^))' ||c,;cC2|p 

A 5 

A 6 

N = 

{(C,xC,)xC,)' 

(C,xC,)' 

((c.-c^Mc.̂ c^))' 

0 

0 

^ ^ 1 - ^ ^ ^ IJ 

A 7 

By considering a point in image 1, I,(M,,V,) that is the projection of a point V{x,y,z) wdtii 
coordinates: 

P = C,+>ln A 8 

Where n, is a dfrection vector ofthe segment I,C,. The projective coordinates ofthe new image 
I, of point P are then given by: 

I.* = 

'U\^ 

\,S,j 

= M 
^C, +n^ 

V 1 y 
A 9 

Now, sfrice Cjis the optical cenfre of M, (C,,l)' =0. As a consequence, the computation of 
/reduces to: 

I.* = 

'ul^ 

v^.y 

= M'n A 10 

Where M' is the 3x3 matrix obtained by removfrig the last column of M. Since n is computed 
by an affine fransformation of the coordfriates (M, , V, ), it is sufficient to put 
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Q> = 

%C,xC,)xC,y 

(C.xC^)' 

((c.-c^Mc.xcJ)' 
a 3x3 matiix, to obtafri: 

[t̂ jct̂  t;;rt; t|A^^] A 11 

y'x = Qx 

^«,^ 

v l y 

Proceeding symmetrically, putting 

Q2 = 

gives: 

i(C,xC,)xC,y 
{c,xc,y 
((c.-c^Mc.xc^))' 

[t̂ Xt3' t3'xt^ t.̂ Xt̂ ] 

A 12 

A 13 

^ul^ 

V 2 J 

= Q. 

^ M . ^ 

v l y 

A 14 

Rectification of images 1 and 2 thus reduces to the application of the two linear fransformations 
in projective coordinates given by equations A12 and A14. 

The elegance of Ayache's derivation for QI and Q2 is that it readily extends to multiple cameras, 
as is evident from the following. 

A 1.2.4 Three Cameras 

For the case of three cameras, it is preferable to rectify the images to have horizontal epipolar 
lines between images 1 and 2, and vertical epipolar Ifries between images 1 and 3. For analysis 
the same steps as used for two cameras are adopted to compute new perspective matrices M.N 
and Qfrom the optical centers C,,C2 and C3. 
This results fri: 
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M = 

(C3^C,) ' 

(C,;cC2)' 

( C , A < : 2 + C 2 A : C 3 + C 3 A : C , ) ' 

0 

0 

-(c, C2 

>l 

' ^ 3 ) , 

A 15 

N = 

(C2XC,)' 0 

(C,;cC2)' 0 

(C,XC2+C2XC3+C3+C,) ' - (C„C2,C3) 

Q = 

(C3;cC,)' 0 

(C2;cC3)' 0 

( C , A : C 2 + C 2 A : C 3 + C 3 A : C , ) ' - ( C , , C 2 C 3 ) 

A 16 

A 17 

Where (C,,C2,C3) is the triple product of vectors CpC2 and C3. 

hi equations A15 to A. 17, Q is chosen to produce equality between the ordinate 

vj of I3 and the abscissa i/j of ^2' i-^-. ^3=1/2. 

Rectification is performed in exactly the same way as previously but now with three 
3 x 3 rectification matrices R,, R2 and R3. 

R = 

(C,-,^C,)' 

(c,.̂ c,,,)' 
( C , A ; C 2 + C 2 X C 3 + C 3 X C , ) ' 

[tixtl t^xti tixti] 

A 18 

Note for R. the convention that i +1 = 1 if J = 3 and {-1 = 3 if i = 1 applies. 

Thus for three homologous points I p l z , and 13, 

V2 

M3 

vj 

= Vl 

= u[ 

= "2 

A 19 

A 1.2.5 3D Reconstruction 
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In principle a knowledge of Tjand Tj is sufficient to compute the three coordinates of any point 
P, given its two images Ij and I j . However Ayache points out that in the absence of an 
objective criterion, solving the whole system either by least squares or by Kalman filtering is 
desirable. Either approach extends naturally to trinocular stereo vision, and more generally to 
reconstruction based on an arbitrary number of cameras. 

For this work least squares was used, and the solution for n cameras follows. 

For n cameras, set 

With a = {x,y,z)'and 

A = 
Û  

K^tJ 

For which 

Aa = b 

/ A \ 

and b = 
*i 

v*«y 

A 20 

A 21 

l(n-v,tO' 
and b, = 

^«t ' - t ' ^ 
"(••34 "-M 

V t' - t ' 

A 22 

The least squares solution is then given by 

a = (A'A)"'A'b 

provided A'A is invertible. 

A 23 

Fig A 1.2.5.1 4 Degree of freedom stereo head with third camera mounted 

An example of results obtained using three Pulnix colour cameras is given below. 
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Fig A 1.2.5. 2 Left, centre and right camera images of a scene 

Fig A 1.2.5. 3 Resulting 3D trinocular reconstruction 
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A 1.3 Cluster Prototype Centring by Membership (CPCM) 

A fuzzy probabiUstic method for object boundary detection resulting in the development of a 
new progressive fuzzy clustering algorithm was also tested. The algorithm was given the 
acronym CPCM (Cluster Prototype Centering by Membership). Full details and results were 
published fri [IWQ95], [ILW96]. 

The extent of tiiis work is best summarized by the following exfract from P.T.frn [Im97] 

"This work applies an enhanced progressive clustering approach, involving clustering 
algorithms and fuzzy neural networks, to solve some practical problems of pattern recognition. A 
new fuzzy clustering framework referred to as Cluster Prototype Centring by Membership 
(CPCM) has been developed. A Possiblistic Fuzzy c-Means algorithm (PFCM), which is also 
new, has been formulated to investigate properties of fuzzy clustering. PFCM extends the 
useability ofthe Fuzzy c-Means (FCM) algorithm by generalisation ofthe membership function. 
CPCM provides a flexible framework to integrate clustering methods that detect cluster 
substructures. Application development is focused on three problem contexts: (i) detection of 
contaminants in wool and paint defect on tile surface (region segmentation), (ii) identification of 
real object lines and circles (boundary detection) and (iii) recognition of a notched feature on an 
armature housing (general pattern recognition). Results obtained from these algorithms indicate 
robust clustering and accurate identification of cluster parameters (circle centre, radius, line 
gradient and corners) from real data silhouettes characterised by the presence of noise, 
fragmentation and partial obscurity." 

The bulk of this work was carried out by P.T. Im with the aid and supervision of M.Wingate. 
The following five papers on CPCM and applications were co-authored by M.Wfrigate: 
[ILW96],[IQWH95],[IQWH95b],[IWQ95]. 
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Appendix B Hardware and Software 

B 1.0 Introduction 

To clarify and extend information provided so far in various chapters, specific details relating to 
ancillary hardware and software developed is provided in this appendix. 

MROLR's system software comprises of numerous fritegrated platform modules (Linux, 
Windows, DOS) and many megabites of 'C/C++' based source code. Much of it is hardware 
specific and/or proprietary produced (i.e., written for the mobile-base confroller, active stereo 
head-controller, robot arm-controller, etc.) and is of little use for other systems, or is not licensed 
for inclusion in this appendix. Ultimately, it is expected that source code vmtten specifically for 
this project will be available on a CD for interested parties. 

Accurate 3D object-model creation is essential for reliable object recognition. Several portable 
computer-confrolled rotating tables needed to be designed and constructed to facilitate the 
object-model creations discussed in chapters 6 and 7. The motion confroller requfrements for the 
(partially complete proposed) mobile fransport base, are similar to those of the rotating tables, 
thus for standardisation and ease of manufacture, identical designs were used. Section B 2.0 
gives the circuit schematics of the confroller and details of the electronic boards constructed. 
Specific details ofthe procedure for 3D object-model creation and its implementation in software 
are outiined in section B 2.1. 

Kinematic analysis and solutions for a large range of robotic arms are well documented and 
understood. Driver binaries for the RTX UMI robot were provided by the manufacturer, however 
to incorporate kinematic and inverse kinematic solutions for the MROLR Simulation Module, 
required the development and coding of the relevant mathematical solutions. Forward kinematic 
and inverse kinematic solutions coded for the RTX robot arm, are detailed fri sections B 3. 

S 2.0 Rotating Table and Mobile Transport Robot Controller Circuit Design 

Motion confrollers designed specifically for MROLR were standardised aroimd the Motorola 
HCll microprocessor and National Semiconductors LM629 motion-confrol IC. Thus, confrollers 
for the model creating tum tables, are the same as used for the mobile transport base, except for 
the number of motor drivers utilised. All motors are fitted with precision optical encoders 
permitting velocity and acceleration against time profiles to be specified. This confrol is 
accomplished using the LM629, 32 bfr motion confroller, see Ust of features below. 
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LM629 feattireŝ  

32-bit position, velocity, and acceleration registers 
Programmable digital PID filter with 16-bit coefficients 
Programmable derivative sampling interval 
8-bit sign-magnitude PWM output data Intemal frapezoidal velocity profile generator 
Velocity, target position, and filter parameters may be changed during motion 
Position and velocity modes of operation 
Real-tfrne programmable host interrupts 
8-bit parallel asynchronous host interface 
Quadrature incremental encoder interface with index pulse input 

Cfrcuit hardware and schematic details are shown in Figs B.2.0.3 to B.2.0.9. Interface to PCs is 
via an RS232 serial port. 

Two portable, model creating tables were built, one robust with level adjusting legs to ensure a 
precise horizontal planar surface, the other lighter and more portable for ease of fransport to 
different locations. Prior to the integration of the single view models formed, a rotation of each 
model about the Z-axis of the table, equivalent to the minus the angle the table was rotated, is 
required. The closer to horizontal the table surface is tiie better the model produced. Both 
motorised tables, previously shown in Fig 6.1.5 (a) and (b), are redisplayed reduced in Fig 
B.2.0.1 

The fransport mobile base (Fig 6.7.2) was designed and constructed to carry the robot arm and to 
ultimately dock with the scout master mobile base, as outlined in earlier chapters. In its present 
"carnation" it is accurately able to move to specified coordinates. This is demonstrated in the 
accompanying CD which shows the transport base carrying the robot arm. For convenience Fig 
6.7.2 is also redisplayed reduced in Fig B.2.0.2 

Wfreless communication, and laser controlled docking still need to be added to make this facility 
a usefiil component of MROLR. 

Extracted from National Semiconductors application notes 
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Fig B.2.0.1 Portable motorised turn tables 

Fig B.2.0. 2 Mobile Transport base and Arm 
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(a) Double layer, microprocessor and precision motor controller circuit board. 
This board comprises 5 basic circuit sections, schematic circuit details are given 

in Figs B.2.0.4 to B.2.0.8. 

(b) Motor Driver Board : Schematic circuit details are given in Fig B.2.0.9 

Fig B.2.0.3 Controller hardware 



Appendix B Hardware and Software 161 

Fig B.2.0. 4 MC68HC11 Microprocessor and interface circuit 
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Fig B.2.0.6 Motion controller circuit, utilises LM629 motion controllers 
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Fig B.2.0. 7 RS232 Serial communication interface circuit 
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B2.1 Model Creating Procedure Details 

The procedure for creating a model is as follows: 

3D edge models of each rotated view are automatically provided via the stereo head, 
computerised table, and modified TINA software. These are Model, i.poly, with i incrementing 
from 1 to 7, respectively representing edge model views of: 0, 45, 90, 135, 180, 225, 270, 315 
degree rotation, about the Z axis ofthe table (i.e., world coordinate frame). Each view comprise 
3D line and 3D conic edge segment location descriptors referenced to the Left Camera 
coordmate frame. Left Camera homogeneous tiansforms TCWL^ and TWCL are established to 
facilitate fransformations of "3D segments" to either world coordmate frame or tiie Left camera 
coordinate frame respectively. (Note notation CW signifies camera measurements transformed to 
world coordinate frame, while WC signifies world coordinate measurements transformed to 
camera coordinate frame). TCWL comprises TCWL.r (3x3 matrix of the camera rotation 
parameters with respect to world coordinate frame) and TCWL.t (3*1 matrix of the camera 
translation parameters with respect to world coordinate frame). The inverse camera 
transformation structure TWCL comprises TWCL.r and TWCL.t (rotations and translations with 
reference to the Left Camera coordinate frame). Rotation and translation matrix data are obtained 
from a prior Tsai^ camera calibration results. 

A 3x3 matrix transform T45Z for producing 45 degree (clockwise) rotations about the world 
coordinated frame Z-axis was also established. 

B 2.1.1 Pseudocode: Make_modeI_procO 

/* Convert 3D segments in poly buffers from left camera to world coordinate frame) */ 
For i = 1 to 7 apply TCWL to Model.i.poly 

/* Rotate poly segments (clockwise) about the world Z-axis an amount consistent with the 
respective table (anti-clockwise) rotation (each table rotation increment = 45 degrees). Append 
rotated segments to Model.i.poly */ 

For i = 2 to 7 apply (i*T45Z) to Model.i.poly and append resuhs to Model.i.poly 

/* Fmally convert 3D segments in .poly models back to Left Camera coordinate frame as TINA 
TV displays camera coordinate views) */ 

Apply TWCL to Model. 1 .poly 

Display resulting Model. 1 .poly 

Note for most cases only 4 models (instead of 7) are necessary. For tiiese cases i=l to 4, and a 
T90Z = 2xT45Zisusedetc. 

' TCWL is the 4x4 homogeneous transform ofthe Left Camera w.r.t. the Worid Coordinate Frame. 
' The Tsai calibration routine is provided in TINA's Calibration tool. 
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B 3.0 Forward Kinematics and Inverse Kinematics of the UMI RTX 

6 DOF Robot. 

<4>e, ̂ e<4^0-as 

.=0 --:l^, 

,' \ 
L,=0 ---^.^4 a 4 

as 

Fig B 3.0.1 DH link coordinate systems and joint assignment for the RTX robot arm 

B 3.1 Denavit-Hartenberg Representation (D-H) 

coordinate frames: 
1. z\.\ axis lies along the axis of motion ofthe i* joint. 
2. Xj axis is normal to the z\.\ axis, and points away fi-om it. 
3. yi axis completes the right-hand coordinate system as required. 

\xxk parameters: 
1. 0; is the joint angle from the Xi.i axis to the Xj axis about the z\.\ axis (using the right hand rule) 
2. di is the distance form the origin ofthe (i-1)* frame to the intersection ofthe Zi-i axis with the x; axis 

along the Zi.i axis 
3. ai is the shortest distance between the Zi.i and the Zi axes (offset distance from the intersection ofthe Zi.i 

axis with Xi axis to the origin ofthe i* frame along the Xi axis) 
4. tti is the offset angle from the Zj-i axis to the Zi axis about the Xi axis (using the right hand rule) 
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'-•Ai = T(z,d)R(z,^)T(x,a)R(x,V) = 

cos^. 
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sin a, sin ̂ , 

-sina^cos^, 

cos or, 
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a, cos^j 

a I sin^, 

d. 
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Links 

I 
2 
5 
4 
5 
6 

di 

var 0 
0 
0 
0 
0 
177mm 

ai-i 

0 
254nim 
254mm 
0 
0 
0 

ei 
0 
var 
var 
var 
var 
var 

OCi., 

0 
0 
90° 
90° 
0 
0 

Note var = variable, ** signify a prismatic joint while * a rotary jomt. 

biitial variable joint values are: 
di=922mm, 62 = 63 = 64 = 0°, 65 = 90°, 06=0 

Fig B 3.1.2 Denevit Hartenberg link/joint parameter table 

The A Matricies 

A[l] = 

A[2] = 

A[3] = 

A[4] = 

Cos[ql] -Sin[ql] 0 0 
Sin[ql] Cos[ql] 0 0 
0 0 1 dl 
0 0 0 1 

Cos[q5] 
Sin[q5] 

'note q is used in place of 9 

I 

Cos[q2] -Sin[q2] 0 254 Cos[q2] 
Sin[q2] Cos[q2] 0 254 Sin[q2] 
0 0 1 0 
0 0 0 1 

Cos[q3] -Sin[q3] 0 254 Cos[q3] 
Sin[q3] Cos[q3] 0 254 Sin[q3] 
0 0 1 0 
0 0 0 1 

Cos[q4] 0 Sin[q4] 
Sin[q4] 0 -Cos[q4; 
0 1 0 
0 0 0 

0 
0 

Sin[q5] 
-Cos[q5] 

0 
0 
0 
1 

0 
0 
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A[5] = 

A[6] = 

0 
0 

Cos[q6] 
Sin[q6] 
0 
0 

1 0 
0 0 

-Sin[q6] 
Cos[q6] 
0 
0 

0 
0 
1 
0 

0 
1 

0 
0 
177 
1 

B 3.2 Forward Kinematic Solution " T 

The Forward Kinematic Solution iT is obtained from: 

T=^A* A*̂  A*'A*^ A*^A = 

« . 

« . 

«z 

o. 

Oy 

o. 

«x 

a, 

«z 

P. 

Py 

Pz 

0 0 0 1 

Because of its size gJ'=T06 is printed one Row at a time, note also 

Sl=Sin(qi), Cl=Cos(qi), etc. 

O/Tl , 

6-' • 

T06[l,l] = -(SI (S2 {-(S3 (C5 C6 S4 - C4 S6)) + C3 (C4 C5 C6 + S4 S6)) + 

> C2 (C3 (C5 C6 34 - C4 S6) + S3 (C4 C5 C6 + S4 S6)))) + 

> Cl (C2 (-(S3 (C5 C6 S4 - C4 S6)) + C3 (C4 C5 C6 + S4 S6)) -

> S2 (C3 (C5 C6 S4 - C4 S6) + S3 (C4 C5 C6 + S4 S6))) 

T06[2,l] = Cl (S2 (-(S3 (C5 C6 S4 - C4 S6)) + C3 (C4 C5 C6 + S4 S6)) + 

> C2 (C3 (C5 C6 S4 - C4 S6) + S3 (C4 C5 C6 + S4 S6))) + 

> SI (C2 ( - ( S 3 (C5 C6 S4 - C4 S 6 ) ) + C3 {C4 C5 C6 + S4 S 6 ) ) -

> S2 (C3 (C5 C6 S4 - C4 S6) + S3 (C4 C5 C6 + S4 S 6 ) ) ) 

T 0 6 [ 3 , l ] = C6 S5 
T 0 6 [ 4 , l ] = 0 

T06[l,2] = Cl (-(S2 (S3 (C6 S4 - C4 C5 S6) + C3 (-(C4 C6) - C5 S4 S6))) + 

> C2 (C3 (C6 S4 - C4 C5 S6) - S3 (-(C4 C6) - C5 S4 S6))) -

> SI (C2 (S3 (C6 S4 - C4 C5 S6) + C3 (-(C4 C6) - C5 S4 S6)) + 

> S2 (C3 (C6 S4 - C4 C5 S6) - S3 (-(C4 C6) - C5 S4 S6))) 

T06[2,2] = SI (-(S2 (S3 (C6 S4 - C4 C5 S6) + C3 (-(C4 C6) - C5 S4 S6))) + 
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> C2 (C3 (C6 S4 - 04 C5 S6) - S3 ( - (C4 C6) - C5 S4 S 6 ) ) ) + 

> Cl (C2 (S3 (C6 S4 - C4 C5 S6) + C3 ( - (C4 C6) - C5 S4 S 6 ) ) + 

> S2 (C3 (C6 S4 - C4 C5 S6) - S3 ( - (C4 C6) - C5 S4 S 6 ) ) ) 

T06[3 ,2] = - ( S 5 S6) 

T06[4 ,2] = 0 

T 0 6 [ l , 3 ] = C o s [ q l + q2 + q3 + q4] S5 

T06[2 ,3] = S i n [ q l + q2 + q3 + q4] S5 

T06[3 ,3] = -C5 

T06[4 ,3] = 0 

T 0 6 [ l , 4 ] = - ( S I (254 S2 + S2 (254 C3 + 177 C3 C4 S5 - 177 S3 S4 S5) + 

> C2 (254 S3 + 177 S34 S 5 ) ) ) + 

> Cl (254 C2 + C2 (254 C3 + 177 C3 C4 S5 - 177 S3 S4 S5) -

> S2 (254 S3 + 177 S34 S5)) 

T06[2,4] = Cl (254 S2 + S2 (254 C3 + 177 C3 C4 S5 - 177 S3 S4 S5) + 

> C2 (254 S3 + 177 S34 S5)) + 

> SI (254 C2 + C2 (254 C3 + 177 C3 C4 S5 - 177 S3 S4 S5) -

> S2 (254 S3 + 177 S34 S5)) 

T06[3,4] = dl - 177 C5 

T06[4,4] = 1 

171 

B3.3 Inverse Kinematics 

The above transforms may be used to obtain the inverse kinematic solution for the robot arm. 
Altematively the inverse kinematic solution may be obtained by considering the joint movement 
geometry directly. This later geometrical approach was taken and the resulting fimction (coded m 
C) is given in Section 3.3.1 below. A more general solution (suitable for arms with 5 or more 
degrees of freedom) was also adopted. This extends the use ofthe simulator to include arms with 
a variety of configurations and joints (i.e.. Articulated, Spherical, Cylindrical joints). This second 
solution uses the pseudo-inverse ofthe manipulator's Jacobian and is completely general. Recall 
the forward kinematic solution is: 

lT=\A*lA*]A*lA*',A*lA.."-l A = K(q), 
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The inverse kinematic solution is (q) =K ^T) where (q) is a vector array ofthe variable joint 
parameters. 

Because the solution is obtained iteratively, it is less efficient than specific inverse kinematic 
solutions derived symbolically or from direct joint geometry. A fiirther drawback is that while 
this approach allows a solution to be obtained at a singularity, the jomt angles within the null 
space are arbifrarily assigned. 

The code for the pseudo-inverse was ported from Peter Corke's Matlab "Robotics Toolbox" to 
'C code. 

publicly available from www.brb.dmt.csiro.au/dmt/programs/autom/pic/matlab.html 

http://www.brb.dmt.csiro.au/dmt/programs/autom/pic/matlab.html
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B 3.3.1 'C written function to compute inverse kinematic solution for RTX robot 
arm 

(Note portions of this code were ported from pascal code generously provided by Geoff West of 
Curtam University, W.A. Ausfralia.) 

int compute_xyz(double *x_coord, double *y_coord,double *z_coord,double *pitch,double *roll,double *yaw,\\ 
int *s_ec, int *e_ec,int *z_ec,int *wl_ec,int *w2_ec,int *wy_ec) 
{ 
double x_wrist,y_wnst,z_wrist; 
double theta,phi,radius; 
double opp; 
int flag; 
double rxy; 

/* compute roll, pitch and yaw motor counts */ 
/* note - pitch - rotate about -Z (was x) 

roll - rotate about X (was y) 
yaw - rotate about Y (was z) 

w.r.t. wrist. 

wlec - wrist motorl encoder counts 
w2_ec -wrist motor2 encoder counts 
sec — shoulder motor " " 
eec - elbow motor " " etc. 

• / 

•wl_ec= (int)(-*pitch/0.07415); 
*w2_ec=*wl_ec; 

*wl_ec=*wl_ec+ (int)(*roll/(0.07415)); 
*w2_ec=*w2_ec- (int)(*roll/(0.07415)); 
/* 
compute position ofthe wrist from the position ofthe gripper, 
this depends on the pitch,roll and yaw angles 
*/ 
r_xy=177 * cos(rads(*pitch)); 
x_wrist=*x_coord - (r_xy * sin(rads(*yaw))); 
y_wrist=*y_coord - (r_xy * cos(rads(*yaw))); 
z_wrist=*z_coord + (177 * sin(rads(*pitch))); 

/* 
note default configuration is LH 
• / 

flag=0; 
*z_ec=(int)((z_wrist-z_orig)/0.2667); 
if ((*z_ec > 0) II (*z_ec < -3554)) 

flag=l; 
radius=sqrt((x_wrist*x_wrist)+(y_wrist*y_wrist)); 
if(radius>507) 

print_to_screen("ERROR attempt to place wrist outside the limits! radius=%f\n",radius); 
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print_to_screen("will jump out of program"); 
} 

else 
{ 
opp=sqrt((arm_l*arm_l)-((radius/2)*(radius/2))); 
ifl(radius< 0.0001) 

theta=90; 
else 

theta=atan(opp*2/radius)*360.0/(2*pi); 

*s_ec= (int)(theta/0.03422); 
*e_ec= (int)((-theta/0.06844)*2); 
if ((y_wrist < 0.0001) && (x_wrist > 0)) 

phi=90; 
else if ((y_wrist < 0.0001) && (x_wrist <= 0)) 

phi=-90; 
else 

phi=atan(x_wrist/y_wrist)*360/(pi *2); 

print_to_screen( "phi= %f \n",phi); 
•s_ec=*s_ec- (int)(phi/0.03422); 

/* 
compute required yaw angle w.r.t position determined by 
the angle ofthe arm with the y axis 
*/ 
*wy_ec=- (int)((*yaw - phi)/0.10267); 

/* 
if Umits exceeded, try RH config 
*/ 
if((*s_ec < -2630) || (*s_ec > 2630) || (*e_ec < -2630) || (*e_ec > 2206)) 

{ 
*s_ec=- (int)(theta/0.0342); 
•e_ec=- (int)((-theta/0.06844)*2); 
*s_ec=*s_ec- (int)(phi/0.03422); 
}; 

ifi[(*s_ec < -2630) || (*s_ec > 2630) || (*e_ec < -2630) || (*e_ec > 2206)) flag=l; 
i f ( f l a g = l ) 

{ 
print_to_screen("WARNING- arm will exceed limits if you continue \n"); 
print_to_screen("z_ec=%d, s_ec=%d ,e_ec=%d \n",*z_ec,*s_ec, *e_ec); 
print_to_screen("hit <cr> to continue\n"); 

} 

} 

retum 0; 
} 
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Appendix C Development of a Feature Tracking Strategy 

C 1.0 Introduction 

This appendix builds on the feature fracking analysis commenced in Chapter 5, developmg the 
methodology and sfrategies for continuous featuring trackmg while at the same time maintaining 
a manageable sized feature-map. The objective is to maximise the capabilities ofthe TRC stereo 
head to make measurements, and provide navigational information. 

Davison [Dav98] develops a means of maintaimng a large map of landmark features witiiout the 
computational burden of having to update the fiill covariance matrices following a measurement. 
Moreover the solution permits continuous trackmg without compromising the integrity of the 
filter, and during motion, requires only those parts of the filter that are needed for the current 
tracking task to be updated. 

Davison's derivations are adopted, making the necessary modifications to accommodate the 
differences in MROLR's control architecture and stereo head outlined in Section 4,2. Building on 
the expressions (equations 5.1 through 5.52) developed in Chapter 5, the methodology that 
necessitates only those parts of the state vector and covariance matrix which are directly 
involved in the tracking process at that time to be updated is outlined. These are the estimated 
states of the sensor and observed i* feature, x,, and y, respectively, and the covariances 

Pxx'^xy/' and I'yy • • Recall that "xy is the covariance matrix between the estimated mobile 

robot state x̂ , and feature y,.. By storing a small amount of information at each transition step, 
the state and covariances can be updated in a generic way at the completion of each tracking 
motion. 

To emphasis the equations developed in Chapter 5 are bemg extended, the same numbering 
sequence is used. 

For MROLR tiie system state transition fimction f (Equation 5.53) comprises of fimction fy 
which models the head sensor movements in terms of the mobile-base state Xy and the control 
vector u, and yi the scene-feature states. 

The system analysis can be simplified by imposing the following restrictions: 

• during the platform's motion the position of the scene-features (relative to the world 
coordinate frame) do not change, and consequently yi remains constant during a state 
transition, and 

• a scene-feature's measurement depends only the current states ofthe sensor and the feature 
undergoing measurement (equation 5.54). 
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With the above restrictions the state fransition has the form 

'^fv(Xv.U)^ 

U^) = 
y 2 

5.53 

and a measurement has the form 

m(x) = mi(xy,yi) 5.54 

C 5.5.9 System State Prediction 

The prediction of the state following a motion and the correspondmg covariance is readily 
written down from consideration of equations 5.32 and 5.33. In the following the "k" time-step 
notation will be omitted. 

r ^ 

f/xv,u; 

new y. 
y2 

5.55 

new 

V /Xy ^ i[y2 

* ylx ' ' ( ^v A y 

p.2.vrfj; 

- y l y l 

-ylyX 

•yXyl 

•ylyl 5.56 

C 5.5.10 Filter Update 

Following measurement Zi of scene-feature i and recalling tiiat measurement vector mi is a 
fimction of Xy and yi only, the following equations may be derived: 

= (vrm,A, 0 -

vrm,;. ' ^ y / •J 

0 vrm,;^, •••) 

5.57 
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PVrmj[ = 

XX ' xyX xy2 

yXx ' - y X y X ^ y X y 2 

* p p 
y2x ' y2yl '^y2y2 

T \ V(mJ 
0 

0 

^(^m-A' 

or 

mm,)i = yi" 

- y 2 X 

fy / 

vrmj[„ + yix/ 

P 
y2y/ 

Wm,;,̂ . 5.58 

And the innovation covariance S is: 

S=Vrm,APVrm,;f-HR 

=vrm,A^p,,vrm,A'; +vrm,4P,,,vrm,;; +vrm,A^p,̂ ,.vrm,;;; 
+vrm,^p„,.vrm,;;:+R 

5.59 

Recall that in equation 5.59 R is the covariance matrix ofthe measurement noise. 

From equation 5.27 the Kalman gain W is: 

rp ^ 
XX 

W = ¥V(m)^S-' = yix 

? 
vrm,;[s-' + 

p ^ 
xy/ 

? 
y2y/ 

r cf-i Wm,j;s 

5.60 

The WSW^ required to update P following a measurement is: 
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wsw'=(Tvrm;[s •')S(TVfm;[s-')^ =pvfm;/s -'ss-' 'vrm;,p' 

=pvrm;[s-'^vfm;p^ 

Substitutmg for ¥W(m)l from equation 5.58 gives equation 5.62. 

5.61 

In equation 5.62 recall S is symmetric S = S -1 c-T 

Further details on updating components ofthe Estimated State Vector and Covariance Matrix are 
given below. The derivations assume that the feature observed in the measurement stage has 
label i, and there are also two unobserved features j and k. 

WSW^ = 

• XX 

> 
yjx 

•y2' ' 

Vrm,.A^ S-'Vrm,A^ (P,, P,, , V •••) 

+ 

• XX 

3 

y,x 

' y 2 X 

V '• J 

vrm,;j^s-'vrm,;,,.(P,,., p,,„ p,,,, •••; 

-xy, 

-I-
> 
' y2y/ 

V • y 

vrm,;;;.s-vrm,A^(p,, p,,, p.̂ , •••; 

+ 

^p ^ 
xy/ 

Py,y,-

P 
y2y/ 

V • y 

vrm,;;;.s-'vrm,;,,.(p,,., p,,,, p ,̂,, •••; 
5.62 
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Commencing with the Estimated Sensor State. 

The Prediction is: 

and Update 

Xvrnewj =Xv + P„Vrmj ;^S- 'v - i -P ,y^Vrmj ; :S- 'v 5.64 

The Observed Feature State Prediction is: 

y i (new) ~ y i 5. 65 

Update 

y^new) = y ,• + Py,x V(̂ m, ̂ ^ 8"^ + P̂^̂^ V^m, j ^ S"'V 5. 66 

For the Unobserved Feature State, the Prediction is: 

yj(new) ~ Vj 5. 67 

While the Update: 

yj(ne.) =yj+Vyj.V(m,)lS-'v + F^^^y(mj;S-'v 5.68 

Next the covariance matrix P will be considered. This matrix is partitioned with covariance 
components comprising: (a) the covariance between the sensor state and itself, (b) the sensor 
state and the observed feature state, (c) the observed feature state and itself, (d) the sensor state 
and the unobserved feature state, (e) the observed feature state and an unobserved feature state, 
and (f) two unobserved feature states. 

Because of the considerable size of matrix P it is simpler to define component sub matrices as 
follows: 

A=Vrm,;[^S-'Vrm,;,^ 5.69 

B = W(m,)iyW(m,)^^ 5.70 

C = Vrm,;;^S-'Vrm,A^ 5.71 

D = Vrm,;;^S-'Vrm,;,,. 5.72 
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Now for each ofthe partitoned covariance states; 

C 5.5.11 Sensor State and Itself 

Prediction 

^.Unew) =Vrfv>>xvPxxVrfy;[^ + Q 5.73 

Update 

p = P - / T * A P - » - P R P - i - P r P - i - P D P ) <> Id 
*• x%(new) * XX \ * x x ' ' ^ * x x ' -̂  x x * ' * y,x ' * x y, ^ * xx ^ x y , * y , x / j . / t 

C 5.5.12 Sensor State and Observed Feature State 

Prediction 

"xy/«ew; ~ ^ U V ) X V "xy, 5. 75 

Update 

Pxy,„e.; = Pxy,-rPxxA P.y,, + P. .B P,,.,,. + P,,,. C P,,,. + P, ,,.D F^^J 5.76 

C 5.5.13 Observed Feature State and Itself 

Prediction 
P = P 

yiyitnew) -^yjy,- 5.77 

Update 

P„/ .~ ; = P„„-rP,„AP„, +P,,>BP„„ +P̂ _̂ ^ C P , , +P,„ D P , , J 5.78 

C 5.5.14 Sensor State and an Unobserved Feature State 

Prediction 
p _/f i p 5.79 

xyj(new) I * v /x v xy y 

Update 

P„X..« = P « / ^ . . A P > , , +P.xBP,„^ +P . ,CP ,^ , +P . , ^DP,„^ j 5.80 
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C 5.5.15 Observed Feature State and an Unobserved Feature State 

Prediction 

P = P 
yiy/new) * y, y^ 

5.81 

Update 

Py/y/-^ = Py/y,-^y/xAPxy, +Py,xBP,,,, +Py/y,CP,^, +Py,yDP^,,^^; 
5.82 

C 5.5.16 And finally Two Unobserved Feature States 

Prediction 

P = P 
yjyk(new) * yyyt 5.83 

Update 
p = P v , V . - r P y x A P , y , + P y , B P 

yjvk ^ y y * y * y /x y / y * 

+ Py y C P,y^ + P y y D P y y J 
yj'i x y * y ^ y j y / y * ^ 

5.84 

Equation 5.84 also applies for determination of the covariance between an unobserved feature 
state and itself (ie for j = k) 

C5.6 Multiple Steps 

The development of the above equations permits the efficient filtering for the specific case of 
tracking a single feature over multiple incremental steps. Assume for the moment tiiat the robot 
is at the start position and is able to observe feature i: 

i(0) = y,(o) 

V •• J 

.P(o) = 

Pxx(0) Pxy,(0) Pxy,(0) 

Py.x(0) Py,y.{0) Py.y,(0) 

Py2x(0) Py^y.Co) ^yiyM 
5.85 

During tiiese multiple steps while the single feature i is being tracked, equations 5.63 to 5.66 and 
5.73 to 5.78 could to be used to update tiie state vector and covariance matrix. However by 
storing a small amoimt of uiformation at each filter step it is possible to reduce the computations 
to that of only modifying 
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X . y/' "xx ' "xy,' ''"'̂  "y,y, directly. Other parts need to be updated only at the completion of 
the single feature fracking in a systematic and generic manner. 

To outline the process first consider: 

From examination of equations 5.79 to 5.82 it is evident that they may be expressed in the form 

P ,̂ = E T P . , / O ; + F ^ P , , , / O J 5.86 

For a single measurement update, using Equations 5.80 and 5.82, 

P.,,(.») = p.,, -[P„A+P.„,CjP.,^ -1P„B+P. , DJP,,,^ 5.88 

P,.,M=I'y,y; -iP„xA + P,„CjP„, -[P,,B + P„, DJP,,,̂ , 5.89 

To obtain a form similar to equations 5.86 and 5.87 matrices E, F, G and H are defmed as: 

E=I-[P,,A-f-P,,,.Cj 5.90 

F=-[P„B-hP,,_.Dj 5.91 

G=I-[Py,xB+Py,yDj 5.92 

H=-[Py,.xA + Py,Cj 

Equations 5.88 and 5.90 can now be written as: 

P r ^ = EP + FP 5.94 

P / ^ = GP + HP 5.95 
y/yy {new) ^ * y,yy ^ '^'^^ xyy 
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which is in the desired form. Coefficient matrices ET , F j , G r , Hj of equations 5.88 and 5.89 
for a measurement update become: 

ET(«ew) = E E T + F H T 5̂  96 

^^Tinew) = E F T + F G T 5, 97 

^T(new) = G G T -|- UFJ 5. 9g 

^T{new) = G H j + HE J 5. 99 

At a prediction (From equations 5.79 and 5.81) ET , FT become: 

ET(«ew)=Wy)xyET 5.100 

FT(„eu')=Wy)xyFT 5.101 

GT, HT remaining unchanged. 

Consider next Py ŷ  . To express the prediction and measurement updates for Py ŷ  (the 

covariance between the position estimate of two ofthe unobserved features) in the same form as 
the equations just derived, it can be deduced from equations 5.83 and 5.84 that: 

V = Py,„ ro;-tp,,/oMTP... ro;+p,,/o;B,p„. w 
+ P„„ WC,P„/0>P.,, (0)V,F,^JO)] 5.102 

For a single measurement update, re-expressing in the form of equation 5.84 gives, 

P = P — [ P AP -i-P BP 
yjyi/new) Syyt 1 Vj* m Vj* Vtyk 

+Py.y,CP,,^ +PyyyDPy,,, ] 

substitiiting for P.^., Py^ .̂, P,y^, and P̂ .̂y., 

V ( - ) = ̂ y . -Py,x(0)[E^AE, +E^BH, + H ^ C E , +H^DH, ]p ,y /0 ; 

-Py^,(0)[E^AF, -i-E^BG, +H^CF^ -HH^DG,]Py,y/0; 

5.103 



Appendix C Development of a Feature Tracking Strategy 184 

-Pyjy. (0)[FT AE, -fE^BH, + G ^ C E T +G^DH,]p,y^ (0) 

-Pyjy.WK'AE, +F,^BG, -hG^CF, +G^DG,]Py,y/0; 

5.104 

AT , BT , CT , and DT at a measurement update become: 

AxCnew) = AT + E^ A E T + E^BH, + H^CE, + H^DH, 5.105 

BT(new) = B T + Ej AFT + E^BG, + H ^ C F T + H^DG, 5.106 

CT(„ew) = C T + FT AET + F.;;BHT, + G^CE,. + G^DH,, 5.107 

DT(n.w)=DT +F.[AFT. -j-F^BG,. + G T C F T -J-G^DG,. 5.108 

hi a prediction, equation 5.83 shows Py .ŷ^ remains unchanged and therefore it is unnecessary to 

change AT , BT , CT and DT for a prediction 

Consider next yy. Proceeding as above the estimated state yy of an unobserved feature is: 

yy =yyro;+Py ./OjmiT +Py ,y,. rO>iT 5.109 

(with miT and niT yet to be defined), and for a measurement update: 

yy M = y y +Py ,̂V(m,.)̂ ^ S-V-hPŷ .y_.V(n̂ .)̂ ,. S-'v 5.110 

Substitutmg for Py,, and Pŷ ŷ  from equations 5.88 and 5.89, 

y,M =yy +Py.(0)(E^V(m,.)[^ -hH^V(m,.)JjS-'v 
yyxV/V-i v-z /x , . v--,,y,/ ĝ  j j j 

Py/y/(0)(FTV(m,.),, ^+G^V(m,.)JjS-'v 
y;y/ 

Thus in a measurement step: 

m»TM =m.T +(E5:vrm,;; +H^Vrm,.;y .̂ )s-'v 5.112 

n'T(„e.) = niT + (Fx'Vrm,;[^ + G^Vrm,;;^ )s->v 5.113 
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Reference to equation 5.67 shows that in a prediction step yy remains unchanged and tiierefore 
there is no need to alter miT and niT. 

To clarify and summarise the above procedures, consider the situation where tiie robot has 
mapped multiple features but is currentiy only making measurements of feature i. j and k are 
two unobserved features. The parts of tiie estunated state vector and covariance matrix tiiat are 
directly mvolved in the motion and measurement are continuously updated. The mformation 
needed to generically update the other sections can be convenientiy and efficientiy stored, so tiiat 
a single step, at the end ofthe motion, can bring them up to date. 

Prior to motion the estimated state vector and covariance of the system are designated by 
if 0 j and V(0) and the followmg matrices and vectors are mitialised to: 

AT = 0, B T = 0, C , = 0, DT = 0, E T = I, FT = 0, G T = I, H T = 0, miT = 0, UIT = 0 

Each of these store the generic update information referred to. The subscript T is used to signify 
"Total". Note AT ...HT are square matrices equal in size to yj while miT and UIT are column 
vectors ofthe same dimension. 

Prediction 

While the cameras are in motion, the components of the estimated state vector and covariance 
are updated as below: 

Xv(«ew)=fv(Xv'«) 5.114 

v./ \ = V 5.115 
•' i(new) J I 

P / ^=V(f ) P V/t / + Q 5-116 

P , . = V/T >) P 5.117 
xy((new) ' l * v / x v xy,-

P / ^ = P 5.118 

And stored matrices: 

EW ^ = V/T J E 5.119 

EW ^ = V/T ) F 5. 120 
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Measurement Update 

The following matrices and updates are calculated for measurement of feature i: 

A = vrm,;'s-'vrm,;^ XV 

B = vrm,;;s-'VK;y,. 

c=vrm,;;,s-'vrm,,A^ 

D = vrm,;;.s-'vrm,;y^ 

E = I-K.A + P,ŷ .cJ 

F = -[P„B-hP,y^.Dj 

G=I-[Py,xB + Py,yDj 

H=- P A+P C 
y,.x y .ŷ . _ 

.7- c -1 . Xyw =iy H-PxxV(m,)^, S-V+P,y V(m,);.S-'v 

Uew) = y.- + Py/.V(m,.)l S-'v + Py,.y V(m,);,. S" v 

Pxx(„ew) =Pxx - IPxx A P . + PxxBPy, + Pxy C P . + P.y, DPy , ) 

P x , W = P x y , - IPxxAP, . . -HPxxBPy^y.. +Pxy CPxy,. + Pxy DPy,.y,. ) 

Py,.y/W = Py..y/ - i P y , A P x y . + Py^BPy,,,. + Py,.y, CPxy,. + Py,.y, DPy,.y/J 

Stored matrices and vectors: 

-h(EiV(m,)^ ,+H;V(m,) ; j s -v 

5.121 

5.122 

5.123 

5.124 

5.125 

5.126 

5.127 

5.128 

5.129 

5.130 

5.131 

5.132 

5.133 

m>T(new) = " » ' T 
5.134 
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n>T(new) = niT+(FT''V(m,)^^-^G^V(m,);:_)s-'v 
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5.135 

BT(new) = B T + E ^ A F T + E ^ B G T + H ^ C F T + H ^ D G T 5.136 

CT(„ew) = C T + F T ' A E T + F T ' B H T + G ^ C E T + G ^ D H T 5.137 

I>T(new) = »T + FT AF , + FT^BGT + G ^ C F T + G ^ D G , 5.138 

ET(new) = E E T + F H T 5. 139 

PxCnew) = E F T + F G T 5. 140 

GT(new) = G G T + H F T 5. 141 

BT(new) - G H T + H E T 5. 142 

Note: 
(1) Theorder of calculating miT , niT and AT ... DT is important as the expressions make use 

of old values of ET .. . .HT 
(2) Similarly for equations 5.139 to 5.141, matrices on the right hand side of expressions use old 

versions of ET .... HT-

To accommodate these requirements carefiil storage of ET to HT is required. The benefits are that 
the computational expense in making updates to the stored matrices and vectors at prediction and 
measurement is constant, independent of the number of features in the map. To achieve this, 
parts of the total state vector and covariance matrix not related to the current update are not 
processed until later at the end of the motion. The information required for this later processing 
being stored in a generic way. 

Final Full Update 

Once the motion has been completed, the fiill estimated state vector can be readily brought up to 
date usmg the following equation. 

For each unobserved feature j : 

yy =yyro;+Py^/0;m,T +Py.y/0;mT 5.143 
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The update of tiie covariance between a pan of unobserved features j and k is: 

Pyyy. =Pyyy/0>>-lPyyxrOMTPxy/0; +P , . , ro ;BTPy, , /0 ; 

+Py,y,. ro;cTP,y, ro;+Py .y/o;DTPy,,, (V 

5.144 
To update the parts of the covariance matrix relatmg unobserved feature j to the sensor state and 
the unobserved feature state (equations 5.145 and 5.146): 

Pxyy=ETP,y/0;+FTPy_.y.ro; 5.145 

Py/yy=GTPy,yyrO;+HTP,y/0; 5.146 

Choice of Feature 

Following a feature measurement m, the iimovation covariance matrix S formed provides a 
measure of how much the actual measurement is expected to vary from that predicted in angular 
measurement coordinates the (a, e, y) (see equation 5.40). This knowledge can be used as the 
basis for deciding which feature to frack. The volume in (a, e, y) space of the ellipsoid 
represented by S at the iioa level can be calculated for each visible feature: eigenvalues ^i, X2, 

Xi, of S mean that the ellipsoid has axes of length n^^JA^, n^-f^i and n^^JJ^. If this volume is 

labelled Vs (equation 5.147), then its calculation for each of the features currently visible, 
provides a criterion for selection, based on the feature with the highest value. 

V.=-7r«^W,A3 5.147 

This criterion takes no account of the time the head would take to saccade to an altemative 
feature. For instance, if two features are widely apart (one in the front of the robot and the other 
at 90 degrees), then the tune for the head to moves to a position where it can commence the 
measurement of a new feature can be quite long (perhaps 1 second). This unpinges significantly 
on the total navigational time. An optunal strategy would incorporate a penalty for this saccading 
time into the choice-of -feature criterion. The Davison criterion adopted for this work does so, 
and is outlined below. 

The decision, as to whether to switch to a new feature or stay tracking the existing one, is made 
while the robot is moving. The choice is based on the predicted robot and map state that would 
exist m a short fiiture interval of tune if (a) the saccade and measure of tiie chosen feature was 
made or (b) fracking of the existing feature continued. The referred to "short fiiture interval of 
time", is tiie estimated time it would take to saccade to and measure any feature under 
consideration. 
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Formally the decision process is implemented according to: 

1. Ni, the number of measurements that would be lost while saccading to each of the visible 
featiires is calculated. To determme this, an estunate of head movement time, to correctiy move 
to and locate each featiu"e, is required. 

2. Ascertain the largest Ni (Nmax); this represents the largest number of measurements lost during 
the longest saccade. 

3. If an immediate saccade is to be made, estimate for each feature i the state that would exist 
after Nmax + 1 steps. 

4. Evaluate Vs(max) for each of the above estimated states and saccade to the feature with the 
lowest Vs(max), unless the Vs(max) ofthe feature being tracked is akeady the lowest. 
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