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Abstract

This work describes the development of a new type of "service robot" called "MROLR" capable
of searching for, locating (pose determining), recognizing, and retrieving 3D objects in an
indoor environment. Key related contributions include the development of 3D object-model
creation and editing facilities, and the application of a vision enhanced navigation algorithm.

MROLR comprises a mobile robot transporting a four degrees of freedom (DOF) stereo head,
equipped with two calibrated charge-coupled device (CCD) video cameras, and a docking robot
arm. The principal navigation mode utilises Simultaneous Localisation and Map-building
(SLAM) to update and maintain a map of the robot's location and multiple navigational-feature
positions as it steers towards specified coordinates. The algorithm is Kalman Filter based.
Navigation-features comprise either of known (previously stored) or newly acquired, visible
landmarks. During navigation, automatic navigation-feature selection and measurement is
performed and the results of measurements used to substantiate or correct odometry readings.

Objects to be retrieved from a scene have an associated (previously created and stored) object-
model. Object-models are created by the integration of a sequence of 3D models constructed
from stereo image pairs, each representative of the object in varying angular positions. The
model of an object sought is retrieved from a database and matched against scene-models until
recognition and pose is established. Scene-models are formed during the search while panning
the scene. Both object-models and scene-models comprise 3D straight line and conic segments.
Recognition is based on verifying the existence of mutual groups of 3D line and or conic edge
features in both the scene and model object. Where the object has sufficient distinctive features,
recognition is view independent and tolerant to both scale variations and occlusions. On finding
the object, a six DOF robot arm, attached to a caster platform, is manually docked with the
mobile robot. Using the object's pose transform the arm is able to grasp and place the object on
the mobile base. The arm is manually de-coupled from the mobile robot and the object
transported back to the home position.

While it would be possible to mount the head and arm on one mobile base, the intention here is
to ultimately have a light weight fast moving "scout robot" to seek and find using vision, and a
slower heavy-duty transport robot to lift and carry.

Finally a "3D Virtual Environment" for simulating MROLR, that could be useful for evaluating

alternative map-building strategies, object grasping points, as well as for demonstration and
educational purposes, has been implemented, although is not yet complete.

Key Words: 3D modeling, recognition, stereo vision, mobile robot navigation.
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List of Notation

Note the symbols listed here are in a logical rather than an alphabetical sequence

Camera, Head and Associated Symbols

Vz(t+4t), Vz(t+4t),
examples V(y)= Y , VW), =|Vx(t+4t), Vx(t+4t),

V (del) operator ™
Vo(t+4t), Ve(t+4i),
P 3D vector point comprising coordinate components Py,Py,P,
pY 3D vector point in frame W (world ref. frame)
pF 3D image vector point in camera frame F ( coordinates
(Xe» Yer ')
m'=p* 3D vector point in camera frame F
u,v 2D image coordinates in pixels
Uo, Vo 2D coordinates of image centre in pixels
(Xe, Yo, F) 3D coordinates of image point in camera frame
f camera effective focal length
ky, ky number of horizontal and vertical pixels/m respectively
C camera matrix
c' inverse camera of matrix
o head pan angle
YL, YR head left & right vergence angle
e head tilt angle
Co, CO head coordinate frame
L,R left & right frames respectively, also used for camera & head vergence
frames
G head tilt frame
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PL Pr

M;

XVi

head pan frame

3D scene point in right and left camera frames respectively
3D scene point in head frame

offset vector along respective vergence axis, between the intersections
with the tilt axis and camera optic axis

offset vector along respective optic axis between camera optic centre and
intersection with vergence axis

horizontal offset vector (along tilt axis) between pan and tilt axes
intersection, to respective vergence axis

vertical offset vector (along pan axis) between mobile base centre and
head frame origin

horizontal scalar distance between camera optic centres (i.€., inter-ocular
distance)

scalar horizontal offset distance (along tilt axis) between pan and tilt axes
intersection, to respective vergence axis

scalar offset distance along respective vergence axis, between the
intersections with the tilt axis and camera optic axis

scalar offset distance along respective optic axis between camera optic
centre and intersection with vergence axis

scalar vertical offset distance (along pan axis) between mobile base centre
and head frame origin

angle difference between m and my,ig

transform rotation matrix between frames C1 and CO
transform rotation matrix between frames C2 and C1
transform rotation matrix between frames L and C2
transform rotation matrix between frames R and C2
inverse (RR?)

ray vector (r; =atAb, r;=c+Ad )



[u]

vector point on ray
vectors in direction of ray
scale factor

unit vector

column vector

skew-symmetric matrix of u

Mobil Base, Landmark Features and Associated Symbols

Vi, V2

D, D1, D,
X, X(t)
z, 2(t)

,6(t)

Z(t+AY)

Z operator

8> 8y

An

centre vehicle velocity

arc radius of movement

linear driven wheel velocities

angular rotation (arc angle)

axial wheel offset distances from centre of base

mobile base x coordinate in world reference frame

mobile base z coordinate in world reference frame

mobile base orientation relative to world reference frame (x axis)

z(1)
X, =| x(?)

)

Xvii

robot's estimated new z coordinate position following a constant time step

increment At

Shi and Tomasi operator, Z = Y.

patch &y8x

horizontal, vertical gradients of image pixel intensities

n™ eigenvalue

2
8x &x8,
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[n o ap]

Xviii

normalised sum-of-squared-difference measure. Used for feature

_ _ 2
matching. N = l( > [g‘ — &1 _&o _g°} ). Nis zero for a perfect
n o,

patch o 0

match.

means and standard deviations of the intensity across the patches 0 and 1
respectively. n is the number of pixels in a patch

angular fixation error

standard homogeneous 4x4 transform relating the rotation and translation
of an object frame wrt Cy (the head) frame
the column vector elements of the homogeneous transform

T =[n o a p]: n is the normal vector, o is the orientation vector a the
approach vector p the translation vector.

Extended Kalman Filter and Associated Symbols

f

At

mi(XV)yi)
MGip

m, m(x)

X

state transition function: The state transition function is a function of x
and u

vehicle estimated position vector ( function of x, and u )

step time interval

measurement vector, z is used to designate an actual measurement (i.e.,
using the active stereo head )

m;, measurement vector of a scene-feature in head frame

scalar length of vector mg;

measurement vector of i scene-feature in world frame, transformed into
angular coordinates

emphasizing measurement vector mis a function of x, and y;

projection of m; onto xz plane macip = \/ (meu® + meie”

prediction of the measurement z, m(x) = mi(x,y;)

system state vector



X

X (k+1/k)

XX

Xyl

Yiyj

YiYi

R

Smai

Xix

estimate of system state vector

current estimation of system state vector (estimate of x at a time step k + 1
based on an estimate at time, step k and an observation (measurement)
made at time step

k + 1. At any given time, estimates of mobile-robot and scene-feature
locations (in the world reference coordinate frame) are stored in the system
state vector X

3(n+1)x3(n+1) covariance symmetric matrix, representing the uncertainty
in X. n =number of known features

3x3 covariance matrix of the estimated mobile robot state X, and itself.
This matrix is a partition of P

3x3 covariance matrix between the estimated mobile robot state X, and
feature y,. This matrix is a partition of P
3x3 covariance matrix between the estimated feature state ¥,and

feature y,. This matrix is a partition of P

3x3 covariance matrix between the estimated feature state y,and itself.

This matrix is a partition of P

noise, provides a means of allowing for random or unaccounted effects in
the dynamic model.

innovation, v is the difference between the actual measurement z and the
predicted measurement m

covariance matrix of the noise This matrix represents the covariance of the
noise in the measurement

scalar noise variance measurement (Aaz, Aé? or Ayz )

covariance matrix of the noise transformed into cartesian measurement
space

innovation covariance, represents the uncertainty in a measurement (i.e.,
the amount by which an actual measurement differs from its predicted

value).

innovation covariance of measurement associated with mg;



Q

v ’ a’Vz

UL

Vs

Kalman gain

mobile-robots position

mobile-robots position estimate

3D location of the ith feature

estimated 3D location of the i feature

covariance matrix , expressing the uncertainty in f,

covariance matrix of control vector u, and ¢ o, are the

v ’
standard deviation estimates of the errors in the velocity control
inputs v; and v,

; ) ) u,
covariance matrix Of 1mage vector UL =
v

scalar space volume measure

Object Modelling, Recognition and Associated Symbols

(Is livr, €, M)

5;

ti

XX

quadruple representing 3D line segment i, that is the two end points I; and

li+1, the direction vector between them e; ,and centroid of the line, its

midpoint m;

orientation difference between two line segments
vector distance between two line segments

scalar distance between two line segments h = hd

the unit vector normal between two line segments

scalar distance from the point of minimum distance between two line
segments (1, 1+1), to the start of the segment i, measured parallel to

segment 1.

scalar distance from the point of minimum distance between two line
segments (i, i+1), to the end of the segment i, measured parallel to

segment 1.



di

Bi

mi+'

scalar distance from the point of minimum distance between two line
segments (1, 1+1), to the centre of the segment i, measured parallel to
segment 1.

permissible scalar error values

m;+; vector modified by the addition of -h to make it coplanar with m;

permissible angular orientation error values



Chapter 1 About This Thesis 1

Chapter 1 About This Thesis
1.0 Introduction

The work presented in this thesis comprises the development and analysis of a mobile robotic
system capable of visually locating specific 3D objects in an indoor environment and
transporting them to a given location. Its classification would fit into the category of “service
robots" and it has been named "MROLR", A Mobile Robotic Object Locator and Retriever.

1.1 Thesis Objectives

The main objectives of this thesis are to:

e gain a theoretical understanding of the problems relating to visually locating, identifying, and
physically retrieving specified 3D objects in a known indoor environment, utilising mobile
robotic platforms

o develop feasible solutions for the implementation of a working system

o evaluate implemented solutions

Consider the requirements of a robotic system that can be given instructions to fetch a specified
object in the current environment, at present confined to be indoors. If the object is visible this is
of course a relatively simple task for a human, but still a difficult problem for a robot. Practically
the problems involved can be identified as:

describing the target object to the robot

autonomously navigating in the environment (including avoiding obstacles)
visually being able to recognise the object

determining the object's pose (that is its position and orientation)

grasping the object

remaining both within financial and time constraints

The robotics/machine vision discipline is now relatively mature and a significant number of
authors have developed systems that can perform several of the above tasks, i.e. autonomous
navigation, object recognition and pose determination, and visually guided object grasping by a
robot arm. Many of the authors and systems are reviewed or mentioned in the following
chapters.

Putting together the desired system by building on the work of others, on the surface at least,
appears quite straightforward, merely a matter of integrating and supplementing successfully
proven concepts. Choosing from available learned publications nevertheless poses dilemmas.
Authors invariably claim improvements in one or more aspects of their work over previous
attempts by others, claims that often are difficult to substantiate. Furthermore, interpreting their
work, implementation, and finally reaching a satisfactory degree of operation, can prove
difficult. By and large the above steps constitute a substantial part of this work.
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Acknowledgement of the contributions made by others to this work is given in the various
chapters where they occur.

The incentive and motivation for developing "MROLR" and the contributions made by this work
together with an outline of the thesis structure is given in sections 1.3,1.4 and 1.5 respectively. A
brief survey of service robots is given below.

1.2 Service Robots

Historically robots were designed predominantly for use in factories for purposes such as
manufacturing and transportation, but advances in technology have widened their applications,
enabling them to automate many tasks in non-manufacturing sectors such as agriculture,
construction, health care, retailing and other services. Broadly these systems, including the one
being developed in this work, may be classified as "service robots", and fall into categories such
as:

Cleaning, Lawn mowing, and Housekeeping Robots
Entertaining Robots

Humanoid and Apprentice Robots
Rehabilitation Robots

Humanitarian Mine Disarming Robots

Medical Robots

Agricultural and Harvesting Robots

Sheep Shearing Robots

Surveillance Robots

Inspection Robots

Construction Robots

Automatic Refilling Robots

Fire Fighting and Rescue Robots

Robots in Food Industry

Tour Guides and Office Robots

Flying Robots

Space Exploration and Terrain Mapping Robots

The list of service robots, with ever improving abilities, is growing at an impressive rate.

1.3  Incentive and Motivation for Developing "MROLR"

As implied above, the catalogue of service robots is growing rapidly and it is anticipated that in
the near future autonomous systems, providing safe, reliable navigation, search, and object
recognition and retrieval abilities will join the list. The development of such a system was an
incentive for commencing this work and has led to the creation of MROLR. MROLR is a
navigating mobile robotic system capable of searching for, locating (pose determining),
recognising, and retrieving 3D objects in an indoor environment. The system comprises a mobile
robot transporting a 4 DOF stereo head, equipped with 2 calibrated charge couple device (CCD)
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video cameras, and a docking robot arm. The principal navigation mode incorporates
Simultaneous Localisation and Map-building (SLAM) that uses an Extended Kalman Filter
(EKF) to update and maintain a map of the robot's location and multiple navigational-feature
positions as it steers towards specified coordinates. Navigation-features comprise either of
known or newly acquired visible features. Known features are a priori stored while newly
obtained features are acquired while tracking. During navigation, automatic navigation-feature
selection and measurement is performed. The results of these measurements in combination with
odometry readings are used to obtain good robot and feature position estimates. Limited obstacle
detection and circumnavigation (avoidance) is incorporated.

Surveying of the scene for objects to be recognised occurs at specified locations termed waypoint
stations. At waypoints associated with object locations (i.e., tables laden with objects), the head’s
gaze is lowered and it sweeps through a pan of —20 to +20 degrees in search of the desired
object. At present (while panning for scene-objects) the tilt and vergence angles remain fixed
during this sweep. This ensures the cameras’ motion (and consequently the structure-from-
motion) is consistent with their calibration. It is proposed to vary the tilt and vergence angles in a
sequence of movements in the future for a variety of different calibrated camera motions.

The recognition system utilises a database of object-models from which sought objects are
selected and subsequently matched against scene-models. Database stored object-models are
individually constructed at a prior time. Object-model creation comprises the integration of a
sequence of 3D models constructed from stereo image pairs, each representative of the object in
varying angular positions. The object-model of an object of interest to be located in a scene is
retrieved from a database and matched against scene-models until recognition and pose is
established. Scene-models, unlike object-models are formed during searching, while panning the
scene. Both object-models and scene-models comprise 3D straight line and conic segments.
Recognition is based on verifying the existence of mutual groups of 3D line and or conic edge
features in both the scene and model object. Where the object has sufficient distinctive features,
recognition is view independent and tolerant to both scale variations and occlusions. On finding
the object, a 6 DOF robot arm attached to a caster platform is manually docked with the mobile
robot. Using the object's pose transform the arm is able to grasp and place the object on the
mobile base. The arm is manually de-coupled from the mobile robot and the object transported
back to the home position. In a future version of the MROLR, the arm will be mounted on a
mobile transport robot, that will be signalled via a wireless modem, and on receiving this
command navigate to and dock with the active vision base. The construction of this "transport
robot" (at the time of this writing) is near completion (Figs 6.7.2). While it would be possible to
mount the head and arm on one mobile base, the intention here is to ultimately have a light
weight fast moving "scout robot", and a slower heavy-duty "transport robot". The scout would
map and model the environment, and seek and find target objects using vision. When a target
object was located, then its positional information and path directions would be relayed to the
transport robot which would proceed with the task of object retrieval and transport.

Motivation for this work also stems from the desire to ultimately develop a system capable of
rapid and reliable retrieval of objects in both domestic and industrial environments. It is believed
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that potential applications for such an improved system range from simple domestic and
industrial “robotic aids”, to “assistants” for the severely physically disabled or visually impaired.

A prolific collection of literature exists on each of the fields of 3D object recognition, pose
determination, mobile robot navigation, and robot arm kinematics relating to object grasping.
Each of these comprises significant areas of research and development for the machine vision
and robotics fraternity. The merging of both related and unrelated scientific endeavors provide a
wealth of design building blocks and opportunities for creative mechatronic engineering
applications. The emergence of service robots is such an example.

1.4 Contributions of this thesis:

The major contribution made by this thesis is in the design and implementation of "MROLR", a
new type of “service robot”, comprising a navigating mobile robotic platform system with active
vision and retrieval abilities.

Related contributions stem from:

e Development of a 3D object-model creating facility (design and construction of a motor
driven turntable, and related software).

e Development of a model editor to facilitate the manual removal and/or addition of 3D
segments in formed models.

o Extension and modification of existing recognition algorithms to facilitate automated
recognition while searching and scanning the scene.

¢ Extension and modification of existing active vision based navigation software to work with
the designed mobile base. This included the writing of an obstacle detection and avoidance
module.

¢ Development of kinematic solutions from object pose information, to enable the robot arm to
grasp and retrieve the desired object.

¢ Preliminary design and construction of a "transport" robot base with mounted robot arm, and
related software.

¢ Preliminary implementation of a "3D Virtual Environment" for simulating MROLR, that
could be useful for evaluating alternative map-building strategies, object grasping points, as
well as for demonstration and educational purposes.

As is common with many engineering projects, a substantial amount of ancillary software and
electronic hardware is required and inevitably must be tailor designed and built to meet special
requirements. An example is the software to enable handshaking and the exchange of both video
and numerical data between the various interconnected PC platforms, and hardware devices,
comprising MROLR. These include the mobile base, active 4 DOF head, robot-arm, and frame-
grabber, and facilitated by the establishment of a local area network. Hardware examples include
electronic boards required to drive rotating or moving items such as the computer controlled
model creating facility, and “transport” mobile base.

Much of the work carried out in this project was greatly assisted by the generous co-operation
and advice given by colleagues acknowledged on page v, and throughout this thesis.
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1.5 The Structure of this Thesis

Chapter 2 commences with a review of historical developments and work related to this research.
It is primarily a synoptic review. The areas covered include service robots, 3D object-
recognition, pose determination, and mobile robots with metric maps.

Chapter 3 describes the system equipment comprising MROLR. Both hardware and software
requirements are examined. Specific details such as hardware circuits designed and built, and
software driver modules written, are given in Appendix B.

Chapter 4 provides detailed background information on mathematical notation and concepts used
throughout this thesis. A variety of models that form the preliminary analysis to following
chapters are introduced. Models included are for the camera, stereo head, and mobile base.
Algorithms and tools used for object and scene-modeling are also introduced.

Chapter 5 develops algorithms for autonomous navigation from an initial coordinate frame.
Navigational features facilitated through active stereo vision and odometry include simultaneous
map building and localisation, and limited obstacle avoidance. The algorithms are based on and
build upon those of Davison [Dav98], [Dav0l] and use an Extended Kalman Filter with
maintenance of full covariance knowledge between sets of map-features.

Chapter 6 comprises of four sections, the first outlines the 3D object-model producing facility
developed to provide an object-model data base of objects that MROLR could be requested to
locate and retrieve in the future. These objects would be searched for at designated stopover
points (waypoints) along navigational routes. The facility also includes a 3D object-model editor.

The second section outlines the development of the object recognition module that is responsible
for (a) matching requested target objects with objects in a scene. (b) Obtaining appropriate
transforms to graphically transport the object-model into the scene, after successful matches.

The third section establishes the transforms necessary to guide the robot arm to grasp and
retrieve the located object. Grasping locations are contained within the data provided for each
created object-model (i.e., handle of a cup, etc.).

The Final section outlines the implementation of a "3D Virtual Environment" for simulating
MROLR.

Chapter 7

Specific tests performed and results obtained, are described in this chapter. It is considered that
these verify the methodology of this research. Tests include navigating to a variety of specified
waypoints and recognising and retrieving requested target objects. During navigation, self-
localisation map building and acquisition and storing of navigational features (to become
"known-feature" aids for future use) are also performed.

Chapter 8, this final chapter concludes by summarizing the main contributions of this work and
outlines envisaged future directions and extensions.
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Appendix A describes some early approaches and methods evaluated, but ultimately discarded
by the author in the process of obtaining an effective recognition module for MROLR.

Appendix B

A substantial amount of ancillary software and electronic hardware was designed and developed
for MROLR. Appendix B contains additional specific details relating to these designs. This is
included for clarification and extension of information provided in various chapters.

Appendix C continues with the algorithmic development for continuous tracking of multiple
features using active vision commenced in Chapter 5. It concludes with the "V," criterion that
provides direction as to which navigational landmark feature is optimal to next track.

Finally a comprehensive Bibliography is provided. This is a collection of references maintained
and used by the author.

1.6 Conclusion

This introductory chapter has detailed the objectives, incentive and motivation, and contributions
of this work. It concludes with a summary description of the content of each chapter that follows.



Chapter 2 Historical Developments and Related Work- A Synoptic Review 7

Chapter 2 Historical Developments and Related Work - A Synoptic
Review

2.0 Introduction

Modern robot designs and applications extend well beyond the requirements of the
manufacturing sector. Service robots are being utilised as aids and for tasks hither too
unimaginable by most. MROLR is classified as a "service robot", its object recognition and pose
determining modules are "model based", while navigation, a combination of landmark mapping
(for route planning and localisation) and odometry based. Significant progress and advances in
these fields have taken place over the past three decades, spurred undoubtedly by the quest for
machines with greater autonomy. A vast quantity of literature relating to these developments has
also emerged, with much of it now readily accessible via the Internet. A synoptic review of
associated historical developments and related work is given in the following sections of this
chapter.

Section reviews are organised as follows:

2.1 Service robots and applications

2.2 3D object recognition and pose determination

2.3 Robots utilising metric maps (several of these are service robots)
2.4 Mobile robots using vision sensors to aid navigation

2.1  Service Robots

2.1.1 Apprentice Robots

Moderate success has been achieved in getting robot apprentices to learn 3D motions and tasks
by visual observations (see for example Bentivegna et al [BA02], Atkeson and Schaal [AS97]).
Wingate and Stoica [WS96], [WS97] developed a fuzzy-neural robot arm controller, based on
the composition of triangular norms and co-norms (S-T norms). The system utilised 2 cameras to
enable the robot to view (a) the motion of the Master's arm (human arm, or robot teacher’s arm),
and (b) the motion of its own arm (Apprentice's arm). Two learning modes were developed. In
the first the robot apprentice looked at the Master's arm and its own alternately, and attempted on
each viewing to minimise position error variables. In the second mode, only the Master's arm is
watched. The robot being free to issue arm joint commands more or less at random, such that its
arm took up a variety of postures. For each position the Master attempts to place his arm in a
corresponding posture to that of the robot. When arm positions are sufficiently similar, the robot
is advised, and a process of validation takes place. Association between images of the Master's
arm, and joint motor commands that the apprentice robot gives to position its own arm (to arrive
at similar postures) are learnt, and subsequently used as part of the apprentice robot's command
set.
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Apprentice robot learming (a) from human Master's arm and (b) A Master (pre-programmed) robot.

Fig 2.1.1.1 Apprentice robot

As discussed in Chapter 8, under "Future Directions and Work", it is intended to revisit this work
with a view to adding gesture recognition capabilities to MROLR.

2.1.2 Template-Based Recognition of Pose and Motion Gestures On a Mobile Robot

Waldherr et al [WTRM98] produced a vision-based interface that has been designed to instruct a
mobile robot through both pose and motion gestures. An adaptive dual-colour algorithm enables
the robot to track and, if required, follow a person around at speeds of up to one foot per second
while avoiding collisions with obstacles. This tracking algorithm quickly adapts to different
lighting conditions. Gestures are recognised by a real-time template-matching algorithm. This
algorithm works in two phases, one that recognises static arm poses, and another that recognises
gestures (pose and motion). In the first phase, the algorithm computes the correlation of the
image with a pre-recorded set of example poses (called: pose templates). In the second phase, the
results of the first phase are temporally matched to previously recorded examples of gestures
(called: gesture templates), using the Viterbi algorithm Rabiner & Juang [RJ86]. The gesture
template matcher can recognise both pose and motion gestures. The result is a stream of
probability distribution over the set of all gestures, which is then thresholded and passed on to
the robot's high-level controller. This approach has been integrated into their existing robot
navigation and control software, where it enables human operators to:
e provide direct motion commands (e.g., stopping)
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» guide the robot to places which it can memorise
* point to objects (e.g., rubbish on the floor)

* initiate clean-up tasks, where the robot searches for rubbish, picks it up, and delivers it to
the nearest wastebasket.

2.1.3 LOLA

LOLA: Visual Object Detection and Retrieval, is a project being undertaken at the Centre for
Robotics and Intelligent Machines NC State University, USA, and commenced in 1995
[LOLA9S5]. The project is aimed at the producing an indoor mobile robot with a high degree of
autonomy and the ability to locate and retrieve objects. Features include multi-visual integration
and data fusion, navigation, and real-time computer architectures.

The recognition and detection algorithm utilises object features of colour and shape obtained
from images generated from an onboard main camera. Processing is as follows: once correct
colour is detected, a second camera is used to determine the shape of the object by analysing the
distortion of a projected grid emitted by an infrared laser. The robot is equipped with a four
degree of freedom arm and gripper, and if the colour and shape match required parameters, the
robot will pick up the object and deliver it to a predetermined location.

The hardware platform consists of a Nomad 200 robot-base and turret, from Nomadic Inc., and
an Intel 80486 processor.

The objectives of the LOLA project are in many respects similar to those aspired to by the work
of this thesis. Significant differences however exist in the navigation and recognition paradigms
used.

2.1.4 Jumbo Jet Washing Robots-SKYWASH

In a joint venture with AEG and Dornier, the Fraunhofer Institute IPA, the Putzmeister AG in
Aichtal, Germany have developed an aircraft cleaning manipulator titled "SKYWASH". Two
SKYWASH robots working cooperatively clean Boeing 747-400 jumbo jets, in approximately
3.5 hours, instead of 9 hours for normal manual washing. Huge cleaning brushes travel a distance
of approximately 3.8 kilometres and a surface of around 2,400 m?, about 85% of the entire
plane’s surface area, including the exterior of its engines. The main vehicle is a reinforced
chassis made by Mercedes Benz and is equipped with a 380 horsepower diesel engine. Four
supporting legs and a manipulator arm of 33 meters in length and 22 tons in weight are mounted
on the chassis. The arm has five degrees of freedom (DOF) excluding the attached revolving
brush. All the subsystems required for its operation are transported on board including the main
computer which is designed as an interactive man-machine interface for effective
communications with the operator, sensors, and washing fluid controls. A compact disc read-
only memory (CD-R), contains aircraft-specific geometrical data. A 3D camera accurately
positions the mobile robot as it travels around the aircraft. The purchase price is around 5 billion
German Marks. It is claimed this is amortised within a few years.
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2.1.5 NOMAD

The planet rover "NOMAD" (a NASA project of 1997) was developed by CMU, its function to
explore the landscape to test new ways of communication and control technologies. Weighing
550 kg, it was supplied with a 4-wheel drive enabling it to turn on the spot, and fitted with a
chassis that could alter its tracks and wheel base to adjust to any kind of terrain.
Visual transfer was enabled with an innovative "panospheric camera" supplying high quality
pictures at an extremely wide angle. Distorted images are corrected with specially developed
software modules. Exact locating and positioning was carried out using a DGPS system
(Differential Global Positioning System) which determined the position of the Nomad as
accurately as 20 cm from its actual position in space. Sensed obstacles were recorded and plotted
on a digital map. Travelling speed was limited to 0.2 meters per second. The rover completed its
first mission in 1997 in Chile.

2.1.6 RHINO the tour guide robot

The Artificial Intelligence group at the Institute for Information Technology III, at Bonn
University developed Rhino, an autonomously navigating mobile robot capable of interacting
with people and performing duties. RHINO is based on the mobile platform B21, (US
manufacturer Real World Interface in Jaffrey, NH). It is equipped with 56 infrared sensors
reacting to touch. Two 2-D laser scanners and 24 ultrasound sensors, and a stereo colour camera
system, provides measurements to generate maps of the surroundings. It is able to explore and
map its surroundings. Path planning is based on acquired maps. In 1997, Rhino guided some
2,000 visitors around an exhibition held in the German Museum of Bonn.

2.1.7 HELPMATE

A landmark service robot is "HELPMATE". While HELPMATE has been deployed at numerous
hospitals throughout the world (King and Weinman [KW90]), it does not interact with people
other than by avoiding them. HELPMATE finds its way by using a map of the facility that is
stored in its memory. The map is created using AutoCad and contains information about halls,
elevators, doors, and stations and is usually limited, in definition, to the areas where the robot
will travel. The robot uses this map to determine the exact route that is required to navigate from
station to station.

A number of ultrasonic transducers and a camera based vision system help the robot to detect
obstacles. Using a spread spectrum radio link, HELPMATE controls elevators and door openers,
but it is also possible to use this link for a remote control of the robot.

Typical applications for the robot are:
e pickup and delivery of interoffice mail, medical records and x-ray images
e lab sample retrieval
e pharmaceutical delivery
e delivery of food plates and sterile supplies
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2.1.8 JI1JO-2 Mobile Robot for Office Services

JUO-2 is an office robot currently being developed by at the Electro-technical Laboratory
Tsukba, Japan (Matsui et al [MAFMAKHO99]). Its purpose is to provide office services, such
as answering queries about people's location, route guidance, and delivery tasks. Particular
objectives of the project include learning abilities, face recognition, and natural spoken
conversation with the office dwellers.

www.etl.go.jp/~7440/
Fig 2.1.8.1. 1 JIJO-2 mobile robot for office services

2.2 3D Object Recognition and Pose Determination

Numerous authors have carried out detailed reviews of the host of different recognition
techniques that exist (e.g. Binford [Bin82]. Besl and Jain [BJ85], Grimson, [Gri90a ], Jain and
Flynn [JF93 ], Reiss [Rei93], Weiss [Wei93], Andersson et al [ANE93], Arman and Aggarwal
[AA93], Koschan [Ko0s93], Pope [Pop94], Rothwell [Rot96], Ullman [Ul196], Forsyth and
Ponce [FP02]). In light of these, only a selection of model-based recognition systems are
reviewed in the section below. In the subsequent sections, a variety of existing methods of object
modeling, recognition, pose determination, and hypothesis verification are described. Some of
the descriptions below are summaries of sections of the references mentioned above.

2.2.1 3D Recognition Systems.

Perhaps the first model based recognition system was produced by Roberts [Rob66]. The system
used line segments and corners to recognise polyhedral objects and was based on a prediction
and verification strategy. A follow up system was later produced, Guzman [Guz79]. In the
1970’s interest focused on feature based techniques as in the prominent work of Waltz [Wal72].
In 1981 Brooks [Bro82] developed the ACRONYM system, which is regarded a landmark in
model based vision. Using generalised cylinders as basic primitives for the different parts of the
object models, a variety of objects (including articulated objects) could be modeled and
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identified. Invariant and semi invariants from object models were calculated and matched to edge
structures, ribbons and ellipses, in 2D images. Geometric reasoning and constraint manipulation
were used to identify and position objects. Examples of objects recognised were aeroplanes (in
an airfield) and engine assemblies. Limitations of ACRONYM were that time overheads were
large and also that recognition of objects, such as aeroplanes, approximated a two-dimensional
task.

SCERPO constructed by Lowe [Low87] used 2D line segments for the recognition of 3D
objects. Perceptual organization was used to initially group lines according to proximity,
parallelism and colinearity. Ultimately these grouped lines were matched to similar structures.
The implementation used 3D models and 2D images. In the 3DPO system by Bolles et al.
[BHH84] range data was used, from which edges are extracted. These can be used to extract
ellipses for example. The object models used were created using an extended version of a non-
commercial Computer Aided Design (CAD) system. Conveniently making it possible to use the
system in connection with different available CAD modelers.

An edge-based system, which uses sparse visual data, titled TINA, was developed at Sheffield
Univ. [PPPMF88]. Primitives used for recognition are 3D line segments and ellipses. A feature
of this system is the possibility to match several 3D descriptions (views) of one scene to each
other. In principle, this facility could be used to produce 3D models by combining multiple view
matches. Faugeras and his co-workers [FH86], [Fau92], [MF92], [ZF92], [Fau93] also
demonstrated similar work.

Range data systems using surface information, have also been developed, for example
IMAGINE 1 [Fis89]. For this, 3D surfaces and boundary information are used. Objects
recognised include robot arm assemblies, rubbish cans etc. A feature of IMAGINE I is that both
articulated and occluded objects can be identified. A significant drawback however was that
segmentation of surfaces was carried out by hand.

An object recognition system not requiring the use of a stored model was developed by Fan et al
[FMNB88]. This system relies on a number of views of an object to be first matched, then at a
later time, an object may be recognised by matching it to these views.

Researchers have also considered CAD based computer vision. A system developed by Flynn
and Jain [FJ91] also based on range images and surfaces, and obtains model information
extracted from CAD models. This system unlike the 3DPO system utilises a commercial CAD
modeler.

A novel system was developed by Dickinson [Dic91] who describes objects using geons
(Biedman [Bie85]). By looking at the geons from different directions aspects are produced.
Unlike most systems described, direct metric information is not used for recognition, instead
statistics and graph structures consisting of 2D closed contours, obtained from the image aspect
geons objects, are utilised.

Another approach relying on view-direction, was developed Caparrelli [Cap99]. The system
builds 3D object models from 2D views are collected from a single camera. During training,
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images are pre-processed and object views represented in the system's memory using pairwise
geometric histograms (PGHs). Image boundaries are first polygonized enabling the geometrical
relationship between each pair of line segments to form a frequency-histogram that constitutes a
feature vector during matching. PGH registers the geometric relationship between a line segment
and each of the surrounding line segments, which lie within a circular region centred on the
reference line. It is claimed the characteristic makes the PGH technique a local shape descriptor
that works robustly in occluded and cluttered scenes.

2.2.2 Modeling

Most machine vision recognition systems rely on model representations of one form or another.
In this section various aspects of object modeling are examined; initially different types of
geometrical models are introduced, specific descriptions and details follow this.

2.2.2.1 Geometric Modeling

With the introduction of CAD came the development of a significant number of geometric
modelers. Systematic introductions to CAD modeling can be found in Requicha [Req80] and
Requicha and Voelcker [RV81], [RV83], who numerate factors such as: Domain, Completeness,
Uniqueness, Conciseness, Ease of creation, Efficacy for applications, as important
considerations in deciding on a particular modeling methodology. Unfortunately the principal
needs of CAD systems are not commensurate with those of machine vision recognition systems,
which essentially require that the models consist of primitives that can be identified from an
image and that such primitives are easy to extract from the model. Never-the-less partial CAD
model representations have been used effectively in various systems (see section 2.2.2.9).
Variations on different ways in which objects have been modeled for computer vision
applications are briefly presented below.

2.2.2.2 Wireframe

The Wire frame model is one of the simplest representations and is commonly used where the
primitives extracted from the images are edges or line segments. Early systems developed by
Roberts [Rob75] and Pollard et al [PPPMF88] used Wire frame representation.

2.2.2.3 Polygon Approximations

Many object surface boundaries can be described or approximated by polyhedrals, and for this
reason polyhedral model representation has been of significant interest in computer vision e.g.
Lowe [Low91] and Dhome et al [DRLR&9].

2.2.24 Generalized Cylinders

Generalized cylinders [Bin87] comprise of (2D) surfaces swept along a spine (axis) according to
a set of rules. Cubes, cones, cylinders, wedges etc. are some examples. Good representations of
many objects can be obtained by combining "generalised cylinders". For example, legs of a
human being can be modeled with two cylinders attached at the knee etc. Extensive use has been
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made of generalised cylinders. Perhaps the best known application was in the ACRONYM
system [Bro81].

Fig2.2,.2. 1 Generalized cylinders [Bin87]

2.2.2.5 Octrees

Like Quadtrees, which are areas decomposed into groups of four rectangular primitives, Octrees
recursively divide volumes into eight smaller cubes known as cells. Sub-division stops if any
one of the resulting cells is homogeneous, that is if the cell lies entirely inside or outside the
object. If on the other hand, the cell is heterogeneous, that is intersected by one or more of the
object's bounding surfaces, the cell is sub-divided further into eight sub-cells. The sub-division
process halts when all the leaf cells are homogeneous to some degree of accuracy (Carlbom et al
[CCV8S)).

5 & 7 8 Q@ 10 11 12

http://graphics.lcs.mit.edu/classes/6.837/F98/T ALecture/
Fig 2.2.2. 2 Octrees

One drawback in using Octrees to model 3D objects or scenes is that only an approximation can
be made due to the use of blocks. See example below.


http://graphics.lcs.mit.edu/classes/6.837/F98/TALecture/

Chapter 2 Historical Developments and Related Work- A Synoptic Review 15

http://graphics.lcs.mit.edu/classes/6.837/F98/T ALecture/
Fig 2.2.2. 3 Octrees block appearance

2.2,2.6 Superquadrics

Superquadrics, see e.g. Solina and Bjelogrlic [SB91] are generalizations of quadrics (Quadratics
take the form Ax* + By* + Cz* + Dxy + Eyz + Fzx + Gx + Hy + Jz + K = 0, and are the 3D
analogue of conics. Conics are 2 dimensional curves described by the general equation Ax* +
Bxy + Cy*+ Dx + Ey + F = 0).

The general form of a superquadric is: (Ax)" + (By)™ (Cz)" = K. By varying the choice of the
five parameters (A,B,C,K,n), a wide variety of object surfaces can be modeled. One potential
drawback of superquadrics representation is that sharp corners, planar surfaces etc, cannot be
represented exactly but will be slightly rounded. Superquadrics have been used by Pentland
[Pen87] ,Solina and Bjelogrlic [SB91] and Dickinson t [Dic91] and others.

http://www.okino.convslidshow/super3wi.htm

Fig 2.2.2. 4 Models produced from Superquads


http://graphics.lcs.mit.edU/classes/6.837/F98/TALecture/
http://www.okino.com/slidshow/suDer3wi.htm
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2.2.2.7 Geons

The modeling schemes above have all been of a quantitative nature. Biederman [Bie85] proposed
a qualitative description called geons (geometrical ions) that allows all objects to be segmented
into a maximum of 36 elements. Each element consists of a unique combination of the four
features edge (straight or curved), symmetry (rotational/reflective, reflective or asymmetric), size
variation (constant, expanding or expanding/contracting) and axis (straight or curved).

To achieve recognition, the scheme proposes a hierarchical set of 4 processing layers. In layers 1
and 2 data is decomposed into edges, component axes, oriented blobs, and vertices. In layer 3,
3D geon primitives, i.e. cones, cylinders and boxes are labelled. In layer 4 the structure is
extracted that specifies how the geon components inter-connect; for example, for a human figure,
the arm cylinder is attached near the top of the torso cylinder. (Hummel and Biederman [HB92].
Examples of geons and components formed by them are shown below:

(From: Pourang Irani & Colin Ware (2000))

Fig 2.2.2. 5 Example of Geons

2.2.2.8 Multiview Representations

The appearance of any 3D object is view direction dependent and can thus be represented by a
number of images taken from different directions. One recognition approach is to construct an
aspect graph, comprising nodes that represent a view in which identical features are visible.
Graph matching methods can then be used to match features in the image. A drawback of this
approach is that complex shaped objects may have very large and complicated aspect graphs. A
variation on the above method, especially for complex objects, is the use of a view sphere
comprising tesselated faces. Each face in the tesselation is used to represent an aspect, which is
then used for matching Flynn and Jain [FJ91b]. Aspects are useful both for matching when parts
of an object may be occluded and thus not visible, with applications to matching both to 2D
images and to 3D range data.
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2229 CAD

Considerable developmental efforts have gone into producing powerful CAD modeler packages
for the manufacturing and building industries. Many manufactured objects as a consequence
already have existing CAD produced models. Unfortunately, in general, CAD models are not
produced for computer vision recognition tasks and thus obtaining suitable data from the CAD
system directly is often quite difficult. From the literature there appears to be two different
approaches to using CAD information in computer vision. In the first, the output from the CAD
system is used to extract and calculate the information needed, while in the second modification
to the CAD system itself is performed to produce the required output information.

The work produced in Flynn and Jain [FJ91b] and Arman and Aggarwal [AA91] are examples of
the first approach, while that in Bolles et al. [BHH84] and Park and Mitchell [PM88] are
examples of the second. A current drawback in using CAD systems for computer vision is the
numerous formats that exist. One attempt to standardize has been in the use of the IGES (Initial
Graphics Exchange Specification) format, which many CAD modelers can produce. This format
was used both in [F]91b] and [AA91].

A complication in using IGES, is that output can be in several different forms for the same
object. For example GEOMOD, the modeler used in [FJ91b] can produce IGES outputs both in
"analytic form" and in NURBS (NonUniform Rational BSplines). Object features such as line
segments, circular arcs, parametric spline curves, composite curves, planes and surfaces of
revolution are often more easily matched using the "analytic form” output.

In more recently image understanding packages such as [VXLO01], and TargetJunior [TJ] have
been created which incorporate CAD like formats.

2.2.3 3D Object Recognition

The number of recognition techniques developed and described in the literature is quite vast, as
already alluded to above. The following is therefore by necessity limited to approaches that are
most relevant to the applications in this work.

For a robotic vision system involving remote object retrieval, recognition must be accompanied
by pose determination. To facilitate recognition, knowledge of how the objects may appear, plus
images of the scene possibly containing those objects will be required. Knowledge of objects
appearance is most often provided by way of "object models". Irrespective of the recognition
approach used, it must be able to cope with extraneous, spurious, missing and inaccurate data,
caused perhaps by poor segmentation, occlusion, image discretization, and inaccuracies in
camera modeling. By and large the process of recognition involves "hypothesis generation and
verification testing"
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2.2.3.1 Hypothesis Generation and Verification Testing

The generation of initial hypothesis involves identifying which features on a certain model,
matches that extracted scene features, or alternatively, to which object one or several extracted
scene features belong to. If the model database is large, an exhaustive search approach is
prohibitive, constrained searches are therefore required. Features having invariant properties
under perspective transformations can be used to constrain the search process. Nielsen [Nie85]
used a certain ratio of the areas of triangles that were unique for each object. Colors have also
been widely exploited (Koschan [ Kos93b]).

2.2.3.2 Use of Invariants

Features that are invariant under transformations, such as rigid motions, perspective projection,
and scaling have been widely used in recognition systems for some time. Systems utilizing both
3D object-models and 3D scene data can exploit invariants such as lengths, angles, surface areas,
and volumes to aid the matching process. Invariant features or nearly invariant features were
used in the ACRONYM system [Bro81] and also by Lowe [Low87] who used groupings of lines
based on colinearity, parallelism and proximity. Projective invariants have also attracted interest
particularly in work utilizing uncalibrated cameras. Rothwell et al. [RZFM91] use 4 invariants, 2
calculated from 5 coplanar lines, another from a conic and 2 lines lying in the same plane, and a
final invariant obtained from 2 conics. An elegance that stems from this work is that models can
be acquired from a single view. For recognition, hypotheses as to which object is in the scene are
formed by extracting lines and conics from the image, and these are used to establish groups of
invariants in an indexed hash table. In circumstances where groups of lines and conics
correspond to the same object, these are merged to form final hypotheses. A verification step is
then used to narrow down the list to the most plausible object.

2.2.3.3 Geometric Hashing

Geometric hashing was first introduced by Lamdan and Wolfson [LW88] and has similarities
with the Hough Transform. Grimson [Grim90a] claims that the method performs well with small
scale recognition problems (i.e., models with small number of features and scenes with limited
occlusion and clutter), but it tends to suffer from false positives when the problem size is
increased. Fundamental to geometric hashing as with most recognition methods, is the
assumption that the object can be represented by a number of features. Initially, it is required that
several extracted features be used to define object based local coordinate systems, invariant to
the transformations applied to the object. To explain further, consider as an example the image a
2D object. A two dimensional coordinate system is established as follows: Two convenient
points on the object are chosen to define the x-axis, and the distance between these points is set
to 1. The y-axis is taken as a perpendicular line through the centre of the two original basis
points chosen. The remaining points on the object are now referenced to this coordinate frame.
Essentially this procedure is repeated for each pair of points, i.e. all remaining point pairs on the
object are chosen as basis points, and for each such pair the coordinates of the points on the
object in each coordinate system used to build a hash table. This procedure is a preprocessing
step and need be carried out only once. For the recognition phase, pairs of points in the image
are chosen to define local coordinate systems and if a pair is chosen correctly, the coordinates of
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the points will, when hashed, point to an entry in the hash table. These points are then used to
vote for a certain model. A good match is evident when, a lot of points in the object vote for the
same object. A detailed example may be found in Dijck et al [DKH98]

2.2.3.4 Constrained Search

Assuming a database of objects represented by features, in theory it would be possible to try to
match every scene extracted feature to every model feature in every possible combination. The
number of match combinations can be expressed as an interpretation tree, but in general, if more
than a few features are to be matched, the resulting number of combinations will be prohibitively
large. The constrained search approach is to prune the interpretation tree significantly and
therefore the resulting combinations, by using relations among the matched features, or pairs of
matched features.

Typical constraints used :

o The length (area) of a data fragment must be smaller or equal to the length (area) of a
corresponding model fragment, up to some bounded measurement error.

e The angle between the normals to a pair of data fragments must differ from the angle
between the normals of the corresponding model fragments by no more that a bounded
measurement error.

o The range of distances between two data fragments must lie within the range of distances of
the corresponding model fragments, where the model range has been expanded to account for
measurement errors.

Grimson [Gri90b] has shown that if all data features are known to belong to the same object, the
degree of complexity of the constrained search is quadratic, whereas for the case that some
features do not belong to the model, the complexity may increase to exponential. Pollard et al
[PPPMF88] constrained the matching process searches by exploiting several pair-wise
relationships between 3D line segments obtained from stereo. While noting that from any pair of
matches, all six pose parameters could be calculated by restricting matching to only several
parameter related quantities, considerable pruning of the search time could be obtained.

2.2.3.5 Aspect graphs

Traditional features used in aspect graphs are lines and curves or surfaces. A cylinder for
example has three characteristic views or aspects, Fig 2.2.3.1.
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http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/OWENS/LECT13/node4.html

Fig 2.2.3. 1 Three characteristic views of a cylinder (Aspects)


http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/OWENS/LECT13/node4.html
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These characteristic views divide 3-space into a finite class of volumes, and each volume
represents a different aspect of the object. In essence these views define the aspect graph. The
aspect graph also comprises of nodes and arcs. Nodes are the volumes in space while the
associated arcs correspond to whether volumes are neighbours or not. The aspect graph of a
cylinder is given in figure Fig 2.2.3. 2.
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http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/OWENS/LECT13/node4.html

Fig 2.2.3. 2 Aspect graph of a cylinder

Moving from one aspect to another is called an event. This corresponds to moving along an arc
in the aspect graph. A drawback of the method of aspect graphs is that it is unwieldy for
complicated objects. For example, for an object such for Michaelangelo's "David" it has been
estimated that there are approximately 10° different aspects (Owens [Owe97]).

Various attempts have been made to reduce the search space (Eggert,et.al [EBDCG92]). An
interesting approach has been used by Lowe [Low91] in which a simple hidden line algorithm
eliminates most lines that can not be seen from certain viewing directions. For such cases aspects
are generated on line as opposed to pre-computation, which is the more common method and
quite time consuming.

2.2.4 Pose Determination

Determining the pose of an object for recognition based vision systems is important for a number
of reasons. If physical retrieval of the object by a robot arm is desired then pose information is
essential to direct grasping of the object. If pose can be calculated during the matching phase
(say from 2, 3D line matches), this can be used to constrain the search process considerably.

Methods used to calculate pose vary depending upon factors such as: type of recognition system
(i.e., matching 2D objects from 2D data, 3D objects from 2D data or 3D objects from 3D data),
the features used (i.e., points, lines, surfaces etc), and the imaging (i.e., range images, projective,
orthographic etc). For some recognition systems pose can be determined during the matching
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stage. One example of this is mentioned above, another is the case of aspect graph matching,
since each unique aspect corresponds to a unique view direction, position and scale is apparent.
More commonly however pose is calculated either analytically or iteratively from a number of
matched features. Solutions to pose determination have been given by authors Huttenlocher and
Ullman [HU88], Dhéme et al. [DRLR88], Lowe [Low85], [Low91], Faugeras and M. Hebert
[FH86]. A number of these are be briefly discussed below.

For recognition systems using the matching of 2D features to 3D models, Huttenlocher and
Ullman [HU88] demonstrated that for 3 point to point matches, under a weak perspective
projection (orthographic projection + scale) a unique analytic solution exists. Dhome et al
[DRLR88] also presented a method using 3 line correspondences under perspective projection.
The solution, while analytical, requires that the roots of an 8th degree polynomial be determined.
An alternative iterative solution, using more than 3 lines and based on Newton's method
suggested by Lowe [Low85] is also given. Lowe [Low91] developed another iterative solution
using a Levenberg-Marquart technique and a stabilizing function, making it possible to solve
under constrained conditions. The method is able to handle articulated objects as well as solving
for object parameters, ie. size. In the case of recognition systems using 3D feature to 3D model
matching, if line-features are used, a unique solution is possible from 2 matches, while for point
features, 3 matches are required.

2.2.5 Verification of Object Hypotheses

To complete the recognition process, once a hypothesis of a matched object has been established
it 1s necessary is to verify that the hypothesis is correct. Frequently the pose of the object will
make it possible to predict the location of unmatched model features in the image(s). These can
then be searched for and if matched verification accepted. Fisher [Fis89] argues that all features
(surfaces) in a model should be accounted for, that is, either they should be found in the image,
or predictably occluded behind some object. Other methods use an empirically determined
threshold on the fraction of model features that must be matched to data features.

2.2.6 Recognition Strategies

Prior to implementing a recognition system, decisions need to be made relating to strategies in
applying primitives and their use as features, as well as the order of matching. Often these
choices are governed by the specifics of the applications involved. Intuition, refined by trial-and-
error, also play a role in the decision making process. In more recent years, systems that
automatically produce recognition strategies for a given model, have been considered e.g. the
classic works by Goad [Goa83] and Hansen and Henderson [HH89] in which automatic
recognition strategies were produced from CAD models of objects. A variation by Ikeuchi and
Kanade [IK88] demonstrated that a recognition strategy could be achieved from an object model
and, importantly, a good model of the sensor. Draper [Dra93] in his "Schema Learning System"
(SLS), incorporates learning knowledge-directed recognition strategies from training images
(with solutions) and a library of generic visual procedures. In order to represent strategies,
recognition is modeled in SLS as a sequence of small verification tasks interleaved with
representational transformations. At each level of representation, features of a representational
instance, called a hypothesis, are measured in order to verify or reject the hypothesis. Hypotheses
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that are verified are then transformed to a more abstract level of representation, where features of
the new representation are measured and the process repeats itself. The recognition graphs

learned by SLS are executable recognition graphs capable of recognizing the 3D locations and
orientations of objects in scenes.

2.2.7 Choice of Recognition System for MROLR

From the preceding review of the literature, and from a knowledge that target objects to be
located and retrieved by MROLR are man-made, a conclusion reached is that matching
techniques utilising features such as lines, curved segments, and/or corers, in a constrained
search, is the most appropriate for this work. The system based on the work of Pollard et al
[PPPMF88] was chosen to form the foundation building blocks for the recognition module of
this research. More specific details of the benefits of using 3D edge-based models are
enumerated in Section 6.1.

2.3 Robots with Metric Maps

In recent years considerable advances have occurred in the area of automated mobile vehicles.
The ultimate objective of much of the research is to build mobile robots capable of autonomous
navigation without any human intervention. Duckett [Duc00, page 37] points out: Most
roboticists are more interested in building robots that work than in producing realistic cognitive
models with knowledge acquisition capabilities. It is common practice in mobile robotics to
incorporate in the design the necessary behaviours, feature detectors, etc., required for a
particular application. If the robot is then transferred to a new environment the preinstalled
competencies may fail. By contrast a learning robot need not be given all of the details of its
environment by the system designer, and its sensors and actuators need not be finely tuned
(Dorigo & Columbetti [DCI8]).

The robots described below (in some instances summaries of Duckett [Duc00] Surveys), were
selected for their particular relevance to the problem in hand of concurrent map building and
self-localisation. Each employ models of the environment in which an explicit Cartesian
reference frame is used for referencing, and mapping is either feature-based or grid-based. No
attempt is made to separate the systems on the grounds of the sensor types used for perception.
Ideally any navigational system should be able to accommodate and integrate new sensor types if
they prove to be of benefit.

2.3.1 Feature-Based Maps

23.1.1 AGVs

Leonard & Durrant-Whyte [LD92] using various Robosoft automatic guided vehicles (AGVs)
were able to attain precise metric maps from sonar sensors. The maps were built from a set of
pre-defined geometric features including planes, cylinders, corners and edges. These features
were made up of primitives known as "regions of constant depth” (RCDs), and consisted of
groups of sonar returns of similar range. While the robot was in motion, self-localisation was
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achieved by tracking stationary features in the environment and applying an extended Kalman
filter to combine the inferred position estimates. An important contribution of this work was the
development of an improved sonar sensor model for robot navigation.

A multiple hypothesis tracking technique to deal with the problems of map building in dynamic
environments was proposed by Cox & Leonard [CL94]. Specifically the approach endeavoured
to account for different possible interpretations of the robot's sensor data by maintaining multiple
environment models at each time step. Models were associated with a probability, reflecting
likelihood of it being the "correct" model. Testing was verified in selected environments.

A map building mobile robot named ARNE equipped with a single rotating sonar sensor, was
implemented by David Lee [Lee95]. Navigation utilised a feature-based metric map and self-
localisation obtained via an extended Kalman filter. An additional grid-based map was used for
the purpose of path planning, and this was derived from the feature-based map. Evaluations of
various exploration strategies, used by the robot to build its maps were performed (Lee & Recce
[LR97]). The best results were achieved by a hybrid model-based reactive exploration strategy,
consisting of wall following with some map-based interventions according to a predefined set of
heuristics. Testing was carried out in a static, laboratory environment.

Davison [Dav98] implemented a real-time feature-tracking autonomously navigating mobile
robot system capable of exploration in unknown environments, using the OXFORD GTI mobile
robot platform and Yorick active binocular vision system. Map building was carried out using
information from measurements of arbitrary features and robot odometry. Map features were
updated (i.e., added or deleted), in an automated systematic maintenance procedure. An
emphasis of the work was in producing maps useful over long periods of time, permitting
features to be re-detected/re-measured, in areas previously visited, even if the original trajectory
was not followed, and in addition to be able to recover accurate position estimation after periods
of drift. A Kalman Filter-based method utilizing full-covariance was used.

Testing in a real environment was carried out with ground truth comparisons performed using an
accurate grid. Greater details of Davison's algorithms and approach are given in Chapter 6 of this
thesis.

Fig 2.3.1. 1 Oxford's GTI vehicle (from [Dav98])
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2.3.2 Grid-Based Maps

Grip-based maps utilise Cartesian occupancy grids, where each cell contains a measure of
certainty that any object occupies the corresponding location in the robot's environment. The
probabilities are obtained from pre-defined sensor models that project the robot's range-finder
readings onto the corresponding grid cells. A Bayesian update rule is used to combine multiple
readings over the same cell when necessary. Self-localisation is achieved through correlation of a
grid constructed from the current sensor readings with a stored map, and then finding the
displacement and rotation which produces the best match between the two grids. Early
successfully implementations using grid-maps were carried out by Moravec and Elfes [ME85], [
Elf 87].

An advantage of the grip-base map approach is that it avoids the correspondence problem since
there is no need to identify the source of the robot's sensor returns. In addition, occupancy grids
provide a natural representation for combining different sensor modalities, provided that a good
model is available for each different type of sensor. For example, Thrun et al [TFB98a] used an
occupancy grid to fuse range information from stereo vision and sonar. The disadvantages of the
approach are that it takes up a large amount of memory, requires precise position information for
map building and depends on accurate range finder sensing. For example, the specular effects
associated with sonar sensors often result in geometric errors in the map.

2.3.2.1 ARIEL

Yamauchi et al [YSA98] developed ARIEL an autonomous mobile robot built on a Nomad 200
platform. ARIEL was equipped with a planar laser range finder, sonar and infrared sensors.
During exploration of an unknown environment it built its own map using an integrated map
building strategy known as frontier-based exploration (Yamauchi [Yam97]) which included a
continuous localisation technique for correcting the robot's odometry (Schultz & Adams
[SA98]). Regions between open and unexplored space in a global grid model known as
"frontiers" were detected using a process analogous to edge detection and region extraction in
computer vision. An interesting feature of the system was a sensor scanning technique in which
specular reflections affecting the robot sonar sensors were corrected by the laser range finder.

The exploration strategy encouraged the robot to navigate to the nearest frontier. If this was
reached, a new sensor scan was performed and the map updated, with any new frontiers detected,
added to the list of unexplored locations. A short-term local occupancy grid, constructed from
the robot's recent perceptions, was matched to the long-term global map to perform self-
localisation. Using this matching process the possible translational and rotational errors were
restricted to a small space in the global grid which centred round the current position estimate,
produced by dead reckoning. Duckett [Duc00] points out that this dependence on prior position
knowledge for self-localisation means that the system would be unable to recover from
becoming lost.
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http://www.aic.nrl.navy.mil/~schultz/research/ariel/
Fig 2.3.2. 1 ARIEL

2.3.2.2 RHINO

RHINO (also earlier referred in Sect 2.1.6) uses both vision and sonar sensors to build accurate
metric maps. Occupancy probabilities for the grid-based map cells are obtained from a neural
network fed from sonar readings which are trained to convert proximity readings into circular,
metric maps. Increasing geometric accuracy of the maps is obtained by combining information
from neighbouring sensors to reduce specular effects. Using vision sensors in addition to sonar
sensors permits depth information of objects to be recovered from camera image edges, which
may not be detectable using sonar alone.

RHINO also produces a topological map that is used for path planning. This map is derived from
the grid-based map by using critical points detected in a Voronoi diagram to partition the
unoccupied space in the grid into a set of discrete locations (Thrun [Thr98b]). The benefit of
using both metric and topological maps is that it allows the robot to exploit the "orthogonal
strengths" of each. Localisation is estimated from a position probability density function by
repeatedly matching the sensor readings with a model of the environment.

Fig 2.3.2.2 RHINO (From Univ. Bonn, Germany)
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2.3.3 Robots with Topological Maps

Topolopogical Maps utilise a graph of connected places to represent the environment; self-
localisation becomes the task of place recognition (Kortenkamp & Weymouth [KW94]).
Pioneering work on navigation using topological maps carried out by Kuipers & Byun [KB91].
Systems incorporating topological maps have the advantage that the robot does not need to know
its exact position for map building. Lee [Lee96] implemented Kuipers' “Spatial Semantic
Hierarchy" on a real robot, but the system was only tested in a small-scale laboratory
environment consisting of three cardboard corridors.

2.33.1 TOTO

TOTO, a wall-following mobile robot developed by Mataric [Mat91], used a topological map
and explored its environment. Landmarks were classified according to a designer-determined set
of categories and identified using sonar sensors and an electronic compass. The topological map
comprised of nodes representing each distinctive landmark which were linked to adjacent
landmarks on route during the exploration phase. While navigating, a path to a goal location was
found by spreading activation from the destination node.

www-robotics.usc.edu
Fig2.3.3.1 TOTO

2.3.4 Self-Organising Robots

2.3.4.1 ALDER and CAIRNGORM

ALDER and CAIRNGORM, the name given to two Fischertechnik robots developed by
Nehmzow [Neh92], utilise a reactive controller, and wall-following and robot-determined
landmarks to identify places. A Kohonen self-organising feature map is used for map building,
allowing the robot to construct its own internal representation of the environment by clustering
together similar groups of sensor readings. All world models used in this system were acquired
autonomously by the robots, and sensor-motor competences were learned by a simple
feedforward neural network. Others (e.g Owen & Nehmzow [ON97], Duckett & Nehmzow
[DN98]) validated the efficacy of self-organising feature maps for route-learning, wall following,
and relocalisation after becoming lost, utilising a Nomad 200 robot operating in untreated,
middle-scale environments. One drawback of this approach is that it is that the robot is restricted
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to following fixed paths because location recognition depends on visiting locations in the same
sequence as used for map building.

2.34.2 ALEF

ALEF, a topological mapping system, developed by Kurz [Kur96] using a modified RWI-B12
robot, utilises classification algorithms such as self-organising feature maps to group together
similar sets of sonar readings obtained from sonar sensors. From resulting feature
categorisations, the robot's environment is partitioned into contiguous regions known as
“situation areas”. A graph-based representation of the environment containing topological
relations between the situation areas was constructed during map building.

Using the so called A* algorithm (Nilsson [Nil80]), for path planning, the robot was also able to
navigate to arbitrary locations in the map. Self-localisation was achieved using the average of
odometry dead reckoning, and the coordinates obtained of observed situation areas via a Kalman
filter. The approach used has the disadvantage that dead reckoning is soley relied upon when
exploring unknown areas.

2343 ALICE

Zimmer [Zim95a] developed ALICE, a concurrent map building and self-localisation mobile
robot, built deliberately using only low resolution, low reliability sensors, to permit the
investigation of poor quality sensor information when navigating in an unknown environment. It
was equipped with passive light sensors and touch-sensitive whiskers for location recognition,
and a basic dead reckoning mechanism affected by drift errors of up to 25%. ALICE, in contrast
to many other robots, had no separate phases for map learning and navigation. Instead it was able
to continuously adapt its internal representations through a process of lifelong learning. An
interesting extension of the Growing Neural Gas network (Fritzke [Fri95]), consisting of a set of
stored sensor prototypes augmented with Cartesian coordinates and the topological connections
between them, was used for map building. Exploration was carried out using a reactive
controller, which was subject to top-down influence from various "instincts", such as trying to
reach areas of unexplored territory, or trying to improve localisation quality by moving through
areas of previously charted territory. One of the most important contributions of this research
was the handling of the concurrent updates to the robot's environment and location models.
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http://transit-port.net/Uwe.Zimmer/Projects/ ALICE/ALICE.html
Fig 2.3.4. 1 ALICE
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2.3.5 Hidden Markov Models

2.3.5.1 DERVISH

Nourbakhsh [Nou98] using a customised Nomad 100 robot, implemented a navigation system
named DERVISH, in which predefined feature detectors were used to identify landmarks such as
doors or junctions. It utilised a high-level self-localisation algorithm known as state set
progression. The robot's location model consisted of a "state set", containing a subset of the
possible locations in a pre-installed topological map. Features detected in the current sensor data,
as determined by the landmarks associated with the locations in the map, were used to initialise
the set. Updating of a state consisted of removing it from the set and replacing it with all of the
possible subsequent states, derived from the new sensor data and the robot's direction of travel.
Each state was assigned a probability value using a predefined “certainty matrix", which
represented the likelihood of obtaining the observed features from the actual landmarks in the
environment. During the set update, these values were propagated in Bayesian fashion. While
Dervish used the most likely state to plan a path to a goal location, it would stop and re-plan if
values suggested it was no longer on the correct path. A shortcoming of the approach was the
necessity to use a preinstalled topological map, feature models and an uncertainty matrix.

23.5.2 XAVIER

XAVIER, a mobile robot system implemented on a RWI-B24 by Koenig & Simmons [KS96],
[KS98], was specifically designed for performing delivery tasks in an office environment.While
the methodology used for feature detection and self-localisation was similar to that used by
DERVISH, the environment and location models were obtained from a Partially Observable
Markov Decision Process (POMDP). A pre-installed topological map was also required, but the
system had some ability to adapt its environment model through on-line learning, the user-
defined map being augmented with distance information from the robot's sensors and actuators.
A specially written compiler translated pre-installed models into the POMDP representation.
During navigation an extended version of the Baum-Welch algorithm (Rabiner [Rab89]) was
applied to improve the compiled distance, sensor and actuator models by adjusting the
corresponding probabilities in the POMDP model. The Baum-Welch algorithm is an expectation
maximisation (EM) method for acquiring Hidden Markov Models (HMMs) and POMDPs from
data. As with the previous systems, the main disadvantage of this approach is its reliance on pre-
installed knowledge.

Carnegie Mellon University, Robot Learning Lab

Fig 2.3.5. 1 XAVIER
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2.3.52 RAMONA

Shatkay & Kaelbling [SK97], using a modified RWI-B21 robot named RAMONA, applied an
extended the Baum-Welch algorithm to perform off-line map building from pre-recorded sensor
data. An extended HMM was used to incorporate odometric information, and an expectation
maximisation algorithm maintained geometric consistency in the model. A clustering algorithm
provided the initial model, which was based on local odometric relations extracted from the
recorded sensor data. The final version of the algorithm produced better models from less data
and fewer training iterations, and was capable of learning models for environments containing
loops. A drawback in the use of HMM and POMDP models is that the robot's environment
model has to be quantized into a set of discrete states.

http://www.cs.brown.edu/research/robotics/robots/ramona.html

Fig 2.3.5. 2 RAMONA

23.6  Robots with Hybrid Maps

Integrated systems utilising both topological and metric representations have been investigated
by researchers such as Edlinger & Weiss [EW95]; Yamauchi & Beer [YB96], Simhon & Dudek
[SD98], Gasos & Saffotti [GS99]. In these systems, a graph of connected regions is used to
represent the environment globally, and each region by a small-scale local metric map. Path
planning and middle-scale navigation, rely on topological representation, while local metric
maps are used for small-scale navigation. The advantage of this approach is that a globally
consistent metric map is not required.

2.3.6.1 ELDEN

A navigation system, known as ELDEN was developed for a Nomad 200 robot, by Yamauchi &
Beer [YB1996]. A reactive controller was used for exploration that included an arbitration
mechanism to combine predefined behaviours such as obstacle avoidance and wandering. a
topological map was constructed from odometry calculations, with new places augmented
whenever the distance to the nearest stored place exceeded a preset value. Dead reckoning drift
errors were corrected by periodically returning the robot to its starting location and activating a
special recalibration routine. The recalibration routine used an occupancy grid, constructed from
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the current sonar readings, to compare a previously stored grid, and used a hill climbing method
to find the transformation producing the best match between the two grids. Finally this
transformation was used to update the robot's odometry. Yamauchi & Langley [YL97]
subsequently extended ELDEN by incorporating stored occupancy grids, one for each place node
in the map. These were used for recalibration thus removing the need for regular homing.

A novel aspect of the system was the use of variable confidence links to represent the uncertainty
in the topological relations, and then to use these to adapt the robot's map in dynamic
environments. In essence, confidence levels were adjusted using simple rules, to strengthen or

weaken them, subsequently enabling the system to use these values to plan alternative routes
should obstacles or path blockages occur.

http://www.aic.nrl.navy.mil/~yamauchi/gallery.html

Fig 2.3.6. 1 ELDEN
2.3.6.2 MOBOT-1V

MOBOT-IV a mobile robot developed by Edlinger & Weiss [EW95], utilised a dynamically
acquired internal representation of unexplored environments. The navigation system used a 360
degree laser range-finder to form a set of local metric maps which were linked via stored
connections to a global topological map. A temporary metric map was first formed using the
laser range finder, and then used for self-localisation and to detect areas of unexplored territory.
In practice, a predefined threshold based on the distance of the robot to the nearest stored node,
was determined whether the current sensor map was to be added to the global map. Cross-
correlation of the current sensor map with the nearest stored scan in the global map was then
used to obtain self-localisation. Effectively the approach used was the same as that of Hinkel &
Knieriemen [HK88], in that angle histograms were first constructed and convolved to find the
most likely rotation of the robot then x and y histograms were matched to determine the most
likely translation. A region of open space detected in the current sensor scan with a width greater
than that of the robot, was defined as a "passage", ultimately detected passages were added to a
stack of goal destinations. Path planning was carried out on the topological map using the A*
algorithm (Nilsson [Nil80]). The system was tested in a static indoor corridor that demonstrated
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both its reliability and scalability. A weakness of the system is its reliance upon prior positional
information for self-localisation.

httn://ag-vn-www.informatik.uni-kl.de/Proiekte MOBOT-TV/MOBOT-TV.html
Fig 2.3.6. 2 MOBOT-1V

2.3.6.3 The Duckett Mobile Robot

Duckett [Duc00], utilising a hybrid deliberative-reactive control architecture developed a mobile
robot system in which all of the environment and location models, feature models, and sensor-
motor competences required for navigation are acquired independently by the robot. A
significant distinction of Duckett's system is the claim that the robot could recover its position
even after becoming lost. Learning techniques include self-organisation, where no teaching
signal is required, and self-supervised learning, where all of the training examples are generated
by the robot. The system is able to build its own maps and navigate in many different, indoor
environments. During an exploration phase, the robot builds a graph-like representation of its
environment, in which each location is identified by a description of the robot's sensory
information known as a landmark. To determine an appropriate landmark recognition
mechanism, an experimental procedure was developed which permitted different algorithms to
be compared under identical experimental conditions. With this method existing approaches to
landmark recognition were evaluated, and a new self-localisation system was developed. To
overcome problems such as perceptual aliasing (the fact that landmarks may not be unique to
individual places) a self-localisation algorithm was developed which accumulates sensory
evidence over time so that the robot can recover its position even after becoming lost. The work
was validated by testing in untreated environments, of several hundred metre square.
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The Nomad 200 mobile robot ForiyTwo.

Fig 2.3.6. 3 Duckett mobile robot [Duc00]
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24 Mobile Robots using Vision Based Sensors For Navigation

Desouza and Kak [DK02], and Zhang [Zha(2a] carried out comprehensive surveys on "Vision
for Mobile Robot Navigation". It is evident from these surveys as well as from the robots already
discussed in section 2.2 that in the past 20 years very significant developments and progress in
vision-based mobile robots for both indoor and outdoor applications has occurred. To a large part
these improvements were facilitated by the very substantial improvement in PC speed, and video
handling. Desouza and Kak point out that it is now possible to design a vision based navigation
system that utilises topological representation of space, and an ensemble of neural networks to
guide a robot through interior space. The topological representations helping the robot figure out
which neural networks to use, and in which part of the space. Examples of indoor robots are
NEURO-NAV [MK93a], [MK93b] and FUZZY- NAV [PPKK95] and FINALE [KK92].
These robots can navigate at an average speed of 17 m/min using an ordinary PC-based
architecture (Pentium II 450Mhz, with no special signal processing hardware).

Desouza and Kak also cite the equally impressive progress that has been achieved in computer
vision for outdoor robotics. Representative examples are the NAVLAB system (Thorpe et al
[TKS87], [THK88], [Pom89], Tseng et al [TC92], Pomerleau [Pom94], [PJ96]), the work on
vision-guided road-following for "Autobahns" (Dickmanns et al [DZ86], [DZ87], [DM92],
[Dic99]), and the Prometheus system (Graefe et al [Gra89], [Gra92a], [Gra92b], [Gra93],
[RG94]).

Their findings suggest the following broad base categorisations:

(1) Map-based Navigation. These are systems that depend on user-created geometric models or
topological maps of the environment.

(if) Map building based Navigation. These are systems that use sensors to construct their own
geometric or topological models of the environment and then use these models for navigation.

(ii1) Map-less Navigation. These are systems that use no explicit representation at all about the
space in which navigation is to take place, but rather resort to recognising objects found in the
environment or to tracking those objects by generating motions based on visual observations.

They conclude their survey with a somewhat unexpected finding: "... if the goal is to carry out
function-driven navigation ... an example being to fetch a fire-extinguisher that is somewhere in
a given hallway or to stop at a stop sign under varying illumination and background conditions --
we are still eons away".

To a large extent this last observation puts into context the difficulty of the work undertaken by
this thesis.
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2.5 Conclusion

This chapter has highlighted the rapidly growing applications of robots for the non-industrial and
manufacturing sectors these are the so-called "service robots”. Brief details of some of these
service robots and applications were given.

A synoptic literature review of 3D recognition systems and modeling methods, and robots using
autonomous navigation methods was also presented. It is from this review that 3D wire-frame
models were decided upon as being the most suitable for the recognition module of this work.
The literature survey concludes with a summary of a recent survey on mobile robots using
vision-based sensors for navigation. A noteworthy conclusion reached in this survey is that the
"machine vision fraternity" is still a long way off from being able to reliably use mobile robots to
find and retrieve objects in "unmodified" settings. That may well be true, but then humans also
need artificial aids such as good lighting, and a range of temperatures, to work well in.

In the next Chapter, specifics of the hardware and software required to implement MROLR are
discussed.
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Chapter 3 System Equipment

3.0 Introduction

To meet the objectives of this thesis in building a robotic system capable of navigating with the
aid of active vision, visually locating and physically retrieving real-world objects, requires
considerable hardware and software resources, a substantial proportion of which is not readily
obtainable "off-the-shelf". Unobtainable hardware was therefore specifically designed and built,
and software coded.

In this chapter brief details of the hardware and software modules developed and utilised for this
work are described.

3.1 Hardware and related software

The major hardware components of MROLR comprise:
(a) A TRC' Labmate mobile robot base powered via 2x12V fork lift truck batteries.

(b) A BiSight 4 DOF pan-tilt-vergence stereo head, grayscale CCD cameras fitted with 13mm
fixed focal lenses cameras (the head was also purchased from TRC).

(c) A Win32 Imascan framegrabber residing in a win95 platform PC on board the mobile base.

(d) Two computerised revolving horizontal tables (designed by the author and assistant technical
staff -see appendix B). These tables facilitated the creation of object-models.

(e) Camera Calibration Tile (Fig 3.1.2).

(f) UMI RTX, 6 DOF robot arm, controlled via a PC (docking robot), mounted on either a caster
platform or mobile transport robot (refer to (g)).

(g) Mobile Transport Robot: this hardware is in a state of partial completion (designed by the
author and assistant technical staff -see appendix B).

(h) Several PC's interconnected via a local area network.
Figures 3.1.1 (a) and 3.1.1 (b) are sketches of the mobile base and docking arm and show system

local network networked data flows. Numerous photo images of the hardware are provided in
Chapter 7.

' Transition Research Corporation, USA.
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PC Load Distribution

The computational load is distributed using a number of PC's interconnected via a local TCP/IP
network. This additionally accommodates platform specific requirements eliminating the need
for the rewriting of third-party proprietary supplied equipment drivers.

Further details are given below:

(1.)  Stereo head PC resides on the Mobile Base (platform: Win95/Dos ).
Main functions:
Execution of head movements commands.
Capture, and transmission of stereo scene-images.

(2.) TRC Mobile Base PC (platform: Win3.11/Dos).
Main functions: Execution of commands relating to mobile base movements.
Monitoring and displaying of odometry positional information.
Control of motorised model-creating tables.

(3.)  Principal Navigation and Recognition PC (platform: RedHat 7.0 Linux).
Main functions: Processing of stereo image pairs for purposes of navigation, localisation,
object recognition and object pose determination.
Coordination of data sharing across the local-network.

(4.) Robot Arm PC (platform:Win98 )
Main function: Accept object pose information via dynamic data exchange (DDE). DDE
provides a convenient mode of data interchange for Win32 applications.
Calculation of the necessary inverse kinematic solution to facilitate the grasping and
retrieval of recognised object.

(5.)  Transport Mobile Base PC (platforms: Motorola HC11 and Win98).
Main function: Respond to request to dock with the TRC mobile base, accept object pose
information ... as for (4).

Essential software links and patches were written to facilitate the communication, integration,
and co-operation of each of the various platforms and items of equipment. This included image
format converters and DDE programs running in the background.

Processing time was not greatly considered as the PC’s used were rather old (60-90 MHz,
Pentiums with 32 MB RAM). At the time of writing, PC clock speeds over ten times faster were
available and consequently would produce a corresponding improvement in performance if
obtained and utilised.
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3.2 Navigation and Recognition Software

The Navigation and Recognition Software has been largely developed around two software
resources, namely "TINA" and "SCENE".

TINA is a machine vision research environment, running under Unix (X-windows). It is written
in C and includes a substantial collection of integrated image processing functions. The
development of TINA commenced at the University of Sheffield and more recently continued at
the University of Manchester. TINA has been written to provide a research environment for
machine vision programmers. It utilises a mouse driven front end, and an integrated package of
vision library routines, running under the UNIX operating system with Xwindows graphics
support. The individual modules and display facilities are provided as tools under the control of a
parent that also displays diagnostic messages. These sub-tools can be grouped in to two types,
graphical infrastructure and research.

The following sub-tools are used in this thesis:
Stereo Tool

Edge Tool

Matcher Tool

Calibration Tool

The Matcher tool was modified and extended. In addition a 3D Model editor tool was added.
Further details are given in Chapter 4

SCENE is a flexible open-source C++ library for sequential localisation and map-building
(SLAM). It is suited to 2D/3D mobile robot navigation, this being accomplished by the
estimation of the states of the moving robot and numerous stationary features. In general
measurements are made via one or more sensors mounted on the robot. A feature of SCENE is
its modular modeling system, which is used to represent the specifics of a particular system. New
model classes can be "plugged in" to the main system with relative ease. Model classes suitable
for MROLR were implemented and incorporated into SCENE. In addition a vision based
obstacle avoidance function was added. Details are provided in subsequent chapters.

Both TINA and SCENE are significant contributions to the Scientific Community and
generously made freely available at the web sites indicated in the Bibliography at the end of this
thesis.

3.3 Conclusion

A complex system such as MROLR requires considerable hardware and software resources.
While a policy of using available resources where obtainable was adopted, tailor designed
specific hardware was required to be designed and built, and software written. This chapter
outlined the resources required and utilised. Subsequent chapters elaborate on how these
resources are used or developed. Chapter 4 details the mathematical notation and models used
throughout this work.



Chapter 4 Background on Models and Notation 38

Chapter 4 Background on Models and Notation

4.0 Introduction

In this chapter, mathematical notation, concepts, and a variety of preliminary models used and
extended in subsequent chapters are outlined and developed.

The chapter is effectively divided into three sections. The first introduces the mathematical
notation and conventions adopted throughout this thesis. The second considers modeling of:
¢ cameras and the Bisight stereo head

e the mobile robot base

The third section considers algorithms and tools used for:
e stereo camera calibration

¢ object and scene-modeling,

e object recognition

4.1 Mathematical notation and conventions adopted

4.1.1 Vectors, Matrices, and Coordinate Frames

Vectors and matrices will in general be distinguished by boldface type.
Examples:
vector P = Pyi +Pyj +P.k represents a 3D point in space having
coordinates Py, Py, P, respectively.

Coordinate frames are designated by capital letters. Where several frames are related, an
additional index integer, or subscript is used (i.e., Co, C1). Vector point P in frame Cq is defined
by the 1 x 3 matrix given below. (Note CO and C, designate the same frame).

C Y
0 PCO
Co _ Co
PO=|p
C
. , P

Fig 4.1.1. 1 Vector point P in frame C,
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4.1.2 Partial Derivatives
The V (del) operator is used for partial differentiation. V(y)x is used to represent % If either y

or x is mnon-scalar, bold typeface is used. For example the following are equivalent
representations:

Oz(t+ Al Ozt+dy ]
% v, Va(t+4t), Vz(t+dt),
4
o, _|ox(t+4) Ox(t+4Y = V(L,), =| Vx(t+4t), Vx(i+41),
ou o, ov, ‘ 2
do(t+4t)  Op(t+ A1) Vo(t+4t), Ve(t+4t),
| Oy, ov, ]

4.2 Camera, Bisight Head, and Mobile-Base Models

In this section notation and preliminary models used for cameras, 4 DOF Bisight head, and
mobile-robot base, will be introduced. The modeling is based on the work of Davison [Dav98]
which was designed and implemented for Oxford's (Yorick) stereo head, and GTI mobile-robot.
Davison has generously made his work publicly available and in light of possible continuing
collaboration (see Wingate & Davison [WD02a], [WDO02b]) and benefits of standardisation, the
following (and later derivations) relating to MROLR's architecture, have wherever possible used
notation and equations consistent with those of Davison.

MROLR's stereo-head appears somewhat different to Oxford's Yorick 8-11 (Fig 4.1.2.1), but
geometrically the differences are relatively minor, both having 4 degrees of axial movement.
Consequently both can be modeled in a similar way.

The TRC mobile-base used by MROLR differs significantly from that of Oxford’s GTI mobile-
vehicle. The GTI base is 3 wheeled, with the motor driven rear wheel being responsible for
steering. In comparison, the TRC (Fig 4.2.6.2) utilises 2 centre positioned motor driven wheels
and 4 corner stabilising casters. An advantage of the TRC’s configuration is that rotations about
its central axis are possible, in some instances simplifying the “shortest route navigation control”
to a rotation followed by a translation followed by a final orientation rotation. In modeling the
TRC base, the full range of possible movements will be included.
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(a) Bi-Sight head (b) Oxford's Yorick 8-11 head

Fig4.1.2. 1 BiSight and Yorick 8-11 stereo heads

4.2.1 Camera Model

Fig 4.2.1.1 shows the basic geometry of the widely accepted pinhole camera model, used
throughout this work. Effectively the pinhole model is an ideal camera model in which the rays
from world points to image points pass through the camera's focal point, producing an inverted
image on the cameras image plane. For ease of modeling, a virtual image plane may be placed in

front of the optic centre (as in Fig 4.2.1.1), resulting in projected upright image. Consider a
Scene point P.

Scene Point
World Frame

Virtual Image Plane

Image Point P

Optic
P (Xes Yoo D)

Axis

Image Centre
(uo, Camera Frame
F
"
Focal Le 0
oca £ ngt Optic Centre

Fig 4.2.1. 1 Geometry of pinhole camera model

In world frame W, and camera frame F, this has coordinates
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P XW PxF
W _ w
P =P y and P" =|P yF respectively.
pr’ Pr

To save case confusion (i.e., PF not to be confused with pF), m" will be used in place of PF, and
pF to designate the corresponding position vector of the image point (X, Y., f ) as shown in the
above camera model. Thus:

F F
PI mX
F
PF =|P = mf=|m’
F F
PZ mZ

X, f ”15 f
F F F
p = yc = 7 my = Fm 4.1
f z sz z

Light rays impinging on discrete charged couple device (CCD) cells, which make up the
camera's image plane, are responsible for the camera's image. This image is mapped to pixels on
the computer screen via the computer's frame buffer, and it is from this buffer that the software
will normally obtain image information. A point p = (x,y,f)" in camera coordinates, projects to
computer pixel coordinates of:

u=u,-kx, v=v,—k,y, 4.2

Where horizontal and vertical scaling parameters k, , k, accommodate the mapping from the
camera's CCD image plane to computer screen via the computer's frame buffer. k, and k,
represent the "effective" number of horizontal and vertical pixels/metre respectively, and are
obtained via the calibration procedure outlined in 4.3.2.1. The pixel position (u,,v,) corresponds
to where the optic axis passes through the optic centre of the lens. In the ideal case (uo,v, ) will
also correspond to the image centre (i.e., for an image size 600 x 400, u,=300, v,=200 pixels,
respectively, and u = 0,v = 0 corresponds to the top left hand corner of the image).

In matrix form equation 4.2 become:
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u -k, 0 uyf X,
v = 0 _kV vo(f‘ yc
0 0 £ f
or
U _ku 0 u()(f‘
v =10 -k, v/ |p© 4.3

1) o o 1

And since vector m' is proportional to p', it is evident that

Uu _jku 0 uo
via|0 -/, v, |m" 4.4
1 0 0 1
or
u u
v|ia Cm?” 4.5, and m’ a Cl'lv 4.6
1 1
where
-1, % |
_fku 0 uO fk" 1 ’
- Vv
C=|0 —fkv Vo 4.7 C'=|0 ? fk_o 4.8
0 0 1 Y ’
0 0 1

Intrinsic camera parameters f, ky, ky, uop and v, are normally obtained by a calibration routine
involving a tile. The calibration procedure used in this work is described in section 4.3.2.
Matrix C is referred to as the camera calibration matrix, and contains the camera’s intrinsic
parameters. Equation 4.5 is the well established perspective projection equation relating a 3D
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. . u . .
scene-point, in the camera's reference frame, to the homogeneous vector , | which describes

the pixel location of its image point.

Thus, knowledge of matrix C permits the 3D location of point m to be determined in the
camera's reference frame, up to an unknown scale factor (equation 4.5). That is, it lies
somewhere along the light ray that is coincident with vector m. To obtain its actual location
along the light ray, using a single camera, requires at least two sequential views of the point.
Alternatively a pair of cameras may be used in a stereo configuration as formulated in the
following section.

4.2.2 Stereo Head Model and Frames

The TRC Bisight, four DOF pan-tilt-vergence stereo head, is mounted directly above the central
axis of the base. The head is equipped with encoders that provide accurate information on
angular movements. A model of this active head is formulated below to facilitate the calculation
of 3D Scene points from corresponding, left and right camera image coordinates, and the joint
angles necessary for fixation on known 3D Scene feature points.

Each joint motion of the stereo head is initially monitored in an assigned reference frame and
defined by an appropriate homogeneous transform. The motion of the active head is obtained
from the product of these transforms. The respective reference frames are shown in Fig 4.2.2.2.
The head-centre coordinate frame CO has its origin at the intersection of the pan and the tilt axis.
This point remains fixed relative to the mobile base for all head movements. All measurements
carried out on the mobile base are referenced with respect to CO, it is the vehicle frame. Its Z-
axis lies in the forward direction, with the Y-axis pointing up and the X-axis to the left. This
reference frame is also used for the robot arm in obtaining the transforms necessary to guide the
gripper for grasping and retrieving of the object. Accurate modeling of the stereo head is thus
essential for navigation and object retrieval.

Vectors My, pL, Pr, €L, Cr, DL, DR represent the head's intrinsic parameters, their scalar
magnitudes remaining constant. Subscripts L and R refer to the Left and Right Camera frames
respectively. pp, ¢, ni represent the Left Camera offsets from the origin of frame CO, while pg,
CR, Dy denote the corresponding offsets for the Right Camera. Vector mg represents the location
of a Scene feature measured in frame CO. Vectors my, and mg are vectors from the camera’s
optical centres. When all head angles are zero, both the right and left camera will be pointing
straight ahead and all head axis will be aligned
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eft Vergence

Right Vergencé"“_\
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Xeos Yoo, Zoo
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Vectors My, pPL, PRrs €L, CR, DL, DR, represent the head's intrinsic parameters,
their scalar magnitudes remaining constant. Subscripts L and R refer to the
left and right camera frames respectively. mg a 3D scene vector point.

Fig4.2.2. 1 Stereo Head showing Intrinsic Parameters

Right

vergence

Jfﬂ frame

head rotation angle
YL, YR = vergence

o = pan
e = tilt

Fig 4.2.2. 2 Stereo head joint motion reference frames
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4.2.2.1 Mobile Base M, and Head-frame C0

In this frame
0 co
co me
= Co Co
M; M, o Mg = mg, 4.9
0 co
mGz

M is the vertical scalar distance of the head centre from the centre of the mobile base.

4,2.2.2 Pan Frame C1

The pan frame C1 is fixed relative to those parts of the head that move as the head pans around.
Its y-axis remains vertical and the corresponding x and z-axes remain in the horizontal plane
while the x-axis remains parallel to the head's tilt axis. it is horizontally rotated with respect to
CO0 by the pan angle a.

In this frame:
1/2 -1/2

p,) =|0 , Py =] 0 4.10
p p

Where 1 is the horizontal distance between the vergence axes and is the inter-ocular distance
between the camera optic centres if both cameras are facing forward. pL = pr = p are the
horizontal scalar offset distances between the intersection of the pan and tilt axes, and respective
vergence axis. The respective p vectors will rotate with a pan movement.

4.2.2.3 Tilt Frame C2

This frame remains fixed relative to parts of the head that move when the tilt angle changes. Its
Y-axis remains parallel to the left and right vergence axes and its X-axis is aligned with the tilt
axis. It is vertically rotated with respect to C1 by tilt angle e.

In this frame:
0 0

cfz — c ‘ c(l;2 — c 4.11
0 0

cL = cr =c is the scalar offset along either vergence axis between the intersections with the tilt
axis and the camera optic axis
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4.2.24 LeftL and Right R Frames

The left and right camera frames L and R remain fixed relative to the camera's respective optic
centres. Their Z-axes are aligned with the cameras optic axes and their X and Y-axes lie parallel
to their image planes. These frames are rotated with respect to C2 by vergence angles 7. and

Y-

In these frames:

0 m

np=10 s omy =y 4.12
& my,
0 m g,

ng=|0 , my = my 4.13
n mk

n. = ng = n is the scalar offset along either optic axis between the camera optic centre and the
intersection with the vergence axis

In summary, vectors pr, P, €L, and n;, combine to represent the vector offset from the head
centre to the left camera's optic centre. pr, Pr, Cr, and ng represent the same offset for the right
camera.

The following rotation matrices permit transformation between the various head-frames.

Note a clockwise rotation is +ve (axis of rotation arrow pointing at observer).

cosa 0 —-sina 1 0 0

R = {0 1 0 4. 14 R = |0 cose —sine 4.15
sina 1 cosa O sine cos e
cosp 0 -sinp cos w0 —sin

R = |0 1 0 416 RF2= |0 1 0 4.17

sinnm 1 cosnp sinyw 1 cos
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4.2.3 Calculation of Image Coordinates from a Known 3D Feature Point

With the above framework and reference to Figure 4.2.1.1 it is apparent that:
mG=pLtcLt o+ m 4.18

mg =pr t Cr + ng + mg 4.19

Assume for the moment that mgo the 3D position of a point in the vehicle reference frame CO is

known and visible in both cameras.
From equation 4.18 in the left camera frame L.

L oL L L L L
m, =mg;-p,-m, =¢, —n, 4.20

Or in the desired frames:

mi =RLCOmg° _RLCIPII: —Rchcf _“2 421
Rearranging the transformations into relevant simple components,

mt =RLC2(RC21(RClOmgO_pfl)_ci?)_nt 4.22
Similarly for the right camera:

m: =RRC2(RC2I(RCIOmgo_pgl _cci;z)_ng 4.23
Equations 4.22 and 4.23 allow the vectors from the left and right optic centres to the scene point
in the respective camera coordinate frames to be calculated. Furthermore, equation 4.5 (applied

to the left and right camera, see equation 4.24 below) permits the point's image coordinates to be
determined. Further details are given in section 4.2.5.

U, Up
L R
v, la Cm; ,lv,|a Cmy 4.24

1 1

4.2.4 Head Angles to Fixate a Known Point

A frequent task required during navigation and map building is to fixate on a known 3D point.
This consists of knowing m&’ relative to the head-frame, and driving the head so the image of

the 3D point passes through uy, v, the principal point, in both left and right cameras. To simply
the task, vergence angles are assigned to be equal and opposite. This form of symmetric fixation
is further simplified by turning the pan axis to view the scene point such that mg in pan frame
C1, lies in vertical Y, Z plane.

In this state:
mg =0

Furthermore:
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cr _ C10_.. CO
m; =R""m", 4.25
. Cl Cco
cosa 0 —sinal|| Mg Mg,
cr | co
ie. |0 10 me, |=|mg, 4.26
sina 1 cosa cl co
mGz mGz

Solving the top line of this equation for a gives

co

o m
a = tan ! gxo 4.27
m Gz

To find the remaining frame angles e, vy, yg, use is made of the fact that as the optic axes of both
cameras ideally pass through the scene 3D point, therefore m © and m% are both non zero in
the z coordinate:

mp =mj, =mg =mpy, =0 4.28
Writing equation 4.18 in frame L:

mi =RLC2(RC21(RCl0mgO—pfl)—sz _nt 4.29
Solving for ¢ by setting m;, =0 yields:

Cl
1 mGy

- C
cr_ = sin” c1 2 i 2 430
me, = p J(mE )+ (m - p)

e =tan "

Note the components of mS'  are determined from known o.. The remaining vergence angles y

are found by using e to form m¢*
m‘=RX??y? 4.31

Setting m;, =0, ¥, is solved from:

B mC2
n=tan ! é; 4.32
Lz
And finally JR obtained from:
}/R = —}/L 4.33

4.2.5 3D Point Location from Image Coordinates up, vi, ug, Vg

Given the left and right image coordinates ui, vi, ur, Vg of a scene point, its 3D location is
determined as follows:
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Choosing the head-frame CO from equation 4.18 ,

co _ . CO co Cco Cco

and rearranging this by transforming the vectors into their desired frames,

co _ pCol Cl coz,C2 CoL L CoL L
m;, =R"7p, +R"7¢;"+R"""n; +R"""'m;

then regrouping:

Cco Co1 Cl ci2, . C2 C2L_ L Coip Cl2pn C2L L
m =RpS + R(cS? + R nt ) + REO'RCZR !

Similarly for the right Camera:

CO Ccol Cl ci2,.C2 C2R__R COlp Ci2p C2R R
mS =RDS +R2S? + RE*nk ) + RCORCZR Rk

. . . Cco . . . L R
While these give two expressions for m~ |, neither is sufficient as m; and m,

49

4.34

4.35

4.36

4.37

are calculable

only up to an unknown scale factor by inverting equations (4.24) i.e. rewriting equations 4.36

and 4.37 in the form:
UL UR
m; aC™'|w , mhaC™'|w

mS =a% 4 b

co _ .Co co
m;, =c¢ +ud

Where

aCO :RCO](pf] +RC]2(052+RC2LDZ )

cCO =RC0|(pgl +RC12(Cg2+RC2Rn2))

U,
bCO — RCOlRClZRCZLc—l vL
1
u,
dCO = RCOIRCIZRC2kc—l VR
1

4.38

4.39

4.40

4.41

4.42

4. 43

4.44

Where A and p are the unknown scale factors. Effectively each camera contains a ray along
which the scene point must lie. Ideally the scene point will be at the intersection of these two
rays. In practice, because of errors the rays may not intersect and consequently the best estimate
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of the scene point will be the mid-point of the rays closest approach to each other. That is, the

mid-point of the vector normal to both rays (Figure 4.2.5.1).

r=a+Ab
P
Mid point of
1 Hormal between
f rays
—3 r=c+,d
Py

Fig 4.2.5.1 Mid-point of normal between 2 rays

The coordinates of the mid point of the normal between these two camera rays is readily
obtainable in terms of vectors a b ¢ and d by calculating A and p for points P; and P,. A method

for calculating these follows.

Common perpendicular between two rays and location of mid point

given {a“°} = known location on ray 1

{u 13 = known unit direction of ray 1
{ ¢®} =known location on ray 2
{@,} = known unit direction of ray 2

Note enclosing {} brackets imply column vectors.

Calculating unit directional vectors:

{ﬁ|}= bco/(norm(bco )) 4.45
{iy)= d°/ (horm(d€°)) 4. 46
y = angle between rays siny =norm( {0} x {02} )=norm( [U,] {U2})

{13} = unit direction along common perpendicular {a;} =[] {a,}/siny
di2 = directed distance (length of common perpendicular) along {13} from ray 1 to ray 2

@) + A{i) +d {@) = { ) +u{da) 447

A

a3 {~a.} {a,3k 4 p= (e}~ {ac})

d

4.48

12
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A
po=l} 8.} @ (f-be) 4.49
dlZ

or

find midpoint of common perpendicular using confluence of 2 rays.

{mQP } = ([W2+[W]?)" ([@]% {2 +[Wa]° 7)) 4.50
Note

[u ] = skew-symmetric matrix for {1}

u, 0 -u, u
{i}={u, [@]=) v, 0 -y (U] =-[7]
u, -u, u, 0
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4.2.6 Mobile Base Model

The configuration differences between Oxford's GTI mobile-base and MROLR's base mentioned
in Section 4.10, amount to a difference in the control variables. The 3 wheeled GTI base is
steered via its economical single motor driven rear wheel. Consequently the control inputs are
the velocity and rear wheel relative angle. By contrast MROLR's base is controlled by 2 motor
driven wheels as shown in Fig 4.2.6.3. Optical encoders provide feedback for control and
odometry information. This has the advantage that by setting vi= -v, the robot is capable of
rotating on the spot about its own central axis. In addition, shortest path movements are simple to
achieve by an initial on the spot rotation, followed by a linear translation to the desired location
and then a final on the spot rotation to end up in the required orientation. The analysis begins by
defining the angular velocity of motion ® in terms of the vehicles rate of change of angular
position (see Figs 4.2.6.1/2).

w = — 4. 51

Robot Posttion (z, x, ¢ ) z° | Z

World Reterence
Coordinate Frame

co Robots Initial

Robot X Position (0, 0, 0}

Coordinste
Frame v, A v 4

x
I i

Fig 4.2.6. 1 MROLR moved to position (z,x ¢)

Assuming inner wheel and outer wheel tangential velocities of v; and v, metres/sec respectively,
the centre vehicle velocity v can be obtained from:

vVi+ v
v=_'2_2=a)R 4.52
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For a given angular velocity  of the centre of the base, the tangential velocity of each wheel is
related via vi=o(R+D1), and v,=0(R-D)), the radius of the arc moved through by the base can be

derived as follows:
The arc length moved through in time ¢ seconds is R, thus

)

dg _ vi+w

E_( 2

Solving for R from vi=w(R+D;)/ v;=0(R-D,) gives:
_ Dy(v, +v,)
(vi=v,)

R

Robot Base &t time k+1

Head Certre
Coincides with
Robot Base
Centre

Robot Base &t time k

4. 53

4. 54

Posftionfk+1)

For Comparisotr
Oxfard’s GTI Mobile Robot Geometrv

Fig 4.2.6. 2 Oxford's mobile robot geometry

Using equation 4.54 to replace R in equation 4.53 and using a time increment of Af, leads to

Vi—7V2

Af = At

1

For a constant time interval At the change in ¢, will be represented by @in place of A8

Vi—V2

2D,

ie, & = At

4. 55
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Consider a circular arc trajectory increase of 0 degrees (Fig 4.2.6.3), the changes in z, x, ¢ are
readily seen to be :

2(t+At) = z+ R(sin (¢ ()+0 ) —sin(¢ (1)) )
or rearranging
z(t+At) = z(t) + R(cos(t)sin® + sind(t)(cosd-1) ) 4.56

x(t+AL) = x + R(cos (¢( (t) — cos (¢ (t) +6) )
or rearranging gives

x(t+At) = x(t) + R(sin¢(t)sind + cosd(t)(1-cos0)) 4.57
and
dO(t+A) = ¢(t) + O 4.58

When v; = v, = (i.e., straight line case) 0 limits towards 0 and R limits towards oo, the equations
may be rewritten in the form:

Z(t+At) = z(t) + vAtcos(t) 4.59
X(t+At) = x(t) + vAtsing(t) 4. 60

9(t+AL) = ¢(t)

4. 61

>N

5 z + R(sin (§+0) —sin(¢))

World
X 4—
X 0 OCoordinate

x + Rcos (¢) —Rcos (¢p+0)

Fig 4.2.6. 3 Geometry of a circular arc trajectory
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In general the position of the robot base can only be estimated to a degree of uncertainty with the
use of the above equations. This is because:

(1) Wheel slippage may occur due to uneven terrain.

(2) The controller will have some calibration error both in terms of distance movement and
velocity.

(3) Wheel diameter differences will exist due to tyre pressure variations.

(4) A collision with an obstacle may have occurred.

Additional positional information to that available from wheel odometry is thus essential for
reliable robot localisation estimates. In this work additional positional information is obtained
with the use of active stereo vision to acquire landmark visual features, which in turn are used for
map-building of the local environment, and also self-localisation. The availability of a map is a
useful tool when navigating in a previously explored environment, and can considerably reduce
the risk of becoming lost.

Landmark visual-feature acquisition, map building and navigation are covered in Chapter 5. Of
paramount importance to this work is the ability to identify and accurately locate a target object.
Identification is reliant on having accurate model descriptions of the object so that matching can
be effected. Two models are used, a 3D object-model created from the integration of multiple
views of the object, and a 3D scene-model created from only a single view of the scene
(sometimes referred to as a 2.5-D model). In the following tools and algorithms required for
building these models are described.

4.3 3D Object and Scene Modeling and Recognition

As outlined in Section 3.2, TINA, Sheffield's Machine Vision Research platform with its
comprehensive suite of libraries and tools was adopted as the software environment for
developing the model building and recognition modules used by MROLR. Other competing
image processing environments such as Target]Jt/JTUE [TargetJr], Khoros [KHOROS], and
Horatio [HORATIO] were also considered as potential platforms, but ultimately were judged not
as convenient to use, or in other instances not chosen because of their lateness in arrival on the
scene. A view of the TINA main interface module window is displayed in Fig 4.3.1 It will be
noted that as typical in Windows type program environments, the software is essentially event
driven, with the events consisting of mouse button presses. This is very useful when studying
isolated sections of work or specific options, but not conducive to a stand-alone system,
requiring essentially only one “initialising” mouse click. A considerable portion of the effort
behind this work was in writing and integrating all of the modules (incorporating three different
software platforms) to obtain an autonomous system controlled by input events arising from
MROLR's physical environment.
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— 4 |tinatool .0 X

Display New Tvtool ) View ) Temain) Exit) Help

Macro File: default _append | close ) run)
File i/0 Mono) Stereo) Sequence )

Tools Calib ) Imcal j Edge | Corner )
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| < » |

o

Fig 4.3. 1 TINA's main interface window

Prior to outlining the modules/sub-tools utilised, the relevant algorithmic and programming
approaches incorporated in TINA will be briefly reviewed. Some of these descriptions are
summaries of work in [Tin97a}, [Tin97b], [Tin99]. It should be pointed out that much of the
following is now well understood and has been incorporated in numerous machine vision
applications for some time. This specifically refers to camera modeling and calibration, epipolar
geometry, image rectification, edge-extraction, stereo matching, depth recovery, disparity
gradient constraints, 3D model-creation and the like. In light of this, the following descriptions
are intentionally brief; their inclusion here is purely for the sake of completeness.

4.3.1 Parallel Camera Geometry For Non-Parallel Stereo

Using parallel camera geometry (i.e., parallel optical axes, and image planes constrained to be in
the same plane) can considerably simplify both stereo correspondences matching problems, and
the subsequent 3D reconstruction. This simplification arises as the epipolar lines of images are
parallel to the baseline, and disparity analysis can now be restricted to a one-dimensional search
along these horizontal lines. If calibrated cameras are used, it is possible to construct an
equivalent (virtual) parallel camera geometry by a process of epipolar rectification (refer Fig
4.3.1.1). The rectification process can be implemented by projecting the original images onto the
new image plane such that pairs of conjugate epipolar lines become collinear and parallel to one
of the image axes (usually the horizontal one). The rectified images can be thought of as
acquired by a new stereo rig, obtained by rotating the original cameras. (See for examples,
[Aya91], [PPPMF88], [FP02] ).
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Stereo rectification: original image planes W, ¥, and associated points p; and p, re-projected onto a common plane

V,,V, parallel to base line C;—C, Note the epipolar lines 1,1, are re-projected as the common scanline I, I,
and are also parallel to the baseline.

Fig4.3.1. 1 Convergent to rectified stereo re-projection

At the additional cost and associated overheads of a third camera (i.e., trinocular vision)) or even
a fourth camera, it is possible to eliminate the uncertainty associated with a one-dimensional
search. See for example Ayache and others [Aya91], [Jar94].[FP02] ). Early trials using
trinocular vision were evaluated (Wingate [Win99], also Appendix A) but later abandoned in
favour of binocular stereo for computational cost reasons. An interesting comparative study on
disparity analysis based on convergent (i.e., non-rectified) and rectified stereo was carried out by
Schreer et al [SBKO00]. They concluded that each method had additional overhead costs that
needed to be considered prior to deciding whether the advantages of implementing rectification
outweighed these computational costs.

4.3.2 Modelling and Recognition Software Environment and Associated Tools

A compelling reason for using the TINA Machine Vision Research Environment is the diverse
range of software tools provided. The following modules were found to be of particular value:

(i) Calibration Tool
(ii) Edge Tool

(iii) Stereo Tool
(iv) Matcher Tool
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Brief details of these tools are discussed in the following sections, greater details are available in
[Tin97a], [Tin99] from which much of this description arises. Details of supplementation to
these tools, which is considered an original contribution of this work is outlined in ChS5.

4.3.2.1 The Calibration Tool.

This tool is provided for estimating the intrinsic and extrinsic camera parameters of a stereo
vision system, (the widely applied pin hole camera model is used). A calibration tile is utilised
and several alternative calibration algorithms are available. These are briefly mentioned below.
Arbitrary parameter selection and adjustment, radial distortion parameters, estimation of
calibration parameter covariances, for purposes of optimal combination, are features also
provided.

Calibration Methods

The following calibration procedures are included:

Tsai. This widely used routine, first developed by R.Tsai [Tsa87] is initially used on each
camera, and while returning satisfactory parameter estimations, improved results may be
obtained by additional processing (i.e., following Tsai with IP min etc).

IP min. This is a direct image plane minimisation routine that operates on the difference between
the observed and predicted locations of selected data. An iterative minimization algorithm
relying on initial estimate values is used. Left and right camera calibration is performed
separately.

IS min. This routine also performs direct image plane minimisation of the difference between
the observed and predicted locations of selected data. Left and right cameras are calibrated
simultaneously, unlike the routine above.

EPI min. This routine performs an off epipolar minimization. The routine returns the left and
right camera models that are most consistent with the observed stereo geometry. A limitation of
the routine is that only information on the ratio of the two focal lengths and the relative
transformation between the camera coordinate systems up to a scale factor is possible.
Furthermore, a covariance estimate from a previous calibration must be used to constrain the
minimization process. Additional supporting covariance estimation routines are also provided
with the tool.

The procedure for calibration of a stereo rig requires a calibration tile to be placed in front of the
two cameras, inclined at approximately 30 degrees to the cameras focal axis, and fully visible in
both images. These images are then pre-processed with the Canny operator (Edge Tool). Using
an initial estimate of the pin hole camera model, the Tsai algorithm is used to obtain an improved
estimate. Following this calibration, residual distributions can be examined and re-calibration
applied as necessary, using any of the above routines until good results are obtained.

Fig 4.3.2.1 illustrates the process of calibrating the stereo cameras using a planar tile. Accurate
location and matching of all corners is essential for good parameter estimation. The "adequacy"
of results can be visualised by performing a 3D reconstruction of the tile itself.
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4.3.2.2 Stereo Tool

The function of the stereo tool is essentially input/output generic file manipulation and display
functions for stereo image data and derived geometric features. It controls 3 display tools, one
for each of the left image, right image and resultant 3D stereo matched line/conic (i.e., wire
frame) data obtained following processing with the Edge Tool.

4.3.2.3 Edge Tool

This tool is used primarily as an interface for performing edge detection, and edge based stereo
processing. Its main application for this work has been in the recovery of 3D wire frame
geometrical scene descriptions used in conjunction with the stereo tool. It utilises the following
procedures:

Canny edge detection: This edge detection routine comprises of a two-stage process: In the
first, edges with intensity gradients above a low threshold are identified, while in the second the
edges are linked into strings. (Edge strings that are entirely below an upper threshold are
eliminated). Final linked canny edges are obtained, to sub-pixel accuracy.

Edge rectification: The position of the edge data, obtained from use of the Canny edge
extractor, are recalculated to be consistent with parallel camera geometry. The process is
followed with stereo matching, and 3D geometrical recovery.

Stereo: An effective matching algorithm, derived from the "PMF" stereo algorithm [PMF85] is
used, which relies strongly on support provided by local disparity gradient constraints. It utilises
the list edge-string structures provided from Canny edge extractor. Refer to section 6.2.1 for
details of TINA geometric list structures.

Geom2 and Geom3: Standard polygonal algorithms are applied to matched linked-edges to
identify and obtain 2D and 3D line and conic structures respectively. The resulting 3D geometry
is with respect to the left camera (virtual parallel camera geometry) coordinate frame, the origin
of which is at the optical centre.
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4.3.2.4 Matcher Tool
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Calibration of stereo cameras using planar tile

This tool was designed to provide 3D model creation and matching facilities, but at the time of
initial introduction (1999), it was only partially operational. N. Thacker [Tha99] in consultation
with M. Wingate, contributed by removing a number of limiting programming bugs, and the tool
was subsequently modified and added to by M.Wingate, as part of this work, to incorporate a 3D
object-model builder and recognition module. Greater detail of this work is given in chapter 5,
The model matcher algorithms provided and modified, are used in the recognition module both
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to perform 3D matching of object-model features to scene-model features and to compute the
transformation which takes the model into the scene.

4.3.2.5 TINA Generic List Structures

A significant feature of TINA's system libraries is the consistent use of generic list structures to
provide connectivity amongst the various data types. These provide the means of building
software with good modularity, regularity and robustness. Two basic representative list
structures are used. These are (a) the singly connected list structure and (b) the doubly
connected list structure. Each type may be applied recursively. Doubly connected lists, indexed
by their start and end are termed strings and are a widely used structure to store and process
segmented image edges (edgels). Five 3D geometric structures frequently used in this work are
vectors, points, lines, planes and conics (curve geometry i.e. arcs, ellipses, circles etc). Detailed
code of these structures is given in section 6.2 where their usefulness in the development of a
"3D Model Editor", is more explicit.

4.4 Conclusion

This chapter has outlined the mathematical notation and models used throughout this thesis. An
important outcome was the development of a stereo head model that enables feature
measurements to be referenced to a head frame that remains stationary with respect to the mobile
base reference frame. Model motion equations were developed for the mobile base, and a
summary of the models and methods used in the vision research platform "TINA" was described.

In Chapter S the motion equations for the mobile robot base are extended to include the robot's
estimated position vector f, and control vector u. These together with the camera and stereo
head formulations, developed in sections 4.2.1 to 4.2.5 are used to describe a "Simultaneous
Localisation and Map Building" algorithm suitable for autonomous navigation, utilising active
vision.
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Chapter 5 Navigation

5.0 Introduction

This chapter commences by restating the preliminary mobile robot model equations of motion
developed in chapter 4, and then describes a Simultaneous Localisation and Map-building
(SLAM) algorithm suitable for autonomous navigation in previously uncharted environments.
The algorithm utilises the well known Extended Kalman Filter and is based on the map-building
and sequential localisation algorithm developed by Davison [Dav98], [Dav01] for the Oxford
GTI Mobile Base, and the collaborative work of Wingate and Davison [WD02a], [WDO02b]. For
this work, in its current phase, navigation in a totally unknown environment is not required. The
system is intended to be capable of navigating to given sets of world coordinates where there is
some likelihood of the targeted object being in relative close proximity, (e.g. to a table in a room,
with recognition of the table not being a requirement). A limited obstacle avoidance module
based on visible feature detection has been implemented to enhance navigational reliability. If an
obstacle is detected, information relating its distance from the robot is returned and so movement
around the obstacle can be scheduled. A limitation in the current implementation is that many
obstacles do not have detectable features. For greater robustness in obstacle detection the future
addition of a sonar sensor mounted on a miniature pan/tilt platform is planned. Details of the
design and construction of the motorised pant/tilt platform are given in Burley and Wingate
[BWO02].

In general because of possible wheel slippage, calibration and measurement errors, the position
of the mobile-base, calculated from odometry, can only be estimated to a degree of uncertainty.
Appropriate modeling can ameliorate location uncertainty due to noise and measurement errors.
For instance, wheel-velocities v; and v, (subsequently used as control input parameters) may be
modelled assuming their errors to have a Gaussian variation with standard deviations
proportional to the velocity demands themselves. Values of 5,=0.14 v, and o= 0.14 v, were
found by trial and error to give good results. These expressions for uncertainty are incorporated
in position estimation modeling in the derivations to follow. For circumstances where severe
wheel slippage or obstacle collisions occur, additional positional information to that available
from dead reckoning is essential for reliable robot self-localisation estimates.

In this work additional positional information is derived via the use of active stereo vision that
acquires landmark visual features, which in turn are used for map-building of the local
environment, and self-localisation. A feature map is a powerful tool when navigating in either
previously explored or unexplored environments. For the situation of navigating in new
environments, provided suitable features can be found from the commencement of motion, these
features can be used for improving self-localisation estimates, as well as map building. Once
several features are available for tracking they substantially reduce the risk of becoming lost, in
the same way as a land-map can assist a human in finding their bearings. Known mapped
features (i.e., features mapped during a previous voyage through the terrain) can likewise be
helpful in the prevention of the loss of bearings.
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5.1  Preliminary Mobile-Base Model Equations Revisited

Referring to Figs 4. 2.6.1/2/3 in Chapter 4, the following equations were arrived at and are
reformulated here for clarity:

For constant time intervals At (see equ. 4.55), the change in angular orientation & is obtained by:
Vi— V2

0 = ———At 5.1
2D,
z(y)
If the mobile robot's position at time t is: X, =| x(1) 5.2
)

Following a constant time increment At the robot's estimated new position will be:
z(t+At) = z + R( sin (¢(t)+0 ) — sin(¢(t))) 5.3

rearranging to separate out variables ¢ (t) and 6
z(t+At) = z(t) + R(cos¢(t)sind + sind(t)(cos6-1)) 5.4

X(t+At) = x + R(cos (¢ (t) — cos (¢ (t) 19)) 5.5

rearranging to separate out variables ¢(t) and 6

x(t+At) = x(t) + R(sin¢(t)sin6 + cos(t)(1-cosb)) 5.6
and
d(t+AL) = ¢(t) + 6 5.7

when v; = v, =v (i.e., straight line case) 8->0 and R ->w and these equations can be written in a
simplified form

Z(t+AL) = z(t) + ((vi+v2)/2)Atcosd(t) = z(t) + vAtcos(t) 5.8

X(tHAL) = x(t) + ((vi+v2)/2)Atsing(t) = x(t) + vAtsind(t) 5.9

O((t+AD) = §(t) + ((v1-v2)/(2D1)) At = (1) 5.10



Chapter 5 Navigation 64

Defining the robot's estimated position vector f, and the input control vector u as:
zZ(t + AY)

£, =|xt+a9]| , u=[V‘J 5.11
ot + Ay

fy is a function of both x, and u (refer equations 5.8-5.9) and will be normally be designated as
fy (xy, u).

The covariance matrix Q of f, expressing the first order uncertainty in f, is:

Q=V(f,),UV(f,), 5.12
Where
V(z(t+At)), V(z(t+At)), RN
V{,), =|V(x(t+At)), V(x(t+At)), , U { . 2 } 5.13
V(g(t+AL)), V(p(1+AL), 0

U is the covariance matrix of control vector u, and ovl and avz are standard deviation estimates of the
errors in the velocity control input parameters v, and v,. V(f,), is obtained from:

V(aV(R), +V(JgV(8), V(JrV(R),, +V(2pV(0),,
V() = | VDRV (R, +V(DeV (8, VHrV(R),, +V(YeV(8),,

V), V(),,
Where
V(R), = __LWZ, V®), =ﬂvl_2’
(vi=v,) vy =v,)
| | 5.14
V(g), =——At, V(0,6 =-——At
(), D (9),,

1 1

V(z)y =R(cos¢cos@-singsin€) V(z), =(cos¢sin0-sing(cosb-1)) 5.15
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V(x)g =(singsing +cos p(1—cos @) V(x),=R(singcosé+cospsinb) 5.16

V(z(t+A1), V(z(t+A), V(z(t+A),
V(fy)x, =|V(x(+42),  Vx(+An), V(x(r+A1),

Vgl +An), V(g +A)), V(g +An), | 5.17

1 0 —R(sing(t)siné + cosg(t)(cost—1))]
=10 1 R(cosg(t)sind —sing)(1-cosb))
0 0 1 ]
For straight line travel v = v; = v, the previous associated expressions simplify to:
V(z), =Atcos ¢, V(z), =Atcos ¢ V(x), =Atsing, V(x), =Atsing
1 1 : L
V() =2—DIAt, v(o), = —2—DlAt , while V(f,), and V(fv)xv simplify to:
At cos ¢ Atcos ¢
V(f,), =| Atsing Atsing 5.18
0 0
and
1 0 —vAtsing(r)
V(fv)xv =10 1 vAtcosg(¢) 5.19
0 0 1
respectively.

5.2 Landmark Features For Map-Building and Navigation

For a vehicle relying on active vision to navigate autonomously in an uncharted environment, a
methodical map-building process to include surrounding stable landmarks is essential. This map
can then be used to calculate the location of the vehicle with reference to a convenient reference
point.

Essential for any feature-based active vision navigation system is a reliable feature detector and
discrete landmark features that are easily detectable from a wide range of locations and angles. In
this work, feature detection for map building and localisation is performed automatically using
the Z operator described by Shi and Tomasi [ST94]. The Z operator locates patches in an image
that are easy to track due to their large intensity variations across a patch, the associated feature
is the centre pixel of the patch.
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2

Bx &x8,y
Z=2

2
patch | 8 y8x &,

where g« and gy are the horizontal and vertical gradients of image pixel intensities.

Image patches of size 13 x13 pixels are used. Being larger than required makes them readily
distinguishable and thus more reliable, albeit at the cost of greater computational overheads.
Patches using the equation for Z above are calculated about each pixel point. Eigenvalues A; and
A, are next calculated and patches classified in ascending orders of interest according to the
values of the A pairs. Optimal feature patches are those with the largest small eigenvalues of Z.
The significance of the smaller eigenvalue being large, is that the patch has high variations in
intensity making it more visible and thus making the point feature easier to track.

5.2.1 Feature Detection and Matching

To perform a measurement on a feature requires that it first be located in both the right and left
image. In the sections that follow, it is shown that it is possible to ascertain a region in the left
and right images comprising an ellipse within which a sought feature should lie with a high level
of probability. Restricting the search to this ellipse considerably reduces the search overhead. To
find a required feature, scanning in raster order of both the left and right image is performed and
for each pixel in the ellipse region, a patch is calculated and compared with saved patches that
represent target features. The comparison is performed using equation 5.21, which represents a
normalised sum-of-squared-difference measure.

1 g, -8 &, &
N = — ! 1 _ &0 0 5.21
n(z[ - )

patch g 0

goand g, are image intensity values corresponding positions in the saved patch and image patch
respectively, and g,,g,, 0, and o) are means and standard deviations of the intensities across the

patches. n is the number of pixels in a patch. This expression is O for a perfect match, and
measures the average difference in standard deviations of values above the patch mean intensity
between corresponding pixels in the patches being compared. Davison found a threshold value
for N of 0.9 to be a suitable choice (see [Dav98, page 45]. For consistency this manually set
threshold value for N was also used (i.e. the lowest value for N below 0.9 is accepted as the best
match in the search zone). Note that any patch representation is intrinsically viewpoint variant, as
features look different when viewed from new distances or angles. A criterion for expected
visibility of the feature based on the differences between the original viewpoint and a new
viewpoint, is formulated below
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Fig 5.2. 1 Scene feature as seen from two viewpoints

3.2.2 More elaborate feature types

Rather than representing scene feature points as a two-dimensional image patch, some authors
[ZF94], [Ruc97] use planar regions in 3D world coordinates. Many real features would fit this
planar description (i.e., wall marks, door panels etc). An added overhead with this type of feature
is the need to obtain an accurate transform from world plane to image plane. This transform
would ensure the image plane obtained varied in shape and size appropriately with each new
view location, giving greater confidence in matched features. With small inter-occular base lines,
obtaining accurate transforms is however difficult and is not used here for this reason.

Other possibilities include line features and corner features. Fixating on either of these however
is more difficult due to possible line fragmentation.

5.3  Feature Acquisition and Fixation

Fixation is the process whereby the optic axis of the camera passes through the scene feature
point. Fixation ensures image processing occurs near the centre of the image where lens
distortion is at a minimum, and also minimises the likelihood of part of the feature lying outside
the bounds of the image plane. Acquiring a new feature consists of finding the best patch in the
left-image and then fixating on the feature by moving the head so the optic axes of both left and
right cameras pass through it. The process is as follows: once the left image patch has been
located, the corresponding epipolar line is generated in the right image from knowledge of the
head angles (camera motion). The epipolar line in the right image, is the image of the light ray on
which the feature must lie. A match in the right image is sought in close proximity to this line
(typically within +7 pixels of the line), and if successful the 3D location of the feature is
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calculated as outlined in section 4.2.3. From the 3D location, the head angles required for
fixation are calculated and the head positioned accordingly. If the feature is located within a
small radius (i.e., 2 pixels) of the principal point in both the left and right image, fixation is

successful; else the feature position is recalculated and the process repeated. If after several
attempts fixation fails, the feature is discarded.

5.3.1 Uncertainty of Fixation Measurements

) Scene feature
Camera image plane

Y
A
Scene image
point v Angle €
Principal point
paip >
£ > Vo
Optic axis
X
Fig 5.3.1. 1 Uncertainty of fixation measurements

Fig 5.3.1.1 shows a feature point with a small error in fixation. An accuracy of *1 pixel would
normally be expect in image measurements of detected features. To determine how this error is
translated into angular errors in fixation, the vertical difference between v and vo in terms of the
angle error ¢ is examine as follows:

V=,

fkv

tan¢ =
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Where f is the focal length and k, the vertical pixel density in pixels/metre.

The effect of a small change dv in v can be ascertained by differentiating the above equation as
follows:

oV
sec’ €06 = —

v

At fixation € will be small, approaching zero consequently sec’¢ tends towards 1 thus:

:>56‘=5—v_

Ik,
For a fixation with an accuracy of 2 pixel (i.e., dv=2) ,fk, =807,
oc ~2/(807) ~0.0024rad ~ (.15 degrees.

Head movements are repeatable to within the order £0.1 degrees, consequently errors introduced
by head movement motion are negligible in comparison to J¢ .

Essentially the implication of the previous analysis is that an angular uncertainty value of .0024
rad must be added to all head fixation angle measurements. The effect of this uncertainty on 3D
scene measurements can be quite significant when depth is large as shown in Fig 5.3.1.3. Error
values were obtained using Fig 5.3.1.2 which shows the stereo cameras having an inter-occular
spacing I metres, angular vergence uncertainty € rad, fixation angles y; - .yr, angular fixation error
e rad =Ay rad, error in Z of AZ=Bd, error in X of AX=Ad.

Consider triangle ABC, Angle B =71, Angle C =1y, - ¢,
Angle A=n- (B+C)=n-2y_ t+e&.

The error in Z, is AZ = Bd, while the error in X, is AX = Ad.
SideBC = (tan(B) - tan(C))/(/2),

Using the sine rule SideAB=SideBC*sin(C)/sin(A),

A7Z= Bd = sideAB*cos(B)

and AX= Ad =AZ*tan (B)

The significance of these uncertainties with I = 0.25 m (the inter-occular distance for our BiSight
head) and vergence uncertainties of 0.005 rad is highlighted in the graphs of Fig 5.3.1.3.



Chapter 5 Navigation 70

Fig 5.3.1. 2 Converging stereo cameras showing potential measurement errors in X and Z

Examination of Fig 5.3.1.3 reveals that transverse errors (AX) are quite small, reaching a
maximum of 0.04m at a depth of 10m, whereas the corresponding uncertainty in depth
estimations (AZ), is in the order of 3.1m. This is not unexpected, as for large Z values the camera
optical axes are near parallel, and consequently small uncertainties in the vergence angles
translate into large depth uncertainties. An ellipse with (AZ) as the major axis and (AX) as the
minor axis, is a useful pictorial way of portraying these uncertainties. Accounting for them
during localisation and map building is covered in the next section.
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Transverse errors (AX) are quite small, reaching a maximum of 0.04m at a depth of 10m, whereas the
corresponding uncertainty in depth estimations (AZ), is in the order of 3.1m.

Fig 5.3.1. 3 Fixation error estimations for I=0.25m and vergence uncertainties of .005 rad

5.4  Navigation: Map Building and Localisation

To be reliable a map-building and localisation process must account for the uncertainties due to
noise in any measurements made. An effective tool that incorporates the modeling of noise and
provides optimal estimations of location, is the Extended Kalman Filter. As with earlier authors
[New99] [Cs097] [CDT00], MROLR's map-building and localisation algorithms use an
Extended Kalman Filter.

5.4.1 Extended Kalman Filtering

Considerable literature exists on both the Kalman Filter (KF) and Extended Kalman Filter
(EKF), see for example [Sor85], [Gel96]. The KF addresses the general problem of trying to
estimate the state of a linear discrete-time controlled process in the presence of noise. The EKF
is an extension of the KF to permit its application to non-linear systems with state transitions and
whose functions contain non-Gaussian noise.
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5.4.1 Notation

The following briefly outlines the notation used for the Extended Kalman Filter. Further
explanations accompany the subsequent formulations.

State transition function {: The state transition function is designated by f. This function
incorporates the system dynamics and facilitates the estimation of the "current state” during a
time step at during which no measurements are made.

State vector x: The state vector models the system, it contains the best estimate of quantities of
interest as the system evolves with time. Importantly it incorporates any measurements (z) of the
quantities made during a time interval at. The expected evolution of the state vector with the
passage of time is encapsulated in f, the state transition function.

Current state estimation vector X: The current state estimation is stored in this vector and the
covariance matrix P.

Covariance matrix P: The covariance matrix represents the uncertainty in X due to noise Q in
the state transition. P is a square symmetric matrix, with a dimension equal to the number of
elements in X

Noise Q: This variable provides a means of allowing for random or unaccounted effects in the
dynamic model.

Measurements z and m: z is used to designate an actual measurement (i.e., using the active stereo
head), and m for a prediction of the measurement.

% (k+1/k): An estimate X of the state x at a time step k + 1, based on the estimate at time step k
and an observation (measurement) made at time step k + 1.

Innovation v: The innovation v is the difference between the actual measurement z and the
predicted measurement m calculated from the current state.

Covariance matrix of the noise R: This matrix represents the covariance of the noise in the
measurement.

Gain W and innovation covariance S: W designates the Kalman gain and S the innovation
covariance. The innovation covariance represents the uncertainty in v (i.e., the amount by which
an actual measurement differs from its predicted value).
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5.4.2 The Extended Kalman Filter

Prediction
Initially, in a step of time at in which no measurements are made, an estimate of the state of the

system X may be obtained from the state transition function f and the system dynamics as
follows:

x (k+1/k) = f( X (K/k),u(k)) 5.22

Where u is the vehicle’s control vector specifying the wheel velocities and indirectly the steering
angle (see equation5.1).

Pk +1/k) = V(f) (k) PEEk) V(1) Kk + Q k) 5.23

During the state transition the covariance matrix changes reflect the increase in uncertainty in the
state due to noise Q. f and Q both depend on u, the current mobile-robot control vector which is
a function of the wheel demand velocities v, and v,.

State Update

Following a reliable measurement, the state estimate will improve with this new information and
the uncertainty represented by P will reduce. In the following update equations, the innovation v
is the difference between the actual measurement z and the prediction m calculated from the
current state. R is the covariance matrix of the noise in the measurement, W the Kalman gain,
and S the innovation covariance, which represents the uncertainty in v (i.e., the amount by which
an actual measurement differs from its predicted value).

& (k+1/k +1) =% (k+1/R)+W(k+1)v(k+1) 5.24

P (k+1/k+1) = P (k+1/k)-W(k+1)S(k+1)W (k+1) 5.25

Where the innovation v (the difference between the actual measurement z and the predicted
measurement m) is obtained from:

v(kt1) = z(k+1)-m(X (k+1/k)) 5.26
The Kalman gain W is given by:
Wk+1)=Phk+1/K)V(m). k&) S 'k +1) 5,27

and the innovation covariance S (which represents the uncertainty in v) from:

Sk +1/&) = V(m) (k&) Pk + 1/k)V(m)] (k&) + Rk +1) 5.28
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5.5 Localisation and Map-Building

5.5.1 Formulation of the State Vector and its Covariance

At any given time, estimates of mobile-robot and scene-feature locations (in the world reference
coordinate frame) are stored in the system state vector X and the corresponding uncertainty of
these estimates in the covariance matrix P. Equation 5.8 shows these in partitioned form; X, is
the mobile-robots position estimate, and y, the estimated 3D location of the ith feature. The

dimensions of both vector X and matrix P change as scene-features are added or deleted. Note
that for brevity frame subscripts have been dropped.

xv PXX X)) Xy2
% = ?’1 pP= Pylx Py|y| Pylyz 5.29
y2 y2x YN Y2y
Where
: X,
2=1% ’ 9’ — )’}‘ 5.30
4 Z,

Note X comprises 3(n+1) elements, while P is of size 3(n+1) x 3(n+1), where n is the number of
mapped features. The dimensions of both % and P change as features are added or deleted.

5.5.2 Initialization

The filter’s initialization occurs when the mobile-robot is in the starting position
(z=0,x=0, 423 =0) at the origin of the world reference frame and aligned with it, and no known
scene-features have yet been acquired. Since the state is known with certainty:

5.31
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5.5.3 State Estimation following a Movement

75

A new estimate of state X and covariance P, following movement of the mobile-robot over a

constant time increment At, designated by the label k is:

f,(k/k),u(k)
xX(k +1/k) = ilﬂﬂ(ékkj
V(1,),, Pu(K(1,)., +Q) V(1) P, (kK) (1), P, (KK
P, (KK)(E,), P, (k) P, .. (kk)
P(k+1/k) = P, (kK)1,),, P, (kk) P, (k)

Where f, and Q(k) are defined in Equations 5.11 and 5.12.

5.32

5.33

(Equation 5.33 is obtained from Pk +1/k) = V(f) P(k/)V(f)] + Q(k). Note V(f), is the full

state transition Jacobian (equation 5.34) ).

[(V(f,), 0 0

Xy

5.34
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5.5.4 Measurement and Feature Search

Recall that both the mobile-robot and scene-feature positions are specified in world reference
coordinates, however scene-features are physically measured relative to the Head centre. The
true ith feature position (relative to the Head) is thus given by:

—x)cos¢p—(Z, —z)sing
mg =\ mg, |= Y, -M, 5.35
mf;?z (X, —x)sing+(Z, —z)cos¢

Lo

m

An estimate of the ith feature position at the current mobile base location is obtained by
substituting estimated values for the above variables (i.e., X, and y,).

Following a measurement of this vector, the innovation covariance is:

Sma =V(mg ), PV(mg), +Ru
= V(m(;i)xv Pxxv(m(;i )Iv + 2v(mci)xv nylv(mci ):1 5.36
+V(mg), P, V(mg)" +R

Note in equation 5.36, the measurement noise Ry, is transformed into Cartesian measurement
space. For transformation into angular form see section 5.5.5

The process of measuring a scene-feature is as follows: from the above estimated relative scene-
feature location, the head angles necessary for fixation are calculated (see Section 5.5.3) and the
head moved to them. The vectors m;, and m, and their covariances P, and P, are next

calculated from transformed Smg;. At fixation both m;, and m, will have zero x and y
components as the camera's optic axes pass through scene-feature.

For the left camera:

L
m
u, =~fk, i" uy, and v, =—fk,—Z+v, 5.37
mg mg,

. . . . U, | . .
The establishment of the covariance matrix of the image vector u, = [ L] is obtained from
vL

U,=V(u,), Pn,V(u, ), 5.38



Chapter 5 Navigation 77

The Jacobian V(u, ), ~contains mostly zero values since m, =n =0

Ly
“f* 5 o
mLz
Viu, ), = s 5.39
0 ~ 0
B mg, J

U defines an ellipse in the left image whose size is governed by the declaration of the number of
standard deviations. This defined area can be searched to locate the patch representing the scene-
feature in question. The procedure is repeated in the right image. Restricting the search areas in
this manner is computationally efficient as well as minimizing mismatches. Following a

successful feature match in both images the final measurement of mg,o is calculated

5.5.5 State Vector Update following a Measurement

There are considerable computational savings if prior to processing a measurement of a scene-
feature, it is transformed into angular coordinates (see Davison [Dav98, page 68]). This

transformation of m &’ , resulting in measurement vector m; is given in equation 5.40.

1 m Gix
tan @ ———

a[ m Giz

-1 MGy

m,=|¢e |= tan ! 5.40

mGip

Vi LT

tan

2mai

Where myg; is the scalar length of vector mg; and maGi» = \/( mai® + maiz" is its projection onto
the xz plane. I is the inter-ocular separation of the head. These angles represent the pan, elevation
and vergence angles respectively of an ideal active head positioned at the head centre and
fixating the feature (i.e., head offsets =0).

The advantage obtained by the use of angular measurement is that it allows measurement noise
to be represented as a constant diagonal matrix. For a successful fixation, lock-on is achieved if
the feature is located within a specified radius from the principal point (typically two pixels) in
both images. For a specified radius of two pixels his represents an angular uncertainty of around
0.3 (see section 5.3.1) and hence errors with this standard deviation (assumed Gaussian) can be
assigned to a; e; y;. (i.e., Aa; Ae; Ay;). The measurement noise covariance matrix R is given in
Equation 5.41, and it is a diagonal matrix in which o; e; vi, are independent variables, making it
simpler to represent measurement noise as Gaussian, consequently eliminating potential bias
during filter update. In addition the measurement vector m; can be decoupled, permitting scalar
measurements to be used to update the filter. Computationally this has the substantial advantage
that in updating the filter, matrix inversion is not required.
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The Jacobian for each scalar part of the measurement m; for the current scene-feature is:

Vim ) =F(m), 0 - 0 V(m,), 0 -..)

S.41
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Where scalar component m; is one of a,; e; y;. The scalar innovation S is calculated from equation
5.42 in whichP , , P aw P are 3 x 3 blocks of the current state covariance matrix P,

o Yi¥i

and R is the scalar measurement noise variance (Aaiz, Ae? or Ayi’) of the measurement. The
Kalman gain W is now calculated by equation 5.43, enabling the filter to be updated (equations
5.44 and 5.45). In equation 5.44, z; is the actual measurement component obtained from the head

and m; the corresponding prediction component.
§=V(m ) PV(m ) +R
=V(m )P V(m )] +2V(m), B, V(m); +V(m) P, V(m), +R

P

XX Xy
X P X;
W=PV(m,)S" =87 " |\Vm,), +8" " \Vm,),

yax Yay;

Note in equation 5.43 since S is scalar S =1/8.

X, =X, +Wz -m)

Z; is the measured quantity from the head while m; the predicted.
P =P, — WSW !

5.5.6 New Feature Initialization

5.42

5.43

5. 44

5.45

For first time observation of a new scene-feature i, the vector mg; relative to the head centre is

obtained and the state of the new feature y;, initialised as:
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X, X+ mg cos §+m,, sin g
- - 5. 46
Yi Y, | = My +mg
Z, Z-mg sind+m, cos ¢

The total state vector x and covariance P are updated to:

XV
X,,, = Vi 5.47
Y,
Y
[ Px.x ny, nyz PXXV(yl):v T
P = 4 nx 4 yin P yn P ysxv(y" ):v
" P yax 4 yan P yay2 P yzxv(yi ):v
Vo), P V)P, VDL P, V), PLVEL)L V)G RUVE ) |

S.48

5.5.7 Scene-Feature Deletion

Deleting the ith scene-feature simple requires its removal from the state vector, and ith row and
column from the covariance matrix. The example below applies for i = 2.

xV

XV
Y - |y, and
Y2

¥s

Ys
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PH PX)’I PX)’z PX)’J
P P P Pu B34 X3
Nnx A N2 3 N P
P P P P rpx Yin 3 5.49
Y2 X Yan Y22 Yy P
ix YN Y2y3
LP}’JX Pym P}’J)’z P}’S)’J N

5.5.8 World-Coordinate Frame Zeroing

For circumstances when it is more convenient to use the current mobile-robot position as the
reference coordinate frame, this can be accomplished at any stage by simply zeroing the world
coordinate frame and assigning the new state to:

Xv 0
y]w m ., +Mh
X = =
i vy, mg, +M, 5.50

m, is the vector to the ith feature from the head centre, and My the constant vertical offset

vector from the ground plane to the head centre. The corresponding state covariance and
Jacobian matrices are calculated using equations 5.51 and 5.52

0 0 0
v ) Vimg, ), V(mg ), 0 5.51
xew X =
n old V(mcz)xv 0 V(mcz)yz'”

P(new)=V(X"ew) ldPo[dV(Xnew )T 5.52

Xo X old
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56 Map-Building

With the above analysis, the framework for estimating the location of the moving mobile-robot

and observed stationary features is now available. The tracking of a scene-feature proceeds as

follows:
Assume that a target feature has been fixated during a measurement phase of the filter. At
the commencement of movement, the prediction step of the filter will provide an estimate
of the new position of the mobile-robot on reaching the next measurement point, as well
as the expected relative position of the target feature. Using this information the stereo
head is driven to fixate on the feature in readiness for the next measurement at the end of
the current time increment.

The actions required are:

) Using current control inputs, carry out the prediction step and provide an estimate of the
robot’s new position.
) Select the feature for tracking and calculate the estimated head angles for fixation. Move

the head to this position in preparation.

Move the robot to the new calculated position based on its odometry.
Capture new images.

Perform feature matching in both images using correlation as in section 5.2.1
If a match is found, carry out a measurement and update the filter.

It is sensible to make repeated fixated measurements of a single feature as the robot moves past,
the issue is when to search for a new feature, or track an alternative feature. It is not difficult to
envisage situations arising where a large number of features with full covariance need to be
stored and maintained during navigation. The computational overheads of updating the filter at
each step would significantly impinge on the filter’s ability to perform real-time tracking. A
solution to this situation that does permit continuous tracking without compromising the integrity
of the filter is: during motion, update only those parts of the filter that are required for the current
tracking task. A full update of the filter can subsequently be carried out when the robot stops
moving at the next step, as ample processing time is then available.

The previous expressions lend themselves very efficiently to this type of update, because only
those parts of the state vector and covariance matrix which are directly involved in the tracking
process at that time need to be updated. These are the estimated states of the sensor and observed

feature, X, and §, and the covariance elements P,, ,P, , and P .
i i7i

The algorithmic development for the continuous tracking of multiple features is continued in
Appendix C. There it is explained that by storing a small amount of information at each
transition step, the state and covariances can be updated in a generic way at the completion of
each tracking motion. A criterion is also provided as to which feature to track during navigation,
this is referred to as the "Vs criterion", and is based on known innovation covariance values of
the features under consideration.

In Section 5.7 further details of the map-building process, and the strategies adopted are outlined.
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5.6.1 Distance Increments in Place of Time Increments

In the preceding analysis, events are governed by constant time increments of As. However, a
more useful increment to trigger measurements is vehicle odometry (i.e., the trajectory being
divided into steps of fixed wheel encoder counts, for this work the step size nominally used is
20cm). Distance increments are preferable to time increments, as these eliminate accumulation of
errors due to velocity fluctuations during a time interval.

5.6.2 Advantage of Known Features

Incorporating Known-Features into the map building process has considerable advantages, akin
to using recognised landmarks to reinforce one's own position when travelling in relatively
unfamiliar territory away from home. The process of acquiring a known-feature consists of
manually driving the robot to a suitable position and pointing the head in the direction of a likely
suitable feature (i.e., one with high contrast). If the feature is successfully matched and
measured, its image patch is saved. Several examples of such feature patches are shown in Fig
5.6.2.1. The saved patch together with its world coordinates and the robot's position are stored in
a file of known-features. Known features are initialised into the state vector in the same way as
naturally found features (i.e., as feature i, having coordinates y;). The covariance P, however is

set with all elements equal to zero, along with the cross-covariances between the feature-state
and that of the vehicle and other features. This is justified as it is assumed that the location of the
known feature is 100 percent certain.
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(®)

Fig 5.6.2. 1 Example of saved known features (a) Light fitting ends and (b) Fire extinguisher sign

5.6.3 Simplified Mobile Base Trajectory Motions

V)

Motion of the mobile base is governed by the control vector u =[ J and while the analysis in

v,
the preceding sections places no restriction on the movement of the mobile base, motions
comprising pure rotations and linear path trajectories are the simplest and most effective in
practice. A pure rotation is accomplished by setting v; = - v, while for translation vi = v, In
tests of the mobile base navigating to designated waypoints, the magnitude of the steady state
velocity is set to a constant value with angular rotations and number of steps the only trajectory
variables required to be calculated by the software controller. Generally, trajectories from one
waypoint to the next consist of an initial rotation about the central axis of the base, a translation
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directly to the waypoint, followed by a further rotation about the central axis of the base, to align
the it with the specified orientation. Occasionally when differences between odometric and
position estimates, based on feature measurements exist, the assumption is made that the
odometry is in error and corrective movements are made.

5.7 Map-Building Strategy Adopted

The final map-building and tracking strategy adopted and the rational for the decision making
process, are outlined in this section. These stem from the derivations detailed in Appendix C.

The map-building process commences when the robot is about to move for the first time. In
searching for suitable scene-features, in an effort to ensure a wide selection is found, the stereo
head is pointing slightly up, and is first directed to the left, then straight ahead and finally to the
right. In principal, during this search up to three new features could be found and added to the
map. While this is unlikely in view of suitable features being somewhat scarce, the rule that a
new feature be added if less than 2 features are visible at any given location has been adopted.
This rule ensures a sparse map is created, furthermore in maintaining the map it is important that
obsolete features be removed. Features are deleted if out of 10 measurement attempts more than
half are unsuccessful.

Which features are subsequently chosen for state vector updating, is determined by assessing the
uncertainty of their position relative to the robot. This measure of uncertainty is obtained by
comparing the scalar space volume measure Vs, which is related to the innovation covariance
values of the feature. The principle adopted is that the "best' feature to measure (for the long-
term integrity of the map as a whole) is the one with the least certainty, as the measurement
process will improve its estimated position, thus reducing the overall uncertainty of the state
vector. For instance if a feature is known with zero uncertainty, a further measurement of the
feature cannot improve on the uncertainty of its position. While tracking a feature however, some
cost needs to be attributed to saccading to a new feature as each saccade encroaches on the total
navigation time.

The approach adopted is to decide while the robot is moving, whether to switch to a new feature
or stay tracking the existing one. The choice is based on the predicted robot and map-state that
would exist in a short future interval of time if (a) the saccade and measure of the chosen feature
was made or (b) tracking of the existing feature continued. The "short future interval of time" is
the estimated time it would take to saccade and measure any of the features.

Formally the decision process is implemented according to:

1. N;, the number of measurements that would be lost while saccading to each of the visible
features is calculated. To determine this, an estimate of head movement time to correctly move
to and locate each feature is required.

2 Ascertain the largest N; (Nmax ), this represents the largest number of measurements lost during
the longest saccade.
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3 If an immediate saccade is to be made, estimate for each feature i the state that would exist
after Nmax + 1 steps.

4, Evaluate Vs(max) for each of the above estimated states and saccade to the feature with the
lowest Vs(max) unless the Vs(max) of the feature being tracked is the lowest.

5.8 Software Development

5.8.1 Development and Modification of Navigation Software

As previously stated the development of the navigational software is based on SCENE [DavO01].
The motion models outlined in this Chapter and Appendix C were developed for the TRC mobile
base and Bisight head, and these replaced SCENE's existing “default” models where appropriate.
Furthermore, because of the trajectory simplifications outlined in Section 5.6.3 the "Control
Parameter Section” of the interface GUI was able to be reduced to contain only the Displacement
(m), Steering Increment (degrees) and Number of steps. (Velocity, Turret increments, and Time
step slide adjustments controls were removed).

In addition to the above and title name changes, the following functions and associated interface
buttons were added:

(a) Obstacle Avoidance (Navigate around obstacles),

(b) Recognition

The interface GUIs are shown in Figs 5.8.1.1 to 5.8.1.3.

5.8.1.1 Navigating to Specified Destinations (Waypoints).

The Waypoint Browser (Fig 5.8.1.3) holds the locations of sequential stopping destinations.
Navigation to the next waypoint commences on the mouse click of button " Navigate to Next
Waypoint" (Fig 5.8.1.2). In this case the route is assumed obstacle free.

Scanning for target objects commences on the mouse click of button "Recognition" (Fig 5.8.1.2)

5.8.1.2 Obstacle Avoidance Function.

If obstacles are likely, then instead of clicking " Navigate to Next Waypoint", the button
"Navigate Around Obstacles" is selected. With this selected, prior to the commencement of each
step the head tilts down and checks for an obstacle. If one is detected within a depth of 1 metre
an additional waypoint is automatically inserted. Fig.5.8.1.4 illustrates this process

Since the search for obstacles occurs at each step, the time taken to navigate between waypoints
Increases proportionally to the distance travelled.
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5.8.1.3 Dead Reckoning Option

A command line option has also been provided for use when neither mapping nor obstacle
avoidance is required (i.e., SLAM not required). For this "Dead Reckoning Option", the base
simply relies on its odometry encoder values for localisation. It is the fastest mode of path
navigation, and is quite reliable when the terrain is a level floor. Flow Chart Fig 5.8.1.5
summarises the options.

Fig 5.8.1.1 Head control GUI
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Fig 5.8.1. 2 Navigation GUI

Fig 5.8.1.3 Waypoint browser GUI
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5.9 Data Measurement Examples

Examples of data measurements, for a map size of 2 features, at step 3 are given below. Note the
number of significant figures printed do not reflect the accuracy of the data.

Step 3
No of features 2

State vector

oy
Il

0.884382
0.993516
0.0305666
1.04299
1.04177
6.24433
-1.04419
1.04236
4.1569

Covariance Matrix

P=[

0.000472303 0.000224005 -2.74943e-05 8.00617e-05 5.45943e-05  0.000602076 -0.00023809 0.000196054 0.000953954
0.000224005 0.000289892 -2.07999¢-05 0.000187995 0.000195976 0.00127189 -0.000198764 0.00020446 0.000867573
-2.74943e-05 -2.07999¢-05 1.33371e-05 3.07865¢-05 1.31344e-05 .2439e-05 5.32473e-07 3.16899¢-06 6.16399¢-06
8.00617e-05 0.000187995 3.07865e-05 0.00036703  0.000285048 0.00166124 -0.000203065 0.000229519 0.00093282
5.45943e-05 0.000195976 1.31344e-05 0.000285048 0.000701177 0.00211657 -0.000166389 0.000184586 0.000733035
0.000602076 0.00127189 5.2439¢-05 0.00166124 0.00211657 0.0124287 -0.00109314 0.00117172 0.00475933

-0.00023809 -0.000198764 5.32473e-07 -0.000203065 -0.000166389 -0.00109314 0.000313161 -0.000255231 -0.00107892
0.000196054 0.00020446  3.16899e-06 0.000229519 0.000184586 0.00117172 -0.000255231 0.000393117 0.000984229
0.000953954 0.000867573 6.16399¢-06 0.00093282 0.000733035 0.00475933 -0.00107892 0.000984229 0.00420907

]

Eigenvalues associated with each feature measurement

0.000112516 4.36763e-05 4.23311e-06
0.000110681 4.42953e-05 4.26137e-06

Best score found: 6.0545¢-07.
Auto-selected feature with label 1.

Covariance matrix of noise

R
4e-06 0 0
0 0.0001 0
0 0 4e-06

]

Innovation Covariance Matrix

S =]
4.42963e-05 -3.15737¢-07 -1.4381e-07
-3.15737¢-07 0.000110679 4.00568e-08
-1.4381e-07 4.00568e-08 4.2619¢-06
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5.10 Conclusion

With the navigational formulations in this chapter complete, the remaining algorithms that still
require to be developed relate to:

target object-modeling,

scene-modeling,

target object recognition,

target object retrieval, using the docked robot arm.

Each of these tasks, together with the provision of a "3D Virtual Environment" for simulating
MROLR, are considered in the following chapter.
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Chapter 6 Object Modeling, Recognition and Retrieval

6.0 Introduction

This chapter considers object and scene modeling, recognition, and retrieval of the located object
from the scene.

Section 6.1 outlines an automated 3D object-model producing facility, designed to produce an
object-model data base comprising all objects that MROLR is likely to be requested to locate and
retrieve on command. Section 6.2 includes the development of a 3D object-model editor.
Sections 6.3 to 6.5 outline the development of the object recognition module that is responsible
for matching the requested object with objects found in the scene. For a successful match, the
appropriate transform (and consequently the object's pose) to transport the object-model into the
scene is also provided.

Sections 6.6 and 6.7 deal with the docking of the robot arm, and the establishment of the
additional transforms necessary to guide the arm towards the specified object's grasp-point and
finally retrieve the located object.

Section 6.8 discusses the development of a "3D Virtual Environment" for simulating MROLR.

6.1 Automated Model Creation

The recognition process involves the matching of an a prori specified object-model with a scene-
model. Methods of building object-models were reviewed in Chapter 2 where it was concluded
that for the current application, a 3D wire-frame (edge-based) model was a suitable choice
(section 2.2.7). Reasons for this choice of modeling are:

(@) Matching is carried out in 3D Eucledean space which ensures angular and linear
measurement invariance (i.e., relative angles between lines, and arc lengths remain fixed).
This is essential, as the object in the scene will in general have an unknown orientation.

(b) Matching in 3D Eucledean space permits positional information to be calculated in terms of a
homogeneous transform giving orientation and translation details of the matched scene-object
relative to the model-object. This transform is available for transporting the model into the
scene allowing visual verification of the quality of the match. It is also a necessary component
for obtaining the resulting transform that guides the robot arm towards the object in the scene
for retrieval.

(¢) It requires only sparse data matching thereby keeping search and computational costs to a
minimum. Given the large number of items available in any given scene, a non-sparse data
modeling would be prohibitive.



Chapter 6 Object Modeling, Recognition and Retrieval 93

One obvious disadvantage of this modeling approach is the small number of available features
for matching (i.e., lines and conics). Additional local characteristics such as object colour,
texture and surface properties could be added to the list of features to increase the robustness of
the matching process. The addition of these will be considered for future work when faster
processors should become available.

The following briefly describes the need for models created from several views and then
describes the methodology of the model creating process. If two images of a scene are captured
using a pair of calibrated cameras, edge based binocular stereo triangulation can be used to
obtain a partial 3D edge outline of the scene as depicted in the left (or right) camera image. This
is of limited use for 3D recognition however as local features associated with the object (or
scene) are only depicted from one view. Thus if a solid cube object (Fig 6.1.1) has letters ‘A’
printed on the front and ‘B’ on the back, the letter ‘B’ may not be visible from a particular view.
If both letters were required for recognition, the block would not be identifiable.

Fig 6.1. 1 Features remain static w.r.t object’s frame

A 3D outline of the complete cube (i.e., hidden edges included) on the other hand, would ensure
all its surface features were visible, and would thus constitute a suitable object-model for
recognition.

To facilitate automated object 3D-model creation, a PC controlled rotating horizontal table and
two cameras mounted on extended rails, was used to obtain a sequence of stereo images of
desired objects (Fig 6.1.2). Two smaller portable PC controlled tables, described below, were
also subsequently built and used.

Fig 6.1. 2 Models created on computerised rotating table
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From each stereo pair of images corresponding to a rotated view, a 3D partial edge outline was
derived and then integrated to form a complete model. The coordinate frame for each view was
(by default) with respect to the left camera's optical centre. Merging the independent views
requires all re-constructions to be with respect to a unique (although arbitrary) coordinate frame
attached to the object. As the object rotates with the table, so too does its coordinate frame,
thereby ensuring the object's physical dimensions and features remain static with respect to that
frame (Fig 6.1.1). These would however change with respect to any stationary reference frame.
The world reference was chosen so that its Z-axis coincided with the table's central axis of
rotation. The object's arbitrary coordinate frame is aligned with the world coordinate frame for a
table rotation angle of zero.

As the final object’s reconstruction is required with respect to its own coordinate frame, two
transformations of 3D edgels are required. The first from the left camera coordinate frame to the
static world reference frame, and then a simple rotational transformation (about the world Z-axis)
to transform the edgels to the object's coordinate frame. Using a calibration tile (Fig 3.1.2) whose
Z-axis also coincides with the table's centre, and a knowledge of subsequent angles of table
rotation, enable the required 4x4 (homogeneous) left camera to world, and world to object
transformation matrices to be determined. Each edgel of the reconstruction is subsequently
transformed to the desired rotating reference frame and combined to form the 3D models.

The final stage of model creation requires the manual formation of:

(a) Groups (termed cliques) consisting of a distinctive focus feature (such as an arc length or
long line) and any number of surrounding features in close proximity.

(b) GrasPing location data. Each object-model is given a nominal (X, Y, Z) point together with
optional’ yaw, pitch, roll, guidance angles. This kinematic information in the form of a
homogeneous transform is supplied to the robot arm at the time of retrieval.

The clique size and number is essentially determined by the availability of features, moreover, a
focus feature in one clique may be used as a surrounding feature of another clique. Cliques are
stored and associated with the model, and they provide the features to be matched during the
recognition phase. Further details are given in section 6.3. Examples of cliques are given in Fig
7.1.12. Fig 6.1.3 depicts created 3D-models of a cup and an alphabet cube.

The above procedure was coded and added to TINA’s Matcher tool source code. Further details
of this are provided in appendix B. Initially, three objects, an alphabet cube, a mug, and a teapot
were produced for test purposes. These models comprised a simplified database of objects to be
recognised in a scene. Fig 6.1.4 shows the stereo images of a scene containing these 3 objects
and the subsequent scene-model produced from the images.

' For most cases gripper orientation angles of 0° or 90° are specified.



Chapter 6 Object Modeling, Recognition and Retrieval 95

{ 1 ._I_ __:;. 3 ' 2| J.-. | .' ‘ 3

[,{ )15 = L= ."_1,.‘. !I. |J | || ‘_'?..
| L ] s ’.IJ'-:; | r|L :.: - '(' % ..";.'l_ 1
St gt L Thar 3
= = __.- .f 3 s Foe

SR | I ' I' J =l
ey ; = : .l J .
(a) (b)
Fig 6.1. 3 3D created model of (a) cup and (b) cube

(@) (b)

Fig 6.1. 4 (a) Stereo images of scene  (b) 3D scene model

Portable Tables for Model Creation

Two portable computer-controlled tables considerably smaller than the one shown in Fig 6.1.2,
were later designed and constructed. One being light and easy to move (Fig 6.1.5 a), the other
robust, and fitted with level and height adjustment (Fig 6.5.1 b). These permit the cameras
mounted on MROLR's stereo head to be used for the automated model creation. The main
benefit of these tables is their portability, and the elimination for the need of a duplicate set of
cameras. Subsequent models were created using these. Appendix B provides additional details.
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(b) Two views of the heavy duty model creation turn table with adjustable height level

Fig 6.1. 5§ Portable model creation tables
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6.2 Model Enhancement — Model Editor

A Model Editor was developed to facilitate the manual removal and addition of 3D segments in
formed models. This editor utilises many of the 3D geometric list structures library functions
provided with TINA and in particular those associated with TINA's geomstat tool. At the
commencement of this work, the geomstat tool was at an incomplete stage having no
input/output stream facility. However numerous functions for 3D line manipulation were coded,
and a relatively small amount of supplementation made it useable as a model editor. This
additional code was added and linked to form a module titled “Model Editor”.

Editing of models is desirable on occasion as double lines or conics arise as a result of camera
lens distortions and/or calibration inaccuracies, or lines are fragmented or omitted altogether due
to occlusions. An example of the editor’s application to one of the test cubes is shown in Fig
6.2.1. While such enhancements are aesthetically pleasing they provide an additional processing
overhead and in general are found to provide little or no improvement in recognition capability.
This stems from the fact that scene-models (produced while panning and therefore not available
for editing) frequently contain broken or missing edge segments (Fig 6.1.3).

— 4 [Modei Eaitor - 0 X — 44 unatool

Sizo ™ Houss ~ ) ROI ¥ ) Proy © | ‘Display New Tv_toaj__\llsw_]__TenaIn)
install | clene inft | repaint ) Macro File: defaulg append | ¢lose | run |

File VO Mono: Sterso | Sequence |

Tools Edge | Corner | Imcalc i

Matcher | Sterao Test | Modal_Editer | SmartROl) Callb

nearest font 6x10

— - Maodel_Editor Tool - 0%

"Plck: Edit <1 Add - | Inposo © | Cosmetic ¢ | Batch 7 |

Pick Geom « 1 Print © | Hetric 71
_| Verbose _| Do correct Correct |
Directory Name: ./
Base Name; voubel,

Filo ireut | throed irput ) Sove Edits ITv list: [state

(a) Editor (Edited Model, Conics not displayed)

(b) Resulting Model
Fig 6.2. 1 Application of model editor to a raw 3D cube model
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6.2.1 TINA's Geometric List Structures

Five 3D geometric list structures used throughout much of this work, in particular for model
creation, editing and object recognition are: vectors, points, lines, planes and conics (i.e., curve
geometry such as arcs, ellipses, circles etc). TINA's software infrastructure encourages the use of
these list structures. Details (extracted from TINA's User Guide) are given in Fig 6.2.2.

typdef struct vec3

{ .
Ts_idts_id ; /* Tina structure identifier */ t{ypdefstruct conic
float el[3] ; /* point in 3D coordinates */ T idts id /* Tina structure identifier */
vesk unsigned int type;
i unsigned int label;
typdef struct lines3 int filler1: /* SUN platform dependance

{

parameter fix*/

TS—.id ts—ifj ; 7* Tina structure identifier */ double a, b, ¢, d, e, f, /* algebraic formulae */
unsigned int type; double theta, alpha, beta;
unsigned int label; struct vec2 center ;
. * ints * ’
struct vec3 pl,p2; /* end points */ , int filler2; /* SUN platform dependence
struct vec3 p, /* point on line */ parameter fix*/
it/TUCt vecl v, /% direction vector double t1, t2; /* conic params of pl and p2 */
i . int branch; /* for hyperbola only */
float length; _ /* line length %/ List *props; /* property list used to associate
struct list *props; /* property list used to associate extra specific information */
extra specific information */ } Conic
} Line3;
typedef struc conic3
{

t{ypdef struct plane Ts-id ts_id; /* Tina structure identifier */
Ts_idts_id; /* Tina structure identifier */ int type;
uns!gned Int type, struc conic *conic;  /* describes the conic
unsigned int label; in the plane */
struct vec3 p; /* point on the plane */ . struct vec3 origin;  /* origin point on plane */
struct vec3 n, /* a normal to the plane*/ struct vec3 ex, ey, ez; /* define x,y,z axes:

. . ) ez =normal */
struct list *props; /* property list used to associate } Conic3;

extra specific information */ ’

} Plane;

The coordinate frame in which the conic lies is at origin and has axis ex, ey and ez. Note the 2D conic lies in the xy plane.

In conic the arc covered by the curve is between angles t1 and 2 in radians. All angles are positive with O along the x axis and times Pif2
along the y axis. The arc goes from t1 to t2 in strictly ascending order, t1 will be less than 2*Pi but t2 may be larger than 2*Pi if the arc
passes back through the x axis.

The implicit algebraic equation that represents its form is given by ax? + 2bxy + cy* +2dx +2ey + =0,

Theta is the angle of the major axis, alpha and beta are the lengths of the sem-major and semi-minor axis respectively,

The conic type can be any one of :
ELLIPSE

HYPERBOLA

DEGENERATE

The field branch is used to differentiate which part of the hyperbola the data lies on.

Fig 6.2. 2 TINA 3D geometric list structures
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6.3  Recognition Algorithm

The recognition algorithm, in TINA's Matcher-tool module, written by Pollard et al [PPMF87].
[PPM91] was extended by the addition of code to both automate the recognition process and to
include it as an integrated module of MROLR. This was necessary to facilitate the autonomous
operation of the system. Recognition is based on pairwise matching of primitive geometrical
features associated with a model and the scene (termed cliques). For object-models cliques are
manually chosen following their creation (refer section 6.1), and consist of a distinctive focus
feature (such as an arc length or long line segment) and a number of surrounding local features in
close proximity. Object models in general require sufficient cliques so that adequate features
maybe matched in a scene, irrespective of the object's orientation. Focus features provide a basis
for determining maximal consistency of neighbouring elements within a clique. Features
comprise 3D line segments and or 3D conic segments.

During matching three pairwise relationships are tabled. These are (a) orientation, (b) minimum
distance apart, and (c) distance from minimum distance apart. These geometrical
relationships are illustrated for a line feature in a model and a scene in Fig 6.3.1. TINA 3D
straight-line segment structure formats, in addition to an Id label identifier, are represented by the
quadruple (15, I, e;, m;) (see Fig 6.2.2 for code details). These parameters represent the two end
vector points 1, and 1, the direction vector between them e; and the centroid of the line, its
midpoint m; =(1; + L)/2.

Fig 6.3. 1 Matching of line segments

(a) Orientation difference between two pairs of potential matches o : This is obtained from
the dot product of e, and e, ie & = cos -1 (e, -€,).

(b) Minimum distance apart between (extended) lines d:
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This is represented by the unit vector (normal to each line) d, where:
d = (e1x e2)/|e; x e, | and the scalar distance between the lines h, where:
h = (my-m,) - d. If the line segments are close to parallel the distance used is the
perpendicular distance between the lines:
h=|(m;- m;) — [(m; — my) - e ]ey|.

(c) Distance from minimum distance apart s, t, q: For non-parallel lines, the distances along
the lines to the start and finish of each line, from the point of minimum distance apart is used.
From the above, the vector between the points of minimum distance apart is given by: h = hd.
Moving m; to m’; by adding -h produces a line (e;, m’;) such that lines (e;, m;) and (e;, m’;) are
coplanar and meet at the point of minimum distance apart on (e;, m).

qr = {(e2 x &) - [e2 x (M2 — )]}/ |ez x €y}
is the signed distance to that point from m, in the direction e, Scalar distances from 1, and I,
to that point are given by

si=qi+(my-1;;)- e and

tl =q; + (m - 1,2) - e, respectively.
Similarly the distances to the point of minimum distance apart along line2 are

$2=q+(m —L,) -e;and

b=q@+(m-hLy)- e
Prospective matches for each pair of elements {(s;,t), (Si+1,ti+1)} from the object model description
can be tested for geometrical correspondence with each pair of elements in the scene model.

6.3.1 Stored Table of {(sit;), (Si+15ti+1 )}

An advantage of the use of the pairwise elements {(s;,ti), (si+1,ti+1 )} is that they can be calculated
separately for each pair of lines and stored in look-up tables. To accommodate errors and scale
differences, an overlap range is provided. Errors are accounted for as follows:
Pairs of lines are allowed errors | n; | < By and | 12 | < B2 on the location of their centroids (my
and mp) and direction vectors (e, e;). The latter allowable errors are in terms of angles 0, and 0.
On orientation differences, the interval is :

[max (o - 6, - 6,, 0), min(a + 6, + 6,, 7)),
while for the minimum distance apart between (extended) lines, the interval is

h £ (Bi+ B2+t |quf tan ¢y )

Fors;,t;,and s; , t; the permissible range is:

si £ (B1 + B2+ |qe| (tan 64/sin a))

ti £ (Br + B2+t qf (tan 65/sin @ ))

sy = (B] + B2+ |q1| (tan 0,/sin o ))

L (B] + B2+ |q|| (tan 01/sin a))
A similar range of overlapping intervals is provided for pairs of conic features (i.e., arc lengths
and radii etc).
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6.3.2 The Matching Process

Object model focus features are selected in sequence, closest matches to the selected focus
feature in the scene model are considered as potential matches, and neighbouring features
considered in terms of their pairwise geometrical relationships. Found cliques are ranked
according to the highest number of neighbourhood matches consistent with the object model
group size.

Transformations to place each found clique into its corresponding position in the scene are
calculated using the method described by Faugeras et al [FHPP84]. Cliques that produce near
identical transforms are considered as belonging to the same object. The mean transform that
will transport the model into the scene is returned, facilitating the calculation of the pose of the
object in the scene. The transform returned is the commonly used 4 x 4 homogeneous matrix
comprising a 3x3 rotational submatrix and a 3x1 column translational vector.

The current sequence of matching a model with a scene is:

1. Build pairwise geometric tables

2. Match cliques

3. Compute the transform of the object model to carry it into the scene.

4. Transform the model into the scene (placing and displaying it over the recognised object. This
provides visual verification of the quality of the match).

Associated with the matching process are seven parameters whose values can be adjusted to
reflect the confidence in the scene data namely:

(a) Clique size, (b) position error, (c) rotation, (d) length threshold, (¢) maximum rotation, (f)
maximum translation, (g) length ratio.

6.4 Automation of Recognition Process

To automate the recognition process the “current matching sequence” mentioned above was
formulated into several nested iterative loops in which the 7 parameters are systematically
modified in a "fuzzified" like, fine-to-course adjustment, to reflect a reduction in data confidence
levels. Iteration continues until either recognition occurs, at which stage the process is exited, or
the set number of iteration step levels is exceeded, and recognition is deemed to have failed. If
recognition failure occurs, the next captured scene model is entered into the loop. This process
proceeds as the pan-tilt-vergence head sweeps through a pan arc of —20 to +20 degrees.) tilt and
vergence angles being held fixed. This is repeated at each scheduled observation station
(waypoint).

Fig 6.4.1 depicts the recognised cup and alphabet cube transformed into the scene, note that pose
and scale have been correctly identified.
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Fig 6.4. 1 Model Cube and Cup scaled, and placed over objects in the scene

6.5 Model Creation (An Alternative Method)

With the above matcher software it is possible to create a 3D model generating facility without
the use of a rotating table. All that this requires is to form a sequence of single view models of
arbitrary orientations (by manually turning the object about), and to match each to the first
(reference) view. The returned transform for each match would be used to sequentially integrate
the matched model with the reference. This method certainly has appeal as it makes the whole
scheme more portable (in not needing the extra hardware) and more robust in that the orientation
returned by the transform is likely to be quite precise. The drawback of this method is that it
requires laborious manual intervention because as the model grows with each sequenced
integration of single model views, new focus features and clique groups need to be found and
stored, to ensure matched features in the next sequenced view. With the current model creating
method, sequenced views are integrated automatically, and clique groups required to be found
only for the fully integrated finished model.

6.6 Pose for Object Retrieval

Pose information to carry the object-model into the scene (as outlined in section 6.3.2) is
returned in the form of a transformation matrix. This matrix provides the necessary rotational
and translation information to transport the 3D model into the scene. Observing the object-model
correctly aligned with the object in the scene is useful for visual verification of a correct match.
To provide a suitable grasping point for the robot arm's gripper, each object-model has a
designated X,Y,Z location and angular Yaw, Pitch, Roll, information stored at the time of object-
model creation. This positional information is also transformed into the scene along with the
model, the numerical value is obtained by multiplication of the grasp point vector by the
transform, the resulting vector being m* (see Fig 6.7.1). It is important to appreciate that the
mode] points transformed into the scene are all initially referenced to the left camera's coordinate
frame, which does not remain fixed because of head motion. The head-centre frame Co, having
its origin at the intersection of the pan and tilt axis does remain fixed with the heads movement (
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Fig 6.7.1). Using the head-model derived in Chapter 4 (and more specifically equation 4.3.6) all
transformed model points are referenced to frame Co, m* thus transforms into m<°.

6.6.1 An Alternative Method For Object Grasping,.

The method described above relies on precise alignment and scaling of the transformed object
into the scene. This stems from the fact that the grasping information originates from the object-
model and needs to be accurately transported into the scene. A simpler alternative approach is to
obtain an estimate of only the translation necessary for object grasping and subsequently pick up
all objects from the top, using a wide opening gripper. Translational information can readily be
obtained from the 3D centroid of the matched scene-object features (i.e., lines and conics) i.e:

2, m,
For n matched centre points m;, Centroid =-=L— .

n

Unfortunately, wide opening and closing grippers are not readily obtainable.

6.7 Retrieval of the Object

As our robot arm cannot be mounted onboard the mobile base due to space considerations, it is
currently mounted on a caster platform and manually docked with the mobile base to facilitate
the testing and development of the algorithms. The construction of a second (transport) robot
mobile base is in progress (see Fig 6.7.2) and appendix B for design details), and in the next
phase of this work, this will be summonsed by a wireless link to dock (automatically) with the
main (scout) mobile base following object recognition.

When docked, the base frame of the robot arm remains at a fixed distance relative to the head-
frame Cy, consequently since the located object’s pose is known in this head-frame, it is a simple
matter to obtain the pose of the object in the base frame of the arm.

Co
Let TObject ’

with respect to the main head-frame, the main head-frame with respect to the robot arm base,
and the object with respect to the robot arm base.

TC'Z"", T(;‘,,jf;’c, respectively represent the homogeneous transforms of the object

nxo Oxo axo pzo n.xa Oxa axa pxa
TCo - n)"’ 0)"’ a)’o p)"’ TArm _ n)’” 0)’” a}’” p)’”
Object — » Gy T
nzo Ozo azo pzo nza Oza aza pza
0 0 0 I 0 0 0 1 |

Where the 3 x 3 sub matrix comprising of column vectors n o a represent the orientation of the
frame of interest (i.e., subscripted frame, object) with respect to the reference frame (i.e.,
superscripted frame, Cq) and column vector p represent the translation between the two frames.
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The object in the base frame of the robot arm is obtainable from:

Arm o Arm 1 Co
TObjecl - TC() TObject 6.7.1

Arm . . . : . . .
If however Tcom' is not easily measured, it can be obtained with the aid of a test object from:
Am __ A C -1
TCO"'" - TOIZZCI (TOI(J_)ject ) 6.7.2

To find Tg‘o"” it 1s simply a matter of manually guiding the arm to pick up the test object, noting

the arm X, Y, Z coordinates to achieve this, and then using equation 6.7.2. In the docked
position the robot arm's reference coordinate frame was aligned parallel to the head-frame so that

Xey2> Yy Yoo 224, Zc, > X, - The relative orientation of the head-frame with respect

rm Arm >

to the robot arm is shown in Fig 6.7.1. The associated transform Tc"o"" was determined to be:

(0.0 0.0 1.0 —627.0]
1.0 0.0 0.0 -1040.0
0.0 1.0 0.0 711.0 |, distances specified in mm.
0.0 0000 1.0 |

TArm =

&}

The transforms were verified by gasping an object with the following position variables, supplied
by the arm's controller, and comparing the results obtained from transform products.

X Y Z Roll Pitch | Yaw
220.0 | (-570.0) 270.0 * * *

* as required for grasping

Choosing a local object coordinate frame (i.e., frame attached to object) with the orientation
shown in Fig 6.7.1,

[ -1.0 0.0 0.0  220.0 |
0.0 1.0 0.0 -570.0
0.0 0.0 -1.0  270.0

| 0.0 0.0 00 1.0

TArm -

Object

and
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[ 0.0 1.0 0.0 47.0]
0.0 0.0 -1.0 —441.0
-1.0 0.0 0.0 847.0
| 0.0 0.0 00 1.0

C
TObject -

using Tagm, = TL™ T

Object Object
results in
[-1.0 0.0 0.0 220.0]
T 00 1.0 0.0 -570.0
%100 00 -1.0 2700 as expected.
. 00 00 00 1.0 |

Several test runs were carried out using this "parallel” arm orientation (see Fig 7.2.12), however
the arm's reach restricted the retrieval of scene-object to being in very close proximity.

To obtain greater reach, the robot arm was rotated 45 degrees towards the head.

(ie., T requiring a 3x3 orientation sub matrix as below, ? values to be determined).

[—.707 0.707 0.0 ?
6 _ 00 00 10 ?
™ 10707 0.707 0.0 7
|00 00 00 10

. A :
Once again TO,ZZC, was determined from the arm controller:

[-.707 0.0 0.707 545.0]
0.707 0.0 0.707 0.0
0.0 10 00 4290
| 0.0 0.0 0.0 1.0 |

TArlm _

Object —

The object with respect to the head was manually measured to give :
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(1.0 0.0 0.0 747.0
0.0 1.0 0.0 —246.0
0.0 0.0 1.0 1003.3
| 0.0 0.0 0.0 1.0

Co _
TObjecl -

(Note this time, an object-frame parallel to head frame Cy has been arbitarily chosen, resulting in
a unit 3x3 submatrix).

Using:

TS

Arm

_mC Object _ mpCy Arm -1
- TObjecl T - TObjecr (TObjecl )

Arm

[—.707 0.707 0.0  460.0 |
0.0 00 1.0 -675.0
Am =1 0.707 0.707 0.0 618.0
|00 00 00 1.0

Manual measurements confirmed these values to be correct.

This 752 transform was used in all subsequent scene-object retrieval trials.

Others i.e. Jagerand et al [JFN97] use visual servoing rather than joint control to successfully
manipulate objects. This method requires the establishment of a visual-motor Jacobian, obtained

by visually observing changes during object movements and relating these to particular
controller commands.

In this work the object grasping transform 7, O”b;':c, is obtained directly once the object's pose,
relative to the main head-frame, is obtained.
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-\.oﬂ Vergonce

Fig6.7.1 Relative position and orientation of head and arm coordinate frames remain fixed
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The addition of wireless communication and auto docking capability, a future task

Fig 6.7. 2 Partially completed transport mobile base
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6.8 MROLR System Simulator

The development of a "MROLR System Simulator" was undertaken and is at an early stage of
completion. The Simulator will be provided with models representing the mobile base, landmark
features, a target-object and a docking robot arm. In its present state, it consists of two non-
integrated modules. Each module is based on, and builds upon the work of existing simulators.
The first module utilises and builds upon the code associated with a simulator that is part of A.
Davison's SCENE package [Dav01]. The second module is based on and builds upon Gurvinder
Pal Singh's "Virtual Robotics Lab" [Sin99]. As Gurvinder's software did not include a robot
compatible to the UMI RTX, this robot was coded and added. In addition the software extended
to provide the necessary additional degrees of freedom (an increase from 5 to 6) required by the
RTX. Inverse kinematic solutions were also not included with the simulator; these important
algorithms were coded and added to facilitate direct movement to specified "x,y,z" positions with
"yaw, pitch, roll" gripper orientations. Details of these additions are given in appendix B. Extra
push buttons were also added to the "Control Pad" to facilitate these new movements (see Fig
6.8.4).

Module 1 graphically models the moving vehicle navigating to specified waypoints with the aid
of displayed (selectable) landmark features. It utilizes the same EKF and mapping algorithms
used by MROLR (with full covariance estimations of vehicle location and landmark features). A
random generator is incorporated to simulate wheel slippage, and noise. Other features include
the display of true positions in yellow and estimated positions in green. Landmark features can
become selected or deselect by mouse clicks. Selected features change to red. Various control
options and data outputs are provided with the associated GUI 's that are part of the simulator
(see Fig 6.8.2). It is envisaged that this simulator will provide a useful facility for evaluating
alternative feature selection and mapping and navigational strategies.

Module 2 is intended (ultimately) for evaluating proposed grasping points of selected 3D target
object-models to ensure they can be retrieved. Even with precise modeling of the robot "end-
effector” this is quite a difficult study, and one which the author believes has had insufficient
attention. For instance, how does one design a generic set of rules for successfully picking up the
vast number of assorted shapes and sizes of domestic objects with handles? Standard kinematic
modeling incorporating consideration for size, volume, distribution of weight, balance of forces,
and surface normals is possibly a start. Such analysis could be incorporated into this simulation
unit. An initial attempt at accessing the suitability of a "grasping site" on an object, based on
gripper opening size and the surface normals was added to the module. The requirement for a
suitable "grasp" is that the object's dimensions be appropriate, and that the surface normals at the
points of contact, and the gripper's surface normals, are in close (opposing) alignment (Fig
6.8.1). For situations where the grasping site was deemed unsuitable the gripper "slid" over the
surface in an attempt to locate a suitable area. See Fig 6.8.6 for an example of the gripper
attempting to pick up a teapot at an unsuitable location, and the gripping slipping "laterally"
towards the teapot handle. This approach was later considered unrealistic as it took no account of
the surface roughness, texture, or frictional forces involved, and was abandoned. Object physical
dimensions only are currently considered in assessing grip ability.
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Fig 6.8. 1 Gripper normals (brown) non aligned with object surface normals (blue).

Both modules, in addition to uses outlined above will make useful tools for "MROLR System"
teaching and demonstration. Where used solely for simulating MROLR, the modules have had
their caption title modified to display “MROLR”.

Module 1 is shown in Fig 6.8.2. (a) shows the mobile robot navigating to a specified way point
with six landmark features. (b) depicts an example with ten known landmark features added.
Examples of "Auto Feature Selection" and Covariance Outputs from the Simulator are given in
Fig 6.8.3.

Module 2 is displayed in Fig 6.8.4 through Fig 6.8.9, illustrating the "controller" and "arm"
retrieving a difficult object to grasp (the small teapot), and moving it to several locations. Fig
6.8.10 displays the arm after having transported an object (the red sphere) some distance from
the table. (Both the teapot and sphere model objects were borrowed from the MS DirectDraw
SDK).
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— - [MROLR_BROWS - [1 X

Y¥aypaint: | 3 Featura Man/pula

Aumul

(a) Scene with 6
unknown landmark
features

(b) Scene with 16 features (10 known known features )

Fig 6.8. 2 Several simulated views of the mobile base navigating to waypoints
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Added
Added
Added
Added
Added
Added
Added
Added

with
with
with
with
with
with
with
with
with
with

feature
feature
feature
feature
feature
feature
feature
feature
feature
feature

known
known
known
known
known
known
known
known
known
known

feature
feature
feature
feature
feature
feature
feature
feature
Added known feature
Added known feature
Read 8 waypoints.
#%% SLOW PREDICTION %=

Best score found: 5,16285e-07,
Auto-selected feature with label 2,
%% S| OW UPDATE =%

known
known
known
known
known
known
known
known

R_tot:
4e-06 0 0
0 0.0001 0
0 0 de-06

S=1L

3.79788e-05 -3,25407e-24 4,17903e-23
-3.25407e-24 0,0001 -4,00216e-42
4.17903e-23 -4,00216e-42 4e-06

]

*%% S| OW PREDICTION w=xx

Best score found: 6,23208e-07,
Auto-selected feature with label 9,
*%% SLOW UPDATE =%

R_tot:
4e-06 0 0
0 0.0001 0]
0 0 4e~-06
S=1¢(

5.53167e-05 -2,37655e-06 4.,57195e-07
-2,37655e-06 0,000100123 ~2,36034e-08

label
label
label
label
label
label
label
label
label
label

POONOGAHLWN-

S=1L

6.44373e-06 -2.47343e-07 3,11819e-08
~-2.47343e-07 0,00010016 -2,0121e-08
3.11819e-08 -2.0121e-08 4,00254e-06
]

»%% SLOW PREDICTION =*x

Best score found: 2.13885e-07,
Auto—selected feature with label 3,
*%% SLOW LIPDATE =%

R_tot:
4e-06 0] 0]
0 0.0001 0
0] 0 4e-06

S=10

6.50338e-06 -2,8106d4e-07 3,54218e-08
-2,8106de-07 0,000100175 -2,20106e—08
3.54218e-08 -2.20106e-08 4,00277e-06
]

#*%% SLOW PREDICTION %=x

Best score found; 2.64448e-06,
Auto-selected feature with label 5,
*%% Gl OW LUPDATE w*%x

R_tot:
d4e-06 0 0
0 00,0001 0
0 0 de-06

S=1

0.000993588 -8.00296e-07 7,71573e~08
-8,0029%e-07 0,000100232 -2,23564e-08
7.71573e-08 -2,2356de-08 4,00216e-06
]

Fig 6.8.3

Examples of auto-feature selection and covariance outputs from simulator corresponding to

Fig 6.8.1(b).
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Fig 6.8. 4 Robot arm at table with target object (small teapot)
Notice the X, Y, Z positions of the gripper are displayed on the Controller.
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Fig 6.8. 5
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Fig 6.8. 6 Gripper closes and slips over surface of object towards handle in search of
more appropriate grasping location.

MROLR 3D Simulator
File Yiew Dptitrn Help

Control Pad E3

X [508
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Shoulder-

Fig 6.8. 7 Target being raised
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Fig 6.8. 8 Arm showing joint movements

MADLA 3D Simulator
file View Options  Halp

Control Pad E3

437.045416258

b |
Y |101 8.17404389
z |-1 40.88346104

Waist- | Waist+

L b
l{ihwldel_] Shoulder+

- Stepping angle
10

|

Fig 6.8.9 Arm showing joint movements



Chapter 6 Object Modeling, Recognition and Retrieval 116

Fle View Doliors Help | :

432.711798350
Y ]718.347931 504
r4 '[-255.9751 5754

Waist- | Waist+

Fig 6.8. 10 Arm moving away from table with retrieved red sphere

A useful possible extension to the simulation modules (discussed further in Chapter 8 ) would be
for all created objects to be positioned in the simulated scene, mouse selection of the target
object (or verbal selection, if voice recognition was added) could then initiate a simulation run.

6.9  Conclusion

This chapter commenced by citing the advantages of using wire frame outline models created
from multi-views, and describes a simple and effective method for their production. For poorly
formed models an editor is provided that enables both the addition and removal of 3D segments.
Paramount to this work is the ability to reliably recognise objects in a scene, whose models have
been created and maintained in a database of objects. A recognition algorithm based on the work
of Pollard et al was implemented, and extended to automate the recognition process. The
recognition module also provides the essential 3D pose parameters, relative to the stereo head, to
guide the docked robot arm towards the sought object's grasping point.



Chapter 6 Object Modeling, Recognition and Retrieval 117

With the conclusion of this and previous chapters the framework to perform tests to ensure a

fully functioning MROLR have been established. Testing and verification is carried out in
Chapter 7.
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Chapter 7 Testing and Verification

7.0 Introduction

The algorithmic development and modeling of the previous chapters is now complete and the
necessary tools to create and edit 3D object-models that may be requested for future retrieval
have been developed. The means for navigating the environment exist. Searching for and
mapping landmark features with the aid of active vision at each step, and using the resulting data
for self-localisation purposes reduces the likelihood of "loss of bearings" due to wheel slippage
or collision. Once in close proximity to a scene containing any of the objects for which a created
model exists, a search by panning the stereo head can be performed. If the object is successfully
recognised, its 3D position in the scene with respect to a docked robot arm can be ascertained.
The resulting homogeneous transform formulated, together with the a priori specified handle
location or grasping point, should guide the arm to pick up the object and place it on board
MROLR. Limited simulations of MROLR can also be performed using the "virtual
environments" of module 1 and 2 described in section 6.8.

The vital task of testing MROLR to vindicate the methodology of this research remains. Tests
need to include the creation of a significant number of typical domestic or industrial object
models as well as navigational, recognition and retrieving trials. These are described in this
chapter.

The results of the creation of ten representative domestic object-models are given in section 7.1.
The results of object location and retrieval trials are given in section 7.2, the scope and
limitations of tests, their evaluation, and methods of overcoming some of those limitations are
discussed in the subsections.

7.1 Creation of Database Models

Ten representative domestic object-models were created using the portable (level adjustable),
mode] creating table described in section 6.1. These were:
large cup,

vice,

shaver

bottle

Solo can

cube

hole punch

stapler

drink package

cup

Their creation is shown in Figs 7.1.1 to 7.1.11. Note that for conservation of space, only one
stereo view of each object is shown from Fig 7.1.3 onwards.
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Fig7.1.1 Object model creation
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Fig 7.1. 2 (a) 3 Stereo views of '"Large Cup", (b) Model of "Large Cup"
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(b)

Fig 7.1. 3 (a) Single stereo view of ""Vice", (b) Model of "Vice"
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(b)

(a) Single stereo view of "Shaver", (b) Model of "Shaver"

Fig 7.1. 4
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Fig 7.1. 5 (a) Single stereo view of '"Bottle"

, (b) Model of "Bottle"
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Fig 7.1. 6 (a) Single stereo view of "Can", (b) Model of "Can"
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(a)

(®)

Fig7.1.7 (a) Single stereo view of "Cube", (b) Model of "Cube"
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Fig 7.1. 8 (a) Single stereo view of '""Hole Punch", (b) Model of "Hole Punch"



Chapter 7 Testing and Verification 126

Fig 7.1. 9 (a) Single stereo view of "Stapler', (b) Model of "Stapler"
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Fig7.1. 10 (a) Single stereo view of "Drink Package" , (b) Model of '"Drink Package"
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(b)

Fig 7.1. 11 (a) Single stereo view of "Cup", (b) Model of "Cup"

7.1.1 Storage of Focus Features and Cliques

128

Fig 7.1.12 illustrates the stored format of focus features and cliques. The first number (10 in this
example of the model cup) is the total number of cliques for the model. Following lines contain
(in order) the focus feature identification number (i.e., 560) the number of features in the clique
(ie., 9) followed by the Id number of each feature. The focus feature is also normally listed as

the end feature of a clique.

10

560 9 1490 556 568 3086 1122 554 550 564 560
564 8 564 550 1098 1122 1096 568 556 1490
554 12 570 568 3086 1112 1098 1096 556 564 1490 3080 1122 554
55471104 564 1132 560 1488 3076 554

14827 1482 1132 556 554 1102 1488 546

564 7 1490 556 1102 3080 560 1482 564

1488 5 1488 1132 554 1122 1112

564 5 1490 1482 556 554 564

554 4 554 1488 564 1482

1482 5 1490 1482 556 554 564

Fig 7.1. 12 Table of focus feature and cliques
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Several of these created models will be targeted in the tests that follow in Section 7.2

7.2 Tests

Trials were arranged to substantiate MROLR's ability to navigate to specified waypoints, and
recognise, locate and retrieve (grasp) a variety of target objects in various orientations and
locations on a table at each waypoint. Lengthy tests to demonstrate the validity of the
navigational algorithms were not deemed necessary, as others (i.e., [Dav98], [Dav01]), have
already done these using the Oxford GTI mobile platform. While our active stereo head, and 2
wheel drive mobile base are different to those of the Oxford project, resulting in the modeling
and reformulation outlined in chapters 4 and 5, the methodology and principal algorithmic
constructs used are identical. The navigational, self-localisation and mapping-building tests
performed here, can be regarded as reinforcement of those obtained by A. Davison. The major
testing carried out in this section concentrates on object recognition, pose determination and
retrieval.

It is worth mentioning that locating objects in positions other than an “expected region”, such as
a waypoint, is beyond the present ability of MROLR. To overcome this limitation and enable
objects randomly located in a room to be found would require vastly superior cameras and
lenses, perhaps with auto focus, zoom and accurate focal point re-calibration. In addition, a path-
planning module capable of mapping open spaces that could negotiated would need to be
incorporated.

For each test devised, MROLR commenced its journey in the laboratory from a fixed world
coordinate (waypoint 0). Following initialisation, the vehicle navigated autonomously using
odometry, and visual navigational features, mapping the environment as it travelled. On reaching
its destination the head commenced panning for the target object and if this was located, the
robot arm was docked with the platform and the desired object grasped and retrieved. If the
object could not be found (perhaps because the object was not on the table), MROLR returned
empty handed to waypoint 0.

Initialisation data supplied to MROLR consisted of known-features, waypoints to navigate to,
and the target object and its associated grasp point (if applicable). As MROLR autonomously
navigated towards each waypoint the following behaviour was observed:

(a) head fixation angles for the nearest known-feature were calculated (from stored X, y, z
positional information), and the head cameras driven to gaze in the direction of the feature. A
search for a corresponding “patch match” (within a narrow spatial window whose size was
determined by map uncertainty) ensued.

(b) if a fixation could not be attained, an alternative mapped or new feature was sought. The
decision as to which feature to choose, was based on two criteria: expected visibility, and the
value of the measurement. Once a measurable subset of features in the map was identified, the
value of measuring each one is evaluated in terms of the uncertainty of its position relative to the
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vehicle. The choice was then made on the basis of the highest innovation covariance (i.e., “the
Vs rule” see section 5. 7).

(c) the map continued to be updated sequentially as the robot moved about in its environment,
making measurements of features and updating the state vector and related covariances,
according to the rules of the Extended Kalman Filter.

Several views of MROLR navigating to the “Table” waypoint are shown in Fig 7.2.1. The
subsequent “lock on to” known-feature the “ fire extinguisher sign” is shown in Fig 7.2.2.
Additional features used for mapping the laboratory environment are also displayed in Fig 7.2.3.

(a) Robot navigating
towards specified
waypoint

(b) Robot closer to
specified waypoint
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(c) Head pointing at known-
feature "Fire Extinguisher"

Fig 7.2, 1 (a), (b) and (c) Several views of MROLR navigating towards specified
waypoint, '"the Table".

Feature location(w.r.t Head) x=0.123 ,y=1.345, z=1.732 (metres)

Fig 7.2. 2 Lock on achieved for "Fire Extinguisher " sign feature patch.
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(b

Fig 7.2. 3 Two additional mapped features (a) light fitting edge (b) clock face , intersection of hands

In Fig 7.2. 4 (a), the robot is at a waypoint panning for the hole-punch. Fig (b) shows the left
image of a scan sequence search for the hole-punch in the scene, while Fig (c) shows the
database model of the hole-punch. Fig (d) illustrates the resulting created scene-model
corresponding to the scene-view in Fig (b), and Fig (e) the model transformed into the scene
following recognition. Pose information relating to the found “hole-punch” is given in Fig 7.2. 5.
The process leading to the recognition and grasping of the “bottle” and “cup” are shown in
sequences Fig 7.2. 6 through Fig 7.2.12.
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(a) ®)

(©)

@ (©

(a) Panning robot at a waypoint,(b) Table scene: Captured left image, (c) Model of hole-punch
(d) Scene-model of (b), (e) Hole-punch found and model transformed into the scene.

Fig 7.2. 4 Hole-Punch search
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Transformation matrix and related rotations

Fig 7.2, 5 Pose information of ""Hole Punch"

Fig 7.2. 6 Left image of "Bottle" in scene

)

Fig 7.2. 7 3D models of "Bottle" and "Cup"
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(®)

Fig7.2. 8 () 3D model of "Bottle" in scene (b) Recognised ""Bottle" transported into the scene
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Fig 7.2.9 (a) Left image of "Cup" in scene, (b) 3D model of "Cup" in scene, (¢) Recognised "Cup"

transported into the scene
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_1 000 0000 0.00 353 096
0,00 1,00 0,00 -664,40
0,00 0,00 -1,00 299,39

(b)
(a) Pose of Cup in Scene
® T

Fig 7.2. 10 Cup transforms for transportation into scene and grasping

Fig 7.2. 11 (a) Head gazing at scene  (b) Docked robot arm
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Fig 7.2. 12 Robot retrieving located objects

7.2.1 Processing Times

At present the average navigation time for a trip to waypoint 2 (approx. 1.49m), including
recognition and object retrieval, is 13.5 minutes.'

The journey consisted of 2 angular base rotations and 9 translations. The linear step size chosen
for the mobile base was 200mm. Final linear step size was halved until the remaining distance
less than 32mm, i.e., for a linear movement of 1490mm, linear steps consist of 7 x 200mm 1 x
45mm, 2 x 22.5 mm). EKF measurements were performed at each step, these included up to 3
head adjustments to achieve feature lock on. Objects sought were the bottle, cup and cube (the
cube can not be grasped with current grippers.

"The average time is based on 6 runs, time to manually dock the arm is not included.
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Average processing times:

(i) feature measurement and localisation during navigation 40 sec
(ii) object recognition’ 4 min
(iii) object retrieval® 35sec

For a viable commercial system, fast processing and operating times are crucial. The work
carried out in this research is essentially only at a prototype stage and processing times have not
been a major consideration for the following reasons. Emphasis has been on proving algorithms,
integrating system modules and establishing a working system with the hardware resources
available. The fastest PC used for MROLR has only a 90MHz processor. This however has not
been the greatest limiting factor to processing speed. Our BiSight head has an undesirable low
frequency mechanical resonance that is often excited following either the head or mobile base
movement. A delay of several seconds following either the head movement or base movement is
necessary to allow such head oscillations to dissipate and prevent blurred images.

In addition, several images formats are currently being used and converted on the fly to the
required format. Images are also transmitted serially from the on board PC to a stationary one.

Each of these overheads can be eliminated with new hardware and software rewritings and
improvements. It is worth noting that Davison [Dav98] attained real-time tracking of
approximately 5 measurements/second during navigation and map building. MROLR should be
able to achieve a similar performance. Given that PC processors now operate in excess of 1.5
GHz, it is not difficult to envisage a possible time reduction of at least an order of magnitude
(i.e., from 13.5 minutes to 1.35minutes).

7.2.2 How Reliably can Target-objects be Retrieved?

Successful recognition and retrieval outcomes will in general occur if the following rules are

adhered to:

¢ objects are be with reach of the arm (approx. S00mm) and graspable

* spacing between objects is sufficient to allow the gripper to move between them.

* spacing between objects is at least as great as the largest linear dimension of the object. This
will ensure clique features of one object, do not overlapped with cliques of another during the
matching process

* ambient lighting is sufficient and remains relatively constant

* the surface on which the objects lie is of a dark non reflective texture that minimises glare
and formation of shadows

? From time the head is in the correct position (i.e., pan search times not included)

* Following recognition
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Following recognition the object's pose is determined via precise geometric computations and
well established analytical methods, therefore given perfect data, its location and orientation will
be accurately found.

This data consists of:

camera calibration parameters,

stereo head calibration parameters,

3D object models, 3D scene-models,

a homogeneous (4 x 4) transform of the object-model with respect to its position in the scene,

grasp location data (in terms of x, y, z, yaw, pitch, roll), obtained from the 3D object-model,

a homogeneous (4 x 4) transform of the head coordinate frame with respect to the robot arm's

base coordinate frame,

o a homogeneous (4 x 4) transform relating the object's grasping location with respect to the
robot arm's base coordinate frame. This final transform directs the arm (driven by its
controller) to retrieve the object.

It is not feasible to accommodate all possible requested gripper grasping orientations, as the
robot arm has a limited reach and range of movements. In addition the propagation of data errors
that will inevitably accumulate, may also on some occasions preclude successful object retrieval.
Quantification of this uncertainty is of course desirable, the considerable number of variables
that may affect outcomes however make this task difficult. Consider for example just 3 variables,
lighting conditions, object local surface features, and textures. These affect the quality of the
scene-model obtained, and consequently the accuracy of recognition and the resulting transform.

The dependence on a transform of high precision to solely guide the robot arm is undoubtedly a
fundamental weakness of the retrieval system. In effect the object retrieval system is an open
loop one. An improvement in the form of visual feedback (visual servoing) could be added to
make the retrieval process more robust, either by more effective use of the existing stereo head
and/or with the supplementation of a miniature camera attached to the gripper (i.€., an eye in the
hand).

Further testing to obtain comprehensive quantitative and qualitative performance metrics of
MROLR, i.e., bounds on recognition and retrievablity, will be performed once the automated
docking transport base with arm, is an integral working part of the system. It is likely that visual
servoing, as described above, will also have been added by then. These enhancements are further
discussed in Chapter 8.

7.3  CD with Video Clips of MROLR Performing

Three short video clips of MROLR performing several routines are provided on the
accompanying CD.

The first shows the automated model production of the alphabet cube on the lighter of the
portable modeling table. The completed model is finally rotated about its axes to show typical
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duplication of edge lines following integration. The cleaner model, after their removal, is also
shown.

The second shows MROLR navigating to the table of objects, waypoint 2, tracking two known-
features as it travels. On reaching the table the target-object, in this instance, the alphabet cube is
recognised and the model is correctly transported into the scene. The mobile base then navigates
home (waypoint 0) again tracking the same two known features. A black coloured ellipse of
measurement uncertainty is displayed in close proximity to the feature being tracked.

The third video clip commences with the mobile robot at the table of objects; it then proceeds to
recognise the target object, the bottle in this instance. The robot arm is manually docked and the
bottle retrieved. Next the bottle is manually relocated to two additional positions on the table,
and the process of recognition and retrieval repeated. Of these two additional attempts, only one
retrieval was successful, the other being close (within 1 ¢cm of success).

A fourth video clip showing the "transport mobile robot" under test, carrying the arm has also
been provided. This vehicle is not yet able to be remotely communicated with or to dock with the
"scout master mobile base".

7.4 Conclusion

The tests carried out in this chapter commenced with the creation of a small database of ten 3D
models of commonly found household items. MROLR was then directed to autonomous navigate
to selected waypoints in search of objects selected from the database. It successfully performed
these navigational tasks, mapping its way while simultaneously tracking several known landmark
features.

On reaching the waypoint destination (in each case a table laden with objects), the active head
panned the scene in search of the object. With the object present and in range of the arm,
recognition, pose determination and retrieval occurred. Obstacles avoidance was not attempted
during these tests as MROLR has only limited ability to detect obstacles (refer section 5.8.1.2).
These results confirm the methodology of this research and are sufficiently encouraging to
support continuation of the project.

The contributions of this work, and planned future improvements and extensions (several of
which are currently in progress), are summarised in Chapter 8.



Chapter 8 Conclusions and Further Work 142

Chapter 8 Conclusions and Further Work

8.0 Introduction

In this, the final chapter, the main contributions of this work are summarised and proposed
extensions for continuation in the future outlined.

8.1 Main Contributions of This Work

The major contribution made by this research is in the design and implementation of a new type
of “service robot”, comprising a navigating mobile robotic platform with active vision and object
retrieval abilities. Given a specified destination (with reference to a home base coordinate
frame), its navigational capability enables it to reliably localise and map-build in an unknown
indoor environment, using information from measurements of arbitrary landmark-features and
robot-odometry. The resulting map is also available for future navigational purposes such as the
return journey, or recovering from accumulated positional errors that are a result of estimation
errors and wheel slippage.

The specified destination is required to be in close proximity (< 0.5 metres) to a surface, such as
a table, on which a desired object is to be located and retrieved. The recognition ability of the
MROLR enables it to compare a 3D (a prior developed) model to scene-objects modeled while
surveying the location, and if a suitable match is obtained (based on 3D geometric features)
verify its pose by aligning the 3D model with the 3D matched scene-model. Using information
from pose measurements, a transform is established locating the sought object with respect to the
active head. This transform is then available to guide the docked robot arm to grasp, retrieve, and
to place the object on the platform, for transport back to the base home position.

8.1.1 Related Contributions

Related contributions stem from:

¢ Development of automated 3D object-model creating facilities. This consisted of the design
and construction of two, portable motorized turntables, and related software modules. An
object to be modeled is placed on the table and the active stereo head forms 3D view
dependent wire frame models as the table is accurately rotated. These sequences are finally
integrated to form a complete (view independent) 3D model suitable for storage in a
database. The establishment of a model database of sought objects is a prerequisite for their
use in the recognition process.

* Development of a model editor to facilitate the manual removal and/or addition of 3D
segments in formed models. The editor was built on the incomplete "geomstat" module of
TINA. The major contribution to the geomstat software module was the addition of an
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"edited model" output facility. The need for the addition of 3D lines to models arises on
occasion as a result of poor lighting conditions, or edges that are difficult to match. More
commonly, line duplication occurs due to slight misalignments during the integration
process, and the editor now allows these to be removed.

o Preliminary design and construction of a "slave transport" mobile robot base and related
software has commenced. This mobile robot will carry the robot arm that ultimately grasps
and retrieves the target object. Once the "master scout" mobile base has accomplished its task
of navigating to and locating the desired object, the "transport" base will be sent a command
to dock with the "master". Docking ensures that a known, predetermined distance exists
between the gripper and the head coordinate frame.

o Extension and modification of existing recognition algorithms to facilitate automated
recognition while searching and scanning of the scene. The added algorithm utilises nested
iterative loops in which the seven parameters are systematically modified (in a "fuzzified"
like, fine-to-course adjustment) to reflect a reduction in data “confidence levels”.

¢ Extension and modification of existing active vision based navigation software to work with
the designed mobile base. This included the writing of an obstacle detection and avoidance
module.

¢ Development of kinematic solutions from object pose information, to enable the robot arm to
grasp and retrieve the desired object.

¢ Preliminary implementation of a "3D Virtual Environment" for simulating MROLR. This
will be useful for evaluating alternative map-building strategies, object grasping locations, as
well as for demonstration and educational purposes.

8.2 Future Directions and Work

As stated at the conclusion of Chapter 1, motivation for this work stems from the desire to
ultimately develop a system capable of rapid and reliable retrieval of objects in both domestic
and industrial environments. Potential applications for such an improved system range from
simple domestic and industrial “robotic aids”, to “assistants” for the severely physically disabled
or visually impaired.

The work completed to date goes a considerable way to meeting the objectives of this thesis.
However, MROLR is a prototype, and to develop it into a useful product requires improvements
in several areas. Presently, self-localisation and map building is quite a slow process. There are
several reasons for this. Navigational feature measurements are only performed while the base is
stationary, and several image format conversions are required. The stationary base requirement is
in partly dictated by the Extended Kalman Filter algorithm requiring constant distant increments
for measurements. Also occasionally severe stereo head motion-vibration occurs, producing
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blurred images when the head moves concurrently with the base. Elimination of the need for
several image formats is a relatively straightforward task, and the existing software modules will
be modified to accept a single standard image formats in the near future. The stereo head
vibrations appear to be a structural problem resulting from natural harmonic motions. The
purchase of an improved head may be the simplest solution to overcome this problem. With
faster computers, it is not unreasonable to expect measurement updates at better than eight per
second. Of course these time delays do not arise if the mobile robot utilises the navigational
mode that relies solely on odometry. For most indoor environments where floor levels are even
and wheel slippage negligible, this simpler mode of operation is acceptable and quite reliable.

Currently only one scan and search sequence has been implemented. Effectively the target object
must reside on a surface in close proximity to the specified destination. An experiment with
multiple scan and search sequences has been done. The mobile robot was guided around the
perimeter of a table while searching for an object. This proved successful when the object was
eventually located at the far end of the table. The ability to move around the boundary area of
benches and other objects will require additional navigational algorithms to be incorporated, to
determine and negotiate complex path trajectories -- a challenging future project.

In the more immediate future, it is intended to improve on the current method of object
recognition. One simple improvement would be to add colour to the object feature list. This
could greatly help discriminate between objects of similar shape (i.e., white cup instead of green
cup). More complex model building algorithms will also be considered, perhaps using
Generalised Cylinders or Octrees.

The use of a separate "slave transport" mobile base has both potential advantages and drawbacks.
Placing a robot arm on the master mobile base was not a feasible option with the current
equipment, due to size and weight constraints. The advantage of using two vehicles is that a
relatively lightweight fast acting, low energy mobile base, equipped with active cameras, can
initially be used to navigate about, in a search, recognition and location phase. This is followed
by a second phase, during which the slower mobile-crane like vehicle is instructed to
automatically dock with the "master" and then guided to pick up the object (a" brain and brawn"
collaboration). Substantial progress on the design and construction of the "transport" mobile base
has been made (details are given in appendix B).

Adding "gesture recognition" capabilities to MROLR has also been considered. This would build
on the work of Wingate and Stoica relating to Apprentice Robots [WS96], [WS97]. A Master
could point towards the target-object thus making it easier to request the retrieval of an object.
There is little doubt that as the methods of communicating with and directing robots becomes
more "natural" for humans, such as with speech and hand gestures, the use and appeal of robots
will grow. Speech control trials on several robots have already been undertaken by Moyssidis
and Wingate [MW02].

As acknowledged in chapter 7, the sole dependence on a transform of high precision to guide the
robot arm is a fundamental weakness of the retrieval system. In effect the object retrieval system
1s an open loop one. An improvement in the form of visual feedback (visual servoing) to make
the retrieval process more effective and robust, was suggested in chapter 7. This could be
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accomplished by more effective use of the existing stereo head and/or with the addition of a
miniature camera attached to the gripper (i.e., an eye in the hand). The concept of using cameras
attached to robots is not new. Researchers such as Smith et al [SBP97], Hauck et al [HPRSF99],
Wijesoma et al [WWR93] and others have successfully utilised them for end effector guidance.
A future software module and micro camera could be added to incorporate direct "hand-eye"
coordination.

In their current form the simulation modules described in Chapter 6 would be useful for teaching
and demonstration purposes. A possible extension to the simulation modules (briefly mentioned
in Chapter 6) would be for all created objects to be positioned in the "virtual" scene (in close
proximity to their real world x y z location). Mouse selecting the target object (or verbally
selecting it, if voice recognition was added) could then initiate a simulation run. If the simulation
run proved successful this could be linked with the physical task of navigation and object
retrieval. On retrieval by the "physical" docked arm, the objects would be removed from the
"virtual" scene. This would provide a direct way of target object selection as well as a visual
means of readily establishing the proximity of the desired object position, thus considerably
simplifying the navigation, search and retrieval tasks.

8.3 What Follows ?

Three appendices follow this final chapter, provided to expand upon the work outlined in the
preceding chapters, as well as to outline some interesting preliminary work undertaken in search
of suitable algorithms to meet the needs and objectives of this thesis.

Appendix A describes early approaches and methods considered and evaluated, but ultimately
not followed.

Appendix B provides specific details of ancillary software and hardware developed in support of
this continuing work.

Appendix C continues with the algorithmic development for continuous tracking of multiple
features using active vision commenced in Chapter 5.

A comprehensive Bibliography follows the appendices. This is a collection of references
maintained and used by the author.
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Appendix A Early Attempts to Obtain Object Modeling Algorithms

A10 Introduction

The work of this thesis commenced in 1995 and at that time, obtaining object boundary outlines
with metric information suitable for 3D object modeling and recognition was still relatively in its
infancy. The problem still attracting a great deal of attention from eminent researchers, as is
evident from the vast array of publications being produced, for example Z. Zhang and others,
[Zha02b], [YZ02], [SZ00], [SNWGH99]. In the process of obtaining an effective recognition
module for MROLR a number of novel approaches were considered. Although algorithms were
developed and tested, and results published and presented, ultimately these were not utilised in
the recognition module.

This section reviews the work carried out and contributions made during that research period.

A11 Structure Recovery of Objects Using Multiple Camera Views.

An early approach using "line features in multiple camera views", Wingate [Win97a], [Win97b],
was formulated around the algorithm of Taylor and Kriegman [TK95]. This work differed to that
of Taylor and Kriegman in that it did not rely on a priori knowledge of the cameras focal length.

An abstract from "3D Structure Recovery of Objects Using Line Features in Multiple Camera
Views", [Win97a] is reproduced below:

Abstract

The work carried out represented an initial attempt to recovery the 3D structure of rigid objects
Jrom multiple views. The concept involved images captured from a roving mobile robot equipped
with a single camera whose pan and tilt are controllable. The algorithms formulated use
straight-line feature correspondence obtained from a minimum of 3 views and an objective
Junction that minimises the squared difference between projected edge segments and image
segments. The structure of the object in terms of a scaled 3D-line drawing as well as the position
of the cameras is returned and available for use as a scene model. Edge outlines were obtained
using a Canny edge detector and straight lines fitted to these using a recursive line fitting
algorithm. Results of simulated data are provided using a pin hole camera model and these are
compared with results using real images in which line correspondence matching is carried out
manually.

A1 2 Trinocular Stereo

A trinocular stereo vision, rectifying images to enhance epipolar matching was another method
investigated. Algorithms were developed and results compared with those of two camera stereo.
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The work performed was presented in Wingate [Win99]. Details are outlined in Section A 1.2. 1
below.

Al2.1 Trinocular Vision (3 Camera Stereo)

The notion of using trinocular stereo vision is appealing because the additional camera provides
a second epipolar line in each image and the intersection of these lines correspond to a match.
False matches are readily eliminated by verification of correspondences in each image (A 1.2. 1
below). Rectification of the images such that the image planes are coplanar and parallel to the
lines joining the focal centres results in the epipolar lines between images 1 and 2 becoming
horizontal, and also vertical epipolar lines between images 1 and 3. The advantage of using
trinocular stereo over binocular stereo comes at the cost of increases in algorithmic complexity
and overhead processing time. Ayache [Aya9l] states that the rectification of k images
necessitates storing k 3x3 matrices, and forming six products, six additions and two divisions per
rectified point. R. Jarvis and others [Jar94] have used quad stereo. An advantage of four cameras
is that testing for vertical, horizontal and diagonal matches can be performed simultaneously
thereby reducing the likelihood of matching outliners even further.

FigA12.1 Trinocular stereo: corresponding matches at intersection of epipolar lines
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FigA1.2.2 Epipolar lines and corresponding matches following image rectification

Ayache's procedure [Aya91, pp.30-41, (outlined below)] was implemented for trinocular
rectification. Initially coding was carried out in Matlab and subsequently in 'C'. The theoretical
basis of the approach is outlined in the following sections.

A 1.2.2 Image Modeling

The standard pin hole camera is used, and for clarity of notation this is redrawn in Fig A 1.2.2.1.

P(x.y,z)

Fig A 1.2.2.1  Standard pin hole camera, optical centre C, image point I focal plane P
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The transformation from P to I is modeled by a linear transformation T in projective coordinates.
Letting I" =(U,V, S) be the projective coordinates of I and (x, y, z) be the coordinates of P,

U
I'=\V |=T
S

— N e %

Where T is a 3 x 4 matrix, generally called the perspective matrix of the camera.

ForS # 0 the image coordinates of I are defined by:

Lrleis :

T is generally determined by analysing the image of a calibration grid where the positions in the
image of the intersection points are known with precision. Various established calibration
procedures exist for determining T (The Tsai routine [Tsa87] was used for this work). The 3x4
matrix T consists of twelve parameters, but these are defined up to a scale factor only. Thus, an
additional constraint must be found. The simplest is to assume that 7}, is non-zero and to set it

to 1. Following calibration, the 11 parameters comprise of the intrinsic and extrinsic parameters
of the pinhole model.

For later use the following notation introduced by Ayache is defined.

1, is the (i, j) element of T, and t, is the vector composed of the first three elements of the

row iof T:
=Gty ¥

ii227i

The coordinates of the optical centres C, (xc,, yc,, zc,) are obtained by solving the system

0 xc,
ol=1/|”" A4
0 zc,
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A1.2.3 Image Rectification

Image rectification is performed by a linear transformation in projective coordinates normally
resulting in either horizontal or vertical conjugate epipolar lines, points with coordinates (x,,v,)

are transformed to new coordinates (u,,v,) By appropriate choice of coordinate frames, a point

(u;,v;) in image 1 has the line segment v, =v, of image 2 as its conjugate epipolar line,
FigA 1.2.3.1.

Ci Ca

L (ul vl) I

ALV 2

P -
Il(ul',vl'% - h’(u} Vs )

Fig A1.2.3.1 Rectification of two images.

Initially rectification for binocular stereo will be considered and extended for a trinocular stereo
system. To begin it is necessary to define two new perspective matrices M and N which
preserve the two optical centers C,and C,. These facilitate the transformation from coordinates

(u,,v,) to new coordinates (u,',v,f) in each image 7.

The following constraints on the new perspective matrices Mand N are imposed:

1. The optical centers of Mand N are C, and C, respectively (to give a unique match
between image points I, and I, before and after rectification).

2. The focal plane of Mis identified with that of N (to produce parallel epipolar lines in
both images).

3. For any point P(not in the optical plane), the image points I, and I, obtained by M and
N respectively are such that v, =v,.
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Let
mll ml4 nl’ nl4

M=|m, m, N =|n; n,, AS
m; ms, ny M,

The application of these constraints lead to matrices M and N defined by:
((Clxc2)xcl){ 0

M=| (CxC,) 0 A6
((Cl —Cz)x(CGCZ))' "Clxc2|| ’

((Clxcz)xcz)l
N=| (CxC,)’ 0 A7

((Cn -C, )x(clxc2 ))I ||CGC2” ’

o

By considering a point in image 1, Il(u,,vl) that is the projection of a point P(x, y,z) with
coordinates:

P=C, +/n A8

Where n, is a direction vector of the segment I,C,. The projective coordinates of the new image
I, of point P are then given by:

U, c
Le=|V, =M( ‘:"] A9
S

Now, since C,is the optical centre of M, (C,,l)' =0. As a consequence, the computation of
I'reduces to:

Where M is the 3x3 matrix obtained by removing the last column of M. Since » is computed
by an affine transformation of the coordinates (u,,v,), it is sufficient to put
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((€,xC, xC,)’
Q, =|(C,xC,)’ [tlzxtla tyxt, t:xti] A 11

(€, -¢, K(C\xC, )’

a 3x3 matrix, to obtain:

U, u,
V|’ =Q1 Vi A 12
S, 1

Proceeding symmetrically, putting

(€xC, Jxc,)’

Q2= (Clxcz)l [t§n§ t§ﬁ§ tIZth] A 13

((Cl -C, )x(C,sz ))'

gives:

U, u,

v, |=Q,|v, A 14
S, 1

Rectification of images 1 and 2 thus reduces to the application of the two linear transformations
in projective coordinates given by equations A12 and A14.

The elegance of Ayache's derivation for Q1 and Q2 is that it readily extends to multiple cameras,
as is evident from the following.

A 1.2, 4 Three Cameras

For the case of three cameras, it is preferable to rectify the images to have horizontal epipolar
lines between images 1 and 2, and vertical epipolar lines between images 1 and 3. For analysis
the same steps as used for two cameras are adopted to compute new perspective matrices M,N
and Q from the optical centers C,,C, and C,.

This results in:
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(C,xC,)" 0
(CGCZ)' 0 A 15
(C,xC, +C,xC, +C,xC,)’ -(c,.c,.c,)

(C,xC,) 0
N= (C,xC,)’ A 16
(CxC,+C,xC, +C,+C,)" -(C,,C,.C,)
(C,xC,)’ 0
(C,xC,)’ 0 A 17

Q =
(Clxcz +C,xC, +C3xCl)' —(C,,C2C3)

Where (C,,C,,C,) is the triple product of vectors C,,C, and C,

In equations A15 to A.17, Q is chosen to produce equality between the ordinate
v, of I, and the abscissa u, of I,,i.e., v, =u,.
Rectification is performed in exactly the same way as previously but now with three

3 x 3 rectification matrices R,,R,and R,.
(Ci—lxci)l
(Cixciﬂ)‘

(C,xC, +C,xC, +C,xC,)"

A 18

[t;xt;' Lxt xt;]

=~
I

Note for R, the convention that i+1=1 if i=3 and i—-1=3 if i =1 applies.

Thus for three homologous points I,I,, and I,

Vv, =V
u, = 4y
V; = U

A 1.2. 5 3D Reconstruction

A 19
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In principle a knowledge of T,and T, is sufficient to compute the three coordinates of any point

P, given its two images I, and I,. However Ayache points out that in the absence of an
objective criterion, solving the whole system either by least squares or by Kalman filtering is

desirable. Either approach extends naturally to trinocular stereo vision, and more generally to
reconstruction based on an arbitrary number of cameras.
For this work least squares was used, and the solution for n cameras follows.

For n cameras, set

Aa=b A 20

With a = (x, y,z) and
A=| and b=| : A 21
For which
A.[(t? —“’tg)'] and b, =[“"t?4 ’ti“] A2
ey -vts): itk -t
The least squares solution is then given by

a=(A'A)"AD A 23
provided A’'A is invertible.

Fig A 1.2.5. 1 4 Degree of freedom stereo head with third camera mounted

An example of results obtained using three Pulnix colour cameras is given below.
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Fig A 1.2.,5.2  Left, centre and right camera images of a scene

Fig A 1.2.5.3  Resulting 3D trinocular reconstruction
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A1.3 Cluster Prototype Centring by Membership (CPCM)

A fuzzy probabilistic method for object boundary detection resulting in the development of a
new progressive fuzzy clustering algorithm was also tested. The algorithm was given the
acronym CPCM (Cluster Prototype Centering by Membership). Full details and results were
published in [IWQ95], [ILW96].

The extent of this work is best summarized by the following extract from P.T.Im [Im97]

"This work applies an enhanced progressive clustering approach, involving clustering
algorithms and fuzzy neural networks, to solve some practical problems of pattern recognition. A
new fuzzy clustering framework referred to as Cluster Prototype Centring by Membership
(CPCM) has been developed. A Possiblistic Fuzzy c-Means algorithm (PFCM), which is also
new, has been formulated to investigate properties of fuzzy clustering. PFCM extends the
useability of the Fuzzy c-Means (FCM) algorithm by generalisation of the membership function.
CPCM provides a flexible framework to integrate clustering methods that detect cluster
substructures. Application development is focused on three problem contexts: (i) detection of
contaminants in wool and paint defect on tile surface (region segmentation), (ii) identification of
real object lines and circles (boundary detection) and (iii) recognition of a notched feature on an
armature housing (general pattern recognition). Results obtained from these algorithms indicate
robust clustering and accurate identification of cluster parameters (circle centre, radius, line
gradient and corners) from real data silhouettes characterised by the presence of noise,
fragmentation and partial obscurity."

The bulk of this work was carried out by P.T. Im with the aid and supervision of M.Wingate.
The following five papers on CPCM and applications were co-authored by M.Wingate:
[ILW96],[IQWHIS],[IQWHI5b],[TWQ95].
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Appendix B Hardware and Software

B 1.0 Introduction

To clarify and extend information provided so far in various chapters, specific details relating to
ancillary hardware and software developed is provided in this appendix.

MROLR's system software comprises of numerous integrated platform modules (Linux,
Windows, DOS) and many megabites of 'C/C++' based source code. Much of it is hardware
specific and/or proprietary produced (i.e., written for the mobile-base controller, active stereo
head-controller, robot arm-controller, etc.) and is of little use for other systems, or is not licensed
for inclusion in this appendix. Ultimately, it is expected that source code written specifically for
this project will be available on a CD for interested parties.

Accurate 3D object-model creation is essential for reliable object recognition. Several portable
computer-controlled rotating tables needed to be designed and constructed to facilitate the
object-model creations discussed in chapters 6 and 7. The motion controller requirements for the
(partially complete proposed) mobile transport base, are similar to those of the rotating tables,
thus for standardisation and ease of manufacture, identical designs were used. Section B 2.0
gives the circuit schematics of the controller and details of the electronic boards constructed.
Specific details of the procedure for 3D object-model creation and its implementation in software
are outlined in section B 2.1.

Kinematic analysis and solutions for a large range of robotic arms are well documented and
understood. Driver binaries for the RTX UMI robot were provided by the manufacturer, however
to incorporate kinematic and inverse kinematic solutions for the MROLR Simulation Module,
required the development and coding of the relevant mathematical solutions. Forward kinematic
and inverse kinematic solutions coded for the RTX robot arm, are detailed in sections B 3.

B 2.0 Rotating Table and Mobile Transport Robot Controller Circuit Design

Motion controllers designed specifically for MROLR were standardised around the Motorola
HC11 microprocessor and National Semiconductors LM629 motion-control IC. Thus, controllers
for the model creating turn tables, are the same as used for the mobile transport base, except for
the number of motor drivers utilised. All motors are fitted with precision optical encoders
permitting velocity and acceleration against time profiles to be specified. This control is
accomplished using the LM629, 32 bit motion controller, see list of features below.
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LM629 features?

32-bit position, velocity, and acceleration registers

Programmable digital PID filter with 16-bit coefficients

Programmable derivative sampling interval

8-bit sign-magnitude PWM output data Internal trapezoidal velocity profile generator
Velocity, target position, and filter parameters may be changed during motion
Position and velocity modes of operation

Real-time programmable host interrupts

8-bit parallel asynchronous host interface

Quadrature incremental encoder interface with index pulse input

Circuit hardware and schematic details are shown in Figs B.2.0.3 to B.2.0.9. Interface to PCs is
via an RS232 serial port.

Two portable, model creating tables were built, one robust with level adjusting legs to ensure a
precise horizontal planar surface, the other lighter and more portable for ease of transport to
different locations. Prior to the integration of the single view models formed, a rotation of each
model about the Z-axis of the table, equivalent to the minus the angle the table was rotated, is
required. The closer to horizontal the table surface is the better the model produced. Both
motorised tables, previously shown in Fig 6.1.5 (a) and (b), are redisplayed reduced in Fig
B.2.0.1

The transport mobile base (Fig 6.7.2) was designed and constructed to carry the robot arm and to
ultimately dock with the scout master mobile base, as outlined in earlier chapters. In its present
"carnation” it is accurately able to move to specified coordinates. This is demonstrated in the
accompanying CD which shows the transport base carrying the robot arm. For convenience Fig
6.7.2 is also redisplayed reduced in Fig B.2.0.2

Wireless communication, and laser controlled docking still need to be added to make this facility
a useful component of MROLR.

2 . . . .
Extracted from National Semiconductors application notes
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sl LT PV ] b e
g g .

Fig B.2.0. 1 Portable motorised turn tables

Fig B.2.0. 2 Mobile Transport base and Arm
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(a) Double layer, microprocessor and precision motor controller circuit board.
This board comprises 5 basic circuit sections, schematic circuit details are given
in Figs B.2.0.4 t0 B.2.0.8.

(b) Motor Driver Board : Schematic circuit details are given in Fig B.2.0.9

Fig B.2.0. 3 Controller hardware

160
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B 2.1 Model Creating Procedure Details
The procedure for creating a model is as follows:

3D edge models of each rotated view are automatically provided via the stereo head,
computerised table, and modified TINA software. These are Model.i.poly, with i incrementing
from 1 to 7, respectively representing edge model views of: 0, 45, 90, 135, 180, 225, 270, 315
degree rotation, about the Z axis of the table (i.e., world coordinate frame). Each view comprise
3D line and 3D conic edge segment location descriptors referenced to the Left Camera
coordinate frame. Left Camera homogeneous transforms TCWL' and TWCL are established to
facilitate transformations of “3D segments” to either world coordinate frame or the Left camera
coordinate frame respectively. (Note notation CW signifies camera measurements transformed to
world coordinate frame, while WC signifies world coordinate measurements transformed to
camera coordinate frame). TCWL comprises TCWL.r (3x3 matrix of the camera rotation
parameters with respect to world coordinate frame) and TCWL.t (3*1 matrix of the camera
translation parameters with respect to world coordinate frame). The inverse camera
transformation structure TWCL comprises TWCL.r and TWCL.t (rotations and translations with
reference to the Left Camera coordinate frame). Rotation and translation matrix data are obtained
from a prior Tsai® camera calibration results.

A 3x3 matrix transform T45Z for producing 45 degree (clockwise) rotations about the world
coordinated frame Z-axis was also established.

B2.1.1 Pseudocode: Make_model_proc()

/* Convert 3D segments in poly buffers from left camera to world coordinate frame) */
For i =1to 7 apply TCWL to Model.i.poly

/* Rotate poly segments (clockwise) about the world Z-axis an amount consistent with the
respective table (anti-clockwise) rotation (each table rotation increment = 45 degrees). Append
rotated segments to Model.1.poly */

For i =2to 7 apply (i*T45Z) to Model.i.poly and append results to Model.1.poly

/* Finally convert 3D segments in .poly models back to Left Camera coordinate frame as TINA
TV displays camera coordinate views) */

Apply TWCL to Model.1.poly

Display resulting Model.1.poly

Note for most cases only 4 models (instead of 7) are necessary. For these cases i=1to 4, and a
T90Z = 2x T45Z is used etc.

;TCWL is the 4x4 homogeneous transform of the Left Camera w.r.t. the World Coordinate Frame.
The Tsai calibration routine is provided in TINA’s Calibration tool.
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B 3.0 Forward Kinematics and Inverse Kinematics of the UMI RTX

6 DOF Robot.

Fig B3.0.1 DH link coordinate systems and joint assignment for the RTX robot arm

B 3.1 Denavit-Hartenberg Representation (D-H)

coordinate frames:
1.z, axis lies along the axis of motion of the i joint.
2. x;axis is normal to the z;, axis, and points away from it.
3.y, axis completes the right-hand coordinate system as required.

link parameters:
1. 0;is the joint angle from the X, axis to the x; axis about the z;.,; axis (using the right hand rule)
2. d;is the distance form the origin of the (i-l)Lh frame to the intersection of the z;, axis with the x; axis
along the z;, axis
3. ais the shortest distance between the z;., and the z; axes (offset distance from the intersection of the z; |
axis with x; axis to the origin of the i frame along the x; axis)
4. o is the offset angle from the z;.; axis to the z; axis about the x; axis (using the right hand rule)
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cosd, -—cosq;sinf, sing,sinf, a,cosb,
g, | o sing | .

A= TEORE )T ARGT) = sing, cosc.z, cosé, sing, cosd, a,sind,
0 sing, cosa, d,
0 0 0 1

Links d; Qi.j G oci g

| var 0 |0 0 0

2 0 254mm | var 0

3 0 254mm | var 90°

4 0 0 var 90°

5 0 0 var 0

6 177mm | 0 var 0

Note var = variable, ** signify a prismatic joint while * a rotary joint.

Initial variable joint values are:
d1=922mm, 92 = 93 = 94 = 00, 95 = 900 N 96=0

FigB 3.1.2 Denevit Hartenberg link/joint parameter table

The A Matricies
| Cos[ql] -Sin[gl] 0 O | *note q is used in place of 0
| Sin[gl] Cos[gl] 0 O |
A(l]= | O 0 1 dl |
| O 0 0 1 |
| Cos[g2] -Sin[g2] 0 254 Cos[qZ] |
| Sin[g2] Cosl[g2] 0 254 Sin[qg2] |
A[2]= | O 0 1 O |
| O 0 0 1
| Cos[g3} -Sin[g3] 0 254 Cos[g3] |
| Sin[g3] Cos[q3] 0 254 Sin[g3] |
A[3]= | O 0 1 0 |
| O 0 0 1
| Cos[gd] 0 Sin[qg4]} 0 |
| Sin[gq4] O -Cos[g4] O |
Ald]l= | O 1 0 0 I
| O 0 0 1 |
| Cos[g5] O Sin[g5] 0 |
| Sin[g5] 0 -Cos[g5] O |
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A[sl= 1 0 1 0 0 |
0 0 0 1 |

Cos[gb] -Sin([g6] O
Sin[g6] Cos[gb6] 0 0
0 0 1
0 0 0

B 3.2 Forward Kinematic Solution °T

The Forward Kinematic Solution (T is obtained from:

n o, a, D,

X
ny 0}’ ay py

nZ OZ a pZ

z

0 0 01

"T=A* A*JA*]A* A% A =

Because of its size 271=T06 is printed one Row at a time, note also
S$1=Sin(q;), Cl=Cos(q;), etc.

0

T

T06[1,1] = -(S1 (S2 (~(S3 (C5 C6 S4 - C4 S6)) + C3 (C4 C5 C6 + S4 S6)) +
> C2 (C3 (C5 C6 S4 - C4 S6) + S3 (C4 C5 C6 + S4 S6)))) +

> Cl (C2 (-(S3 (C5 C6 S4 - C4 S6)) + C3 (C4 C5 C6 + S4 S6)) -

> S2 (C3 (C5 C6 S4 - C4 S6) + S3 (C4 C5 C6 + S4 S6)))

T06[2,1] = C1 (S2 (-(S3 (C5 C6 S4 - C4 S6)) + C3 (C4 C5 C6 + S4 S6)) +
> C2 (C3 (C5 C6 S4 - C4 S6) + S3 (C4 C5 C6 + S4 S6))) +

> S1 (C2 (-(S3 (C5 C6 S4 - C4 S6)) + C3 (C4 C5 C6 + S4 S6)) -

> S2 (C3 (C5 C6 S4 - C4 S6) + S3 (C4 C5 Cé6 + S4 56)))

T06[3,1) = Ceé6 S5

T06(4,1] = 0

T06[1,2) = C1 (-(S2 (S3 (C6 S4 - C4 C5 S6) + C3 (-(C4 C6) - C5 S4 86))) +

> C2 (C3 (C6 S4 - C4 C5 S6) — S3 (-(C4 C6) - C5 S4 S6))) -
> S1 (C2 (S3 (C6 S4 - C4 C5 S6) + C3 (-(C4 C6) — C5 sS4 86)) +

> S2 (C3 (C6 S4 - C4 C5 S6) - S3 (-(C4 Cé6) - C5 54 S6)))

T06(2,2] S1 (-(S2 (S3 (C6 S4 - C4 C5 S6) + C3 (-(C4 C6) - C5 54 S6))) +
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> C2 (C3 (C6 S4 - C4 C5 S6) - S3 (-(C4 Cé6) - C5 S84 8S6))) +

> Cl (C2 (S3 (C6 S4 - C4 C5 S6) + C3 (-(C4 Cob) - C5 S4 S6)) +

> S2 (C3 (C6 S4 - C4 C5 S6) - S3 (-(C4 C6) - C5 S4 56)))
T06[3,2] = -(S5 S6)
T06[4,2] =0

T06[1,3] = Cos[gl + g2 + g3 + g4] S5

T06[2,3] = Sin[ql + g2 + g3 + g4] S5

T06[3,3] = -C5

T06(4,3] =0

T06{1,4] = -(S1 (254 S2 + S2 (254 C3 + 177 C3 C4 S5 - 177 S3 S4 S5) +
> C2 (254 S3 + 177 S34 S85))) +

> Cl (254 C2 + C2 (254 C3 + 177 C3 C4 85 - 177 S3 S84 S5) -

> S2 (254 S3 + 177 S34 S85))

T06[2,4] = C1 (254 S2 + S2 (254 C3 + 177 C3 C4 S5 - 177 S3 S4 S5) +
> C2 (254 S3 + 177 834 S5)) +

> S1 (254 C2 + C2 (254 C3 + 177 C3 C4 85 ~ 177 S3 84 85) -

> S2 (254 S3 + 177 S34 S$5))

T06[3,4) = d1 - 177 C5

it

TO6[4, 4] 1

B 3.3 Inverse Kinematics

The above transforms may be used to obtain the inverse kinematic solution for the robot arm.
Alternatively the inverse kinematic solution may be obtained by considering the joint movement
geometry directly. This later geometrical approach was taken and the resulting function (coded in
C) is given in Section 3.3.1 below. A more general solution (suitable for arms with 5 or more
degrees of freedom) was also adopted. This extends the use of the simulator to include arms with
a variety of configurations and joints (i.e., Articulated, Spherical, Cylindrical joints). This second
solution uses the pseudo-inverse of the manipulator's Jacobian and is completely general. Recall
the forward kinematic solution is:

T=TA%AYAXAYAY AT A =K(q),
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The inverse kinematic solution is (q) =K "'(T) where (q) is a vector array of the variable joint
parameters.

Because the solution is obtained iteratively, it is less efficient than specific inverse kinematic
solutions derived symbolically or from direct joint geometry. A further drawback is that while

this approach allows a solution to be obtained at a singularity, the joint angles within the null
space are arbitrarily assigned.

The code for the pseudo-inverse was ported from Peter Corke's Matlab "Robotics Toolbox"' to
'C' code.

' publicly available from www.brb.dmt.csiro.auw/dmt/programs/autom/pic/matlab.html


http://www.brb.dmt.csiro.au/dmt/programs/autom/pic/matlab.html
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B3.3.1 'C' written function to compute inverse kinematic solution for RTX robot
arm

(Note portions of this code were ported from pascal code generously provided by Geoff West of
Curtain University, W.A. Australia.)

int compute_xyz(double *x_coord, double *y_coord,double *z_coord,double *pitch,double *roll,double *yaw,\\
int *s_ec, int *e_ec,int *z_ec,int *wl_ec,int *w2_ec,int *wy_ec)

{

double x_wrist,y wrist,z_wrist;

double theta,phi,radius;

double opp;

int flag;

double r_xy;

* compute roll, pitch and yaw motor counts */
/* note - pitch - rotate about -Z (was x)

roll - rotate about X (was y)

yaw - rotate about Y (was z)
w.r.t. wrist.

wl_ec -- wrist motorl encoder counts

w2_ec --wrist motor2 encoder counts

s_ec --- shoulder motor " "

e_ec-- elbow motor " "
*/

*wl_ec= (int)(-*pitch/0.07415);

*w2_ec=*wl_ec;

etc.

*wl_ec=*wl_ec+ (int)(*roll/(0.07415));

*w2_ec=*w2_ec- (int)(*roll/(0.07415));

/*

compute position of the wrist from the position of the gripper,
this depends on the pitch,roll and yaw angles

)

r_xy=177 * cos(rads(*pitch));

x_wrist=*x_coord - (r_xy * sin(rads(*yaw)));

y_wrist=*y coord - (r_xy * cos(rads(*yaw)));
z_wrist=*z_coord + (177 * sin(rads(*pitch)));

/*
note default configuration is LH
*
flag=0;
*z_ec= (int)((z_wrist-z_orig)/0.2667);
if (*z_ec > 0) || (*z_ec < -3554))
flag=1;
radius=sqrt((x_wrist*x_wrist)+(y_wrist*y_wrist));
if (radius > 507)
{

print_to_screen("ERROR attempt to place wrist outside the limits! radius=%f\n" radius);
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print_to_screen("will jump out of program");

}

else

{
opp=sqrt((arm_I*arm_l)-((radius/2)*(radius/2)));
if(radius < 0.0001)

theta=90;
else

theta=atan(opp*2/radius)*360.0/(2*pi);

*s ec= (int)(theta/0.03422);

*e_ec= (int)((-theta/0.06844)*2);

if ((y_wrist <0.0001) && (x_wrist > 0))
phi=90;

else if ((y_wrist < 0.0001) && (x_wrist <= 0))
phi=-90;

else
phi=atan(x_wrist/y_wrist)*360/(pi*2);

print_to_screen( "phi= %f \n",phi);
*s_ec=*s_ec- (int)(phi/0.03422);
/*
compute required yaw angle w.r.t position determined by
the angle of the arm with the y axis
*/
*wy_ec=- (int)((*yaw - phi)/0.10267);

/*

if limits exceeded, try RH config

*/

if((*s_ec <-2630) || (*s_ec >2630) || (*e_ec <-2630) || (*e_ec > 2206))

{
*s_ec=- (int)(theta/0.0342);
*e_ec=- (int)((-theta/0.06844)*2);
*s_ec=*s_ec- (int)(phi/0.03422);

%
if{(*s_ec <-2630) || (*s_ec >2630) || (*¢_ec <-2630) || (*e_ec > 2206)) flag=1;
if(flag==1)

{

print_to_screen("WARNING- arm will exceed limits if you continue \n");
print_to_screen("z_ec=%d , s_ec=%d ,e_ec=%d \n",*z_ec,*s_ec, *e_ec);
print_to_screen("hit <cr> to continue\n");

}
}

return 0;

}
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Appendix C Development of a Feature Tracking Strategy

C 1.0 Introduction

This appendix builds on the feature tracking analysis commenced in Chapter 5, developing the
methodology and strategies for continuous featuring tracking while at the same time maintaining
a manageable sized feature-map. The objective is to maximise the capabilities of the TRC stereo
head to make measurements, and provide navigational information.

Davison [Dav98] develops a means of maintaining a large map of landmark features without the
computational burden of having to update the full covariance matrices following a measurement.
Moreover the solution permits continuous tracking without compromising the integrity of the
filter, and during motion, requires only those parts of the filter that are needed for the current
tracking task to be updated.

Davison's derivations are adopted, making the necessary modifications to accommodate the
differences in MROLR's control architecture and stereo head outlined in Section 4.2. Building on
the expressions (equations 5.1 through 5.52) developed in Chapter 5, the methodology that
necessitates only those parts of the state vector and covariance matrix which are directly
involved in the tracking process at that time to be updated is outlined. These are the estimated

states of the sensor and observed i" feature, X, and y, respectively, and the covariances
P xx,nyi, and Pyiyj - Recall that ny‘. is the covariance matrix between the estimated mobile

robot state X, and feature y,. By storing a small amount of information at each transition step,

the state and covariances can be updated in a generic way at the completion of each tracking
motion.

To emphasis the equations developed in Chapter 5 are being extended, the same numbering
sequence is used.

For MROLR the system state transition function f (Equation 5.53) comprises of function f
which models the head sensor movements in terms of the mobile-base state xy and the control
vector u, and y; the scene-feature states.

The system analysis can be simplified by imposing the following restrictions:

 during the platform’s motion the position of the scene-features (relative to the world
coordinate frame) do not change, and consequently y; remains constant during a state
transition, and

* a scene-feature’s measurement depends only the current states of the sensor and the feature
undergoing measurement (equation 5.54).
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With the above restrictions the state transition has the form
fv( Xy, u )
Y.

f(x)=| 5.53
Y.

and a measurement has the form

m(X) = my(Xv,yi) 5.54

CS5.5.9 System State Prediction

The prediction of the state following a motion and the corresponding covariance is readily
written down from consideration of equations 5.32 and 5.33. In the following the "k" time-step
notation will be omitted.

fv(iv,U)
X, = i’n 5.55

new
Y.

/

(V(t,), PV(E, )L +Q V(f,), P, V() P, .|
T
Ptu(fV ),‘v P P

yiy! yly2

P = PyZXV(fv )XTV PyZyl Py2y2 5.56

new

C5.5.10 Filter Update

Following measurement z; of scene-feature i and recalling that measurement vector m; is a
function of x, and y; only, the following equations may be derived:

V(m,),l=(V(m,.)xv V(m,), V(m,), V(m, ), )

=(v(mi)” 0 .- . 0 V(m,), )
5.57
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Vim,)!

P. P, P, ] 0
pv(m, ) =| o B P 0
Py2x y2yl Py2y2 :
i : ; | V(m, )5
or
Pxx PXY,’
T PYI" T Ple' T
PV(m, ) =| 7 (V(m, )] +| " V(m, )] 5.58

yax y2yi

And the innovation covariance S is:
S =V(m,) PV(m,)] +R
=V(m,), P,V(m, )xTv +V(m, ), P, . V(m, )xrv +V(m, ), P, V(m, )yT, 5.59
+V(m;), P, V(m,) +R

Recall that in equation 5.59 R is the covariance matrix of the measurement noise.

From equation 5.27 the Kalman gain W is:

P PXY:’

XX

P, P,,
W=PV(m)/S" = P" V(m, )l 87+ " \v(m, )8

YaXx YaYi

5.60

The WSW' required to update P following a measurement is:
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WSW=(PV(m)[S ")S(PV(m)]S")" =PV(m),”s"5S" " V(m), P’
=PV(m)’S" V(m),P’

5. 61
Substituting for PV(m )] from equation 5.58 gives equation 5.62.

In equation 5.62 recall S is symmetric S = s

Further details on updating components of the Estimated State Vector and Covariance Matrix are
given below. The derivations assume that the feature observed in the measurement stage has
label i, and there are also two unobserved features j and k.

P

XX

Py
WSW’ = Py' V(m, ), $"V(m,), (P, P, P, )

XYy xy2
yax

=

XX

+ & V(mi)xTvS_lv(mi)y,-(Pyix Py:'yl Pyih )

ya2x

=

PXY{ )
Py|yi T -1
+ V(m,), S Vm,) (®, P, P, )
Ya¥i
; /
|
37 5.62
Pyy, I Q- P
+ V(m,.)yiS V(m,-)yi(Pyix PY,'Y) Yiy2 )
Ya¥i
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Commencing with the Estimated Sensor State.

The Prediction is:

Xvoey =f,(X,,u)

and Update

iv(new) = iv‘*‘ PuV(m,.)xTv S7'v +nyiV(mi); S_lv
The Observed Feature State Prediction is:

Sli (new) = 91'

Update

yi(new) = 5,i + Py,-xv(mi )Zv S_Iv + Pyiy, V(mr ):v S_lv
For the Unobserved Feature State, the Prediction is:
Vioen=Y,

While the Update:

-

Yoy =¥, + P, ,V(m, ) STV+P, V(m, )] Sy

5. 63

5. 64

5. 65

5. 66

5. 67

5. 68

179

Next the covariance matrix P will be considered. This matrix is partitioned with covariance
components comprising: (a) the covariance between the sensor state and itself, (b) the sensor
state and the observed feature state, (c) the observed feature state and itself, (d) the sensor state
and the unobserved feature state, (e) the observed feature state and an unobserved feature state,

and (f) two unobserved feature states.

Because of the considerable size of matrix P it is simpler to define component sub matrices as

follows:

A=V(m,); $'V(m,),,
B= V(mi)xTv S"V(m,.)yi
C=V(m,); $'V(m,),,

D=V(m,); $"V(m,),

5. 69

5.70

5.7

5.72
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Now for each of the partitoned covariance states;

Cs5.5.11 Sensor State and Itself

Prediction
Pxx(new) = V (fv )x vax V (fv )XTV + Q

Update

P

xx(new) P,-(P AP, +P,B Py;x + P, y.-C P, +P, YiD Pyix)

C5.5.12 Sensor State and Observed Feature State

Prediction

Py = VE D Py,

Update

nyi(new) = ny,-'(PxxA ny,- +P_ B Py,»y.- + ny.- C nyi + P, y‘,D Pym)

C5.5.13 Observed Feature State and Itself

Prediction

Py,-y,-(neW) - Pym

Update

Pyiyi(new) = Pym-(PyixA ny’_ + Py,-xB P, + p CP, + p DP . )

YiYi

C5.5.14 Sensor State and an Unobserved Feature State

Prediction
ny j(new) = (fv ) Xy ny j

Update

P

Xy j{new)

= nyj-(PxxA ny,- +P_B Py,-yj +P, C nyj +P, ij PYin)

5.73

5.74

5.75

5.76

5.77

5.78

5.79

5.80

180
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C5.5.15 Observed Feature State and an Unobserved Feature State

Prediction

Pyy jnew) = P Viyj 5. 81

Update

Py:y,(new)zPyzy,-'(Py.-xAnyj +Py;xBPy,-y,- +Pyiinny,- +Py,-y1DPy1y,-) 5.82

C5.5.16 And finally Two Unobserved Feature States

Prediction

P, jYlnew) = P, Y 5.83

Update

Pyjyk(new) = Py,-yk'(Py,-xA nyk +Py,-xB Py,-yk < 84
+ Pyjin qu + Py,-y,-D Pyiyk)

Equation 5.84 also applies for determination of the covariance between an unobserved feature
state and itself (ie for j = k)

C 5.6 Multiple Steps

The development of the above equations permits the efficient filtering for the specific case of
tracking a single feature over multiple incremental steps. Assume for the moment that the robot
is at the start position and is able to observe feature i:

£,(0) »,,(0) »,(0) P, (0) ]
£(0)= y,(0) ,P(0)= P, (0) Pym(o) P, (0)--

5. 85
y.(0) p,.0) P, 0)P,,©0)

During these multiple steps while the single feature i is being tracked, equations 5.63 to 5.66 and
5.73 to 5.78 could to be used to update the state vector and covariance matrix. However by
storing a small amount of information at each filter step it is possible to reduce the computations
to that of only modifying
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.Y, P, ny‘., and Pym directly. Other parts need to be updated only at the completion of
the single feature tracking in a systematic and generic manner.

To outline the process first consider:

nyj and Pinj

From examination of equations 5.79 to 5.82 it is evident that they may be expressed in the form
nyj = ETnyj (0)+FTPy,-yj (0) 5. 86
PYIY] - GTPY:‘Y] (0)+HTny/ (0) 5.87

For a single measurement update, using Equations 5.80 and 5.82,

nyj (new) — nyj - l l)xx‘A + PXY:’ C Jnyj o lPxxB + ny,» D JPyiyj 5.88
PYin (new) ~ PYin - lPYiXA + PyIY1CJnyi - leixB + Py,-yi DJ Py,yj 5.89

To obtain a form similar to equations 5.86 and 5.87 matrices E, F, G and H are defined as:

E=I-|P,A+P, C| 5.90
F=-|P,B+P, D] 5.91
G=1-|p, B+P, D] 5.92
H =_|-PinA + PYiYiCJ 593

Equations 5.88 and 5.90 can now be written as:

Py ey = EP,, + FP, 5.94

XyJ

P =GP, . +HP 5.95

Yi¥j (new) Yi¥j Xy,
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which is in the desired form. Coefficient matrices Et , Fr, Gr, Hr of equations 5.88 and 5.89
for a measurement update become:

ET(new) =EET + FHT

5.96
Friew) =EF; + FG 5.97
G 1rew) = GG ¢ + HF; 5.98
Hqy(e) = GHy + HE; 5.99
At a prediction (From equations 5.79 and 5.81) Et, Fr become:
ET(W) = V(fv )xv E. 5.100
Frten) = V(). Fr 5,101
Gr, Hr remaining unchanged.
Consider next Py vy, - To express the prediction and measurement updates for P, i (the

covariance between the position estimate of two of the unobserved features) in the same form as
the equations just derived, it can be deduced from equations 5.83 and 5.84 that:

P, =P, (0)- [Pyx(O)A P, (0)+P, (0)B.P, (0)

5.102
Yj)'i (O)CTPXH (0)+ Y,Yi (O)D YiYk (0)
For a single measurement update, re-expressing in the form of equation 5.84 gives,
PY]Yk("eW) [ AR‘Yk +P BPy Vi
5.103
+P CI;)'k +Py y,DPyyk ]
substituting for ny,- , Py,_y s Py, sand P,
P, e =Py, — P, (O)[ETAE, + E}BH, + HCE, + HDH, [P, (0)

-, (0)[E}AF, + E}BG, + H{CF; +H[DG, [P, (0)
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~P,, (0)|FT AE, +EIBH, +GICE, +GIDH, [P, (0)

-P,, (0)[FI AE, +F/BG, + GICF, + GIDG,|P,, (0)

5.104
At ,Br, Cr, and Dr at a measurement update become:
Argew)=Ar +ETAE; +EIBH, + HICE, + HIDH, 5.105
Biew) =Br + E1AF, +EIBG, + HICF, + HIDG, 5.106
Cruew) =Cr + Ff AE; + FIBH; + GICE; + G[DH, 5.107
Drew)=Dr +FIAF, +F/BG, +GICF, +GIDG, 5.108

In a prediction, equation 5.83 shows P Y ¥k remains unchanged and therefore it is unnecessary to

change At , Bt , Cr and D for a prediction

Consider next §,. Proceeding as above the estimated state y ; of an unobserved feature is:
5'1.=§’j(0)+Py/,‘(0)mxT+Pyjyi(0)mT 5.109

(with mut and niy yet to be defined), and for a measurement update:

\ (new) =y, +Py/x V(m, ):v S7v+ Pym V(m, );_ Sy 5.110

X

Substituting for Pyj and P, . from equations 5.88 and 5.89,

oo =5, + B,  (0)[ETV(m,)T, +HV(m,)] )$™v

5.111
+P,, O Vm),, "+GiV(m)} )7
Thus in a measurement step:
M 1) =My + (E§V(m,.)fv +HV(m,); )S”’v 5,112

g (pew)y = Mg +(FIV(m, ) +GiV(m,); )sv 5.113
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Reference to equation 5.67 shows that in a prediction step ¥ ;remains unchanged and therefore
there is no need to alter mit and nit

To clarify and summarise the above procedures, consider the situation where the robot has
mapped multiple features but is currently only making measurements of feature i. j and k are
two unobserved features. The parts of the estimated state vector and covariance matrix that are
directly involved in the motion and measurement are continuously updated. The information
needed to generically update the other sections can be conveniently and efficiently stored, so that
a single step, at the end of the motion, can bring them up to date.

Prior to motion the estimated state vector and covariance of the system are designated by
x(0) and P(0) and the following matrices and vectors are initialised to:

A;=0,B;=0,C;=0,D; =0,E. =LF, =0,G, =L H, =0,mi; =0,n1, =0

Each of these store the generic update information referred to. The subscript T is used to signify
“Total”. Note Ar ...Hrt are square matrices equal in size to y; while m1t and nit are column
vectors of the same dimension.

Prediction

While the cameras are in motion, the components of the estimated state vector and covariance
are updated as below:

X,y = 1, (X, 1) 5.114
Vitrew) = ¥ 5.115
o) = VAL PLVE )L +Q 5.116
P, men) = VA, ) Py, 5.117
vivy(oew) = Pyy, 5.118

And stored matrices:
E, =V(,), E 5. 119

new) T

ET(new) = V(fv )vaT 5. 120
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Measurement Update

The following matrices and updates are calculated for measurement of feature i:

A=Y(m,); S"'V(m,),, 5.121
B=V(m‘)fvS_lV(ml.)yi 5.122
C=V(m,);$7'V(m,), 5.123
D=V(m,), S"'V(m,), 5.124
E=1-|P,A+P, C| 5.125
F=-[P,B+P, D 5.126
G=1-p, B+P  D| 5.127
H=-{P_ _A+P C 5.128
yx" Yy,
X, peg = Xy + P, V(m,); STVHP, V(m,); S'v 5,129
View =¥, +P,,V(m). STv+P, V(m,), S 5.130
Pxx(new) =Pxx - (PxxAPxx + PxxBPy,x + ny,-CPxx + nyiDPyIX) 5.131
ny.‘("ew) =nys - (P“ AP!Y,‘ + P“BPHY;' + PXYzCP"Yi + P"yiDPYiyi ) 5.132
P,y o) =Py, — (p,.AP, +P, BP, +P CP, +P DP, ) 5.133

Stored matrices and vectors:

M, ) = Mig + (EiV(m,.)xTv +H:V(mi)§i )S“v 5. 134
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Dire) = Mg + (F7V(m Ji, +GIV(m ) )57y 5.135
BT(new) = BT + E'ZI:IXFT + E'{‘BGT + H;CFT + HgDGT 5.136
Couew) =Cr + F{AE, +F/BH + G1CE, +GIDH, 5.137
Dy@ew) = Dy + F{ AF; + F/BG, + GICF, +GIDG, 5.138
Ergew) = EE +FH 5,139
FT(new) = EFT + FGT 5.140
Giruew) = GG + HF; 5. 141
HT(new) - GHT + HET 5. 142
Note:

(1) The order of calculating mtr, n1t and Ar ... Dt is important as the expressions make use
of old values of Er .... Hy

(2) Similarly for equations 5.139 to 5.141, matrices on the right hand side of expressions use old
versions of Er .... Hr.

To accommodate these requirements careful storage of Et to Hy is required. The benefits are that
the computational expense in making updates to the stored matrices and vectors at prediction and
measurement is constant, independent of the number of features in the map. To achieve this,
parts of the total state vector and covariance matrix not related to the current update are not
processed until later at the end of the motion. The information required for this later processing
being stored in a generic way.

Final Full Update

Once the motion has been completed, the full estimated state vector can be readily brought up to
date using the following equation.

For each unobserved feature j:

§,=9,(0)+P, (0)mir +P,  (0)ni, 5.143
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The update of the covariance between a pair of unobserved features jand k is:

P, =P, (0)- [Pij(O)ATnyk (0) +P, (0)B.P  (0)
+P,  (0)C.P, (0)+P, (0)D.P, (0) ]

5. 144

To update the parts of the covariance matrix relating unobserved feature j to the sensor state and
the unobserved feature state (equations 5.145 and 5.146):

nyj =ETnyj (0 )+FTij (0) 5.145

P, =G:Py,, (0)+HP,, (0) 5.146

Choice of Feature

Following a feature measurement m, the innovation covariance matrix S formed provides a
measure of how much the actual measurement is expected to vary from that predicted in angular
measurement coordinates the (o, e, y) (see equation 5.40). This knowledge can be used as the
basis for deciding which feature to track. The volume in (o, e, y) space of the ellipsoid
represented by S at the nsc level can be calculated for each visible feature: eigenvalues A, A,

A3, of S mean that the ellipsoid has axes of length n,+/4;, ns+/A, and na\/z . If this volume is

labelled V; (equation 5.147), then its calculation for each of the features currently visible,
provides a criterion for selection, based on the feature with the highest value.

Vs =§7m3 Ay A 5.147

This criterion takes no account of the time the head would take to saccade to an alternative
feature. For instance, if two features are widely apart (one in the front of the robot and the other
at 90 degrees), then the time for the head to moves to a position where it can commence the
measurement of a new feature can be quite long (perhaps 1 second). This impinges significantly
on the total navigational time. An optimal strategy would incorporate a penalty for this saccading
time into the choice-of —feature criterion. The Davison criterion adopted for this work does so,
and is outlined below.

The decision, as to whether to switch to a new feature or stay tracking the existing one, is made
while the robot is moving. The choice is based on the predicted robot and map state that would
exist in a short future interval of time if (a) the saccade and measure of the chosen feature was
made or (b) tracking of the existing feature continued. The referred to "short future interval of
time", is the estimated time it would take to saccade to and measure any feature under
consideration.
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Formally the decision process is implemented according to:

1. Ni, the number of measurements that would be lost while saccading to each of the visible

features is calculated. To determine this, an estimate of head movement time, to correctly move
to and locate each feature, is required.

2. Ascertain the largest N; (Nmay ); this represents the largest number of measurements lost during
the longest saccade.

3. If an immediate saccade is to be made, estimate for each feature i the state that would exist
after Nmax + 1 steps.

4, Evaluate Vs(max) for each of the above estimated states and saccade to the feature with the
lowest Vs(max), unless the Vs(max) of the feature being tracked is already the lowest.
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