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ABSTRACT

The propagation channel is a vital but invisible part of any wireless
communications system. As wavelengths get shorter, multipath effects become more
pronounced, causing small scale fading in narrowband channels, and inter-symbol
interference in wideband systems because of delay spread in the channel impulse
response. Multipath propagation becomes more pronounced as the wavelength
decreases, and at the frequencies around 2GHz assigned for 3rd. generation cellular
‘phones and personal communication services, multipath is pervasive, and very
dependent on the built environment and topography. Multipath makes non-line-of-
sight (NLOS) operation possible, but also introduces a degree of randomness and
unpredictability which complicates radio system design. System designers, and
researchers pursuing improved methods of communicating information need realistic

channel statistics and models to progress.

At the start of this thesis project, no wideband outdoor propagation data had
ever been published for the Australian environment. The primary objective of the
project was to develop and build wideband channel-sounding instrumentation operat-
ing at 1.89GHz, and to investigate propagation conditions in a variety of cities and
locations, to allow the comparison of multipath behaviour in the Australian environ-

ment with results from overseas countries. This aim has been met.

A novel portable wideband vector channel sounder was successfully devel-
oped and used in measurement campaigns in four Australian cities. The high resolu-
tion (10 nanoseconds) mode of the sounder also allowed indoor propagation effects to
be studied. Methods for measuring and interpreting radio channels vary widely, but
the results from this program indicate that Australian propagation conditions fit mid-

way into the overseas results surveyed.

Results are given both as cumulative distributions, and in a new way as
‘propagation signatures’. The validity of ray tracing for indoor and out-door micro-

cells has been tested against measurement showing large discrepancies at times.

Internal diversity in CDMA systems has been studied, resulting in a new
empirical law, relating diversity order to system bandwidth and the propagation envi-

ronment.
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Symbols

CHAPTER 2

T the period of the baseband data symbol, or the period of one bit of data
asyms rms delay spread

BW, the bandwidth of the transmitted information after modulation
BW . coherence bandwidth

BWp Doppler spread

v velocity of the mobile, metre/sec

fe carrier frequency

A carrier wavelength metre

c speed of light meter/sec

/n Doppler shift Hz

T. coherence time

u mean value

c standard deviation

Ip zero-order modified Bessel function of the first kind
VM magnitude of the dominant path

Keactor K factor

Ky modified K factor

Oy shape factor for the Weibull distribution

Oy lognormal shape parameter

o, most probable value of the Rayleigh distribution

Hp Poisson variance

P, available power at the receiving antenna

P; power supplied to the transmitting antenna

L path loss in dB

Gy gain of the receive antenna

Gy gain of the transmit antenna

f the frequency in Hz

Sz the frequency in MHz

D distance in metres

Dion distance in kilometres.

hy height of the transmit antenna

h, height of the receive antenna

x(t) bandpass signal

u(t) complex lowpass equivalent of a bandpass signal x(2)
A) amplitude of the bandpass signal

o) phase of the bandpass signal

u (1) in-phase component

up (1) quadrature component

h(1,T) complex impulse response where T is delay

t time seconds

T delay seconds

\Y Doppler shift Hz

o, horizontal angle of arrival

o, vertical angle of arrival

Op angle of arrival in 3D space (angle between mobile velocity vector and radio ray)
q slope factor for exponential power delay profile

T time for exponential power delay profile to reach threshold level
p reflection coefficient

T excess delay
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P, power at excess delay T

Py power in strongest ray

Davg average delay

My zero order moment of the power delay profile

M, first order moment of the power delay profile

M, second order moment of the power delay profile

Dy maximum excess delay

CHAPTER 3

Af difference in chip frequencies between sliding sequences

JPNe chip frequency of transmitter PN sequence

JPN chip frequency of receiver PN sequence

k sliding correlator time scaling factor

N PN sequence length

tref time reference

t(m) next clock transition in the receiver PN sequence

tx(n next clock transition in the transmitter PN sequence

!chip receiver chip period in ns

Toax maximum excess delay in {s

y windowing factor

Rias maximum range in km to a reflecting object without ambiguity

Lneasure time to complete an unsynchronised channel sounding measurement, in ms
T measure time to complete a continuous mode channel sounding measurement, in ms
J 348 correlation filter -3dB cutoff frequency in KHz
I maximum measurable Doppler frequency, Hz

v maximum channel sounder velocity in km/h, based on Doppler resolution
Je channel sounder carrier frequency, Hz.

c velocity of light in free space, metre/s

q a slope constant

kp Boltzmans constant

Tobs absolute temperature in degrees Kelvin

BWprg system bandwidth in Hz

I — thermal noise in watts

CHAPTER 4

€ITOT ;5 rms error measure of difference between measured and ray tracing delay spreads
S pmeasured measured delay spread

S xRay X-Ray simulated delay spreads

m number of measurements

Dayg average excess delay

A yms rms delay spread

apgs exponential PDP slope in dB/ns before peak

Apeg exponential PDP slope in dB/ns after peak

Theg negative excess delay for PDP to reach threshold value before peak power
Tpas excess delay for PDP to fall to threshold value after peak power

r uniform density of rays per ns prior to PDP peak power
p uniform density of rays per ns after PDP peak power

w threshold window in dB, relative to PDP peak power
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CHAPTER 6

Piotal total profile power

n number of strongest rays used

Py, the tine power, which is the sum of peak powers in the strongest n rays or peaks
Pised ratio of tine power to total power

o environment factor

BW i, system bandwidth in MHz

Niies the number of tines, rounded to the nearest integer
S pmedian median instantaneous rms delay spread
APPENDIX A

Jfrco phase locked loop output frequency
Jeomp phase comparison frequency

Tres reference frequency

Sotep synthesiser frequency step size

R reference divider ratio

P prescaler ratio

M first programmable divider ratio

. minimum value of M

A second programmable divider ratio

B overall programmable divider ratio

K, PFC gain in volt/radian

Kyco VCO gain in radian/sec/volt

K ymp buffer amplifier voltage gain

o, loop natural frequency in radian/second

¢ damping factor

Apign amplitude of the high PN signal

Ajow amplitude of the low PN signal

G(c) PN signal envelope

T PN chip duration, Aigh state

T, PN chip period

APPENDIX B

N oceiver total receiver noise figure

Nyp insertion loss of the bandpass filter

N, insertion loss, antenna cable and connectors
N, noise figure, receiver low noise amplifier

) skin depth

f frequency Hz

d conductor diameter

Ry DC conductor resistance

Rye AC or high frequency conductor resistance due to skin sffect
A s rms surface roughness

Pesy effective resistivity

IL g, bandpass filter insertion loss in dB

0] resonator loaded Q

Ou resonator unloaded Q

q normalised Q for the resistively loaded first and last resonator
Narder filter order

K cople filter coefficient of coupling
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interdigital filter normalised coefficient of coupling

interdigital filter resonator rod diameter

interdigital filter enclosure width

interdigital filter axial spacing between adjacent parallel resonator rods
interdigital filter normalised rod diameter

interdigital filter normalised rod spacing

interdigital filter centre frequency

interdigital filter bandwidth

interdigital filter normalised end wall spacing

interdigital filter impedance of the end resonators

interdigital filter resistive load

interdigital filter tap distance from the grounded end of a resonator
fractional filter bandwidth

filter group delay

phase shift
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Abbreviations

2D two dimensional

3D three dimensional

A-D analogue to digital

AH amp-hours

ASIC application specific integrated circuit

CCR Centre for Communications Research (University of Bristol)
CDF cumulative distribution function

CDMA code division multiple access

CMOS complementary metal oxide silicon

CoDiT code division testbed

dB decibels

dBc power in decibels relative to carrier power
dBm power in decibels relative to one milliwatt
dBV voltage in decibels relative to one volt

DIP dual in-line package

DSP digital signal processing

DSSS direct sequence spread spectrum

ECL emitter-coupled logic

EMC electromagnetic compatibility

ETSI European Telecommunications Standards Institute
EXOR exclusive-or logic function

FET field effect transistor

FMCW frequency modulated continuous wave
FPLMTS future public land mobile telephone system
GHz gigahertz

GPS global positioning system

GSM global system for mobile

IEEE Institute of Electrical and Electronics Engineers
IF intermediate frequency

IMT-2000 international mobile telecommunications 2000
IQ in-phase, quadrature

LAN local area network

LC inductance-capacitance

LCD liquid crystal display

LED light emitting diode

LO local oscillator

LOS line of sight

MHz megahertz

MMIC monolithic microwave integrated circuit
MPRG Mobile and Portable Radio Group (Virginia Tech.)
us microseconds
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ms
NLOS
ns
PCS
PDF
PDP
PFC
PLL
PN

Q
QWSSUS
RACE
RC
RCO
RF
ms
RSSI
SAW
SCR
SLA
SNR
SPICE

UHF
UMTS
usS
vVCO
VHF

VSWR
VTS
VUT
WCDMA
WLAN
WSS
WSSUS

milliseconds

non-line of sight

nanoseconds

personal communication systems

probability distribution function

power delay profile

phase-frequency comparator

phase lock loop

pseudo noise

quality factor

quasi-wide sense stationary uncorrelated scattering
Research in Advanced Communications in Europe
resistor-capacitor

ripple carry out

radio frequency

root mean square

received signal strength indicator

surface acoustic wave

silicon controlled rectifier

sealed lead-acid

signal to noise ratio

simulation program for integrated circuit evaluation
transistor-transistor logic

ultra high frequency

universal mobile telecommunications system
uncorrelated scattering

voltage controlled oscillator

very high frequency

vector network analyser

voltage standing wave ratio

Vehicular Technology Society

Victoria University of Technology

wideband code division multiple access
wireless local area network

wide sense stationary

wide sense stationary uncorrelated scattering
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Chapter 1: Introduction

1. INTRODUCTION

This chapter introduces the thesis project, and discusses the important role
of the propagation channel as a component of wireless systems. Evolving third gen-
eration personal communications systems are introduced, emphasising the need for

knowledge of propagation behaviour in planing and designing successful systems.

The original contributions of this project are explained, followed by an out-

line of the organisation of the thesis.

1.1 Mobile Communications

Linking the receiver and the transmitter, the propagation channel is an essential part
of any radio system.

Personal communication systems (PCS), operating in frequency bands around 1.9
GHz, are third generation systems in the rapidly evolving climate of personal and mobile tel-
ecommunications.

These services promise considerably more than voice traffic. With much wider band-
widths than existing first and second generation systems, possible facilities include high
speed data, email, internet access, video and remote camera, and wireless information and
shopping services.

With wideband systems such as wideband code division multiple access (WCDMA),
the final configuration of services will evolve with the imagination of service-providers and
users, because the technology is approaching a stage where almost anything seems possible.

No matter which mobile services are in use, at the physical level the wireless system
handles streams of digital signals. And the signal is subject to all the vagaries of the multipath
propagation channel, which behaves in a environment-dependent, but seemingly random

manner.

1. 2 Original Contributions

Much activity in wideband propagation research has occurred in the northern hemi-
sphere - in Europe, the USA, and Japan. Although Australia has the second highest take-up
rate for new mobile ‘phone subscribers (after Scandinavia), and has a unique rural environ-
ment, and cities different enough from other countries to merit attention, no published Aus-

tralian outdoor wideband propagation measurements existed when this project commenced,
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and none have appeared since.

The main original contributions of this work are:
1. development of the first self-contained and portable wideband high resolution vector

channel sounder (not requiring a synchronising cable)

2. a full simulation of the sliding correlator, using a novel algorithrr_l allqw1ng long.
sequence lengths and very slow sliding rates, without the computation time bec?ommg
impossibly long. The simulations illustrate the important role of corfelatlon noise, and
show how correlation noise is often the dominant factor in determining channel sounder
dynamic range.

3. the measurement of wideband channel statistics at 1.89 GHz, in different environ-
ments in four Australian cities - Adelaide, Melbourne, Canberra and Sydney.

4. a graphic way of presenting a summary of a large number of 'mstanFaneous delay
spread measurements which characterise a particular propagation environment - the
‘propagation signature’.

5. publication of an empirical relationship giving a guide to the number of CDMA diver-
sity branches or ‘tines’ which should be used, as a function of system bandwidth and an
environment constant. The number of tines was found to be proportional to t-he square
root of the system bandwidth, and proportional to the square root of the median instanta-
neous rms delay spread. The relationship can be applied to both indoor and outdoor prop-
agation.

1. 3 Thesis Outline

Chapter 2 covers background propagation theory, beginning with a discussion of fad-
ing and definitions of the categories of fading.

Statistical distributions used in propagation are introduced, and it is shown how
many of these functions nest together, as special cases of other distributions.

Some of the more popular narrowband path-loss models are discussed.

To illustrate flat-fading, some signal strength measurements inside a building are
presented, and by comparison with signal strengths outside the building, building penetration
loss is deduced.

Finally, wideband channels are discussed, and measures of time-dispersion are
defined, including a proposed variation on the K factor, termed the modified K factor. Some
of the measures have been applied to channel sounding data in later chapters.

Chapter 3 surveys alternative approaches to wideband channel sounders, and the mer-
its of each method. This leads into a description of the Victoria University of Technology
(VUT) sounder, and the parameters of the sliding correlator. An investigation of correlation
distortion in the sliding correlator, using (possibly) a new simulation algorithm, is used to
provide both insights into this popular technique, and design information.

Chapter 4 begins with a study of the comparison between indoor measurements and

ray-tracing simulations. Evidence of multipath rays from well outside the building has been
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found. Time-dispersion and the number of rays on different floors of a multistorey building is
measured, showing a large increase in delay spread when the transmitter is on a different
floor.

The outdoor measurement program, the main objective of this project, is documented
in Chapter 5. Channel statistics are presented in several forms: rms delay spread, average
delay, maximum delay, and K factor.

In Chapter 6, data from indoor and outdoor measurements described in Chapters 4
and 5, is analysed to investigate the relationship between the number of diversity branches
used in a RAKE receiver, and the fraction of the total available signal power utilized, as a
function of system bandwidth. A simple empirical relationship has resulted from this study.

A detailed description of the design of the channel sounder transmitter makes up
Appendix A. Channel sounder receiver hardware is documented in appendix B.

The antennas are discussed in appendix C. Dimensions of antennas used with the
channel sounder are given, together with standing wave ratio (VSWR) plots, and polar plots.

In the course of this project, a lot of software has been written for processing of the
measured data. A summary of the functions of each program is included in appendix D.

Appendix E describes all the locations used for outdoor measurements, using detailed

maps, and locality lists.
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Chapter 2: The Fading Channel

2. INTRODUCTION

Aspects of radio propagation theory are outlined in this chapter.
Although much of this material is well established in the literature, summa-
rizing it here provides a useful background for the work to follow which is

presented in this thesis.

Fading is a term describing changes in the received signal amplitude

and phase, leading to changes in the signal power envelope.

Types of fading are discussed, and various statistical distributions
used to describe signal fading in narrowband channels are introduced and
defined. The physical basis which leads to these distributions is considered.
Inter-relationships between many of the distributions, where some functions

are special cases of more general distribution expressions, are clarified.

The study of fading is illustrated with some measurements demon-
strating narrowband small scale fading, and building penetration, for the
900 MHz band used by the GSM system.

A summary of the most widely used of the many empirical path loss

models is presented.

The wideband channel is introduced, and signal dispersion effects
are described. Measures of signal time dispersion, relating to the measure-

ments presented in later chapters, are defined and discussed.

The importance of a defined threshold level for the calculation of rms

delay spread is given a new emphasis, and considered in detail.

2.1 Small Scale and Large Scale Fading

2.1.1 Large Scale Fading

A receiver traveling over a large area (distances > many tens of wavelengths), may
move from line of sight (LOS) to non-line of sight (NLOS) positions, or into areas where
additional obstructions (for example, buildings) intrude into the propagation path. Under
these conditions, [arge scale fading is observed. The amplitude of the signal is usually found
to be lognormally distributed, and this sort of fading is also called lognormal shadow fading

(Ref.[2.10]}.
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2.1.2 Small Scale Fading

At the receiver antenna in a multipath environment, the arriving signal is the vector
sum of all significant rays in three dimensional space. Amplitudes, phases and angles of
arrival of the rays are randomly distributed. If the receiving antenna moves to a new position,
the vector sum will change. Large changes for small amounts of movement can 0CCur. In one
position all rays might happen to reinforce, giving a peak in the spatial signal amplitude,
while just half a wavelength distant, signal cancellation may develop, giving a deep signal
null. This fading effect is a spatial phenomenon, related to interference patterns in the signal
field. If the receiver is moving, the spatial fading appears as a time variation of the signal. As
large changes in the signal can occur within a small area of movement, this effect is termed
small scale fading. Large scale and small scale fading should not be confused with slow and
fast fading {Ref.[2.51]}.

Small scale fading may be subdivided into flat fading and frequency-selective fading
on the basis of multipath time delay spread, and into fast fading and slow fading, based on

Doppler spread. This results in four categories of small scale fading.

2. 1.3 Definitions

2.1.3.1 Symbol Period T

Symbol period T is the period of the baseband data symbol, or the period of one bit
of data.
2.1.3.2 Rms Delay Spread ds,,,,,

Rms delay spread is the square root of the second central moment of the channel
power delay profile, and gives a measure of the channel time dispersion. The definition of

delay spread is discussed more fully later in this chapter (paragraph 2.7.2).

2.1.3.3 Transmitted Bandwidth B\,

Transmitted bandwidth BW; is the bandwidth of the transmitted information after

modulation.

2.1.3.4 Coherence Bandwidth B\,

Coherence bandwidth B/, is a measure of the bandwidth over which a channel can
be considered to have a flat frequency response, or the bandwidth over which spectral integ-
rity is maintained. It is defined as the frequency spacing between two single frequency carri-

ers which have a correlation function > 0.5. Coherence bandwidth is related to delay spread.
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Ref[2.51] gives:

BW. ~ (EQ 2.1)
‘ Sdsrmx
Ref [2.52] gives:
1
~ 2
BW 2nds, (EQ22)

Coherence bandwidth is also defined in terms of a correlation > 0.9 by some authors.

2.1.3.5 Doppler Spread BW,

Doppler shift is the well known phenomenon where the apparent frequency of a

source is modified by relative motion of the source and the receiver.
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no Doppler shift no Doppler shift

Doppler -ve
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3 ‘ L doppler.pre
i

LefyRight !ambiguity
FIGURE 2.1 Doppler shift experienced by a moving vehicle

The vehicle shown in Figure 2.1 suffers Doppler shift /5 given by:

v Vfc
fp = ymcoso, = - Zcosa, (EQ2.3)
Where /. is the carrier frequency , carrier wavelength in metres is A , ¢ metre/sec is
the speed of light, and angle o is the angle between the mobile vehicle velocity vector v and
the incident radio ray. Doppler spread B, is the width of the Doppler spectrum, and is a

measure of the frequency dispersion caused by relative motion of the receiver and transmitter.

The Doppler spectrum extends from f.-fp to f.+fp hence:

BW. = (f,+fp) ~ (f,~fp) = 2fp (EQ 2.4)
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Moving scatterers within the radio channel environment, principally moving motor
vehicles, can create Doppler spread, even if the receiver is stationary. And if the receiver is
moving, other moving vehicles can increase the expected Doppler spread by up to a factor of
three {Ref[2.53]}.

Interpreting frequency as rate of change of phase, allows the Doppler effect to be for-

A . : is 1 -
mulated in units of phase change per unit distance (A—i), independent of velocity. This 1s use

ful for converting static phase shift measurements to Doppler shift, and for plotting Doppler

shift in a normalised, velocity-independent form.

coso
8 _ gy ? (EQ2.5)

(4

Figure 2.1 shows a plan view of a Doppler scenario in three dimensions. Other rays
are also arriving at various elevation angles, and these also experience Doppler shifts, pro-
vided there is a resolved component of the ray in the direction of relative motion. Note the
left/right ambiguity, which must be accounted for when basing angle of arrival measurements

on Doppler data.

2.1.3.6 Coherence Time T,

Coherence time 7. is a representation of the time over which the channel impulse
response remains unchanged. It is defined as the time interval between two consecutive sig-
nals which have a correlation function > 0.5.

Coherence time is inversely related to Doppler shift. In Ref[2.52], coherence time in
terms of Doppler shift is given by the following approximate expression:

T = 4
¢ lenf,

(EQ 2.6)

2. 1.4 Flat Fading

Fading effects caused by multipath propagation are categorised into flat fading and
frequency-selective fading. These effects are position dependent, and occur even without
motion between receiver and transmitter.

For two carrier frequencies sufficiently close together, each path will have approxi-
mately the same electrical length for the two frequencies, so amplitude and phase variations
will be similar. The channel frequency response will be flat, and the transmitted spectrum will
be received without any spectral distortion. This condition of flat fading occurs if the trans-
mitted bandwidth is much less than the coherence bandwidth, and if the symbol period is

much greater than the rms delay spread. That is:

BW; « BW_ and T »ds, (EQ2.7)
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A flat fading channel will be referred to simply as a flat channel.

2. 1.5 Frequency-selective Fading

As the frequency separation of two carriers is increased, a point is reached where the
behavior at one carrier frequency becomes uncorrelated with behavior at the second fre-
quency, because phase shifts along each multipath at the different frequencies become quite
different. The decorrelation, and the extent of the phase shifts, increases with increasing delay
spread. This results in the amplitudes and phases of the received signal differing from the
transmitted signal, giving spectral distortion. A constant amplitude carrier will experience a
fluctuating amplitude at the receiver as the frequency changes. This effect is termed fre-
quency-selective fading, and the channel is referred to as a frequency-selective channel.

Frequency-selective fading occurs when the transmitted bandwidth exceeds the

coherence bandwidth, and the symbol period is less than the rms delay spread:

BW,>BW, and T, <ds, (EQ 2.8)
2.1.6 Slow fading

Slow fading and fast fading pertain to the rate of change of the channel impulse
response relative to the symbol duration, and result from motion between the receiver and
transmitter, or more specifically, the Doppler spread of the channel.

Slow fading occurs when the channel impulse response changes more slowly than the

symbol duration, and the transmitted bandwidth is much greater than the Doppler spread.

T,«T, and BW »BW, (EQ 2.9)
2.1.7 Fast Fading

Fast fading happens when the channel impulse response changes rapidly over one
symbol duration; that is, when the symbol time is greater than the channel coherence time,

and the transmitted bandwidth is less than the Doppler spread.

T,>T, and BW, <BW, (EQ 2.10)

2. 1.8 Fading Summary

In summary, flat and frequency-selective fading are determined by the extent of mul-
tipath, and are position dependent, but not motion dependent fading effects. Slow and fast
fading relates to the temporal rate of change of channel characteristics in comparison with the

transmitted symbol duration, and this sort of fading requires both multipath, and movement,
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such that a finite Doppler spread exists. The Doppler spread may be caused by a relative
velocity between the receiver and transmitter, and/or the motion of other objects which can
perturb the radio channel multipath environment. Transitions between the different fading
categories are not abrupt, but rather overlap and merge into each other.

The resulting four possible channel descriptions are depicted in Figure 2.2, which fol-
lows a similar diagram in Ref[2.51].

Flat channel Flat channel
Slow fading Fast fading

4>

Period of
modulated

symboal

TIME
dSns Freg-selective/ Freg-selective DOMAIN
channel channel
Slow fading Fast fading
| [
T Symbol period
©
2L
§ '-';q A Freg-selective/ Freg-selective
= channel channel
3 Fast fading \ Slow fading
BW FREQUENCY
ol DOMAIN

Flat channe! Flat channel
Fast fading Slow fading

! >
BWD Baseband
signal bandwidth

fade.pre

FIGURE 2.2 Summary of fading conditions
2. 2 Narrowband and Wideband Channels

The classification of a channel as narrowband or wideband depends on the relation-
ship between the multipath time dispersion of the channel and the period of the transmitted

information symbol (or the inverse of the modulated signal bandwidth).

A channel is classed as narrowband if flat fading prevails, and wideband if frequency-
selective fading occurs.

Narrowband channel measurements have traditionally used a single carrier frequency,
and measured the amplitude of the received signal envelope, whereas wideband measure-
ments use a signal in the form of a narrow impulse, or a spread spectrum or swept frequency,

equivalent to a wide transmitted bandwidth, and measure an approximation to the impulse
response of the channel.
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2. 3 Statistical Distributions

The envelope of the received signal in a narrowband (flat fading) channel, or in one
time bin of a wideband channel, shows a certain amplitude distribution over a small scale
area. For a number of similar strength randomly distributed signal components arriving at the
receiver, the signal envelope follows a Rayleigh distribution. If one path is dominant , the dis-
tribution becomes Ricean. Other mixed distributions have been formulated, and often these
reduce to Rayleigh or Ricean distributions as special cases.

This section briefly introduces a number of statistical distribution functions used in

propagation work, and shows the similarities and inter-relationships between these distribu-

tions.

2. 3.1 Gaussian (or Normal) Distribution

The Gaussian probability distribution function (PDF) is:

P(r) =

2
(r=1) ) (EQ 2.11)

1
€x
J2no p( 202
where p is the mean, and ¢ the standard deviation. The importance of the Normal dis-

tribution stems from the implications of the Central Limit Theorem.

2. 3.2 Rayleigh Distribution

Where the receiver is located in a uniform scattering environment with no LOS or
dominant path, the signal envelope is found to follow a Rayleigh distribution. All arriving sig-
nal vectors or rays are assumed to have approximately the same amplitude, with a phase dis-

tribution which is uniform over 0 to 2n. The Rayleigh PDF is given by {Ref.[2.1], Ref.[2.2]}:

N EQ?2

PO =0_§exp[50—%] (EQ2.12)
The most probable value (the Rayleigh parameter) is 65, and the mean and variance

are given by o, 7—2[ = 1.2530, and o} {2—%} respectively.

2. 3.3 Ricean or Nakagami-n Distribution

Adding a strong or dominant ray to the approximately uniform scattered rays of the
Rayleigh distribution leads to the Ricean or Nakagami-» distribution, developed indepen-
dently by Nakagami and by Rice, {Ref.[2.3], Ref.[2.4], Ref.[2.5], Ref.[2.2]}:
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P(r) = G—%exp[—%}o {%{%—4] for (rz0) (EQ 2.13)
here Iy is the zero-order modified Bessel function of the first kind, vy is the magni-
tude of the dominant path, and oz? is proportional to the power of the scattered Rayleigh com-
ponents. If v, — 0 or if v/ <<r? the dominant ray disappears, and EQ 2.13 reverts to the
Rayleigh distribution.
A Kfzeror may be defined as equal to the ratio of the power in the dominant ray, to the

power in the scattered rays, where:

v2
P (EQ 2.14)
factor 20;

2. 3.4 Nakagami-m Distribution

The Nakagami-m distribution is a more general distribution, which reduces to the
Rayleigh or the one-sided Normal distribution in particular cases, and which can also approx-

imate the Ricean, and the lognormal distributions.
The Nakagami-m PDF is given by {Ref.[2.3], Ref.[2.2]}:

2
P(ry = — exp[ mg;] for (r20) (EQ 2.15)

where T'(m) is the gamma function defined by the integral:

oo

T(m) = [xm=1 exp (-x) dx (EQ 2.16)
0

For m=1 this reduces to the Rayleigh distribution, and for m=1/2 it reduces to the one-

sided Normal (or Gaussian) distribution.

2. 3.5 Weibull Distribution

Introduced originally in relation to investigation of the strength of materials, the
Weibull distribution has no obvious physical interpretation in terms of radio propagation. It
has, however, been found to provide a good fit to the fading channel in some circumstances,
for example, radar sea clutter at low grazing angles {Ref.[2.6], Ref[2.7], Ref.[2.8], Ref.[2.9],
Ref.[2.2]}. The Weibull PDF is given by:

P(r) = °‘_wb(’1£ja“' exp[_(”_’) j (EQ2.17)

Chapter 2: The Fading Channel June 2000 2-8



Wideband Propagation Measurements for Personal Communication Systems G.T. Martin

where a,, is a shape factor, b = [(2/a) 2/a.) and ry is the rms value of r. This
reduces to the Rayleigh distribution when o, = 1/2, and to the exponential distribution when

o =1,

2. 3.6 Lognormal Distribution

Shadowing resulting in large scale fading (sometimes mistakenly called slow fading),
or a gradual variation of the local mean, has been found to follow a lognormal distribution
{Ref.[2.10]}, where log(r) has a Normal or Gaussian distribution. In a multipath situation, the
signals reaching the receiver have typically undergone multiple reflections. Signal losses at
each reflection or scattering multiply to give the total signal loss, and this multiplicative pro-
cess leads to a lognormal distribution, just as the central limit theorem indicates that an addi-

tive process results in a normal distribution. The lognormal distribution is given by
{Ref.[2.2]}:

2
1 Inr-—
Fnor exp(——(nerzu)) for (r=0) (EQ 2.18)

P(r) =

2. 3.7 Mixed Distributions: Suzuki Distribution

Consider a signal which after undergoing multiple scattering, arrives in the vicinity of
the receiver with a lognormal distribution, and is then expanded into a number of approxi-
mately equal paths by local scatterers. Each local path has approximately the same amplitude,
similar excess delays, and random uniformly distributed phase, and derives from a parent
with a lognormal distribution. The resulting distribution can be described by a combination of
the lognormal and Rayleigh distributions {Ref.[2.11}, Ref.[2.10]}: |

. 2\ M ~log(6/0,)
P(r) = Jaexp(ﬁ)ca mexp[ —— |40 (EQ2.19)
0 n n

where o, is the lognormal shape parameter, and o is the most probable value of the

Rayleigh distribution, and M = log e

2. 3.8 Stacy Distribution

It has been shown in Ref.[2.12] that the exponential distributions used in radiowave
propagation (including the Rayleigh, Ricean, Nakagami-m, Weibull, and one-sided Gaussian
discussed above), are all particular cases of the Stacy distribution {Ref.[2.13]}. Note that the

log and mixed distributions are not included in this generalization.
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TABLE 2.1. Definitions of Distributions (from Ref.[2.12])

Type Distribution PDF Conditions
m=1 | gamma Ax" exp (=x/b) n=n
m=1 Erlang Ax" exp (—x/b) n+1 = PI*
m= ] chi-squared Ax" exp (~x/b) b=2,2(n+1) = PI*
m =2 Nakagami-m Ax" exp (-x2/b2) n=n
m=m Stacy Axn exp (=x™/b™) n=n
m =m Weibull Axm=1 exp (—x™/b™) n=m-1
n=0 exponential A exp (~x/b) =1
n=0 one-sided normal A exp (—x2/b?) =2
n=0 generalised exponential | 4 exp (~x/b™) m=m
n=1 Rayleigh Ax exp (=x2/b2) m =2
n=1 generalised Rayleigh Ax exp (=x™/b™) m=m
*PI means “a positive integer”

Territory occupied by a number of these distributions is depicted in Figure 2.3.
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FIGURE 2.3 Interrelationship between statistical distributions

2. 3.9 Poisson Distribution

The Poisson distribution has application in predicting the occurrence of isolated
events in a continuum of time. It can be used to fit the arrival times of scattered rays in a mul-

tipath radio environment. The Poisson distribution is given by {Ref.[2.14]}:

r

i
P(r) = —r,f exp (~t,) (1,>0) (EQ 2.20)

where the expected or average number of occurrences of an event = variance = Hy
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2.4 Path Loss Models

Many have sought the Holy Grail of a universal propagation model, and the past is lit-
tered with myriad attempts to solve this problem. Path loss models attempt to predict signal
strengths over large scale distances.

The starting point for a path loss model is propagation in free space, which gives a

lower bound for the value of path loss.

2.4.1 Free Space

Energy radiating unimpeded from an isotropic point source spreads with a spherical
wavefront, so the power density in terms of power per unit area is diluted by the inverse
square of the distance from the source, as the size of the sphere grows. The ratio of available
power at the receiving antenna to the power supplied to the transmitting antenna P, /P, is
given by {Ref.[2.10]}:

"o )
7 = GG\ T2/ (EQ2.21)

P
or in terms of path loss L dB where L = 10log 5,
!
L =10log,,G,+ 10log,,G, - 20log . f —20log,, D+ 147.6 (EQ 2.22)
using isotropic antennas, the path loss becomes:

= —32.44 - 20l0g,of /1, — 20l0g 1, D, 1, (EQ2.23)

isotropic

where G; and G, are the gains of the transmit and receive antennas respectively, ¢ is
the velocity of light, 1" is the frequency in Hz, f,, is the frequency in MHz, D is distance in
metres, and Dy, is distance in kilometres. Free space propagation is usually assumed if the

first Fresnel zone is clear of any reflecting surfaces or obstructions.

2.4.2 Plane Earth (2-Ray model)

Free space propagation seldom occurs, because usually there are reflecting surfaces
in the region of the propagation path. The simplest situation involving reflection is propaga-
tion over the reflecting earth, where the signal at the receiver is the resultant of the direct or
free space ray, and a ground-reflected ray. At large distances, the curvature of the earth affects
the geometry of the problem. Distances used with cellular mobile radio are small enough that
curvature can be neglected, and the earth can be treated as a horizontal plane. The reflection
coefficient is a complex quantity, and depends on the dielectric properties of the earth (which

vary greatly from seawater to dry rocky ground), and also on the angle of incidence, and the
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polarization. At grazing incidence, the reflection coefficient p~-1, for both horizontal and
vertical polarization. For plane earth propagation where the distance D is much greater than
the heights of the transmit and receive antennas, #; and /,, the ratio of received to transmitted

power is given by {Ref.[2.10]}:

tor 4

2
P (hh,)
L =GG d (EQ 2.24)
Pl D

Note that the power ratio is independent of frequency, and follows an inverse fourth-
power relationship with distance, which gives a much more rapid decay of power (12 dB less
power for each doubling of distance or -40 dB for each decade) than in the free space case.

In log form for isotropic antennas, for comparison with EQ 2.23, the 2-ray grazing

angle equation becomes:

= 20log,h, +20log, s —40log, D (EQ 2.25)

isotropic

A plot of the 2-ray model receiver to transmitter power ratio, for frequency = 1890
MHz, transmitter antenna height = 20 metre and receiver antenna height = 1.5 metre, with

asymptotes showing the inverse square law and inverse fourth power law {Ref.[2.10]} is

shown in Figure 2 4.
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FIGURE 24 2-Ray propagation model

The 2-ray model can be extended to include more rays, for example to six rays
{Ref.[2.2]}. A NLOS model with an initial path loss slope of 20dB/decade, a step loss (a cor-
ner loss) at a break-point, then a path loss slope of approximately 40dB/decade has been
found to fit experimental data in some cases {Ref.[2.2]}.
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Path loss behavior showing a break-point, where the slope changes from -10n,
dB/decade of distance, to -10n, dB/decade where », and n, can take a range of values, has

been frequently observed.

2.4.3 |IEEE VTS Committee on Radio Propagation

In 1988, the IEEE Vehicular Technology Society (VTS) Committee on Radio Propa-
gation published the result of five years of deliberation on radio propagation models for the
cellular radio band, in a paper titled, “Coverage Prediction for Mobile Radio Systems Operat-
ing in the 800/900 MHz Frequency Range” {Ref.[2.15]}.

Models included large area terrain models, and models more suited to small cells in
built-up areas. Some models have a theoretical basis, although many are empirical models
attempting to generalise from specific measurements and observations. Various correction or
adjustment factors are commonly appended. Some models are presented in analytical form,
some as graphs, charts, nomograms or slide rule calculators (all now of course rendered obso-
lete by advances in technology), and some as algorithms embodied in computer software.

A summary of features of the models considered by the IEEE committee is attempted
in Table 2.2.

Most of the models listed in Table 2.2 apply to large area propagation over irregular
terrain, for distances up to the order of 200 km, and are not suitable for small cells covering
built-up areas dominated by building clutter. The starting point for one group of theory based
approximate models is diffraction over a hill or ridge, which is treated as a knife-edge, com-
bined with free space path loss plus possible ground reflections on each side of the hill, lead-
ing to a four-ray model. Treating the hill as an infinitely thin knife-edge is inaccurate, unless
the radius of the hill top is very small compared with the wavelength. An excess loss correc-
tion can be added to the theoretical knife-edge loss to allow for rounded hills {Ref[2.10],
Ref[2.29], Ref.[2.30]}. Tree cover on the hill top modifies the loss further, and can be
allowed for by another correction factor. The path loss caused by multiple knife-edges
becomes mathematically complicated, so approximate methods based on various geometric
constructions are used in models which attempt to treat more than one knife-edge.

The Bullington model represents irregular terrain as a single ficticious knife-edge. In
the Epstein-Peterson method {Ref.[2.31]}, losses from multiple knife-edges are added, using
knife heights obtained from a geometric construction. Other models of this type include the
Japanese Atlas method {Ref.{2.32]}, the Deygout method {Ref.[2.33]}, and the Giovaneli
treatment {Ref.[2.34], Ref.2.10]}. Diffraction calculations based on the Epstein-Peterson
method are also used in the JRC model {Ref.[2.35], Ref.[2.36]}, the Blomquist-Ladell model
{Ref.[2.37]}, and the Longley-Rice models.
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TABLE 2.2. Summary of models - VTS Radio Propagation Committee Ref[2.15]

Model Ref. |Freq (MHz) Equation Features
Bullington 2.16 L=139.1-20logh+40logD T,H,D,FS,GD,GR,HD
Egli 2.18  ]90-1000 D,GR
Carey 2.19 |450-1000 |L=110.7-19.1logh+55logD D

[for 8 <D <48

L=91.8-18logh+66logD

\for 48 <D <96
Tech Note 101 2.20 T,F,H,D,FS,GD,

GR,HD,BP

R-6602-LM 221 D
Longley-Rice 222 [>20 T,H,D,FS,GD,GR,HD
point-point
Longley-Rice 2.22 D,FS,GD,GR
area
Okumura 223 |150-2000 T,F,H,D,FS,GD,HD
TIREM 2.24  140-20GHz IT.H,D,FS,GD,GR,HD
General Electric  |2.25 D,FS,GD,GR
slide-rule
Lee 2.26 L=142.3-20]logh+36.8logD T,H,D,GR,HD
CCIR Rp.567 227 1900 D,FS,GD,BP
Bertoni-Walfish  {2.28 900 L=147.2+4-18log(h-hp)+38logD |T,B,D,FS

A= -9 dB for example given
L=path loss (dB) A=base station antenna height (m)  hz=building height (m)  D=distance (km)

T  terrain data GD  diffraction- smooth earth
B building data GR  reflection- smooth earth key for
. . : Seatures given

F foliage data HR  reflection- hills limited or

H  hill shape HD  diffraction- hills extensive

D  distance BP  building penetration Ireatment in
the model.

FS free space

Weissberger {Ref[38]}produced equations based on empirical data, for paths blocked
by trees in leaf, with dense foliage in dry condition. Using measurements from 90 MHz to
1GHz, the Egli model {Ref[2.39]}, uses an inverse fourth power law equation, multiplied by
an empirical chart-based correction factor. Another example of a chart-based method is the
CCIR model {Ref.[2.40]}, compiled from statistical analysis of data collected in many coun-
tries, and particularly applicable to rolling, hilly land. A second chart provides a terrain irreg-
ularity correction factor. The British Broadcasting Corporation developed the BBC model
{REF.[2.41]} to plan UHF television services. This uses diffraction approximations, with a
clutter-loss correction factor for clutter at the receiver end.

More recently (1997), a report published by the IEEE Vehicular Technology Society
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Propagation Committee {Ref.[2.48]} has made recommendations for a two dimensional
physical propagation model. This recommendation followed evaluation of nine different pro-
posed models against extensive propagation measurement data obtained in the USA. The rec-
ommended model is the 4Anderson 2D physical model. This requires an accurate terrain
database. The model first determines if the path is LOS or NLOS. If it is LOS, path loss is
based on the free space value plus a ground reflection weighted according to how signifi-
cantly the first Fresnel zone is obstructed. If NLOS, path loss is based on knife edge diffrac-
tion loss where a succession of obstacles is replaced by two knife edges, one at the start, and
the other at the end of the obstructed region. An extra term is also included to allow for
Fresnel zone obstruction prior to the first knife edge, and after the last knife edge
{Ref.[2.49]}.

2. 4.4 Models for Built-up Areas

Shadowing effects of buildings, and the guiding of propagation paths along street
canyons are features of built-up areas. Models often include an environment classification,
such as “suburban” or “urban”, leading to problems when the model is applied away from its
home town, because usually the environment descriptions are not precisely defined. Attempts
to overcome this are discussed in Ref.[2.10].

Young {Ref.[2.42]} used measurements between 150 MHz and 3700 MHz in New
York to plot cumulative distribution curves of path loss. These are found to follow an inverse
fourth power law, strongly modified by a large clutter factor. Allsebrook and Parsons
{Ref.[2.43]} and Ibrahim and Parsons {Ref.[2.44]} also found the fourth power law useful
for models to fit measurements in several British cities. One of the best known urban path loss
models is due to Okumura {Ref.[2.23]}, and uses charts based on measurements in the Tokyo
area. Hata {Ref.[2.45]} used Okumura’s charts to formulate equations from the empirical
data, with some minor limitations. These equations allow easy computation of the model.

Other urban models published include those by Lee {Ref.[2.26]}, McGeehan and
Griffith {Ref.[2.46]}, and Atefi and Parsons {Ref.[2.47]}.

Various computer software models are now available commercially, such as Planet®
by Mobile Systems International, and network planning tools marketed by EDX. An example
of European work towards a computer propagation prediction and radio network planning
tool is described in Ref.[2.40]. All mobile phone operators now either use commercial tools,

or in many cases have developed proprietary software to facilitate their network planning.

2.4.5 Level Crossing Rate and Average Fade Duration

As explained in Section 2.3, the narrow band signal amplidude over a small area can

be described with one of the statistical distributions, such as the Rayleigh distribution.
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Other parameters which can be obtained from narrow band multipath measurements
[2.10], pages 125-130}. A

wavelength of travel that

include the level crossing rate, and the average fade duration {Ref.
normalised level crossing rate is defined as the number of times per
the signal strength drops below a specified level. The average fade duration is the average of
the intervals during which the signal is below the specified threshold. This can also be norma-
lised and expressed in terms of wavelengths. Dividing by the mobile velocity gives the denor-
malised fade duration in units of time. Levels are usually relative to a localised mean or

median signal strength.

2. 5 Narrow Band Measurements - Example

To illustrate aspects of narrow band propagation such as small scale fading, and level
crossing rate, and as an example of building penetration around 900 MHz, measurements
have been made on different floors of a multi-storey concrete and brick building with an
external transmitter. The university engineering school, on the south west corner of the Victo-

ria University of Technology Footscray campus was the scene of these measurements.

B o I TN

IN"_FA f - " .I NN i
5 > B O 2N N |
!i‘éq 9«1~ )2 \Victoria University

2. of Technology

T/ DI

FIGURE 2.5 Map showing base station location

A broadcast channel on 945.200 MHz, transmitting from an Optus GSM base station
approximately 920 metres to the south of the campus provided a constant signal (Figure 2.5).
Within the building, signal strength measurements were made on identical north-
south routes approximately 70 metres long in a central corridor, on the top floor (Level 7),
two floors lower (Level 5), and another two floors lower at ground level (Level 3). Turning
ninety degrees to the corridor route, and heading east, a 20 metre route just outside the south

side of the building, along the north side of Ballarat road on the footpath (ground level), was
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also measured. This provided the reference outdoor signal level statistics for comparison with

indoor signal strengths, required to deduce the building penetration loss.

2. 5.1 Instrumentation

A commercial communications receiver (Icom R7100) and serial port interface unit
(Icom CAV-15) were used to log received signal strength indication (RSSI) readings to a
notebook computer via the RS232 port. Trolley mounted and battery powered, receiver travel
distance was measured by a wheel and optical encoder, and logged through the computer par-
allel port (Figure 2.6). Each pulse from the wheel encoder initiated storage of a RSSI value,
giving approximately 32 readings per wavelength.

Calibration of the system was done using an HP8648B signal generator and two
Lucas 30 dB fixed attenuators. The receiver was calibrated with and without the internal 20
dB attenuator, although this attenuator was not used during the RSSI measurements. Plotting
RSSI units against receiver input level in dBm gave a characteristic closely approximating
(within £0.5 dB) two straight line segments, with a break-point at -77 dBm. The calibration

characteristic can be written as:

for RSSI<68 dBm = — 95+ (RSSI - 24) 2—2 (EQ 2.26)

for RSSI2 68 dBm=—77+ (RSSI - 68) g—z (EQ 2.27)

A measured 20 £0.01 metre run generated 2010 +1 counts. Wavelength at 945.2 MHz
is 0.3174 metre, giving 31.9 counts per wavelength. The vertically polarized quarter wave
dipole antenna was mounted 1.6 metre above floor level. Measurements were made in the
evening when the building was deserted, moving the trolley down the length of the corridor at
a slow walking pace.

The distance measuring wheel, counter electronics, antenna, and the software for log-
ging RSSI values to the computer, were put together by a final year undergraduate student
undertaking a project supervised by the author. The measurements were made by the author,

assisted by the student. Data processing, and analysis, was done by the author.
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antenna
50 ohm quarter wave dipole
1.6 metre above ground level

ICOM 7100
rﬂ receiver
945,200 MHz
t RSSI
ICOMRS232
interface
o In]
12V lead-acid
battery
serial
counter notebook computer
electronics parallel

trolley

—D

FIGURE 2.6 Instrumentation for signal strength measurement

distance
measuring
wheel

2. 5.2 Signal Strength Results
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FIGURE 2.7 Level 7 building D - part of route showing small scale fading

Figure 2.7 shows a short section of the corridor route, illustrating the small scale fad-
ing structure with nulls of over 25dB. Measurements over the full corridor length on different
floors are shown in Figures 2.8,2.9,2.10
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FIGURE 2.9 Level 5 building D, north-south route
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FIGURE 2.10 Level 3 building D, north-south route

These signal strength plots (Figures 2.8, 2.9, 2.10) show small scale fading along

each route, with running averages (using a 3 wavelength window) plotted in red. The average

signal strengths increase at higher floor levels, being greatest on the top floor (Level 7).
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2. 5.2.1 Building Penetration Loss

Molkdar {Ref.[2.67]}, and Barry and Williamson {Ref.[2.69]} include useful
reviews of published literature on building penetration loss.

Building penetration loss is defined here as the difference in the dB mean signal level
at ground level (taken by averaging the dB values over all sample points) outside the south
end of the building, and the dB mean signal level on each floor. The south side of the building
faces the direction of the base station. Other papers use a variety of definitions for penetration
loss, which makes comparisons of results more difficult. For example, Walker {Ref.[2.61]}
used an outside reference based on a dB average of the signal measured around the closest
route to all the outside walls of the building. The practise of averaging dB values (rather than
linear power) is widely used, for example see Ref.[2.61] and Ref.[2.68].

Taking the mean and standard deviation of the dB values of signal strength for levels
7,5, 3, and outside the building at the south end, gives the values summarised in Table 2.3.

Penetration loss is most severe on the ground floor at 20.3 dB, and improves (i.e. the
signal strength increases) as height is gained on the upper floors. Ascending two floors to
Level 5 reduces the loss by 10.8 dB, while moving another two floors up to Level 7 (the top
floor) gives a further 5.7 dB increase in signal strength.

TABLE 2.3. Building penetration loss on different floors

db building
dB standard | minimum | maximum | penetration
Location mean deviation dB dB loss dB
Level 7 -70.4 5.7 -86.4 -543 3.8
Level 5 -76.1 4.4 913 -62.5 9.5
Level 3 -86.9 4.5 -100.3 -67.6 20.3
Outside -66.6 5.7 -85.6 -53.1 -

Figure 2.11 shows a plot of signal strength against floor level, showing greater signal
power at higher building floor levels, and a comparison with the street level values outside the
building. The minimum, maximum, and average dB power values are shown, with 1o error

bars (in terms of dB numbers) included.
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FIGURE 2.11 Signal strength statistics on different floors

The mean penetration loss on the ground floor (Level 3) is 20.3 dB, and this reduces

on average by 5.4 dB per floor over the next two higher floors, and 2.9 dB per floor over the

two highest floors. Other published results for penetration loss generally show the signal

increasing in strength on higher floors. A summary of results from a number of other publica-

tions is given in Table 2.4.

TABLE 2.4. Summary of some published building penetration loss values

Antenna
Author height Range Freq

Reference City (metre) (metre) (MHz) Penetration Loss (dB)

Average change/
floor

Walker Chicago 800 18 -1.9

1983[2.61] | (urban)

Turkmani | Liverpool 896.5 11.6 -2

1987[2.63]

Toledo Liverpool 40 180 to 900 14.2 -1.4

1992[2.64] 350

Tanis Philadelphia 57, 880 19.2 -1.2

1993[2.65] 136

Aguirre Denver 5 200 912 12.5

1994[2.66]

(Lee)# Tokyo 800 26 2.7

1995[2.60]

Martin Melbourne 25 920 945 20.3 -5.4*

1999 (approx) 2.9

# Lee does not disclose the source of * for first 2 floors

these figures ** for second 2 floors
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The figures in Table 2.4 often result from averaging of widely differing values. How-

ever, the penetration loss on the ground floor measured here is comparable with other pub-

lished figures, but the change in penetration loss per floor over the first two floors is greater
than other re<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>