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Abstract 

This thesis provides some extensions to the existing method of determining the 

precision of the path of steepest ascent in response surface methodology to cover 

situations with correlated and heteroscedastic responses, including the important 

class of generalised linear models. It is shown how the eigenvalues of a certain 

matrix can be used to express the proportion of included directions in the con

fidence cone for the path of steepest ascent as an integral, which can then be 

computed using numerical integration. In addition, some tight inequalities for 

the proportion of included directions are derived for the two, three, and four di

mensional cases. For generalised linear models, methods are developed using the 

Wald approach and profile likelihood confidence regions approach, and bootstrap 

methods are used to improve the accuracy of the calculations. 

Regions where quadratic (second order) models are needed occur in many in

stances. Canonical analysis and ridge analysis are techniques used for examining 

higher dimensional quadratic response surfaces. Ridge analysis corresponds to 

the path of steepest ascent for second order response surfaces. In the thesis, a 

method for determining the precision of an estimated canonical axis is developed, 

and a method for the precision of the path of steepest ascent for ridge analysis is 

proposed. 

The thesis also concerns the question of how to augment the existing design 

if the precision of the path of steepest ascent is too low. It is shown how to 

augment the experimental design with additional runs to maximise the proportion 

of directions excluded from the confidence cone. An important aspect of power, 

in this context, is designing an experiment so that the proportion of directions 

excluded from the confidence cone for the path of steepest ascent is sufficiently 
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high. A method is described that can be useful for the determination of the sample 

size needed to achieve the required precision. Further, methods for generalised 

linear models when the data has a Binomial or Poisson distribution are also 

considered. 

In addition to the above, the thesis describes some solutions for cases when 

the experimental variables are constrained. If a linear constraint is included, the 

calculated path can be modified by projecting it onto the constraint plane once 

the constraint plane is reached. It is shown how the precision of the constrained 

path of steepest ascent can be easily determined. 
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Notation 

The density function of a random variable Xi with a t-distribution with Ui degrees 

of freedom is written as t{xi, Ui). The distribution function is written as T{xi, ui), 

while the inverse function where 

Pr(Xi < xi) = pi 

is written as Tp^{i'i). 

The distribution function of a random variable X2 with a x^-distribution with 1^2 

degrees of freedom is written as x^{x2,1^2), while the inverse function where 

Pr(X2 < X2) = P2 

is written as X^.^{i'2)-

The distribution function of a random variable X3 with an F-distribution with 

z/3 and 1̂4 degrees of freedom is written as -F(x3,1/3,1/4), while the inverse function 

where 

Pr(X3 < X3) = P3 

is written as Fp^^u^i, 1/4). 

X 



Contents 

1 Introduction 1 

1.1 Background 1 

1.2 Precision of the Path of Steepest Ascent 6 

1.3 Ridge Analysis 7 

1.4 Nonlinear Experimental Design 12 

1.5 Further Developments in RSM 14 

1.6 Method of Steepest Ascent for GLMs 14 

1.7 Constrained Experimental Regions 15 

1.8 Thesis Outline 18 

2 Non-Orthogonal Designs with Heterogeneous Errors 19 

2.1 Introduction 19 

2.2 Derivation of the Existing Method 21 

2.3 An Example 23 

2.4 Extension to Non-Orthogonal Designs with Heterogeneous Errors 27 

2.4.1 Continuation of the Example 30 

2.5 Inequalities for Percentage Included 32 

2.6 Other Approaches to Evaluating the Percentage Included 40 

2.7 Computations 41 

2.8 Conclusion 42 

3 Application to Generalised Linear Models 44 

3.1 Introduction 44 

3.2 Wald Approach 46 

xi 



3.3 Likelihood Based Confidence Regions 50 

3.4 Bootstrap Approach 55 

3.4.1 Parametric Bootstrap 55 

3.4.2 Nonparametric Bootstrap 56 

3.5 Conclusion 61 

4 Power Considerations 62 

4.1 Introduction 62 

4.2 Power Analysis for Homoscedastic Data 63 

4.3 Distribution of the Estimated Precision for Homoscedastic Data. . 65 

4.4 Power Analysis for Heteroscedastic Data 69 

4.5 Improving the Precision of the Path 72 

4.6 Best Designs to Estimate the Path for GLMs 76 

4.6.1 Introduction 76 

4.6.2 Poisson Data 76 

4.6.3 Binomial Data 80 

4.7 Conclusion 85 

5 Constraints and Second Order Models 87 

5.1 Introduction 87 

5.2 Linear Input Constraints 88 

5.2.1 An Example 89 

5.3 Second Order Models 91 

5.4 Examples 92 

5.4.1 Two Dimensional Example 92 

5.4.2 Three Dimensional Example 97 

5.4.3 Four Dimensional Example 101 

5.4.4 Five Dimensional Example 103 

5.5 Uncertainty of Canonical Direction 107 

5.5.1 Two Dimensional Example 107 

5.5.2 Three Dimensional Example 110 

5.5.3 Four Dimensional Example I l l 

xii 



5.5.4 Five Dimensional Example 112 

5.6 Precision of Ridge Analysis 113 

5.7 Conclusion 114 

6 Discussion and Further Work 116 

6.1 Introduction 116 

6.2 Homogeneous Case 117 

6.3 Heterogeneous Case 118 

6.4 Augmenting 119 

6.5 Constraints and Second Order Models 120 

6.6 Limitations 120 

6.6.1 Correct Model Form 120 

6.6.2 Correct Link 121 

6.6.3 Overdispersion 121 

6.6.4 Known Constraint Functions 121 

6.7 Future Work 122 

6.7.1 Consideration of Bias and Variance 122 

6.7.2 GLMs with Varying Dispersion 122 

6.7.3 Comparison of D-Optimal and Minimum Proportion Designsl23 

6.7.4 Allocation of Observations for Binomial Data 123 

6.7.5 Bayesian Designs 124 

6.7.6 Application to Designs with Randomisation Restrictions . 124 

6.7.7 Multiple Responses 124 

6.7.8 Estimated Constraint Functions 125 

6.7.9 GLMs and Second Order Models 125 

6.7.10 Canonical Analysis and Ridge Analysis 125 

Appendices 126 

A Splus commands for Chapter 2 127 

A.l Data set used in chapters 2 and 3 127 

A.2 Analysis using transformed response and original design 127 

xm 



A.3 Analysis using transformed response and modified design 128 

A.4 Gaussian quadrature functions 128 

A.5 perinc 130 

B Splus commands for Chapter 3 133 

B.l Analysis using GLMs and original design 133 

B.2 Analysis using GLMs and modified design 133 

B.3 perincglm 134 

B.4 profpath 136 

B.5 contourprop 138 

B.6 boots 139 

B.7 boot4 140 

C Splus commands for Chapter 4 141 

C.l powerfn 141 

C.2 approxp 142 

C.3 heterofn 143 

C.4 heteropowerlik 144 

C.5 augdet 145 

C.6 augfun 145 

C.7 Commands to determine best set of augmenting runs 147 

C.8 poisfund 148 

C.9 poisfunp 148 

C.lOpoissim 149 

C.ll bcfnS 150 

C.12binfund 151 

C.13 binomfunp 152 

C.14binsim 152 

C.15bcfn4 154 

D Splus commands for Chapter 5 155 

D.l Commands for linear constraints 155 

xiv 



D.2 Two dimensional example 156 

D.3 Three dimensional example 156 

D.4 Four dimensional example 157 

D.5 Five dimensional example 158 

D.6 ridgeplot 158 

D.7 maxplot 159 

D.8 canonical 161 

D.9 dlr 162 

D. 10 Direct fitting of canonical form-two dimensions 163 

D. 11 Direct fitting of canonical form-three dimensions 164 

D. 12 Direct fitting of canonical form-four dimensions 165 

D. 13 Calculation of precision of canonical axis-three dimensions . . . . 167 

D. 14 Calculation of precision of canonical axis-four dimensions 167 

Bibliography 169 

XV 



List of Tables 

2.1 Part of the data for the car grille opening panels experiment. . . . 24 

2.2 Summary of regression results using original design 25 

2.3 Summary of regression results using modified design 31 

2.4 Percentage of directions excluded from the 95% confidence cone, 

calculated using Gaussian quadrature 32 

3.1 Summary of fitted GLM model with Poisson link and original design. 47 

3.2 Summary of fitted GLM model with Poisson link and modified 

design 49 

3.3 Percentage of directions excluded from the 95% confidence cone, 

using Wald and profile likelihood methods 55 

4.1 Mean and standard deviation of proportion of directions included 

in the 95% confidence cone for the path of steepest ascent versus 

the effect size 73 

4.2 Best sets of augmenting runs and predicted percentage of directions 

included in the 95% confidence cone using D-optimality 75 

4.3 Best sets of augmenting runs and predicted percentage included in 

the 95% confidence cone using direct minimisation, assuming no 

overdispersion 75 

4.4 Best sets of augmenting runs and predicted percentage included 

in the 95% confidence cone using direct minimisation, assuming 

overdispersion 76 

4.5 D-optimal and minimum proportion designs for Poisson experi

ments with 4 runs constrained between —1 and 1 77 

4.6 Ranges for the factors for the Poisson simulation study 78 

xvi 



4.7 D-optimal and minimum proportion designs for Poisson experi

ments with 5 runs constrained between —1 and 1 80 

4.8 D-optimal and minimum proportion designs for Poisson experi

ments with 6 runs constrained between —1 and 1 81 

4.9 D-optimal and minimum proportion designs for Binomial experi

ments with 4 runs of 50 trials constrained between —1 and 1. . . . 83 

4.10 Ranges for the factors for the Binomial simulation study. 84 

5.1 Summary of results of fitting canonical models using non-linear 

least squares to the data given by Box et al. (1978, p. 519) 96 

5.2 Symmetrical composite design type B5 for intrinsic viscosity model. 106 

xvu 



List of Figures 

2.1 Confidence cone for the path of steepest ascent 20 

2.2 95% confidence cone for the path of steepest ascent when B is 

fixed, involving D and F only, for the example given in Table 2.1. 26 

2.3 Proportion of directions included in the 95% confidence cone for 

the path of steepest ascent for various values of ai and a2 35 

2.4 Percentage error of upper bound for the proportion of directions 

included in the 95% confidence cone 36 

3.1 95% profile likelihood confidence regions for the path of steepest 

ascent 53 

3.2 Comparison of bootstrap likelihood ratio statistics and theoretical 

quantiles assuming x^(2) distribution 57 

3.3 Comparison of bootstrap likelihood ratio statistics and theoretical 

quantiles assuming F(2,10) distribution 59 

3.4 95% profile likelihood region for path of steepest ascent based on 

bootstrap quantiles 60 

4.1 Power graph for the path of steepest ascent for 5 factors and 8 runs 

for the homogeneous case 66 

4.2 Power graph for the path of steepest ascent for 5 factors and 16 

runs for the homogeneous case 67 

4.3 Power graph for the path of steepest ascent for 5 factors and 32 

runs for the homogeneous case 68 

4.4 Distribution of the estimated precision for homoscedastic data. . . 69 

xvui 



4.5 Values of the expected proportion of directions included in the 95% 

confidence cone for the path of steepest ascent as a function of 6 

and (j) 71 

4.6 Boxplots of proportion of directions included in the 95% confidence 

cone for the path of steepest ascent versus the effect size 72 

4.7 D-optimal and minimum proportion designs for Poisson experi

ments with 4 runs constrained between —1 and 1 78 

4.8 Histogram of efficiencies of the D-optimal design relative to the 

minimum proportion design for the Poisson simulation study using 

a 100 run orthogonal array 79 

4.9 D-optimal and minimum proportion designs for Poisson experi

ments with 5 runs constrained between —1 and 1 81 

4.10 D-optimal and minimum proportion designs for Poisson experi

ments with 6 runs constrained between —1 and 1 82 

4.11 D-optimal and minimum proportion designs for Binomial experi

ments with 4 runs of 50 trials constrained between —1 and 1. . . . 83 

4.12 Histogram of efficiencies of the D-optimal design relative to the 

minimum proportion design for the Binomial simulation study us

ing a 100 run orthogonal array 85 

5.1 Ridge plot for the two factor chemical example problem given by 

Boxet a l (1978, p. 519) 94 

5.2 Maximum ridge co-ordinates and predicted maximum for the two 

factor chemical example given by Box et al. (1978, p. 519) 95 

5.3 Ridge plot for the three factor reactor study example given by Box 

and Draper (1987, p. 362) 98 

5.4 Maximum ridge co-ordinates and predicted maximum for the three 

factor reactor study example given by Box and Draper (1987, p. 362). 99 

5.5 Ridge plot for the four factor helicopter example given by Box and 

Liu (1999) 104 

5.6 Optimum ridge co-ordinates and predicted maximum for the four 

factor helicopter example given by Box and Liu (1999) 105 

XIX 



5.7 Ridge plot for the five factor polymilization acrylamide experiment 

given by Kiprianova and Markovska (1993) 108 

5.8 Optimum ridge co-ordinates and predicted minimum for the five 

factor polymilization acrylamide experiment given by Kiprianova 

and Markovska (1993) 109 

X X 



Chapter 1 

Introduction 

1.1 Background 

With the increased focus on experimental design, response surface methods have 

received considerable attention in recent decades. This interest has grown from 

the need for quality and precision in industry. Statistically designed experiments 

are one of the most powerful tools in statistical analysis as they can greatly 

increase the efficiency of experimenters. The aim of much experimentation is to 

find out how a number of experimental variables affect a response, and to find 

the combination of conditions that provides the highest response, as well as to 

understand the relationship over a region of interest (see, for example Box and 

Liu, 1999; Box, 1999). 

Response surface methodology (RSM) originated with the work of Box and 

Wilson (1951), who were at the time involved in industrial research with ICI in 

the United Kingdom. There are many situations for which RSM has proved to 

be a very useful tool. Hill and Hunter (1966) illustrated chemical and processing 

applications of canonical analysis and use of multiple responses. Mead and Pike 

(1975) investigated the extent to which RSM had been used in applied research 

and gave examples from biological applications. Myers, Khuri and Carter (1989) 

summarised the developments in RSM that had occurred since the review of Hill 

and Hunter (1966), while a more recent summary of the current status of RSM 
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CHAPTER 1. INTRODUCTION 2 

and some indication of possible developments was given by Myers (1999). 

The exploration of an experimental region using response surface methods 

revolves around the assumption that the expected response, E{y), is a function 

of controllable variables Xi,X2,... ,Xfc; where the Xj's are suitably scaled and 

centred hnear transformations of the independent variables. 

Classical RSM can be divided into three stages: 

First Order Design 

Often, the initial estimate of the optimum operating conditions for the system 

will be far from the true optimum. In such circumstances, the objective of the 

experimenter is to move rapidly to the general vicinity of the optimum. When 

far from the optimum, it is usual to assume, using Taylor series arguments, that 

locally a first-order model 

y = Po + PiXi-\ \-PkXk + £ (1-1) 

is an adequate approximation to the true surface over the experimental region. 

It is also usually assumed that the experimental errors £ are independent and 

identically distributed, although this is sometimes not a good approximation. 

Experimentation Along The Path of Steepest Ascent. 

The method of steepest ascent given by Box and Wilson (1951) is a procedure 

for moving sequentially in the direction of the maximum increase in the response. 

This direction, called the path of steepest ascent, is given by 

b2 bk 
X2^ —Xi,...,Xk = —xi, (1.2) 

hi bi 

where bi,... ,bk are the estimates of Pi,...,(3^ respectively. Experiments are 

conducted on the path of steepest ascent until no further increase in response is 

observed. After that, a new first order model is used, with possibly a wider range 

since as the response surface is "climbed" the first order effects usually become 

smaUer relative to the random error, and then another path of steepest ascent 

is computed. This process is continued until lack of fit of the first order model 
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indicates that the experimenter is close to the optimum and a second order model 

is fitted to account for the curvature and interaction in the response surface. In 

order that the coefficients of the second order model can be estimated the design 

needs to be expanded by adding extra points. 

Brooks and Mickey (1961) examined alternative strategies for steepest ascent 

experiments, while Myers and Khuri (1979) investigated formahsing a stopping 

rule to determine when a new set of experiments should be performed. 

The direction of steepest ascent given in equation (1.2) is not invariant to 

scale changes of the independent variables. Box and Draper (1987, pp. 199-202) 

argue that this dependence is reasonable, since it combines the experimenters 

prior knowledge of the response surface with the experimental data. To overcome 

the scale dependence of the path of steepest ascent, Kleijnen, den Hertog and 

Angiin (2004) developed an adapted path of steepest ascent (ASA). The ASA 

path starts from the design point with minimal prediction variance, and chooses 

as the next point for experimentation the point that maximises the lower bound 

of a 100(1 — a)% confidence interval for the predicted response. The ASA path 

takes into account the variance-covariance matrix of the regression coefficients to 

modify the direction of the path of steepest ascent, and also provides an appro

priate step size. When the design is orthogonal, the ASA path is equivalent to 

the path of steepest ascent given by equation (1.2). 

Second Order Experimentation 

After the path of steepest ascent phase is completed, a resolution V design aug

mented by axial points and a centre point, forming a central composite design, is 

used, and then a second order model 

k 

y = Po + ^ PiiXi^ + 5Z ^^J^i^J + ^ (1-"^) 
i=l l<i<j<k 

is fitted to the data (Box, Hunter and Hunter, 1978, p. 319). Central composite 

designs require five levels for each of the variables. Alternatively, more economical 

designs that require only three levels can be used (Box and Behnken, 1960). If 
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the fitted second order model is written in matrix notation, then 

y = bo + x'^b + x'^Bx, (1.4) 

where 

x = 

Xl 

X2 

Xk _ 

, b = 

bi 

&2 

. ^^ . 

, B = 

bn 

kb,2 

. 2^1fc 

Ibi2 • 

b22 • 

\b2k • 

• Ibik 

• i^2k 

bkk 

In equation (1.4), b is a (/c x 1) vector of the first-order regression coefficients and 

B is a (A; X fc) symmetric matrix whose diagonal elements are the pure quadratic 

coefficients, and whose off-diagonal elements are one-half the mixed quadratic 

coefficients. Differentiating y in equation (1.4) with respect to the vector x and 

equating it to zero results in 

dy 
dx = h + 2Bx = 0. 

Therefore, the stationary point is 

1. 
X5 = - 2 B " ' b , 

and the predicted response at the stationary point is 

ys = Po+ 2x jb . 

;i.5) 

(1.6) 

To interpret the fitted surface the method of canonical analysis was developed 

by Box and Wilson (1951), allowing the determination of whether the region near 

the stationary point of the surface is a maximum, minimum, ridge, rising ridge, or 

saddle point. In canonical analysis the model is transformed into a new coordinate 

system. The axes of the system are rotated until they are parallel to the axes of 

the fitted response surface. This rotation removes all cross-product terms and is 

called the A canonical form. 

If the ith. normalised eigenvector of B is denoted by di, with corresponding 

eigenvalues Aj, then new variables z can be defined as 

D^x, 
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where 

D=[d i ,d2 , . . . , d fc ] . 

In this rotated co-ordinate system 

y = 60 + z^0 + z^Az, (1.7) 

and 

A = D^BD 

= diag(Ai,A2,...,Afc). 

If needed, first order terms are removed as well by changing the origin, result

ing in the B canonical form given by 

y = ys + >^izl + X2zl + --- + Xkzl (1.8) 

where Zi are formed using 

Zi Zj Z j , Z i , . . . , AC, 

and Zi is the average value of Zi over the experimental runs. The size and sign 

of the eigenvalues determine the nature of the fitted response surface. If the 

eigenvalues are all positive the stationary point is a minimum. On the other 

hand, if the eigenvalues are all negative the stationary point is a maximum. If 

the eigenvalues have different signs the stationary point is a saddle point, while 

if any of the eigenvalues are zero the response surface is a ridge. 

Of particular importance are stationary ridges, where the optimum conditions 

are given by a line, plane, or hyperplane, corresponding to equation (1.8) with 

one or more of the eigenvalues equal to zero; and rising ridges, where maximum 

improvement in the response can only be achieved by changing two or more 

variables, while only sub-optimal improvement can be made by changing just 

one variable. A rising ridge is given by equation (1.7) with at least one of the 

eigenvalues zero, but the corresponding first order coefficient not equal to zero. 

With real data, of course, an eigenvalue will not be exactly zero. However, if 

one or more of the eigenvalues are small relative to the others and of about the 
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same size as their standard error, then there is an indication that there may be 

approximately a linear or planar maximum, rather than a point maximum. As 

discussed by Box and Draper (1987, pp. 329-330), this is of considerable impor

tance since it means that there may be a whole range of alternative optimum 

conditions which may allow a primary response to be optimised with satisfactory 

levels for secondary responses. 

1.2 Precision of the P a t h of Steepest Ascent 

As indicated above, the calculation of the path of steepest ascent is an important 

part of response surface methodology. In practice, experimenters need to know 

whether the direction of steepest ascent has been determined precisely enough 

to proceed. Box (1955) and Box and Draper (1987, pp. 190-194) discussed a 

methodology for computing a confidence region or confidence cone (or hypercone) 

for the direction of steepest ascent. If the path of steepest ascent has been 

determined precisely enough, the proportion of possible directions included in 

the confidence cone will be small. One limitation of the method given by Box 

(1955) and Box and Draper (1987, pp. 190-194) is that it only applies where 

the response is a continuous, uncorrelated, normally distributed variable, with 

homogeneous variance. 

After an initial first-order response surface has been fitted, the method will 

allow an assessment of whether the path of steepest ascent has been determined 

precisely enough. If it has, further experiments along the path are conducted, 

and the location of subsequent experiments are found. 

Brooks and Mickey (1961) examined how many experiments were needed to 

optimally determine the path of steepest ascent. In the case of uncorrelated and 

homogeneous errors, they defined the error to be 6, the angle between the true 

path and the estimated path. They also examine "̂  ̂ °̂  ̂ , which they termed the 

improvement per unit of experimental effort, where t is the number of trials and 

S is the size of the step to be taken. They show that the maximum value is given 

where t is one more than the number of factors. 
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On the other hand, if the path is not determined precisely enough additional 

experiments need to be conducted. There has not been any specific work on what 

experiments need to be added in this case, although the literature on the design 

of experiments for nonlinear models, discussed in section 1.4, is relevant since the 

path of steepest ascent is defined in terms of ratios of the regression coefficients, 

that is, a nonlinear function of the parameters. 

One restriction of the current method is that the response must be uncorre

lated and homoscedastic. An extension to cover situations when this is not the 

case would be very useful, and, as shown below, can be used in a number of 

situations. 

1.3 Ridge Analysis 

An alternative to canonical analysis was developed by A.E. Hoerl (1959) and 

further advocated by R.W. Hoerl (1985), giving the path of steepest ascent for 

second order models, resulting in a curve and not a straight line as in first order 

models. Ridge analysis is a technique for examining higher-dimensional quadratic 

response surfaces. Ridge analysis is employed in RSM to graphically illustrate the 

behaviour of response surfaces, and to locate overall and local optimum regions 

on the hyperspheres x-^x = R^. 

A second-order response surface in k independent variables can be represented 

as equation (1.4). If a sphere of radius R is drawn in the x—coordinate space 

with the point (0, 0, . . . , 0) as the origin, then somewhere on the sphere there will 

be a maximum y{R). The corresponding vector of x—coordinates, considered as 

a function of R, is defined as the maximum ridge, and gives the path of steepest 

ascent from the origin. Similarly, the minimum ridge gives the path of steepest 

descent. A plot oi y{R) for R values from 0 to C, where C is the maximum radius 

to be considered, allows the maximum attainable response to be determined. 

Using Lagrange multipliers, equation (1.4) is differentiated with respect to 

the vector x. To obtain the constrained stationary points dy/dx is set equal to 
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0. This results in 

xs =-^{B - pl)-'h. (1.9) 

Therefore, for a fixed ii, xs is a stationary point on R"^ = x^x. Whether a par

ticular stationary point is a maximum or a minimum is determined by fj,. Draper 

(1963) shows that if maximisation is required, only values of p greater than the 

largest eigenvalue (A )̂ of the B matrix should be substituted into equation (1-9). 

On the other hand, if // is smaller than the smallest eigenvalue (Ai) of B, the 

solution of equation (1.9) will result in a minimum. 

Box and Hunter (1954) provided a method for estimating a confidence region 

about the stationary point of a second order response surface. The set of first 

derivatives of y with respect to x is given by 

bi + 2bnxi + 612X2 + . . . + bikXk = 6 . 

62 + bi2Xi + 2622X2 + . . . + 62/cX/c = 6 : 

bk + bikXi + b2kX2 + . •. + 2bkkXk = Cfc, 

where at the stationary point Ci^ • • • ^^k are equal to zero. For a fixed set of the 

x's, 

where Va^ is the variance-covariance matrix of the ^'s and s^ is an estimate of the 

experimental variance cr̂  based on u degrees of freedom. Hence, the probability 

of the inequality 
£^V-i£ 
^^<Fi_^{k,u) 

is 1 — a, so the boundary of a 100(1 —a)% confidence region is given by the values 

of x such that 

eV-'^ = s^kFi_^{k,u). (1.10) 

Box and Hunter (1957) showed that when a rotatable second order design is used 

equation (1.10) reduces to a much more convenient non-matrix expression. A 

software tool for the computation and display of these confidence regions was 

given by del Castillo and Cahaya (2001). 
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Peterson, Cahaya and del Castiho (2002) show that a drawback of the con

fidence region method of Box and Hunter (1954) is that the confidence region 

for a maximum may consist of two disjoint regions: one region corresponding 

to parameter values associated with a maximum response and one region cor

responding to parameter values associated with a saddle point. They give an 

approach, discussed later, that overcomes this problem. 

Carter, Chinchilh, Myers and Campbell (1986) provide a method for comput

ing conservative confidence limits of the eigenvalues of the matrix of quadratic 

and cross-product term, B, and the mean response at a constrained optima. In 

addition, they show how to construct conservative confidence intervals for a ridge 

analysis of a response surface. They use a result discussed by Rao (1973, p. 240) 

and Spj0tvoll (1972) that 

Frlmf g{f3) < g{f3) < supg{(3)] < 1 - a, 

where ^ is a parameter vector and C is the 100(1 — a)% confidence interval for 

(3. The eigenvalues of B are a function of /3, and by setting gi{(3) equal to the 

ith eigenvalue 

nnn^i(/3),mjDc^j(^) i=l,...,k 

a 100(1 — 0;)% confidence interval for the ith eigenvalue is obtained, while a similar 

bound, with gi{/3) being the dot product of {B — pl)~^ and | b , gives a confidence 

interval for the ith co-ordinate of the ridge analysis solution. To identify points 

in C where 

C = {/3 : ( ^ - /3) (X^X)-i ( ^ - /3) /ps' < F^^aip, n - p)} , 

a polar transformation is made where C is transformed to C*, a p-dimensional 

hypersphere of radius r = [ps Fi_a{p, n — p))'^. A large number of points in C* 

are generated, the corresponding points in C computed, and the minimum and 

maximum values of the relevant gi {/3) give the confidence interval. 

While the method developed by Carter et al. (1986) represents an impor

tant extension to ridge analysis, their results, however, presented a number of 

problems. Apart from being conservative, the method requires a considerable 
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amount of computation. Carter, Chinchilli and Campbell (1990) developed a 

more computationally convenient method based on large sample theory to com

pute an approximate 100(1 — a)% confidence region for the eigenvalues of B. The 

method used was called the delta method, and corresponds to using a Taylor's 

series expansion to approximate a function of a random variable. In general, if 

a vector of random variables w has mean p with covariance matrix S. then a 

vector-valued function g{w) is asymptotically distributed with mean g{p) and 

the covariance is given by U-^SU, where 

dg 
U 

&w 

Specifically, the eigenvalues of B are functions of the second-order coefficients, 

and since the means and variances of the second-order coefficients can be esti

mated, it is possible to find an approximate 100(1 — a)% confidence region for 

the eigenvalues A given by 

Cx={xeR':{X- A)^(H^VH)-i(A - A) < xlaik)} , 

where A are the estimated eigenvalues, H is a function of the eigenvectors, and V 

is a function of the variance-covariance matrix of the parameters. An equivalent 

confidence interval can be obtained for an individual eigenvalue. If the errors are 

homogeneous, the interval above should be replaced by 

CA = | A € R'' : (A - A)^(H^VH)-^(A - A) < ks^Fi_^{k,n - p)} , 

which gives better coverage in small samples. 

Bisgaard and Ankenman (1996) gave a simpler method to that developed by 

Carter et al. (1990) since the latter method requires a significant amount of vector 

and matrix manipulation. The simpler method, which is called the double linear 

regression method, only requires the fitting of two linear regressions where a full 

quadratic model is fitted. First, a standard quadratic regression model is fit

ted, and the canonical axes are determined. After that, the co-ordinate system is 

rotated so that it coincides with the canonical axes, and another quadratic regres

sion model is fitted. Bisgaard and Ankenman (1996) showed that the quadratic 
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terms of the second regression are equivalent to the eigenvalues of the original B 

matrix, and therefore a confidence region for the quadratic terms can be used to 

give a confidence region for the eigenvalues. 

Ankenman (2003) extended the double linear regression method to obtain 

confidence intervals for the first order coefficients, overcoming a problem with the 

double linear regression method, which can seriously underestimate the standard 

error of the estimates. He gives a parameterisation for the A canonical form of the 

quadratic response surface, which provides good estimates and standard errors 

of the first order coefficient estimates. He also shows how the A canonical form 

can be directly fitted using non-linear least squares, an approach which was first 

illustrated by Box and Draper (1987, p. 359). 

Box and Draper (1987) gave two examples where they directly fitted a canon

ical form. In the first example, (pp. 355-360) they discussed a three factor chem

ical experiment which gave rise to an approximate stationary planar ridge. They 

fitted the model 

y = yg- A(aiiXi + Q!i2X2 + ai3X3 + Q!io)̂  + £, 

where ys is the estimated response on the fitted maximal plane; while the values 

of a n , Q; 12 and a 13 are the direction cosines of a line perpendicular to the maximal 

plane; aio measures the distance in design units of the nearest point on the fitted 

plane to the design origin; and A measures the quadratic fall-off in a direction 

perpendicular to the fitted maximal plane. In the second example (pp. 360-368), 

they discussed a small reactor study, again involving three factors, which this 

time gives rise to a rising ridge surface. They fitted the model 

y = ys> - Ai(aiiXi + ai2X2 + 013X3 + Oio)^ + A2(Q;2IXI + 022X2 + 023X3) + e, 

where ys' is the estimated response at S", the point nearest to the origin on the 

rising planar surface; On, 0!i2 and O13 are the direction cosines of lines perpen

dicular to the plane; Oio measures the shortest distance of the planar ridge from 

the design origin; Ai measures the rate of quadratic fall-off as we move away from 

the plane of the ridge; 02i,a22 and O23 are the direction cosines of the line of 
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steepest ascent up the planar ridge; and A2 is the linear rate of increase of >ield 

as we move up the ridge. 

1.4 Nonlinear Experimental Design 

Methods for designing experiments for non-linear situations have a long history 

after the early work of Box and Lucas (1959). In particular, methods for min

imising the volume of the confidence region of the estimated parameters, called 

D-optimal designs, are often used. These methods, originally developed by Kiefer 

(1958, 1959, 1961 a,6, 1962a,6) and Kiefer and Wolfowitz (1959, 1969), have been 

studied and extended by many authors (see, for example, Covey-Crump and Sil-

vey, 1970; Wynn, 1970, 1972; Box and Draper, 1987; DuMouchel and Jones, 1994; 

Atkinson and Haines, 1996). 

It is often desirable to augment the existing design with additional runs in 

order to achieve the desired precision of the parameter estimates. When this is 

the case, it is desired to choose a criterion for judging whether one set of added 

experimental observations is superior to another set of observations. The most 

common criterion is to maximise the determinant |X^X|, where X is the design 

matrix. Methods for augmenting the existing data in response surface exper

iments have been presented by Dykstra (1966, 1971) and Hebble and Mitchell 

(1972). Gaylor and Merrill (1968) were concerned with augmenting existing data 

in multiple regression. Box and Hunter (1965) used the IX-^X] criterion to deter

mine the next design point for nonlinear models. Hill and Hunter (1974) described 

a method for situations where it is desired to estimate one subset of parameters 

more precisely than another. The procedure takes into account prior knowledge, 

and uses a Bayesian development to obtain a modified criterion for a subset of 

the parameters of interest. The criterion is then maximised with respect to the 

independent variables. 

Jia and Myers (1998) and Myers (1999) discuss experimental design approaches 

for Binomial and Poisson data. They show that for the Binomial case with two 
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explanatory variables, Xi and X2, and a logistic model 

exp(/3o + PiXi + ,;32X2) 
P 1 + exp{Po + piXi + P2X2)' 

the D-optimal design is to place four points on a parallelogram with two points 

having predicted p values of 0.227 and two points having predicted p values of 

0.773 (called ED22.7 and ED773). As with a non-linear design it is necessary to 

have guesses of the parameters in order to determine the best design. 

An alternative, but potentially more robust procedure, is to use Bayesian 

Designs (Chaloner and Verdinelli, 1995), where a design is chosen to minimise 

the function 

/i?((5,/3)7r(/3)d/3, 
J/3 

where S denotes the design, (3 the parameter vector with prior probability 7r(/3) 

and R{S, (3) denotes a criterion which we wish to maximise. Bayes D-optimal 

design corresponds to 

i?(<5,/3) = ln|I | , 

where I is the information matrix generated by the logistic model. Bayes designs 

generally give more levels of the experimental variables, and are thus more robust 

to the guesses of the experimenter. 

In any case, once experiments are conducted, all the parameters can be esti

mated, and new sets of experiments can be designed in the light of the information 

generated. 

Similar considerations apply to models where the data follows a Poisson dis

tribution. For example, assume it is expected that the mean count is 

A = exp(/?o + PiXi + P2X2). 

As discussed by Myers (1999), the D-optimal design is given by (0,0), the control, 

and two points on the "E'Cis.s" contour, where the expected count is 13.5% of 

the expected count at the control. 
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1.5 Further Developments in RSM 

RSM as presented by Box and Wilson (1951) was only a beginning that led to 

further development of these ideas by other scientists. Over the next decades. 

RSM and other design techniques spread throughout the chemical and process 

industries, as well as research and development work. The tools and techniques 

of RSM are also useful in engineering, quahty technology, physics, biology, agri

culture, psychology, and statistics. 

In the last 20 years, great attention has been drawn to RSM. The number of 

problems that can be solved with RSM has increased. This may be due to devel

opments in nonlinear optimisation, Bayesian experimental designs, nonparametic 

regression, estimation using GLMs, mixed model analysis, and many others (My

ers et a l , 1989). 

The current status and future directions of response surface methodology was 

reviewed by Myers (1999). One of the most important points made both by Myers 

and the discussants to the paper was the increasing importance of generalised 

linear models, and the use of multiple responses in response surface methodology. 

1.6 Method of Steepest Ascent for GLMs 

Situations in which a response takes the form of a count, proportion, or is ex

ponentially distributed arise frequently in practice. In those situations, the least 

squares assumptions, of normal errors and homogeneous variance, are not satis

fied. Generalised linear models, introduced by Nelder and Wedderburn (1972), 

have become the basic tool for statistical analysis of such data. These models, 

which include the standard regression models as special cases, are estimated using 

iteratively reweighted least squares. 

Applications of GLMs were expanded following the publication of a book on 

the topic by McCullagh and Nelder (1989) and the availability of easily used 

software (for example Aitkin et al., 1989). Further developments were due to the 

increasing emphasis on quality improvement. Nelder and Lee (1991) and Grego 

(1993) showed their use in "Taguchi" type experiments, while Hamada and Nelder 
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(1997) gave some examples of the use of GLMs in quality improvement, and Myers 

and Montgomery (1997) presented a tutorial on the topic. 

This interest in GLMs prompted Myers (1999) and others to urge the greater 

use of GLMs in RSM. Some applications were given by Lewis, Montgomery and 

Myers (20016). However, no work on a method for determining the precision of 

the path of steepest ascent for GLMs has as yet been presented. 

1.7 Constrained Experimental Regions 

There are some problems in which it is not possible to proceed very far in the 

direction of steepest ascent due to constrained experimental variables. Box and 

Draper (1987, pp. 194-199) show how the direction of steepest ascent can be 

modified so that a linear constraint is not violated. However, an adaptation of 

the method to determine the precision of the path of steepest ascent to cover 

constrained regions has not been presented in the literature. 

An important case of the constrained optimisation problem is for dual response 

systems, where there is a primary response which we desire to maximise (or 

minimise) and a secondary response or responses which we desire to take on 

certain values. Myers and Carter (1973) studied this problem. They considered 

the case where the fitted primary response y is given by 

yp = bo + x^b + x^Bx, 

while the constraint response is given by 

ys = CQ + X"^C -{- x'^Cx. 

Myers and Carter (1973) found conditions where it is possible to optimise yp 

subject to ys = k, where k is some desirable or acceptable value of the constraint 

response. Using Lagrangian multipliers, they optimised 

L = bo + b^x + x^Bx - ^(co + c^x + x^Cx - k) 

by setting the derivative of L with respect to x equal to zero, and obtained 

(B-MC)x=i(^c-b). 
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The nature of the stationary point depends on the matrix of second partial 

derivatives 

M(x) = 2 ( B - / i C ) . 

To give a maximum, M(x) must be negative definite; while to give a minimum, 

M(x) must be positive definite. The approach adopted by Myers and Carter 

(1973) is similar to that used in ridge analysis. They selected values of p which 

make M(x) negative (positive) definite, assuming a maximum (minimum) is re

quired. This can always be done if C is definite, but only in some cases if C is 

indefinite. 

Once the constrained optimum is obtained a confidence region can be calcu

lated using the method developed by Stablein, Carter and Wampler (1983), an 

extension of the method given by Box and Hunter (1954). Stablein et al. (1983) 

consider the case where it is desired to optimise a primary response, which can be 

approximated by a quadratic function, but there are m(> 1) secondary constraint 

functions gi{x) = Cj, which are also assumed to be quadratic. In particular, for 

ridge analysis there is one constraint function given by 

gi{x) = x^x = i?^. 

In Peterson (1993) and Peterson et al. (2002) the standard quadratic model 

used in ridge analysis is generalised to a parametrically linear model for the 

response surface given by 

y = Po + z{x)'^d + £, 

where z{x) is a vector-valued function of x and 0 is a vector of regression coeffi

cients. In addition, they extend the type of constraint that can be used. Peterson 

(1993) provides conservative or approximate confidence intervals about the op

timal mean response as the radius is varied, called a "guidance band", which 

assists the experimenter in determining the optimal settings for the experimental 

variables. One of the advantages of the approach given by Peterson (1993) and 

Peterson et al. (2002) is that the radius constraint is dealt with directly, and 

hence there is no need to introduce an unknown Lagrange multipher. 
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Gilmour and Draper (2003) gave confidence regions for ridge analysis solu

tions. They modified the approach of Stablein et al. (1983), who had, in effect, 

fixed the Lagrange multipher /x and varied the radius of solutions, by fixing the 

radius and varying over /x. For two dimensions, they gave a plot of the bound

aries of the confidence intervals for varying radii, and suggested a suitable plot 

for three dimensions. They also tabulated the percentage of the surface area of a 

circle or sphere covered by the confidence intervals at different radii. 

Peterson, Cahaya and del Castillo (2004) demonstrated that the method given 

by Peterson et al. (2002) is an alternative to that used by Gilmour and Draper 

(2003). They gave examples where the proportion of the circle or sphere that is 

covered by the confidence intervals or regions is less than when the approach of 

Gilmour and Draper (2003) is used. However, as Gilmour and Draper (2004) point 

out, this may be because the 100(1 — o)% confidence regions for the maximum 

of a response surface used in Gilmour and Draper (2003) are nonuniform, that 

is, they include the true maximum with a probability of at least 1 — o, over 

all possible values of the parameters, while all other methods in the literature, 

including the methods given by Peterson (1993) and Peterson et al. (2002), do 

not have this guaranteed coverage. 

A more direct approach to solving dual response systems is to set-up the op

timisation as a nonlinear programming problem following del Castillo and Mont

gomery (1993), who used the generalised reduced gradient algorithm to find the 

value of the Lagrange multiplier, p, and hence the optimal levels of the experi

mental variables. Similarly, del Castillo (1996) shows how to optimise a primary 

response subject to a number of secondary response variable constraints using 

a combination of nonlinear programming, confidence regions for the stationary 

points of quadratic responses (Box and Hunter, 1954), and confidence cones for 

the directions of maximum improvement for linear responses (Box, 1955; Box and 

Draper, 1987, pp. 190-194). 
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1.8 Thesis Outhne 

In Chapter 2, we give a derivation of the current method, and generahse the 

current method to data with non-orthogonal designs and heterogeneous errors, 

where the regression coefficients are heteroscedastic. We also show how to give the 

percentage of directions included in the confidence cone for the path of steepest 

ascent as an integral, which can be exactly evaluated when k = 2, but requires 

numerical integration for higher values of k. For k = 3 and k = 4, relatively tight 

inequalities can be derived, but in general numerical integration can be used. 

In Chapter 3, we apply the new method to GLMs. These are important in 

many practical situations. First, we use Wald methods for both when there is no 

overdispersion and when there is overdispersion. Second, we use profile likelihood 

methods which give more exact results. We also give an easy method for numer

ically evaluating the percentage included. In addition, we propose Bootstrap 

methods to give results that do not rely on asymptotic approximations. 

In Chapter 4, we look at power. We first give the power for homogeneous 

situations, and show that the power depends only on the size of the coefficient 

vector, the variance, and the sample size. For heterogeneous situations, the power 

will be different depending on the direction of the path, and hence the least precise 

direction can be used prior to the experiment. For GLMs, best sets of experiments 

are achieved in order to determine the minimum percentage included, for both the 

cases when the data follows the Binomial or Poisson distributions. In addition, we 

look at augmenting experiments when the path has not been determined precisely 

enough. 

In Chapter 5, we look at cases where there is a constraint. The important 

case of ridge regression is also examined. A method for determining the precision 

of a canonical axis is developed, and applied to a number of examples. 



Chapter 2 

Non-Orthogonal Designs with 

Heterogeneous Errors 

2.1 Introduction 

In the initial stage of a response surface study, a first order design is used to fit 

a linear model 
k 

y = /3o + X^Ax» + £, (2.1) 
1=1 

where y is the response and Xi , . . . , Xfc are the coded levels of the experimental 

factors. If the linear model fits well, the path of steepest ascent giving the max

imum predicted increase in the response can be calculated. Experimentation is 

conducted along the path of steepest ascent until curvature is detected. 

If curvature is present, a second order experiment is conducted and a second 

order model 

fC /C K 1 K 

y = Po + '^PiXr + Y^ Piixl + X I 5Z (^'^^'^^ + ^ (2-2) 
i=l 1 = 1 i=\ j=i+l 

is fitted and the results are summarised using contour diagrams and canonical 

analysis (see, for example. Box and Draper, 1987, chapters 10 and 11). 

Box (1955) and Box and Draper (1987, pp. 190-194) presented a method for 

determining whether the path of steepest ascent has been determined precisely 

19 
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Path of 

Steepest Ascent 

Figure 2.1: Confidence cone for the path of steepest ascent. The proportion of direc
tions included in the confidence cone gives a measure of the precision of the path of 
steepest ascent, and is measured by taking the ratio of the surface area of the cap of 
the sphere within the confidence cone to the surface area of the sphere. 

enough (see also Myers and Montgomery, 1995, pp. 194-198). The method gives 

the fraction of all possible directions that are included in the confidence 'cone' 

around the fitted path of steepest ascent, illustrated in Figure 2.1. 

If this proportion is small, then we can say that the path has been determined 

precisely enough, and experiments along the path can be conducted. Otherwise, 

further experiments to improve the precision of the path, or to determine whether 

the surface is essentially flat, need to be run. This method applies to orthogonal 

designs with uncorrelated and homogeneous errors. However, in practice, there 

are many situations where the design will not be orthogonal, nor the errors ho

mogeneous. One example would be in generalised linear models, which are being 

increasingly used. 

The purpose of this chapter is to give a derivation of the current method, 

and to develop a method that would apply more generally. An example will be 

worked out in detail. In addition, some inequalities for the precision of the path 

will be derived and applied. 

Some of the material covered in this chapter has appeared in Sztendur and 
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Diamond (1999, 2001, 2002). 

2.2 Derivation of the Existing Method 

The direction cosines, which give the cosines of the angles between the ith axis 

and true direction of steepest ascent, are given by 

VP! + --- + Pl 
i = 1,... ,k. 

and hence £̂ (6̂ ) = 'jSi, where 7 = y/Pf + • • • + Pi and 6̂  is the least squares 

estimate of the ith regression coefficient. Box (1955) and Box and Draper (1987, 

pp. 190-194) show how a 100(1 — 0)% confidence region for the 6i can be deter

mined by considering the estimated regression co-efficients bi as the response, the 

^j's as levels of a single predictor variable, and 7 as a regression co-efficient to 

be estimated. The confidence region is given by the 6's which just fail to make 

the residual mean square significant compared to the variances of the estimated 

regression coefficients, at some desired level o. The region is given by 

{E^^-(EIIM.)VE^A 
-̂  ^ ^ ^ ^ ^ ^ 2 < Fi-a{k - 1, V,), (2.3) 

where the estimated variance of bi is si, based on ẑ^ degrees of freedom. 

A good indication of whether the direction has been determined precisely 

enough is provided by the magnitude of the solid angle of the 'confidence' cone 

about the estimated path of steepest ascent vector, which is, as shown below, a 

function of the t-distribution. 

The first step in developing the current method is to find the surface area of 

a /c-dimensional sphere of radius R, SA{k, R). The formula is given by 

27r^/2Rfc-i 

which can be proved using induction on k. For k = 2, the equation (2.4) is correct 

since SA{2, R) = 27TR, the circumference of a circle of radius R. Assume equation 
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(2.4) is true for k. then for A; -f-1 we have 

fR D 

SA{k + l,R) = 2 SA{k,VR^-r^) , dr 
Jo V-R2 _ 7̂ 2 

{R^-r^) — dr. (2.5) 
r(f) Jo 

Since, 

r x - f a " - x")^dx - a - " ^ ^ " ^ r ( ^ ) r ( p + l ) 
io ^ ^ n r ( ^ + p + l ) , r ( i ^ + p + i) 

(Spiegel (1997), p.95), and if we let p = • ^ , m = 0, a = i?, and n = 2. 

equation (2.5) becomes 

4vrti? „,̂ ,_2 r(f)r(f) 
5A(A;-f-l,i?) = —-j—R 

r(|) 2r(i + ̂  + i) 
27r^ i? fe r ( | ) 

2 ' 2 

2' 

r(^) ' 
and hence, by induction, equation (2.4) is true for all positive integers A;. 

Without loss of generality, take i? to be 1. The surface area of the fc-dimensional 

cap as a proportion of the surface area of the fc-dimensional sphere, 7, can be 

calculated from the surface area of the {k — l)-dimensional sphere and is given, 

for some TQ, by 

/•I , 1 

/ SA{k-l,Vl^^)-^= zdr 

where 
, 1 r(|) 

Making the substitution 

t = /(r) = (A:- l ) i 

SA{k,l) (2.6) 

c / (1 - r'^)^dr, 
Jro 

VT 
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we obtain 
r(|) p ^ t2 ,1^,, / (i + - — ) - 2 d t . (2.: 

which can be seen to be the area of the tail of the t-distribution with (A- — 1) 

degrees of freedom. Specifically, if we denote the distribution function of the 

^-distribution with u degrees of freedom by T{t,v). then 7, the surface area of 

the cap as a proportion of the total surface area of the unit hypersphere, can be 

expressed as a function of the radius of the projection onto the (A;—l)-dimensional 

plane through the origin and orthogonal to the path of steepest ascent, and is 

given by 

V l - r 2 

7 = l - r ( V A : - 1 - ^k-\\, (2.8) 

which is easily evaluated using standard statistical software such as Splus or 

Minitab. 

2.3 An Example 

A very interesting example of a fractional factorial experiment was conducted 

by Hsieh and Goodwin (1986) of the Chrysler corporation. The experiment was 

concerned with determining how to reduce the number of defects in the finish 

of sheet-molded grille opening panels. The factors in the experiment were Mold 

Cycle {A), Viscosity {B), Mold Temperature (C), Mold Pressure {D), Weight {E), 

Priming (F), Thickening Process (G), Glass Type {H), and Cutting Pattern (J). 

The response was the observed number of defects, c. Part of the data is given in 

the left hand panel of Table 2.1. The nonsignificant factors are not included in 

the table. Bisgaard and Fuller (1994-95) re-analysed the experiment using the 

transformed response 
V~c+\/c+l 

y = — 2 — 

with ordinary least squares, and showed that the important factors were D and 

F. In addition, there was a significant interaction string given by BG+CJ+EH. 
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Table 2.1: Part of the data for the car grille opening panels experiment. Left Panel: 
The original design matrix for the significant factors, the response and the transformed 
response. Right Panel: The modified design matrix, allowing the fitting of the "condi
tional" effects of B at both levels of G. 

Run 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

B 

— 

— 

+ 
+ 
— 

— 

+ 
+ 
— 

— 

+ 
+ 
— 

— 

+ 
+ 

D 

— 

— 

— 

— 

— 

— 

— 

— 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

F 

— 

— 

+ 
+ 
+ 
+ 
— 

— 

+ 
+ 
— 

— 

— 

— 

+ 
+ 

G 

+ 
— 

+ 
— 

— 

+ 
— 

+ 
+ 
— 

+ 
— 

— 

+ 
— 

+ 

c 

56 
17 
2 
4 
3 
4 
50 
2 
1 
0 
3 
12 
3 
4 
0 
0 

2 

7.52 

4.18 
1.57 

2.12 

1.87 
2.12 

7.12 

1.57 
1.21 

0.50 
1.87 
3.54 

1.87 
2.12 

0.50 

0.50 

— 

0 
+ 
0 
0 
— 

0 
+ 
— 

0 
+ 
0 
0 
— 

0 
+ 

BG-

0 
— 

0 
+ 
— 
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On the basis of the data alone it is impossible to distinguish between the 

three possible interactions BG, CJ, or EH. Assume that it was decided that 

EG was the important interaction. (A similar development would also apply to 

CJ and EH). Using the data given in Appendix A.l and Splus commands given 

in Appendix A.2, a model was fitted using the explanatory variables B, D, F, 

G, and BG. Details of the fitted model are given in Table 2.2. The estimated 

transformed response is given by 

y = 2.5112 - 0.9975xi5 - 1.2125XF - 0.1625xs - 0.2013XG - 0.7700XSXG. (2.9) 

Note that BG involves a quantitative variable {B) and a qualitative variable 

(G). If it is desired to reduce the number of defects even further by using the 

path of steepest descent, then if B is fixed, the path of steepest descent is given 
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Coefficients 
(Intercept) 

D 
F 
B 
G 

BG 

Value 
2.5112 

-0.9975 
-1.2125 
-0.1625 
-0.2013 
-0.7700 

Std. Error 
0.3304 
0.3304 
0.3304 
0.3304 
0.3304 
0.3304 

t value 
7.6009 

-3.0192 
-3.6699 
-0.4918 
-0.6091 
-2.3306 

Pr(> |t|) 
0.0000 
0.0129 
0.0043 
0.6334 
0.5560 
0.0420 

Residual standard error: 1.322 on 10 degrees of freedom. 
Multiple R-squared: 0.7411 
F-statistic: 5.726 on 5 and 10 degrees of freedom, the p-value is 0.009481 

Table 2.2: Summary of regression results using the original design. 

by 

xp — 1.2155XD, 

irrespective of which levels of B and G are chosen. 

Using equation (2.3) with the values of bi{D) = -0.9975, 62(F) = -1.2125, 

Sb = 0.3304 and A; = 2, the 95% confidence region is given by 

{2.465162 - (-0.9975(5i - 1.2125^2)V(^? + ^D) 
0.33042 

which can be written as a quadratic function of 82 as 

< 4.96403, (2.10) 

0.453049(5^ - (2.4189375i)52 + 0.9281988(5; < 0, 

with solution 

82 < (2.6696 ±2.2535)(5i. 

Hence, the 95% confidence cone for the path of steepest descent extends from 

62 = 0.4161^1 to 62 = 4.9231(^1, as shown in Figure 2.2. In other words, the angle, 

61, between the true path of steepest ascent and the Xi axis extends from 

6*1 =tan-^(0.4161) = 22.6° 

to 

Oi =tan-^(4.9231) = 78.5°. 

Note that the confidence cone is in the first quadrant as both regression coeffi

cients are negative and we want to decrease the response. 
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The proportion of directions included in the confidence cone is the arc length 

of the cone divided by the circumference of the circle, and is given by 

tan-i (4.9231) - tan-H0.4161) 
27r 

= 0.1554, 

and hence the 95% confidence region excludes about 84.5% of possible directions. 

Alternatively, the projection of the cone onto the line orthogonal to the path 

of steepest ascent has radius 0.469, and hence the percentage included in the 

confidence cone, using equation (2.9), is given by 

,^^(VTE^, 
.469 

0.155, 

that is, the same result as before. 

i ^2 
Path of 

Steepest Ascent 

Figure 2.2: 95% confidence cone for the path of steepest ascent when B is fixed, 
involving D and F only, for the example given in Table 2.1. 
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2.4 Extension to Non-Orthogonal Designs with 

Heterogeneous Errors 

Assume that the data y has variance-covariance matrix Va^ with design matrix, 

expanded to model form, given by X, where X-^X is not necessarily proportional 

to I. Then, the generalised least square estimate of the regression coefficients is 

b = (X^V-^X)-^X^V-V. 

with variance-covariance matrix 

U(b) = (X^V-^X) -V^ (2.11) 

(See, for example, Rao, 1973, p. 230). In practice, the covariance matrix is un

known, so it must be estimated and therefore equation (2.11) holds only asymp

totically. Set 

\ b 2 

where bi corresponds to the A;i variables considered in the path of steepest ascent 

and b2 corresponds to the other variables, including at least the intercept. For 

the example, 

Hi 
and 

bs = ( /i B G BG^ . 

Following the development in Box and Draper (1987, pp. 190-194), we have 

but here with 

T ^ . - l v \ - l „ 2 / ^ 1 1 ^ 1 2 \ o U(b) = (X̂ ^ V - X ) - V = ( ^; - ]a 
r i2 CJ22 
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Then, 

b / G b i - (5/Gbi(5/G«5i)- ibi^G(5i 
<Fi_,(A;i- l ,z/6) (2.12) 

(A:i - l)s2 

gives a 100(1 — o)% confidence region for the elements of di with G = G i i ~ \ 

and s^ is the estimate of a'^, based on Ub degrees of freedom. For the case where 

V = (T Î, equation (2.12) reduces to equation (2.3). 

It can be shown that boundary of the the cap can be projected onto a 

{ki — l)-dimensional hyperplane passing through the origin, providing a hyper-

ellipsoid with lengths of the semi-axes given by 

where Ai , . . . , A/-̂  are the eigenvalues of 

H = Gb ib i^G - cG, (2.14) 

with 

c = b / G b i - (A:i - 1)S2FI_,(A:I - 1, ut). (2.15) 

To see this, the boundary of the cap is given by the elements of 6i satisfying 

equation (2.12), and hence 

^ i^Gbib/G<5i = c<5/G(5i 

with c as in equation (2.15). This implies that 

(5 / (Gb ib i^G - cG)<5i = 0. 

Let Xl,..., Xk^; and Xi,..., X^^; be the eigenvalues and the eigenvectors, 

respectively, of Gbib i G — cG, and hence 

XiX^ + ... + Xk,Xl = 0. 

However, 

xl = i-xl-...-xl. 
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and hence 

Xi{i-xi~...-xl) + xlxl + ... + xlxl=o. 

which implies 

Al = (Al - X2)Xl + . . . -f- (Al - A,, )Xl, 

a (A;i — l)-dimensional hyperellipsoid, with lengths of the semiaxes given by equa

tion (2.13). 

The surface area of the cap is given by 

• • L xi I dX2... dXk,. (2.16) 
^^^•••^^^^ Ji-xi-xi-...-xl 

For A; = 2, we get 

SA = [ ^ , -̂  dX2 

r-ai 1 

dX2 
-ai V 1 — X 

= 2sin ^ ai. 

In the example, when considering a fixed value of B, the eigenvalues of the H 

matrix are given by 138.8249 and —492.2567. Hence, the value of ai = 0.4690. 

The surface area of the cap is then 

2 sin-^ (0.4690) = 0.9764. 

Therefore, the proportion of directions included in the confidence cone is 

0.9764 

27r 
= 0.1555, 

agreeing with the results in section 2.3. 

Applying a transformation from rectangular to polar coordinates (see, for 
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example. Carter et al. (1986)) to equation (2.16). we get 

X2 = pOisinOi. 

Xs = pa2Cos9ism92, 

Xk-i = pak-2cos61 cosO2...cos6k-3sin9k-2, 

^k — p a j t_ iC0S^lC0S ^2 ••-COS ^fc-3 cos ^fc-2-

where 

0 < / 9 < 1, 

- f < ^ i < f 2 = 1 , . . . , A; -3 . 

-TT < 9k-2 < 7T. 

The Jacobian of the transformation is 

k-l 

g{r,ei,...,9k-2) = /"^(cos^i) ' '~^. .cos^fc-3fJai-
i=l 

Therefore, the integral given by equation (2.16) is 

•' '̂  , [ ' r | M ^ ^ 4 ] = f d M . . (2.17) 

where 

h{r,9i,...,ek-2) = 
\ 

fc-i 
1 - ^ p2fl2 gjjj2 ^. j " ! " ^Qg2 (9̂  _ ^2^2^^ j j " (,Qg2 ̂ .̂ 

i=l j< i j<i 

2A.l Continuation of the Example 

In the example introduced in Section 2.3, we calculated the path of steepest 

ascent for the homogeneous case, and the method given by Box (1955) and Box 

and Draper (1987, pp. 190-194) was appropriate for that situation. 

If B can be varied, then one or other of the levels of G needs to be chosen. 

If, for example, the high level of G is chosen, then the estimated transformed 

response is given by 

y = 2.3099 - 0.9975XD - 1.2125XF - 0.9325x5^^, 
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Coefficients Value Std. Error t value Pr(> \t\) 
(Intercept) 2.5112 0.3304 7.6009 0.0000 

D -0.9975 0.3304 -3.0192 0.0129 
F -1.2125 0.3304 -3.6699 0.0043 

BG+ -0.9325 0.4672 -1.9958 0.0739 
BG- 0.6075 0.4672 1.3002 0.2277 

G -0.2013 0.3304 -0.6091 0.5560 

Residual standard error: 1.322 on 10 degrees of freedom. 
Multiple R-squared: 0.7411 
F-statistic: 5.726 on 5 and 10 degrees of freedom, the p-value is 0.009481 

Table 2.3: Summary of regression results using modified design. 

where the coefficients of xsa^ denotes the effect of B at the high level of G. Note 

that the standard errors of the coefficients of XD and xp are both 0.3304 while 

the standard error of the coefficient of XBQ^ is 0.4672, since the latter coefficient 

is the sum of XB and XBG coefficients. The path of steepest ascent is given by 

XF = 1.2155X/3, XBG_^_ = 0.9348xz). 

An alternative approach, which turns out to be more convenient, is to rewrite 

the design matrix as in the right hand panel of Table 2.1. The results of refitting 

the model, using the Splus commands given in Appendix A.3, are reported in 

Table 2.3, and as can be seen the standard error of the effect of B at high G 

is given directly. This method of calculating the "conditional" effects is due to 

Ankenman and Bisgaard (1995), and is equivalent to the "Trans-factor" technique 

developed by Taguchi (1987). 

In this case, the eigenvalues of H are 

Al = 204.6044, As = -287.5042, A3 = -513.0886, 

leading to ai = 0.6450 and 02 = 0.5341. The surface area of the cap is given by 

^ dX2 dXs 

d9i dr. 

$+$ ^1 - XI - XI 

ra 
n "2 

•1 rn 
• • • ' ^ 1 

r=oJei=-n \ / l — r'^al sin^ 9i — r'^a^ cos^ 9i 
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n-point 
2 
3 
4 
5 
6 
7 
8 
10 

Percentage Excluded 
90.31% 
90.58% 
90.44% 
90.46% 
90.47% 
90.46% 
90.46% 
90.46% 

Table 2.4: Percentage of directions excluded from the 95% confidence cone, calculated 
using Gaussian quadrature. 

This integral can be evaluated using numerical integration. Splus commands 

for computing the proportion of directions included in the confidence cone using 

Gaussian quadrature (see, for example, Stroud, 1971) are given in Appendix 

A.4. For example, if we choose to use a 3-point Gaussian product formula, the 

estimated integral is given by 

1 v ^ 3 ^-^3 / I 1 \ 

where 

f{r,9i raia2 

y/l — r'^di sin^ 9i — r'^a^ cos2 9i 

and ti = -0.77459667, ts = 0, 3̂ = 0.77459667, Wi = 0.55555555, W2 = 

0.88888888 and W3 = 0.55555555. The resuff is 1.1839. Since the surface area of 

the sphere is 47r = 12.5663, the proportion included is 0.0942. 

Higher order Gaussian quadrature can be used to obtain more accurate re

sults. For example, a 10-point product Gaussian quadrature gives 0.0954 as the 

proportion included and so the 95% confidence region excludes 90.46% of possible 

directions. 

2.5 Inequalities for Percentage Included 

In the example above, the projection of the cap onto the (A; — l)-dimensional 

plane orthogonal to the path of steepest ascent is ellipsoidal. In this section. 
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some inequahties for the surface area of the cap will be developed. 

For three dimensions, very simple bounds can be found by determining the 

major and minor axes, Oi and 02 respectively, of the ellipse. Since the surface 

area of the hypersphere above the ellipse must be greater that the surface area 

above a circle of radius a2 and less than the surface area of the hypersphere above 

a circle of radius ai we have the inequality 

-y/1 — af^ r- -\Jt — tti^ 
1 - T{Vk^^ '-, A; - 1) < 7 < 1 - T{y/^^^ - , k - 1). 

02 ai 

For the example, with a = 0.05, ai = 0.6448 and 02 = 0.5339, the proportion 

included in the confidence cone is 

0.0772 < 7 < 0.1178, 

which may be precise enough for practical purposes. For higher dimensions, if 

the axes of the projected ellipsoid are fli > 02 > •.. > flfc-i, then 

l-T{Vk^^^^-^^,k-l)<j<l-T{Vk^^^^^.k-l). 
ttfc-i Oi 

A sharper bound for A;=3 can be found by the following development: 

SA = If , , \ --dX2dXs. 

Let 

then. 

where 

Since 

— _ '•3 

X2 = roi sin^i, 

X3 = ra2 cos 9i, 

SA = [ [ f{r,9i)d9idr, 
Jr=oJei=—K 

f{r,9i) = 

'di--

raia2 

y/l — r'^di sin^ 9i — r'^a^ cos2 9i 

raia2 
min f{r,9i)= 

eie(-7r,7r) .y^l — r'^a: 
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raia2 
max j[r,9i) = 

f'^^I^l^dr<SA< C '"^"^"^ dr. 

and 

we have 

and hence, 

l-^l-ajj <SA< 1( 1 - ^ 1 - a n . (2.18) 

The surface area of a A;-dimensional hypersphere of radius R is given in equa

tion (2.4), and thus, we have 

27rai 

2^«i A f ^ ^ ^ c . ^ 2 7 r a 2 

and 

r(/c/2) 

27ra2 

Therefore, 

7 < ' , W - i ^ (2.20) 

r(A:/2) 

0.0933 < 7 < .0976. 

Note that when ai = a2 = r, we obtain SA = 27r(l — ^/l — r'^), which can be also 

found by using equation (2.6) and the expression for the distribution function of 

the t-distribution. 

When ai and 02 are very similar, the upper bound and actual result are very 

close, but when Oi and 02 are quite different, there is a bigger deviation. Figure 2.3 

shows the percentage included for various values of Oi and 02. Figure 2.4 shows 

the percentage error of the upper bound given in equation (2.18) compared to 

the actual result computed using 32-point Gaussian quadrature. 

For A; = 4, 

SA= l(L , , ^^ -dX2dX3dX^, 
JjJ^^^+^<i V^-x'i-x'i-x'i 

"1 "2 3 
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Figure 2.3: Proportion of directions included in the 95% confidence cone for the path 
of steepest ascent for various values of ai and a2, which are the major and minor axes 
of the projected ellipse. 

that is, if Xf + X | + X | -h X | = 1, we have 

1 
SA = 

Xl 
dX2 dXs dX^. 

Converting into "eUipsoidal" co-ordinates (see, for example, Spiegel, 1997, p. 50), 

X2 = rai cos 9i sin ^2, 

X3 = ra2sin^i sin^2, 

X4 = ra3Cos^2, 

and since the Jacobian of the transformation is r^aia2a3 sin ^2, 

SA = 
r=(v ^ I=CM 02 = =0 1 - r'^a\ cos2 9i sin^ 6*2 - r'^al sin^ 9i siv? ^2 - r'^o^ cos^ ^2 

d92d9idr. 
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Percentage Error of Upper Bound 
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Figure 2.4: Percentage error of upper bound for the proportion of directions included 
in the 95% confidence cone given in equation (2.18) compared to the actual result 
computed using 32-point Gaussian quadrature. 

The integrand can be re-written as 

r^aia2a3sin^2 

1 — r2a2 sin^ ^2 — {r'^aj — r2a2^) cos2 9i sin^ 6*2 — r2a32 cos2 ^2' 

and since its maximum is 

raia2a3sin^2 

V^l — r2ai2 sin^ ^2 — r'^a^'^ cos2 ̂ 2 

when cos^ ^1 = 1, and its minimum is 

raia2a3sin^2 

when cos^ 9i = 0, then 

V 1 — r2a2^ sin^ ^2 — ^2032 cos2 ^2 

L<SA<U, 
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where 

U /-TT 

L = 2n 

U = 2-K 

r^aia2a3sm92 

r=o Je2=o vT^-^^2a^2^in^2 — ' ^ s ^ o s ^ ^ 

r^aia2a3sin^2 
- 1 />7r 

d92 dr, 

d92 dr. 
./r=o J02=0 v 1 — r2ai2 sin^ 2̂ — •r2a32 cos2 2̂ 

We can evaluate L, and in a similar fashion C/. Make the substitution 

u = cos ̂ 2 5 and hence 

U /.I 

L = 27r 
—r^aia2a3\/l — u^ 

'r=oJu=-i \/l — r'^a2^{l — u^) — r'^a^'^u^ Vl — u^ 
dudr 

•1 rl 

= 27r r^aia2a3 
Jr=oJu=-i \/l - r2a2^ + (r2a2^ — r^a3'^)u^ 

27r '•̂  ''I 

dudr 

raia2a3 
Va^a^ Jr=oJu=-i ^1 J-ftll, + 

27r /-̂  

dudr 
v/ 

Va^CL^ Jr=0 
raia2a3 sinh ru 

' 02^ - 032 

1 — r2a2 2/,„2 
dr 

J u = - l 

27r 

Va^^ Jr=0 
raia2az I sinh ^ I r\\ —- I — sinh ^ I —r\ 

0 2 ^ - 0 3 2 

1 — r^tts 2n„2 1 — r2a2 2^„2 

47ra 

\ /a2 

ia2a3 /"^ 

2^03^ Jr=0 

, . -, _i /a2^ - a s 
r smh r 

1 — r2a2 2^„2 
dr. 

Again, make the substitution 

x = r\ 1 — r2a2 ' 

dr 
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and !̂  so 

L = 
47raia2a3 

"2-4 
i - ' - ^»2 X 

V o T ^ I •̂ x=o y^a|x2 + {al - aj) 

=47raia2a3A/a2 — a^ 

° 2 - ° | 
l - r 2 a ? X 

=0 (alx2 + (a^ - al))^ 

sinh-^(x) ( d _ M ) _d^ 
{aW + {al - al))-^ 

sinh""'(x) dx 

-47Taia2as\/ al — a\ 
sinh ^(x) 

2a22 03x2 + [al — a 37 J 

a? —a? 

——r-
l - " 2 

+ 

2 2 
" 2 - ° 3 
1 _^2 

2al y^=o V r + ^ (aix2 + {al - al)) 
dx 

=A.T:010203 J al — a\ 

2 2 

1 /" l-2al 1 1 

2a2 (a^ - al] 
sinh ^ 

+ 
1 

' ^2 - % 
1 - a i 

diu 
4a| y^=.o V^^ + 1 V ^ v^a^w + {al - al) 

after making the substitution w = x"^. 

Maple^'^ (Monogan et al., 2000) gives the later integral as 

^ ^ ^ ^ _ l I 1 ~al+al^+al-^n.al I ^ ^ ^ 1 ^ 7 
W 

lasJ^^y/wiw^+l) 

a^J^^y^w{w + l)al 

Cancelling out, we get 

t a n h - ^ I ( a i - a i ) + ^ ( a i - 2 a i ) 1 
( 2a3Y'a |-a | -^w(w+l) J 

a-̂  \/a2 — al 

tanh-^ / (ai-ai)+H-i-^"i) 
I 2031-^ /02—a3y 'w(u '+ l ) 

(T'iyjal — a 

03^al -al 
tan 

-1 J (aj - gj) + u; (gj - 2a|) 

2a3^Jal — al\Jw {w -\-1) 
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Hence, 

- ( l - a ^ ) 
L =AT:010203x1 al - al { ^ — ^ - sinh ^ 

2^2 1̂ 2 03) 

^ 2 - ^ 3 

l-al 

0-3^1 ai - al^<A 
— tan-i ^ ^̂ 2 - ^3) + ŵ  (ai - 2ai) 

203^al - al^Jw {w + 1) 

2 2 
° 2 - ° 3 
l-a'i 

Simphfying the square brackets, we obtain 

4ala3^yal — a\ 
tan ^ < 

(«i - 4) + '^ {4 - 2ai 

2aiv/^f^jHz|] 

1 
4 a ^ a 3 ^ 

and therefore 

^2 - ^ 3 

tan" 
2a^ 

2a3\/l - ai 

l-al] 

TT 

2 

{l-al) + 1 

L = 47raia2(23A/a2 ~" ^l 

(1 - al) 

4a^a3^a| - â  I 2 

TT i f 1 — tto 
tan~^ < —^— 

|^2a3Vl - a 

2ai (al - a2) 
sinh - 1 

l-al 

TraiOs 

a2 

2ai 1 1 / 1 — cot"^ , 
a3 V2a3^A-a ; 

2 (1 - al) 
\Jal - al 

sinh ^ ' a | ^ ^ 
l - a l 

(2.21) 

Similarly, for U, replacing 02 for Oi in the result for L, we obtain 

l - 2 a i 
f/ = 

7ra2a3 

ai 

-1 2 (1 -a? ) 1 
— cot . , ^_ 
as \ 2a3y 1 — al) y a\ — a32 

sinh ^ 
9 2 

\-a\ 

(2.22) 

For example, with Oi = 0.6, 02 = 0.5, and 03 = 0.4, we obtain L = 0.5405 and 

U = 0.5561, and hence 

0.0274 < 7 < 0.0281. 
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2.6 Other Approaches to Evaluating the Per

centage Included. 

For homoscedastic data, equation (2.8) gives an expression for the surface area 

of the cap of the sphere within the confidence cone relative to the surface area 

of the sphere. Consider the case where A: = 3. If we divide the circle given by 

the projection of the cap onto the plane orthogonal to the path of steepest ascent 

into equal sectors each with angle 9, then the relative surface area on the sphere 

above a sector is equal to 

e_ 
2^ 

1-TIV2 vT^ 

For heteroscedastic data, the projected confidence cone is ellipsoidal and for 

A: = 3 is an ellipse. We can also divide the ellipse into sectors. As the number 

of sectors increases the relative surface area above a sector becomes closer and 

closer to the relative surface area above a circle, and is given by 

d9_ 

2 ^ 

where 

.-r(v-.^IE^, 

r{9) 
cos^ 9 1 sin^ G 

The total surface area is then given by 

1 •>27r 

..jo^-^y'^^W^^^ 

27r7o I r{9) i 
(2.23) 

This method reduces a double integration into a univariate integration. Using 

the example, with ai = 0.6450 and 02 = 0.5341, we obtain 7 = 0.0954337. 

Although Gaussian quadrature or a similar method to that presented in this 

section could be applied for any number of dimensions, it is very easy to use 
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Monte-Carlo simulation to give an approximate result. The method is quite 

simple. For A: dimensions, for each simulation: 

1. Generate k standard normal random numbers: xi, X2,. -.. x^. 

2. Reduce the random numbers so that they fall on the surface of the sphere 

using 

Zi= r^' = 2 = 1 , . . . , A:. (2.24) 

V ̂ t i ̂ 1 

3. The proportion of simulations, where 

E S < 1 ^ = l , . . . ,A;-l (2.25) 
i 

and Zk > 0, (2.26) 

estimates the proportion of directions included in the 100(1 — a)% confi

dence cone, where the Oi,... ,ak are generated from the H matrix given by 

equation (2.14) using equation (2.13). The sample size can be chosen to 

make the estimated proportion sufficiently precise. 

2.7 Computations 

An Splus function, perinc, is given in Appendix A.5 and does the necessary cal

culations. For two dimensions, it determines the exact proportion of directions 

included in the confidence cone. For three dimensions, it uses numerical integra

tion using equation (2.23). For four dimensions, it computes upper and lower 

bounds for the proportion of directions included in the confidence cone using the 

formulae developed in section 2.5, while Monte-Carlo estimation is used for four 

or higher dimensions. 
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2.8 Conclusion 

In this chapter, the method given by Box (1955) and Box and Draper (1987. 

pp. 190-194) was examined. The method determines whether the path of steep

est ascent has been determined precisely enough by giving the fraction of possi

ble directions included in the confidence cone. An alternative derivation of the 

method is given when the design is orthogonal and the data is homoscedastic. 

The fraction of all possible directions included in the confidence cone is shown to 

be a function of the tail area of the t-distribution. 

The method was applied to a fractional factorial example. In the example, 

the response was a count. The response was transformed using a modified square 

root transformation, and two main effects as well as a significant interaction 

string was found to be important. Each of the interactions in the interaction 

string involved a quantitative variable and a qualitative variable. Assuming that 

one of the interactions in the interaction string could be identified as real, the 

analysis depends on whether the quantitative variable is fixed or variable. If the 

quantitative variable is fixed, the path of steepest ascent only depends on the 

two significant main effects and the fraction of directions within the confidence 

cone can be determined using the current method. On the other hand, if the 

quantitative variable can be varied, then the path of steepest ascent depends 

on which of the two levels of the qualitative variable is chosen. One problem 

here is that the regression coefficients are now heteroscedastic - the effect of the 

quantitative variable at either of the levels of the qualitative variable has a higher 

variance than the other two effects. Without modification, the method of Box 

(1955) and Box and Draper (1987, pp. 190-194) does not apply in this case. 

A modification of the method for heteroscedastic regression coefficients was 

given in this chapter. It was shown how the confidence region on the sphere can 

be projected onto the hyperplane passing through the origin orthogonal to the 

path of steepest ascent, providing a hyperelhpsoid. Methods for determining the 

lengths of the axes of the hyperellipsoid are given, and this enables an expression 

for the surface area of the cap. When there are two regression coefficients an 

exact expression can be given. For higher dimensions, a transformation onto a 
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rectangular set of coordinates is convenient. Gaussian quadrature can be used 

to determine the surface area of the cap. Alternatively, for three dimensions we 

can express the surface area as a univariate integral involving the cumulati\'e 

distribution function of the t-distribution. 

In addition, some inequalities for the surface area of the cap have been estab

lished when A; = 3 and k = 4. These inequalities are quite sharp, and therefore 

provide an acceptable solution without the need for numerical integration. For 

higher dimensions, it is very easy to determine the proportion of directions in

cluded in the confidence cone using Monte-Carlo methods. 

In the next chapter, the results for heterogeneous errors will be used for the 

important class of generalised linear models. Even more accurate results can be 

obtained using profile likelihood based confidence regions. 



Chapter 3 

Application to Generalised 

Linear Models 

3.1 Introduction 

As an alternative to applying results for normally distributed data to a trans

formed response, we can use generalised linear models (GLMs), where the mean 

of a non-normally distributed response is modelled as a function of a linear com

bination of the explanatory variables. 

In linear models, the assumptions are: 

1. The observations yi '^ N{p, a^), 

2. E{yi) = Pi = x'/3, where /3 is a vector of parameters, 

3. The t/i's are independent. 

In generalised linear models, assumptions 1 and 2 are widened: 

1. The yi's have a distribution from the exponential family of distributions 

(which includes the normal, binomial, Poisson, multinomial, gamma, etc.). 

A random variable y belongs to the exponential family if its density function 

or probability function has the form 

f{yi, 9i, 0) = exp {r(0) [yi9i - g{9i)] + h{yi, (p)} , i = l,2,..., n, 
44 
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where (p is the scale parameter and 9i is the natural location parameter. 

2. (a) There is a linear predictor r] = x'/3. 

(b) There is a hide function g{) hnking pi = E{yi) with the hnear predictor 

Vi • gM = Vi-

The choice of the link function determines the nature of the model used. 

The choice of distribution and link is an important part of modelling using 

generalised hnear models. Myers and Montgomery (1997) present canonical 

links and models for some members of the exponential family: 

Distribution 

Normal 

Poisson 

Binomial 

Exponential 

Location 

Parameter 

9^ p 

9 = ln(/i) 

^ = I - ( T ^ ) 

0=llli 

Link Function 

p = x'l3 

(Identity) 

\n{p) = x'f3 

(log) 

In ( ^ ) = x'P 

(logit) 

1/lj = x'f3 

(reciprocal) 

Model 

// = x'/3 

p = e^'f' 

^ ~ l+e- '^ 

1^=^ 

3. The yiS are independent. 

Generalised linear models are usually fitted using iteratively re-weighted least 

squares, which is equivalent to maximum likelihood estimation. The asymptotic 

variance-covariance matrix of the coefficients in the linear predictor is given by 

fX^AUAXl- i 
V{^) (3.1) 

[r(0)]2 ' 

where U is a diagonal matrix with the ith diagonal element consisting of the esti

mated variance of the ith data point, r(0) is the function of the scale parameter in 

the density function of the exponential family of distributions (for Binomial and 

Poisson data, r(0) = 1, while for Normal data r((/)) = ^ ) , and A is a diagonal 
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matrix with Si, the partial derivative of the location parameter with respect to 

the linear predictor, on the ith diagonal. When the canonical link is used then 

A = I. For details see Myers and Montgomery (1997). 

The generalisation of equation (2.3) depends on whether there is overdisper

sion (Myers and Montgomery, 1997) present in the data. Overdispersion corre

sponds to an inflation of the natural variance expected of the distribution, and is 

common in many applications. To determine whether overdispersion is present, 

the residual deviance 

is calculated, where L{(3) is the maximum likelihood for the fitted model and 

L{p) is the maximum likelihood associated with the model given by 

yi = Pi + €i, i = l....,n. 

If the residual deviance divided by the degrees of freedom is much greater than the 

scale parameter expected from the distribution then we say that overdispersion 

is present. 

In this chapter, the results of Chapter 2 will be extended to cover the case 

of generalised linear models. The example used in Chapter 2 will be analysed 

using GLMs rather than analysing the transformed response. The Wald and 

profile likelihood approaches will be used to give a confidence cone for the path 

of steepest ascent, and the proportion of directions included in the confidence 

cone will be calculated. In addition, bootstrap methods will be used to check the 

appropriateness of the confidence cones. 

Part of the material covered in this chapter has been published in Sztendur 

and Diamond (2002). 

3.2 Wald Approach 

Assuming a linear approximation is appropriate and no overdispersion is present, 

we can use a similar development as in section 2.4 to obtain a 100(1 — a)% 
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Coefficients Value Std. Error t value 
(Intercept) 1.0446786 0.1824753 5.725040 

D -0.8958797 0.1125891 -7.957071 
F -1.1756876 0.1398239 -8.408342 
B -0.2935723 0.1161399 -2.527747 
G -0.3012060 0.1161399 -2.593476 

BG -0.8206526 0.1161399 -7.066068 

(Dispersion Parameter for Poisson family taken to be 1 ) 
Null Deviance: 313.1613 on 15 degrees of freedom 
Residual Deviance: 16.60859 on 10 degrees of freedom 

Table 3.1: Summary of fitted GLM model with Poisson hnk and original design, 

confidence region for the (5's as 

b^Kb - d'^Kh{6'^K6)''h^KS < xl-aik - 1), (3-2) 

with 
(X^AUAX)- i 

(3.3) 
[r(0)]2 

where K = ^'{l, bi corresponds to the A;i variables in the path of steepest ascent, 

and b2 corresponds to the other variables, including at least the intercept. 

An approximate 100(1 — a)% confidence region for the 5's when overdispersion 

is considered is 

^,[bi^Kbi-(5^Kbi((5^K(5)-^bi^K(5] 

where K is as above and A(/3) is the residual deviance. 

As in section 2.3, a model was fitted using the Splus commands given in 

Appendix B.l with defects as the response variable and the factors D, F, B, G, 

and BG as explanatory variables. In this case, however, the generalised hnear 

model with Poisson link was used rather than using a transformed response. The 

results are given in Table 3.1. 

If B is fixed, the linear predictor is given by 

constant - 0.8959XD - 1.1759XF, (3.5) 
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where the standard errors of the coefficients are 0.1126 and 0.1398 respectively. 

The path of steepest ascent is given by 

xp = 1.3125xzj. 

Using the method given in Chapter 2. the eigenvalues of 

H = Kbib i^K - cK, (3.6) 

with 

were calculated as 

c = b i^Kbi - x \95( l ) (3.7) 

Al = 235.9301, A2 = -8552.2471, 

leading to 

"' = V A T T A ; = 0-1638. 

and hence the proportion of directions included in the confidence cone is 

2 sin"-̂  Oi 

27T 
= 0.0524, 

which is considerably less than using the transformation used in Chapter 2. The 

Splus function, perincglm, given in Appendix B.3, was used to compute the 

above result and the results that follow in this section. 

When we have to take overdispersion into account, we need the eigenvalues 

of H, given in equation (3.6), but with 

,^,,T^^^_('^-m0)F.-.ik-l,.,)^ (3.8) 

where a = 0.05, A; = 2 and Uf, = 10. The eigenvalues were calculated as 

Al = 507.1564, A2 = -8250.7876. 

Therefore, ai = 0.2406, and hence the proportion of directions included in the 

approximate confidence cone is 0.0774. 
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Coefficients Value Std. Error t value 
(Intercept) 1.0446786 0.1824753 5.725040 

D -0.8958797 0.1125891 -7.957071 
F -1.1756876 0.1398239 -8.408342 

BG+ -1.1142248 0.1982336 -5.620768 
BG- 0.5270803 0.1210676 4.353602 

G -0.3012060 0.1161399 -2.593476 

(Dispersion Parameter for Poisson family taken to be 1 ) 
Null Deviance: 313.1613 on 15 degrees of freedom 
Residual Deviance: 16.60859 on 10 degrees of freedom 

Table 3.2: Summary of fitted GLM model with Poisson link and modified design. 

As in section 2.4.1, it might be desired to reduce the number of defects by 

allowing B to vary. After fitting a generalised linear model to the data given in 

Table 2.1, using the conditional effect method with the Splus commands given in 

Appendix B.2, the linear predictor at the high level of G is given by 

0.7434 - 0.8959x1) - 1.1759XF - 1.1142XB^^, 

where the standard errors of the coefficients are 0.1126, 0.1398, and 0.1982 re

spectively. See the summary of results in Table 3.2. 

The path of steepest descent is given by 

xp = 1.3125x£), XBa+ = 1.2437x£). 

Using the method given in Chapter 2, the eigenvalues of H in equation (3.6) with 

c = b i ^ K b i - x L 5 ( 2 ) 

were calculated as 

Al = 291.8115, A2 = -5042.3440, A3 = -10652.3330, 

leading to 

ai = \l ^ \ = 0.2339, 
V Al — A2 

and 

a2 = J. ^\ = 0.1633. 
V Al — A3 
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To consider overdispersion, the eigenvalues of H in equation (3.6) were again 

calculated but with 

c = b / K b i - 2A(/3)Fo.95(2,10)/10. 

The eigenvalues are 

Al = 670.131, As = -4766.639, Ag = -10118.936, 

ivii givmg 

and 

'^=^h^2='•'''' 

02 = J . ^ \ = 0.2492. 
V Al — A3 

Numerical integration, using perincglm given in Appendix B.3, shows that 

the 95% confidence region excludes about 97.76% of possible directions consid

ering the overdispersion and 99.04% when the possible overdispersion is ignored. 

Note that when using the transformed response in Chapter 2, the 95% confidence 

region excluded about 90.46%. This shows the increased effectiveness by using the 

generalised linear model approach rather than simply transforming the response. 

This agrees with the results of Myers and Montgomery (1997) and Lewis et al. 

(2001 a, fe) who showed that using GLMs instead of transforming the responses 

usually results in shorter and more realistic confidence intervals for predicted val

ues. Note that shorter confidence intervals or shorter confidence regions are only 

better when they have the correct coverage. 

3.3 Likelihood Based Confidence Regions 

The Wald approach used in the previous section is based on a quadratic approx

imation to the log likelihood function at the maximum likelihood estimator. A 

more accurate result could be obtained by examining the log likelihood directly. 

In this section a profile likelihood based confidence region will be determined and 

illustrated using the example. 



CHAPTER 3. APPLICATION TO GENERALISED LINEAR MODELS 51 

For the example, the linear predictor 

Po + piD + P2F + P3BG+ + 6,BG^ + 3^G 

can be written as 

(3.9) 

Po + <5(7iF> + 72F + 7s^G+) -t- P4BG- + 3s,G, (3.10) 

where 

and 

6=yJpi'+P2' + P3', 

lr = j ^ = 1,2.3 . 

Note that 71^ + 72^ -f- 73^ = 1. As far as the path of steepest ascent is concerned, 

PQ, p4, and /?5 are nuisance parameters. It is convenient to apply a Householder 

transformation, so that the path is vertical, that is. proportional to (0,0,1)-^ in 

the new co-ordinate system. To do this rewrite the model as 

f Po\ f li\ 
( 1 BG- G 

= ( 1 BG. G ) 

PA 

\P,) 

(Po\ 

PA 

[pj 
f Po\ 

+ 6{D F BG+) 72 

V 7 s / 

/ 7 . \ 

+ S{ D F BG+ )HuHu 

= ( 1 BG- G PA 

72 

V ^ 3 y 

+ S{ D F BG+ )H, C2 

V c s ; 
Hu is the Householder transformation (see, for example, Seber, 1977, p. 312), 

such that 
/ 0 \ / 71 \ 

0 Hu 

V i / 
72 

V 7 3 y 

Hu can be determined as Hu = I — 2uu-^, where 

e s - ||es||7 
u = 

les - ||e3||7| 
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and 
/ 0 \ / „̂ \ 

63 = 0 and 7 = 72 

V 1 / V 73 / 

Note that (^ + (2 _̂  (2 ^ l since Hu is orthogonal. 

Define 6>i = ((1,(2) and 02 = (5,/?o,/^i,/?5). The profile likelihood for Oi is 

defined as 
^L{di.e2) 

R{Oi) = max 
02 L{e) 

For details see Meeker and Escobar (1995). 

Now, 

-21ogi?(6>i) =max[-21ogL(0i ,02) + 21ogL(^) 
02 L 

= T)MO ~ B>M 

= DMO - 16.60859, 

where DMQ is the model deviance with Oi given and DM is the deviance with 61 

unrestricted. Note that if overdispersion is ignored, (f) is known, and 

X {p-q), (3.11) 

where p is the number of regressors for model M, including the intercept; and q 

is the number of parameters with di given. 

A similar procedure can be applied when overdispersion is present. In this 

case, (j) is not known and it is customary to use (see, for example, Venables and 

Ripley, 1999) the approximate result 

F{p-q,n-p). 
np - Q) 

A grid of values of Ci and (2 was generated and Cs was calculated as 

(3.12) 

Cs = v^i - Ci' - C2 

corresponding to the upper hemisphere. For each point in the grid the deviance 

DMO was determined and a contour was drawn at the level where 

DMO = DM + Xa95(2) = 16.608 + 5.991 = 22.599, 
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Figure 3.1: 95% profile likelihood regions for the path of steepest ascent. The inner 
contour is based on x^ quantiles and gives the region for the case when overdispersion is 
ignored. The outer contour is based on theoretical quantiles of the F(2,10) distribution 
and gives the region for the case when overdispersion is considered. 

when not considering the overdispersion. If overdispersion is considered, the 

contour is drawn at the level where 

DMO = DM + 2(1.6608)Fo.95(2,10) = 30.236. 

A function, profpath, to compute the profile likelihood regions is given in Ap

pendix B.4. 

The contour diagrams given in Figure 3.1 represent profile likehhood re

gions. The inner contour gives the 95% confidence region for possible directions 

if overdispersion is ignored. The outer contour gives the 95% region for possible 

directions if overdispersion is considered. To obtain the surface area of the cap 

of the sphere above the interior of the contour, a method similar to the method 

in section 2.6 was used. The Splus function, profpath, given in Appendix B.4, 
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gives a set of points on the contour. For each point polar co-ordinates 

9 = tan-^ ( ^ 1 ^ and r(^) = ŷ C? + C| 

can be computed. The surface area above the segment between two consecuti\'e 

points {r{9i),6i) and (r(^i+i),0j_|_i) is approximately 

{9i+i — 9i) 

27r ^-'M^'^^W-H-^'^^^W^-, 
and by summing all these values we can get an approximation to the surface 

area of the cap which will converge to the true value as the number of points 

on the contour increases. The calculations were done using the Splus function 

contourprop given in Appendix B.5. 

The calculated surface area for the outer contour in Figure 3.1 was 0.0209 and 

the corresponding percentage excluded 97.91%. The surface area corresponding 

to the inner contour was 0.0095 and the percentage excluded was 99.05%, which 

is slightly larger than the value obtained using the Wald approach (97.76% and 

99.04% respectively). Table 3.3 summarises these results. 

For dimensions higher than three, Monte-Carlo simulation is convenient. For 

each simulation: 

1. Generate k standard normal random numbers: Xi, X2,.. . , x^. 

2. Reduce the random numbers so that they fall on the surface of the sphere 

using 

ySi^ ^ ^2 
i 

i = l,...,k. (3.13) 

3. For A; = 3, use GLMs to fit the model (3.10), and the analogous model for 

A; > 3, using 

7 i Zi, I i , . . . , r C i , 

where ^̂  > 0 and determine the deviance. 
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k 

2 
3 

Approach 

GLM - Wald 
GLM - Wald 
GLM - P.L. 

No Overdispersion 
% Excluded 

92.26 
99.04 
99.05 

Overdispersion 
% Excluded 

92.26 
97.76 
97.91 

Table 3.3: Percentage of directions excluded from the 95% confidence cone, using Wald 
and profile likelihood methods. 

4. The proportion of simulations where the calculated deviance is less than 

^M + Xa95(p-9), 

ignoring the overdispersion, or 

DM + HP - (l)Fo.m{p -q-n-p), 

considering the overdispersion, is an estimate of the proportion of directions 

included in the 95% confidence cone for the path of steepest ascent. The 

sample size is chosen to make the estimated proportion sufficiently precise. 

3.4 Bootstrap Approach 

In the previous section likelihood based confidence regions were generated for 

both the case with overdispersion and without overdispersion. These confidence 

regions were based on distributional assumptions that are only approximate. For 

instance, Davison and Hinkley (1989) assert that it is customary to assume that 

the scaled deviance (equation (3.11)) is approximately x^ and that equation (3.12) 

has an F-distribution, but the later has "little theoretical justification". 

3.4.1 Parametric Bootstrap 

No overdispersion 

One way to check these results is to use a parametric bootstrap, (Efron, 1979; 

Efron and Tibshirani, 1993). In a parametric bootstrap observations are gener

ated from the fitted model. For each of these sets of observations, denoted by 
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yi*,y2*, •••,yn* the GLM model is fitted resuffing in estimates Oi*. 62* 0^*. 

and the likelihood ratio statistics, given by 

R{d)-R{e*), i = l,....n. 

are calculated. 

This procedure was apphed to the data given in Table 2.1 using 999 bootstrap 

samples and the function, bootS, given in Appendix B.6. Figure 3.2 gives a 

comparison of the theoretical quantiles of x^(2) and the bootstrap likehhood 

ratio statistics. The graph shows that the theoretical quantiles are approximately 

correct since the bootstrap likehhood ratio statistics faU close to a straight hue 

up to the 95th percentile. In fact, the nominal 95% confidence region appears 

to be in fact a 94% confidence region. Correcting this, the appropriate contour 

level should be drawn at 23.045 rather than 22.599. The proportion of directions 

included in the confidence region is 1.02% rather than 0.95%. 

Note that Gleser and Hwang (1987) have shown that the Bootstrap confidence 

regions used here and in the remainder of this chapter do not guarantee the 

required coverage. However, as pointed out by Di Cicco and Efron (1996), such 

confidence intervals and confidence regions give much better results than standard 

intervals and regions. 

Overdispersion 

The parametric bootstrap above fails to account for any possible overdispersion. 

To overcome this a parametric bootstrap from a fitted negative binomial distri

bution could be used (see, for example, Venables and Ripley, 1999, p. 233). 

3.4.2 Nonparametric Bootstrap 

Part of the problem with using the parametric bootstrap is that the bootstrap 

samples may not have the statistical properties of the original data. This can be 

overcome by using the nonparametric bootstrap. Davison and Hinkley (1989) give 

three methods of generating the simulated responses: using Pearson residuals, 

residuals on the linear predictor scale, and deviance residuals. Below the Pearson 
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Figure 3.2: Comparison of bootstrap hkehhood ratio statistics and theoretical quantiles 
assuming X^(2) distribution. Given the hnearity of the plot up to the 95th percentile 
there is strong evidence that the asymptotic distribution is appropriate. 
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residuals are used; the other residuals should give similar results. As Da\'ison and 

Hinkley (1989) point out, all three methods have an obvious drawback in that 

they can give negative or noninteger values of y*, even if the original data are 

counts. The simple fix is to round the values to the nearest appropriate value. 

Pearson Residuals 

The Pearson residuals are defined to be 

''' ^ {0U( / i . ) ( l - /^ . )}^ ' ^^'^^^ 
where hj is the j th diagonal element of the hat matrix H given by 

H = X(X^VX)-^X^V. (3.15) 

* • 1 

Simulated responses are given by 

y* = p, + {iV {fij) {1 -

where 

c * 
£l , . 

-h,)] 

£ * 

is a random sample with replacement of size n from the mean-adjusted, stan

dardized Pearson residuals rp. — fp, with rp. defined in equation (3.14). Figure 

3.3 gives a comparison of the theoretical quantiles of F(2,10) and the bootstrap 

likelihood ratio statistics, using the function, boot4, given in Appendix B.7. The 

graph shows that the theoretical quantiles are not appropriate since the plot of 

the bootstrap likelihood ratio statistics against the F(2,10) quantiles does not 

coincide with the line on the graph. The appropriate 95% quantile is 6.27 and 

not Fo.95(2,10) = 4.10. 

The likelihood confidence region was based on using the value 4.10. Exami

nation of the bootstrap simulations shows that the confidence region is actually a 

84.2% confidence region rather than a 95% one. Correcting this. Figure 3.2 was 

redrawn with a contour at a level of 37.44 as in Figure 3.4. The corresponding 

surface area is calculated using numerical integration and equals 0.0310, implying 

that the percentage excluded is 96.9%. 
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Figure 3.3: Comparison of bootstrap likehhood ratio statistics and theoretical quantiles 
assuming F{2,10) distribution. Given the curvature of the plot there is strong evidence 
that the asymptotic distribution gives misleading results. 
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Figure 3.4: 95% profile likelihood regions for path of steepest ascent based on the
oretical and bootstrap quantiles. The two inner contours give the regions ignoring 
overdispersion while the two outer quantiles take overdispersion into account. For each 
set the inner contour is based on theoretical quantiles, while the outer contour uses 
bootstrap quantiles to ensure the required coverage. 
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3.5 Conclusion 

In Chapter 2 the fractional factorial design conducted by Hsieh and Goodwin 

(1986) was analysed. The experiment had a count response and a transformation 

was used so that the response was normally distributed. An alternative, and 

usually better method, is to use generahsed linear models, which have been dealt 

with in this chapter. 

Using a linear approximation with no overdispersion the approximate variance-

covariance matrix for the estimated parameters can be used to determine a con

fidence region similar to that given in Chapter 2. Generally, these confidence 

regions are smaller when using the GLM model rather than using transformed 

responses. They can also be extended to cases where there is overdispersion. 

Even better confidence regions can be found using profile likelihoods. This 

was applied to the data set for both the no overdispersion and overdispersion 

cases. When A: = 3, a method using the contour module in Splus was given. 

Both the Wald and likelihood based confidence region methods are based on 

approximate asymptotic results, which may be inaccurate. Improvements can be 

made using bootstrap methods, both parametric and nonparametric. 

Parametric bootstrap methods were applied using Poisson generated data 

for when there is no overdispersion. The bootstrap results showed when the 

asymptotic distributions are inappropriate, and what corrections should be made. 

Even better nonparametric bootstrap checks can be made. These show, for 

this example, that the hkelihood based confidence region has a significance level of 

only approximately 84.2%. The bootstrap method allows for this to be corrected. 



Chapter 4 

Power Considerations 

4.1 Introduction 

In the previous chapters, it has been shown how useful it is to measure the 

precision of the path of steepest ascent. If the path is determined precisely 

enough, then experirnentation to better operating conditions can be achieved by 

following the path. In both chapters 2 and 3, the focus has been on determining 

the percentage of (Jkections included in the confidence region for the path of 

steepest ascent. ^ ^ 

However, if the path has not been determined precisely enough, it might not 

be clear as to what to do—either follow a poorly determined path, or do further 

experimentation to more clearly determine the path. If a poorly determined 

path is followed, it may be that we are led to conditions which are far from the 

optimum. In this chapter, examination will centre on how many observations are 

needed to answer this question with sufficient precision, and how to appropriately 

augment the experimental design in cases where the precision is insufficient. A 

further application will be to determine the best set of experimental runs when 

the response is the proportion of defectives or the number of defects. 

An important aspect of designing a first order experiment in response surface 

methodology is to be able to determine the path with sufficient precision. In 

this context, a sensitive experiment is one that is sufficiently powerful, so that 

62 
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there is a high probabihty that the proportion of directions included in the confi

dence cone for the path of steepest ascent is sufficiently smafi. and hence further 

experimentation along the path is worthwhile. This can be achieved by using 

a sufficiently large sample size (adding to the number of observations in each 

treatment condition). The question of how many experiments are required is an 

important one for experimenters. 

This chapter describes methods that can be useful for determination of the 

sample size needed to achieve the required percentage of directions excluded from 

the confidence cone for the the path of steepest ascent. Initially, for normally 

distributed responses, the case of homogeneous errors will be dealt with, followed 

by the case of heterogeneous errors. 

Power considerations also are important for data which are modelled using 

generalised linear models. Two cases will be dealt with—when we have a Binomial 

response, and when the data follows a Poisson distribution. 

Finally, sometimes even with the best design, we might find ourselves requiring 

the path to be determined more precisely after the experiment. In these situa

tions, we want to be able to augment the experiment with extra runs. Methods 

for determining the number and location of these experiments will be developed 

and illustrated using the example that has been used in chapters 2 and 3. 

4.2 Power Analysis for Homoscedastic Data 

In section 2.2, the proportion of directions included in the confidence cone for the 

path of steepest ascent, 7, was given by 

r(|) 1 r f r°° ^ i' k^ 
^/K{k-l)T{^ J/(roj 

= l-T{f{ro),k-l), 

where T(x, A; — 1) is the cumulative distribution function of the i-distribution with 

A; — 1 degrees of freedom, 

/(ro) = V k ^ ^ ^ , (4.1) 
V1 - 0̂ 
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and ro is the distance from the centre of the sphere to the plane given by 

{Ef'?-(EliM.)VE5f 
{k -1)^2 

< F I _ Q ( A : - l.Ub). (4.2) 

Without loss of generality, rotate the axes so that in the new co-ordinate system 

we have estimated regression coefficients Ci , . . . , c^-i = 0 and ĉ  = y^bj + bl + ... + bl. 

In this co-ordinate system we have 

Ebl-6lZPf 
{k - l)sl 

( i -<5i)E&?.2 

< Fi-^{k-l.ut) 

{k-l)sl -^^ - ^ - - ( ^ -1 ' - ^ ) 

and hence 

Therefore, 

^0 

/(ro) = 

61 > 
Fi-c.{k-l,u,){k-l)sl 

Ebl 

/, Fi_Jk-l,pMk-l).sl 

V 

V A ; - 1 
A 

i 

Ebf 

^ Fi-a{k-l,u,){k-l)sl 

i T^' 
Fi-a{k-l,U,){k-l)sl 

E^? 
Ebl -{k-l). 

Fi_a{k- l,Ub)sl 

The probabihty of including less than a certain proportion of directions included 

in the confidence cone, p, is given by 

P r ( l - r ( / ( r o ) , A : - l ) < p ) = Pr(T(/(ro), A; - 1) > I - p) 

= P r ( / ( ro )>Ti_ , (A; - l ) ) 

= Pr ( ^ > Fi-a{k - 1, Ub) {[Ti_p{k - l)f + {k- 1)} 

But note 

S ^ ^ F ( A ; - 1 , ^ 6 ; A ) , 
ksf 



CHAPTER 4. POWER CONSIDERATIONS 65 

that is, a noncentral F with noncentrality parameter. A, equal to ^^'' . where 

Â  is the number of runs in the experiment. 

Hence, 

Power = 1 - F (F^-^C^ - ^••^^) {[T.-A^'D? + (k-D} , ^ ^̂  ^̂ ^ N ^ g 

where F(x, r̂ i, 1̂2; X) is the cumulative distribution of the noncentral F distribu

tion with Pi, 1/2 degrees of freedom and noncentrality parameter A. Power graphs, 

using the Splus function powerfn given in Appendix C.l. have been prepared in 

terms of 

N a^ ' 

denoted as "ssl", the standardised squared lengths of regression coefficients. Fig

ure 4.1 is the power graph for N = 8. If the ratio of the squared lengths of the 

regression coefficients vector to the variance is 2, then we have only a 9% chance 

of excluding more than 98% of directions. Figure 4.2 gives the power graph for 

N = 16. We now have a 50% chance of excluding more than 98% of directions 

for the same ratio. Figure 4.3 presents the power graph for N = 32. The chance 

of excluding more than 98% of directions increases to 98% now. 

4.3 Distribution of the Estimated Precision for 

Homoscedastic Data. 

For homoscedastic data, the distribution of 7 can be evaluated since 7 is a function 

of a random variable X, where X has a noncentral F distribution. 

Specifically, 

7 = 1 - T ( ^ ^ , _ J _ i , . , ) - ( A : - l ) , A; - 1) = h{X), X > {k - l)Fi_«(A; - 1, u^). 

where X ^ F{k — 1, Vb, A) with A = ^"^^ and therefore 

X = Fi-^{k - I, Vb) {{k-l) + [Ti-^{k - 1)]'} . 
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Power for 5 factor, 8-runs 
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Figure 4.1: Power graph for the path of steepest ascent for 5 factors and 8 runs for 
the homogeneous case. The graph gives the probability (given by the contour levels) 
of excluding at least a certain proportion of directions (vertical axis) of steepest ascent 
vs. the standardised squared lengths (horizontal axis). 

Since 7 is a function oi X, we can write down the density of 7 as 

/(7) = 9 {Fi-a{k - 1) {{k + 1) + [ri_,(A: - 1)]̂ }) 1 ^ 

where g is the density of the noncentral F distribution. 

Now, 

^ = - 2 F i _ , ( A : - l , i . , ) - ^ ( T i _ , ( / c - l ) ) ) 
07 dj 

= 2 F i _ , ( / c - l ) ^ 1 
' T ' ( T i _ ^ ( A ; - l ) ) 

-2Fi-a{k-l,Ub) 
t ( T i _ ^ ( A ; - l ) , A ; - l ) ' 

and hence the density function of 7 can be evaluated using software such as Splus. 
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Power for 5 factor, 16-runs 
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Figure 4.2: Power graph for the path of steepest ascent for 5 factors and 16 runs for 
the homogeneous case. The graph gives the probability (given by the contour levels) 
of excluding at least a certain proportion of directions (vertical ax:is) of steepest ascent 
vs. the standardised squared lengths (horizontal axis). 

For example, if A; = 2, Ub = 10, and A = 30 the density function in Figure 4.4, 

computed using pden in Appendix B.5, is obtained. 

Note, the density is improper since the percentage included can only be com

puted if 

Ebl >{k-l)Fi_^{k-l,Ub). 

Approximate means and variances can be evaluated as 

E{p) ^ f{E{X)) 

V{p) c, V{X)\f'{E{X)) 

where the means and variances of X are given by (see, for example, Evans, Hasting 
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Power for 5 factor, 32-runs 
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Figure 4.3: Power graph for the path of steepest ascent for 5 factors and 32 runs for 
the homogeneous case. The graph gives the probability (given by the contour levels) 
of excluding at least a certain proportion of directions (vertical axis) of steepest ascent 
vs. the standardised squared lengths (horizontal axis). 

and Peacock, 1993, p. 73) 

'{X + {k-l))ub 
E{X) = 

V{X) = 

(A; - l ) ( z / ( , -2 ) 

2vl [{k - 1)^ + (2A + {vb - 2)){k - 1) + A(A + 2vb - 4)] 

{k-lY{vb-4){vb-2)^ 

Using approxp, given in Appendix C.2, for the above example, the approximate 

mean of 7 is 0.117, while the approximate standard deviation is 0.043. 
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Figure 4.4: Distribution of the estimated precision for homoscedastic data for A; = 2, 
Ub = 10 and A = 30. 

4.4 Power Analysis for Heteroscedastic Data 

In the previous section, methods for determining the power of the precision of the 

path of steepest ascent were developed for the case when the errors are homoge

neous. However, as shown in Chapter 2, it is often the case that the errors are 

heterogeneous, or the design is not orthogonal. This is also the case for GLMs, 

leading to heteroscedastic estimates of the regression coefficients. 

If the data is homoscedastic, the expected proportion of directions included 

in the confidence cone for the path of steepest ascent does not depend on the 

direction of the path of steepest ascent. However, if the data is heteroscedastic, 

the expected proportion depends both on the orientation of the path relative to 

the experimental design and also on the orientation of the heterogeneity response 
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surface relative to the path of steepest ascent. 

For example, assume that a 2^ factorial design with levels ±1 is to be run, 

where the mean response is expected to be 

E{y) = 5 cos 9Xi + 5 sin 9X2, 

where 9 describes the orientation of the mean response surface relative to the 

design. Similarly, assume that the responses are expected to be independent but 

heteroscedastic with variance given by 

V{y) = exp (1.1529 cos 0Xi + 1.1529 sin ^Xi). 

In this case 0 represents the orientation of the variance function relative to the 

original design. The "average variance" is 1, while the constant 1.1529 is chosen 

to represent a 10-fold increase in the variance over the experimental region. 

For various values of 9 and (p the expected proportion included was calcu

lated using heterofn, given in Appendix C.3, and plotted in Figure 4.5. The 

conclusions are: 

1. The minimum expected percentage included in the confidence cone occurs 

when the mean response surface is aligned with both the design and the 

variance response surface. 

2. The worst case occurs when the mean response surface is aligned with the 

design but orthogonal to the variance response surface. 

To explore this further, a simulation study of 1000 data sets was undertaken, 

when the model was 

y = PXi+£i, 

with 

V{£i) = exp(1.1529Xi), 

representing a process where the variance model is aligned to the mean model, 

and also with 

V{£i) = exp(l.1529X2), 



CHAPTER 4. POWER CONSIDERATIONS 

o 
CO 

in 
CM 

o 
CM 

in 
d 

o 
d 

—f— 
1.0 

—r-
2.5 

0.0 0.5 
I 

1.5 

theta 

2.0 
I 

3.0 

Figure 4.5: Values of the expected proportion of directions included in the 95% con
fidence cone for the path of steepest ascent as a function of 9, the orientation of the 
mean response surface relative to the expected design, and 0, the orientation of the 
variance response surface relative to the design. 

representing a process where the variance model is orthogonal to the mean model. 

Values of P = 1,2,3 and 4 were used. In each simulation the percentage of 

directions included in the confidence cone for the path of steepest ascent was 

calculated, if it was possible to calculate it. These simulations were done using 

heteropowerlik, given in Appendix C.4, and are illustrated in Figure 4.6 and 

summarised in Table 4.1. 

Examination of the results shows that, generally, the median proportion of 

directions included in the 95% confidence cone for the path of steepest ascent is 

smaller when the variance and mean response models are aligned than when they 

are orthogonal. However, it also appears that the distribution has more skewness 
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1 2 3 4 1 2 3 

Ratio of mean slope to average standard deviation 

Figure 4.6: Boxplots of proportion of directions included in the 95% confidence cone for 
the path of steepest ascent versus the effect size, the ratio of the regression coefficients 
relative to the standard deviation. The four boxplots on the left correspond to the case 
where the variance model is aligned to the mean model, while the four boxplots on 
the right correspond to the case where the variance model is orthogonal to the mean 
model. 

for aligned models than for orthogonal models. 

4.5 Improving the Precision of the Path 

When the path of steepest ascent has not been estimated precisely enough, the 

experimental design needs to be augmented with additional runs. In this section, 

a criterion will be developed when we want to add a number of points to the design 

in order to improve the path of steepest ascent. The most common criterion 

for the homogeneous case is to maximise the determinant of the X-^X matrix. 
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Effect Size Aligned 
Mean St.dev. Emp.prob. 

Orthogonal 
Mean St.dev. Emp.prob. 

1 
2 
3 
4 

0.2036 0.1121 0.3750 
0.1283 0.0792 0.8570 
0.0757 0.0448 0.9900 
0.0503 0.0219 1.0000 

0.2927 0.0814 0.9420 
0.1860 0.0562 1.0000 
0.1313 0.0401 1.0000 
0.1008 0.0301 1.0000 

Table 4.1: Mean and standard deviation of proportion of directions included in the 
95% confidence cone for the path of steepest ascent versus the effect size, the ratio of 
the regression coefficients relative to the standard deviation. The empirical probability 
column gives the proportion of simulations where the proportion of directions included 
in the confidence cone was able to be calculated. 

(see, for example, Gaylor and MerriU, 1968; Dykstra, 1971). One reason for 

the popularity of the determinant criterion, no longer of critical importance, is 

that this criterion was easier to compute than other criteria. In the present 

situation, the determinant criterion is likely to be useful since the determinant 

is proportional to the volume of the confidence region, and thus, related to the 

surface area of the confidence cone. 

When only a subset of the parameters are of interest, the criterion to be 

maximised is altered, following HiU and Hunter (1974), to 

^ = |Xii-Xi2X2-2 'X2l | , (4.3) 

where the X-^X is partitioned as 

X^X = 
Xii Xi2 

X21 X22 

and Xi i corresponds to the parameters of interest. A more general extension 

to account for heterogeneous errors had been given by Box (1971) who used the 

criterion 

^ = |Aii - Ai2A22^A' 12 h (4.4) 

and 

A = 
Al l A12 

A21 A22 
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which equals (X^V"-'-X) for heteroscedastic data and (X-^AUAX) for gener

alised linear models. 

With the example of chapters 2 and 3 we found that the percentage of direc

tions included in the confidence region for the path of steepest ascent was 0.96%, 

when analysing the data using generalised linear models and Wald confidence re

gions, and ignoring any possible overdispersion; and 2.24% when overdispersion 

needs to be considered. The path of steepest ascent is determined quite precisely 

and in most cases it would not be necessary to increase the level of precision. 

However, if we desire to do so, additional experimental runs wiU be required. 

Consider the case when one additional run is required. As in chapters 2 and 

3, we assume that the high level of G is to be chosen so that BG- = 0 and 

G = 1. The criterion ^ in equation (4.4) was used where A = X-^AUAX and 

All consists of the rows and coli||Tms of A corresponding to D. F, and BG+. 

The above criterion is a function of three parameters, the level of D, the level 

of F and the level ot B = BG+. Direct maximisation of '^, with all factors over 

the range [—1,1], using augdet given in Appendix C.5 and the commands given in 

Appendix C.7, gave D = —1, F = —1, and B = I. At these values the expected 

value of the percentage included is 0.026%, a considerable improvement. 

An alternative is to directly minimise the expected percentage of directions 

included in the confidence region. The best set of conditions, found using augfun 

and the commands given in Appendix C.7, is D = —1, F = —I, and B = 0.945 

with the same expectation of 0.026%. There is no advantage in directly minimis

ing the percentage of directions included in the confidence region. Simulations 

show that by randomly choosing a point, there is only approximately a 0.7% 

chance of the expectation being less than 0.03%, and approximately a 35% chance 

of the expectation being greater than 0.039%. 

When overdispersion is considered, the best set of conditions to minimise ^ , 

given b y D = - l , F = —1, and B = 1, results in an expected percentage of 

directions included in the confidence region for the path of steepest ascent of 

0.105%, and these sets of conditions correspond to the smallest possible value 
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m 

1 
2 

3 

Best Set of Runs 

D F BG+ 

- 1 - 1 1 
1 - 1 - 1 

- 1 0.9 - 1 
- 1 - 1 1 
- 1 0.87 - 1 
- 1 - 1 1 

No Overdispersion 

Predicted % Included 
0.026 
0.020 

0.016 

Overdispersion 

Predicted % Included 
0.105 
0.066 

0.043 

Table 4.2: Best sets of augmenting runs and predicted percentage of directions included 
in the 95% confidence cone using D-optimality. 

m 

1 
2 

3 

Best Set of Runs 

D 
- 1 
- 1 
- 1 
- 1 
- 1 
- 1 

F 
- 1 
- 1 

0.64 
0.62 

- 1 
- 1 

BG+ 

0.99 
0.95 

- 1 
- 1 

1 
1 

No Overdispersion 

Predicted % Included 
0.026 
0.020 

0.016 

Table 4.3: Best sets of augmenting runs and predicted percentage included in the 95% 
confidence cone using direct minimisation, assuming no overdispersion. 

of the expected percentage. Hence, for one augmenting run, the D-optimal aug

menting design is just as good as directly minimising the percentage of directions 

included in the confidence cone. 

If further improvements are required, then extra experiments can be run. 

Table 4.2 gives the minimum percentage included by adding one to three runs 

when using the criterion method. Similarly, Table 4.3 gives the results obtained 

from using direct minimisation of the percentage included ignoring any possi

ble overdispersion; while Table 4.4 gives the results of directly minimising the 

percentage included considering overdispersion. Again, for this example, the D-

optimal design is just as good as directly minimising the percentage included in 

the confidence cone. 
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m 

1 
2 

3 

Best Set of Runs 

D 
- 1 
- 1 

1 
- 1 
- 1 

1 

F 
- 1 
- 1 
- 1 
- 1 

0.62 
- 1 

.SG+ 

1 
0.95 

- 1 
0.93 

- 1 
- 1 

Overdispersion 

Predicted % Included 
0.105 
0.066 

0.043 

Table 4.4: Best sets of augmenting runs and predicted percentage included in the 95% 
confidence cone using direct minimisation, assuming overdispersion. 

4.6 Best Designs to Estimate the Path for GLMs 

4.6.1 Introduction 

In the previous section, the best experimental points to improve the precision of 

the path of steepest ascent were found. These results are useful, as it would be 

preferable to refine the estimated path rather than follow one which was poorly 

defined. Comphmentary results are given in this section where the design giving 

the maximum precision of the path of steepest ascent is found, for both Poisson 

and Binomial data. It should be noted that these results are probably less useful 

than those in the previous section since, in practice, many other design criteria 

would be just as important or more important than the precision of the path of 

steepest ascent, such as estimation of the regression parameters, check for lack of 

fit, design balance, etc. 

4.6.2 Poisson Data 

For Poisson data, the asymptotic variance-covariance matrix of the parameter 

estimates is given by equation (3.1) with r(0) = 1. A D-optimal design is one 

where ^ given in equation (4.4) is maximised with 

A = X ^ A U A X = 
All Ai2 

A21 A22 
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Run 

1 
2 
3 
4 

X l 

- 1 
1 
1 
1 

X2 

1 
-1 
- 1 

1 

Run 

1 
2 
3 
4 

Xl 

-1 
-1 

1 
1 

X2 

1 
1 

- 1 
0.76 

Table 4.5: D-optimal and minimum proportion designs for Poisson experiments with 
4 runs constrained between - 1 and 1. Left Panel: D-optimal design for the regression 
coefficients of Xi and X2 for the example considered in section 4.6.1. Right Panel: 
Optimal design to minimise the expected proportion of directions included in the 959c 
confidence cone(See Figure 4.7). 

(following Box (1971), to account for the heterogeneous errors). 

Take, as an example, an experiment where we have two factors, Xi and X2, 

constrained to be between —1 and 1, and a factorial experiment with Xi and 

X2 set at ± 1 is conducted, and the response is assumed to follow a Poisson 

distribution with mean given by 

and hence the expected response at the design origin is 15, the expected size of 

the regression coefficients vector is 1, and the X2 coefficient is twice that of the 

Xl coefficient. The expected proportion of directions included in the confidence 

cone for the path of steepest ascent is 7.70%. 

The D-optimal design for this situation can be obtained by direct maximisa

tion of ^ given in equation (4.4). The D-optimal design, found using pois fund 

given in Appendix C.8 and po i s s im given in Appendix C.IO, is given in the left 

hand panel of Table 4.5. With this design, the expected value included in the 

95% confidence cone for the path of steepest ascent, found using pois funp given 

in Appendix C.9 , is 7.01%, slightly better than using a simple factorial. 

Rather than maximising ^ , we could minimise the percent included in the 

confidence cone. The result, found using po i s funp given in Appendix C.9 and 

po i s s im given in Appendix C.IO, is given in the right hand panel of Table 4.5. 

With this design, the expected value included in the 95% confidence cone for the 
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Figure 4.7: D-optimal and minimum proportion designs for Poisson experiments with 
4 runs constrained between - 1 and 1. Left Panel: D-optimal design for the regression 
coefficients of Xi and X2 for the example considered in section 4.6.1. Right Panel: 
Optimal design to minimise the expected proportion of directions included in the 959c 
confidence cone. 

Factor 
Ac 

VP! + PI 
t--^ (1) 

Range 
5^—^25 

0.5 <—> 2.5 

o^^f 

Table 4.6: Ranges for the factors for the Poisson simulation study. 

path of steepest ascent is 6.62%, slightly better than using the D-optimal design. 

The two designs are illustrated in Figure 4.7. 

For this case, the D-optimal design is almost as good as the design with 

the minimum expected percentage included in the confidence cone. To see how 

general this result is, a simulation study was undertaken. In the study, the 

response follows a Poisson distribution with mean given by 

A = Ao exp {piXi + P2X2), 

where the factors studied were: 

AQ, the expected mean at the design origin; 

yjPi + P2, the "size" of the regression coefficients vector; and 

tan~^ ip): the "orientation" of the regression coefficients vector. 

A 100 run orthogonal array (Sloane, 2005) was used, and each factor was varied 

over the ranges given in Table 4.6 with ten equally spaced levels per factor. For 
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Figure 4.8: Histogram of efficiencies of the D-optimal design relative to the mini
mum proportion design for the Poisson simulation study using a 100 run orthog
onal array. The efficiency is defined to be the ratio of the expected proportion of 
directions included in the 95% confidence cone for the path of steepest ascent for 
the minimum proportion design relative to the D-optimal design. 

each run, the D-optimal design was determined and also the design that gave the 

minimum expected proportion of directions included in the 95% confidence cone 

for the path of steepest ascent (or equivalently, descent, since a minimum response 

is usually desired with a Poisson response — note, this is the case even though 

the variance increases with the mean with Poisson data). For both designs, the 

values of Xi and X2 were constrained to be between —1 and 1, and the expected 

proportion of directions included in the confidence cone was recorded. Finally, the 

ratio of expected proportion for the minimum proportion design relative to the D-

optimal design was calculated as a measure of efficiency of the D-optimal design 

to estimate the path of steepest ascent. A histogram of the results, calculated 
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Run 

1 
2 
3 
4 
5 

^ 1 

- 1 
- 1 

1 
1 
1 

X2 

1 
1 

- 1 
- 1 

1 

Run 

1 
2 
3 
4 
5 

X l 

- 1 
- 1 

1 
1 
1 

X2 

1 
1 

-0.77 
-0.77 

1 

Table 4.7: D-optimal and minimum proportion designs for Poisson experiments with 
5 runs constrained between - 1 and 1. Left Panel: D-optimal design for the regression 
coefficients of Xi and X2 for the example considered in section 4.6.1. Right Panel: 
Optimal design to minimise the expected proportion of directions included in the 95% 
confidence cone (See Figure 4.9). 

using bcfnS given in Appendix C.ll , is given in Figure 4.8. The histogram shows 

that 75% of the simulations have an efficiency of over 90%, indicating that over 

the range covered by the factors in the simulation study that there is very little 

lost in using the D-optimal design. 

Irrespective of whether D-optimal or minimum proportion designs are used, 

if further improvements are required, then larger designs can be employed. Table 

4.7 shows optimal designs for 5-run experiments. These experiments are illus

trated in Figure 4.9. The expected percentage included now is 5.65%, when 

using the D-optimal design; and 5.63%, when using direct minimisation of the 

percentage included in the confidence cone. Similarly, Table 4.8 and Figure 4.10 

show optimal designs for 6-run experiments. This time, the expected percentage 

included, when using the criterion method, is 5.30%; and using the minimum 

percentage included, the result is 5.08%. We can see that direct minimisation of 

the percentage included gives marginally better results than direct maximisation 

of the criterion. 

4.6.3 Binomial Data 

Similar considerations apply for Binomial data as for Poisson data. Take, as an 

example, an experiment where we have two factors constrained to be between 
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Figure 4.9: D-optimal and minimum proportion designs for Poisson experiments with 
5 runs constrained between —1 and 1. Left Panel: D-optimal design for the regression 
coefficients of Xi and X2 for the example considered in section 4.6.1. Right Panel: 
Optimal design to minimise the expected proportion of directions included in the 95% 
confidence cone. 

Run 

1 
2 
3 
4 
5 
6 

X l 

1 
1 
1 

- 1 
- 1 

1 

X2 

- 1 
- 1 
- 1 

1 
1 
1 

Run 

1 
2 
3 
4 
5 
6 

X l 

- 1 
- 1 
- 1 

1 
1 
1 

X2 

1 
1 
1 

-0.75 
-0.75 

0.97 

Table 4.8: D-optimal and minimum proportion designs for Poisson experiments with 
6 runs constrained between —1 and 1. Left Panel: D-optimal design for the regression 
coefficients of Xi and X2 for the example considered in section 4.6.1. Right Panel: 
Optimal design to minimise the expected proportion of directions included in the 95% 
confidence cone (See Figure 4.10). 
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Figure 4.10: D-optimal and minimum proportion designs for Poisson experiments with 
6 runs constrained between - 1 and 1. Left Panel: D-optimal design for the regression 
coefficients of Xi and X2 for the example considered in section 4.6.1. Right Panel: 
Optimal design to minimise the expected proportion of directions included in the 95% 
confidence cone. 

— 1 and 1 with a response which we assume follows a Binomial distribution. The 

probability of success is expected to be 

exp {Po + PiXi + P2X2) 
P l-Fexp(/3o + /?iXi + /?2X2)' 

(4.5) 

where 

/5o = l o g ( Y ^ ) , Pi = Vb, and^2 = 2x/5, 

and hence the expected probability at the design origin is 0.6, the expected size 

of the regression coefficients vector is 5, and the X2 coefficient is twice that of the 

Xl coefficient. If a factorial experiment is conducted, with Xi and X2 set at ± 1 

and with a sample size of 50 at each design point, then the proportion included 

in the confidence cone for the path of steepest ascent is 14.02%. 

The D-optimal design for this situation can be obtained by direct maximisa

tion of ^ given in equation (4.4). The D-optimal design, found using binfund 

given in Appendix C.12 and b ins im given in Appendix C.14, is given in the left 

hand panel of Table 4.9. With this design, the expected value included in the 95% 

confidence cone for the path of steepest ascent, found using binomfunp given in 

Appendix C.13, is 2.13%, considerably better than using a simple factorial. Note, 

the D-optimal design consists of two points on the ED 17.6 contour and two points 

on ED82.4. The contour levels for the D-Optimal design are slightly different to 

those of Jia and Myers (1998) and Myers (1999), since in this section the focus 
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Run 

1 
2 
3 
4 

Xl 

- 1 
- 1 

1 
1 

X2 

0.06 
0.75 

-0.94 
-0.25 

Run 

1 
2 
3 
4 

Xl 

- 1 
- 1 

1 
1 

X2 

0.23 
0.58 

-0.76 
-0.41 

Table 4.9: D-optimal and minimum proportion designs for Binomial experiments with 
4 runs of 50 trials constrained between —1 and 1. Left Panel: D-optimal design for 
the regression coefficients of Xi and X2. Right Panel: Optimal design to minimise the 
expected percentage included (See Figure 4.11). 

I 
i 

i 
I 

Figure 4.11: D-optimal and minimum proportion designs for Binomial experiments 
with 4 runs of 50 trials constrained between —1 and 1. Left Panel: D-optimal design 
for the regression coefficients of Xi and X2. Right Panel: Optimal design to minimise 
the expected percentage included. 
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Factor 

Po 

VP! + PI 
t--^ (1) 

n 

Range 
0.2 <—^0.8 

1 <—> 10 

20 <—>80 

Table 4.10: Ranges for the factors for the Binomial simulation study. 

has been on the regression coefficients Pi and /?2 of equation (4.5), whereas Jia 

and Myers (1998) and Myers (1999) gave D-optimal designs for Pi. P2 and the 

intercept. 

Rather than maximising ^ , we could minimise the percent included in the 

confidence cone. The result, found using binomfunp given in Appendix C.13 and 

binsim given in Appendix C.14, is given in the right hand panel of Table 4.9. 

With this design, the expected value included in the 95% confidence cone for 

the path of steepest ascent is 1.84%, showing that the D-optimal design has an 

efficiency of 86.4% relative to the minimum proportion design. 

To examine the efficiency of the D-optimal design relative to the minimum 

proportion design over a wider range of conditions, a similar simulation study to 

that done for the Poisson case was conducted. In the study, the response follows 

a Binomial distribution where the probability of success is given by 

p = 
exp (log 1^^) + PiXi + P2X2) 

1 + exp (log ( Y ! ^ ) + piXi + P2X2 

and the factors studied were: 

Po, the expected probability of success at the design origin; 

y/Pi + P2, the "size" of the regression coefficients vector; 

tan~^ (1^) ' the "orientation" of the regression coefficients vector; and 

n, the sample size for each binomial trial. 

Again, a 100 run orthogonal array was used, and each of the four factors was 

varied over the ranges given in Table 4.10, with ten equally spaced levels per fac

tor. A histogram of the efficiencies of the minimum proportion design relative to 
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CO 

o 
CM 
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0.80 0.85 0.90 

Efficiency of D-Optimal design 

0.95 1.00 

Figure 4.12: Histogram of efficiencies of the D-optimal design relative to the 
minimum proportion design for the Binomial simulation study using a 100 run 
orthogonal array. The efficiency is defined to be the ratio of the expected pro
portion of directions included in the 95% confidence cone for the path of steepest 
ascent for the minimum proportion design relative to the D-optimal design. 

the D-optimal design, calculated using bcfn4 given in Appendix C.15, is given in 

Figure 4.12. The histogram shows that 83% of the simulations have an efficiency 

of over 85%, indicating that the D-optimal design provides relatively good results 

over the range covered by the factors in the simulation study. 

4.7 Conclusion 

In this chapter methods for determining how precisely the path will be measured 

prior to the experiment have been determined, and ways to improve the experi

ment have been given in cases where the path has not been determined precisely 
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enough. 

For homoscedastic, normally distributed data, the power can be determined 

using the non-central F-distribution and depends on the sample size and the 

expected size of the regression coefficient vector relative to experimental variance. 

Tradeoffs between the desired sample size and the expected power can be made 

if some guesses of these quantities can be made. 

When the data is expected to be heteroscedastic, there are some directions 

that will be determined more precisely than other directions. The sample size 

required thus depends on the direction of the path expected, unlike the homoge

neous case, where the power is the same, irrespective of the direction of the path. 

To be conservative, the least precise path direction could be used in the design 

of the experiment. 

When the path has not been determined precisely enough, it is possible to eas

ily design experiments that will improve the precision with the minimal number 

of additional experimental runs. 

For Binomial and Poisson data, it is shown how to determine the best set 

of experiments in order to determine the path with maximum precision. These 

results are compared to methods for determining D-optimal experimental designs. 

In many cases the D-optimal designs are almost as efficient as the minimum 

proportion designs. 



Chapter 5 

Constraints and Second Order 

Models 

5.1 Introduction 

Previous chapters of the thesis have been concerned with determining the pre

cision of the path of steepest ascent when the predictor is linear. The original 

method developed by Box (1955) and Box and Draper (1987, pp. 190-194) has 

been extended to cover heterogenous errors and non-orthogonal designs. An im

portant aspect of this work is that the precision of the path can be conveniently 

determined when the data can be analysed using GLMs. 

Quite often, besides a primary response of interest, there are one or more 

secondary responses that also need to be considered. It is not enough to choose 

operating conditions which maximise the primary response without regard to 

these secondary responses. Often, there are restrictions on the experimental vari

ables, or outside an operating range undesirable effects occur, or such conditions 

are simply impossible. In addition, often the response will not be a function 

of a linear predictor, and some generalisation is required to make the predictor 

quadratic in the experimental variables. 

These issues are dealt with in this chapter. Specifically, linear constraints are 

examined, and methods for determining the precision of the path subject to the 

87 
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constraint are given. 

When a response is a quadratic function of the experimental variables, canon

ical or ridge analysis is appropriate. The path coordinates can be viewed as the 

conditions giving rise to the maximum response subject to the constraint that the 

solution hes on the sphere of a particular radius, and by varying the radius the 

ridge analysis solution is given. The ridge analysis solution describes the path of 

steepest ascent and results in a curve rather than a line, as in the linear case. 

5.2 Linear Input Constraints 

Sometimes a complication arises, when seeking the optimum, if a constraint is 

included. The path of steepest ascent may lead to an optimal operating condition, 

X5, which falls in a region of inoperability, since it violates the constraint. In these 

cases, a modified direction of steepest ascent is found, which allows an optimal 

solution without violating the constraint (Box and Draper, 1987, pp. 194-199). 

If the region of operability is bounded by a plane 

ao +aiXi+02X2 +... +OkXk, (5.1) 

then the modified path can be viewed as a projection onto the constraint plane. 

The vector a = (a i , . . . ,ak)'^ is orthogonal to the plane given by equation 

(5.1). To project the path onto the line of which a is an element, the projection 

matrix is given by 

P = a(a^a)-^a^, 

and hence, to project the path onto the constraint plane the projection matrix 

P i = (I - P) = I - a (a^a) - ' a^ 

is used. The projected path of steepest ascent onto the constraint plane is given 

by 

Co + P ib i , 

where bi is the regression coefficient vector defining the path and CQ gives the 

co-ordinates of the intersection of the unconstrained path of steepest ascent and 
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the constraint plane. As shown below, the methods of Chapter 2 can be used to 

determine the precision of the constrained path of steepest ascent. 

5.2.1 An Example 

In the example given by Box and Draper (1987, p. 196). the activity of a certain 

chemical mixture depends on the proportion of three ingredients A {xi). B {X2) 

and C (xs). The relationship is estimated by 

y = 12.2 + 3.8x1 + 2.6x2 + 1-9x3, 

and hence the vector representing the path of steepest ascent is bi = (3.8, 2.6,1.9)-^. 

To find the confidence region for the path the method given in Chapter 2 is 

used. Since there are three variables {k=3), the confidence region takes the form 

of a cone. The projection of the cap of the cone onto the line orthogonal to the 

path of steepest ascent has semi-axes given by 

Al / Al 
ai = \ -^ ; - , ^2 Al — A2 V Al — A3 

where Ai = 47.9317, A2 = A3 = —1539.9083 are the eigenvalues of 

H = Gbib i^G - cG, (5.2) 

and 

c = b / G b i - x \ 9 5 ( 2 ) , (5.3) 

with the assumption that a^ = 1, say, from previous experimentation. 

Since A2 = A3, then ai = a2 = 0.1742, and the proportion included in the 

confidence cone before the constraint is encountered is thus calculated, using the 

commands in Appendix D.l, as 

/ V l - 0 . 1 7 4 2 2 \ 
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Confidence Region for t h e Projected P a t h 

In the above example, a constraint is imposed on the experimental variables. The 

linear constraint is 

-30 + 5xi + 10x2 + 10x3 = 0. 

If we let 

P = a ( a ^ a ) " ' a ^ , 

then the projection matrix is 

P i = I - P , (5.4) 

and the projected path of steepest ascent is given by 

P i b i 

For the example, a^ = (5,10,10), and hence 

P i = 

/ 8 - 2 - 2 \ 

- 2 5 - 4 

V-2 -4 5) 

Therefore, 

/ 2.3778 \ 

P i b i = 

(5.5) 

-0.2444 

y -0.9444 J 

agreeing with the results of Box and Draper (1987, p. 196). 

Since the original path of steepest ascent is projected onto the constraint 

plane, it is convenient to use a Householder transformation to find a new co

ordinate system. The Householder transformation, Hu, is chosen so that the 

vector orthogonal to the constraint plane, a, is taken to ||a||e3 = (0,0, ||a||)-^. Hu 

is given by I — 2uu'^, where the unit vector is 

a - ||a||e3 

l | a - llalleall 

For the current example, the path in the new co-ordinate system is given by 

bn = H u P i b = (1.433, -2.133, 0)^. 
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The G and H matrices, defined in equations (2.12) and (2.14) respectively, are 

given by 

G = 8HuPiP iHu 

and 

H = Gbubn^G - {hjGhn - Xa95(l))G. 

The eigenvalues of H are Ai = 30.7317 and A2 = -392.0239. Therefore, 

and the proportion included in the confidence cone, calculated using the com

mands in Appendix D.l, is 

^ ^ 1 ^ , 1 =0. , 1 - T l ^ i , l 1 =0.0869. 
ai 

Box and Draper (1987, p. 198) suggest that the modified path should only be 

viewed as one worthy of further exploration because: 

1. the original path of steepest ascent is often subject to fairly large errors, 

2. the linear approximation is probably inaccurate at points not close to the 

region of the design, and 

3. in some cases the constraint is not known exactly a priori, but must be 

estimated. 

The same considerations apply to the precision of the modified path, as expressed 

by the proportion of directions included in the confidence cone. 

It should be noted that constraints on both the inputs and outputs are studied 

by Angiin et al. (2002). 

5.3 Second Order Models 

As discussed in Chapter 1, response surface methodology is a collection of tech

niques that can be adapted to the needs of the experimenter. Initially, first order 
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designs and models, including the calculation of the path of steepest ascent, work 

well. Eventually, however, it is necessary to use second order models, and the 

corresponding designs that allow such models to be fitted, in order to provide 

information about the stationary points of experimental systems. 

Once a second order model is fitted to the data, canonical anabasis can be 

used to better understand the nature of the system that is being investigated. 

Often the fitted model will reveal a ridge system, which may be stationary or 

rising. Exploration and exploitation of these ridge systems is an important, but 

probably neglected, part of response surface methodology. 

Canonical analysis can be complemented by ridge analysis, due to Hoerl 

(1959). In ridge analysis, the path of steepest ascent for second order models 

is calculated. For second order models, the path is a curve and not a hue, as it is 

for first order models. A good discussion of the relationship between ridge anal

ysis and canonical analysis was given by Box and Liu (1999). They discussed an 

example where the surface was a saddle giving two paths of steepest ascent and 

two paths of steepest descent. In the example, where the centre of the contour 

system was close to the design origin, the paths converged very rapidly onto the 

axes of the canonical variables established using canonical analysis. 

In the remainder of this chapter, four examples of second order models are 

studied. The nature of the fitted surface is determined using canonical analysis 

and ridge analysis. The main focus of the chapter is a determination of the 

precision of the canonical axis which needs to be followed in order to maximise 

(or minimise) the response. 

5.4 Examples 

5.4.1 Two Dimensional Example 

The first example was discussed by Box et al. (1978, p. 519). It concerns a chem

ical example with two input variables, time and temperature; and the response 

was the conversion rate. The input variables were coded and initially a 2^ fac

torial was run with two centre points. Based on the results, a path of steepest 
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ascent was calculated, and experimentation was conducted along the path. Near 

the best set of conditions on the path an additional 2^ factorial was done. This 

factorial experiment showed a significant lack of fit of the first order model. An 

additional set of experiments was carried out. This additional set of experiments 

contained the star points of a central composite design as well as a number of 

centre points. After the additional runs, a second degree equation was fitted to 

the data resulting in the model 

y = 87.3750 - 1.3837xi + 0.3620x2 - 2.1437x? - 3.0937x^ - 4.8750xiX2. (5.6) 

Details of the data and Splus commands are given in Appendix D.2. For this 

example, 

•" -2.14375 -2.43750 

-2.43750 -3.09375 

The eigenvalues of B in ascending order are 

Al = -5.102, A2 = -0.135. 

Figure 5.1 gives the ridge plot for this example. The plot was produced using the 

function r idgeplot given in Appendix D.6. The importance of the graph was 

emphasised by Hoerl (1959). The graph gives the dependence of the radius of the 

maximum response against the value of the Lagrangian multiplier, fi. The poles 

where the radius tends to infinity correspond to the eigenvalues of the matrix B. 

Since a maximum is required, the coordinates of the maximum response can be 

found by considering p values greater than the maximum eigenvalue of B, that is 

p values greater than —0.135. The co-ordinates corresponding to the maximum 

response as well as the maximum responses are given in Figure 5.2. The plot was 

produced using the function maxplot given in Appendix D.7. The co-ordinates 

are obtained by solving equation (1.9) with values of fi greater than —0.135. 

It is also very worthwhile to perform a canonical analysis of the fitted model 

given by equation (5.6). Since the eigenvalues are both negative we are dealing 

with a maximum. The optimum conditions are at the stationary point given by 

X5 = - i f i - ^ b = (-3.7370, -3.0028)^, 
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•u 
(0 

Figure 5.1: Ridge plot for the two factor chemical example given by Box et al. (1978, 
p. 519). The graph gives the dependence of radius of the minimum response against 
the value of the Lagrange multiplier p. 

at a distance of 4.79 experimental units to the centre of the experimental region. 

Since the stationary point is remote from the centre of the experimental region, 

the A canonical form given by 

y = 87.3750 + 1.2981Xi + 0.6005X2 - 0.1354X2 - 5.1021X2^ (5.7) 

is used, where 

Xl = -0.772x1 + 0.636x2, 

X2 = -0.636x2-0.772x2. 

A function, canonical, to perform the canonical analysis is given in Appendix D.8. 

(5.8) 

Since the magnitude of one of the eigenvalues is quite small, some sort of ridge 

system is suggested. Using the double linear regression function, dlr , given in 
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Figure 5.2: Maximum ridge co-ordinates and predicted maximum for the two factor 
chemical example given by Box et al. (1978, p. 519) 
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Model 
Residual degrees Residual sum of 

of freedom squares 
Full Model 
Rising Ridge(A2 = 0) 
Stationary Ridge(A2 = (p2 0) 

5 
6 
7 

15.42 
15.44 
28.92 

Table 5.1: Summary of results of fitting canonical models using non-hnear least 
squares to the data given by Box et al. (1978, p. 519). 

Appendix D.9, the design is rotated so that the standard error of the eigenvalues 

are the same as the standard errors of the pure quadratic terms in equation (5.6), 

and since these are 0.694, there is strong evidence that there is in fact a ridge 

system. 

To test whether this is true, the canonical form given by equation (5.7) was 

fitted using the method of Ankenman (2003). The full quadratic equation is 

equivalent to the model 

y = bo + (xi,X2)D [ ' " I + 
"̂ 2 

(xi,X2)D 
Al 0 

0 A2 
D T Xl 

X2 
+ e. 

where 

D = 
cos 9 — sin 9 

sin 9 cos 9 

Since it is suspected that there is a rising ridge, two additional models were 

fitted to the data. A rising ridge was fitted by setting the value of A2 = 0. 

Similarly, a stationary ridge model was fitted to the data by setting A2 = 02 = 0. 

Table 5.1 gives a summary of the results, obtained using the Splus commands 

given in Appendix D.IO. 

The results clearly estabhsh that a ridge model is appropriate. Testing for 

a rising ridge, with HQ : A2 = 0 and Hi : X2 ^ 0; the F statistic is 5.16, with 

a significance probability of 0.063, and hence, at the 10% level at least, a rising 

ridge is a reasonable model for the response surface. The estimated value of 
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9 = 2.452 radians. The rising ridge equation is given by 

y = 87.267 + 1.298Xi - O.6OIX2 - 5.075X2. 

where 

f Xl X2 ) = f ''''̂ ^ '̂""̂  V ""' 
^ ^ ^ ^ V - s i n ^ cos^ / V ^2 

with 9 = 2.452, leading to 

Xl = -0.772x1 + 0.635x2, 

X2 = -0.636x1-0.772x2, 

which are very similar to the results given by equation (5.8). 

For increased conversion rates experimentation should be performed along the 

ridge described by the Xi axis. 

5.4.2 Three Dimensional Example 

Another case considered was the example from Box and Draper (1987. p. 360). 

In this example, an experiment was conducted sequentially in four blocks. The 

aim was to maximise the concentration of a desired product. The three factors 

were flow rate, concentration of catalyst, and temperature. 

A second degree equation fitted to the 24 runs was 

- 0.8333X? + 1.2167x2 - 6.2583x2 

+0.3750x1X2 + 10.3500x1X3 - 2.8250x2X3. 

(5.9) 

Details of the data and Splus commands are given in Appendix D.3. For this 

example, 

•" -3.833333 0.187500 5.175000 

0.187500 1.216667 -1.412500 

5.175000 -1.412500 -6.258333 

The eigenvalues of B, in ascending order, are 

y = 51.7958 + 0.7446xi + 4.8133x2 + 8.0125x3 - 3.8333x? + 1.2167x2 - 6.2583x| 

B 

Al = -10.489, A2 = -0.097, A3 = 1.71. 
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CO 

Figure 5.3: Ridge plot for the three factor reactor study example given by Box and 
Draper (1987, p. 362). The graph gives the dependence of radius of the minimum 
response against the value of the Lagrange multiplier fj,. 

Following the same procedure as for the two factor example, a ridge plot is ob

tained (Figure 5.3). Since a maximum is desired, only values of p greater than 

A3 need to be considered. Considering these values of p the co-ordinates of the 

maximum response are plotted against the radius in Figure 5.4. In addition, the 

predicted maximum response has been superimposed on the graph. 

The stationary conditions are at 

X5 = - - B - ^ b = (25.7673,15.4756,18.4542)^, 

at a distance of 35.2705 design units from the design origin, and since the sta

tionary point is far from the centre of the experimental region, the A canonical 

form 
y = 51.796+ I.249X1-6.8O8X2-6.326X3 

(5.10) 
+1.711X2 - 0.097X2 _ 10.489X32 
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Figure 5.4: Maximum ridge co-ordinates and predicted maximum for the three factor 
reactor study example given by Box and Draper (1987, p. 362). 
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is used, where 

Xl = -0.297x1+0.888x2-0.350x3. 

X2 = -0.733x1 - 0.447x2 - 0.513x3-

X3 = 0.612x1 - 0.104x2 - 0.784x3. 

(5.11) 

(5.12) 

(5.13) 

The design is orthogonal, and the standard error of the quadratic terms in 

equation (5.9) is 0.543, suggesting a ridge system. 

Following the method developed by Ankenman (2003), the model 

y = bo + x^D(0)0 + x^B{0)ND^{e)x + e 

was fitted, using the Splus commands given in Appendix D.ll , where 

» / cos ̂ 13 0 sin ̂ 13 \ / cos ̂ 12 sin 1̂2 0 \ 

0 1 0 

— sin 1̂3 0 cos 6*13 J y 

/ 1 0 0 

0 cos O23 sin 6>23 

y 0 -sin6*23 cos6*23 / \ 

D^(0) = 

Explicitly, for 3 dimensions we have 

— sin 1̂2 cos ̂ 12 0 

0 0 1 J 

Zl 

Z2 

Z3 = 

c o s ^12 COS ^13X1 

+ COS 6'i3 sin 6̂13X2 + sin 6'i3X3, 

(— cos ̂ 12 sin 2̂3 sin 1̂3 — sin 1̂2 cos 2̂3)2̂ 1 

+ ( - sin 6'i2 sin 1̂3 sin 6'23 + cos 6'i2 cos 923)x2 

+ sin 6*23 cos 6*13X3, 

(— cos ̂ 12 cos ̂ 23 sin 1̂3 + sin 1̂2 sin 2̂3)2:̂ 1 

+ ( - sin 6*12 cos 2̂3 sin 1̂3 - sin 6'23 cos ̂ i2)x2 

+ cos6'i3Cos6'23a:3-

(5.14) 

(5.15) 

(5.16) 

The estimates of ^12, ̂ 13 and 6*23 were 1.893, 2.784 and 0.580 respectively, and 

substituting into equations (5.14-5.16) we obtain the same result as equations 

(5.11-5.13), except that the sign of Xi is reversed. 

Following Box and Draper (1987, p. 365) and Ankenman (2003), the terms 

associated with Xi and the quadratic terms associated with X2 are dropped and 



CHAPTER 5. CONSTRAINTS AND SECOND ORDER MODELS 101 

the model is again fitted using non-linear least squares. The estimates of ^12. 1̂3 

and 2̂3 are now 2.062, 2.689 and 0.513 respectively, with the variance-covariance 

matrix given by 

/ 0.00982 -0.00254 -0.00429 \ 

V* (5.17) -0.00254 0.00201 0.00111 

\ -0.00429 0.00111 0.00336 J 

Substituting the estimated values of ^12, ̂ 13 and 2̂3 into equations (5.14-5.16), 

we obtain 

y = 54.340 - 6.92IZ1 - 6.326^2 - IO.8I2Z22, (5.18) 

where 

Zl = -0.667x1-0.600x2-0.441x3. 

Z2 = 0.612x1-0.104x2-0.784x3, 

indicating a rising ridge in the Zi direction. These are very similar to the results 

given by Box and Draper (1987, p. 360) who obtained 

y = 54.07 - 10.812(^1 - 0.301)2 ^ Q 923(^2), 

where 

Zl = -0.612x1 + 0.104x2 + 0.784x3, 

Z2 = 0.683x1 + 0.597x2 + 0.420x3, 

by directly fitting the canonical form using non-linear regression. 

5.4.3 Four Dimensional Example 

The next example considered was a four factor example presented in Box and Liu 

(1999). The example involved an experiment in which it is required to maximise 

flight times of a paper helicopter. The factors considered were: wing area, Xi, 

wing length, X2, body width, X3, and body length, X4. The second degree equation 
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was fitted to the data and the resulting model was 

y = 371.3250 - 0.0833xi - 5.0833x2 + 0.2500x3 - 6.0833x4 

-2.0375xi2 - 1.6625x22 - 2.5375x32 - 0.1625x42 

-2.8750xiX2 - 3.7500xiX3 + 4.3750xiX4 + 4.6250x2X3 

-1.5000x2X4-2.1250x3X4. 

(5.19) 

Details of the data and Splus commands are given in Appendix D.4. For this 

example, 

^ -2.0375 -1.4375 -1.8750 2.1875 

-1.4375 -1.6625 2.3125 -0.7500 

-1.8750 2.3125 -2.5375 -1.0625 

2.1875 -0.7500 -1.0625 -0.1625 

The eigenvalues of B, in ascending order, are 

B = 

Al = -4.6520, A2 = -3.8079, A3 = -1.1983, A4 = 3.2582. 

Following the same procedure as for the two factor example, a ridge plot is 

obtained and is given in Figure 5.5. The co-ordinates of the maximum response 

are plotted against the radius in Figure 5.6. In addition, the predicted maximum 

response has been superimposed on the graph. 

The stationary conditions are at 

X5 = - ^ B - ^ b = (0.8607, -0.3307, -0.8395, -0.1161)^, 
Z^ 

a distance of only 1.2524 units from the origin. Since the eigenvalues are of 

different signs the ridge system is a saddle point. 

The analysis is carried out in terms of the A canonical form 

y = 371.3250 - 5.9140Xi + 1.3331X2 - 4.8371X3 - I.6632X4 

+3.2582X2 1.1983X2 3.8079X32 4.6520X|, 
(5.20) 

where 



CHAPTER 5. CONSTRAINTS AND SECOND ORDER MODELS 103 

Xl = 0.518x1-0.450x2-0.452x3+0.571x4. (5.21) 

X2 = -0.041x1-0.582x2-0.376x3-0.720x4. (5.22) 

X3 = -0.761x1-0.506x2 + 0.122x3 + 0.388x4, (5.23) 

X4 = 0.389x1-0.451x2 + 0.800x3-0.076x4. (5.24) 

The design is rotatable, and hence, the standard errors of the eigenvalues are the 

same as the standard error of the quadratic terms, and equal to 0.6039. One of 

the key findings of the Box and Liu (1999) experiment was that it was possible 

to increase the fiight times of a hehcopter by conducting further experiments in 

either direction along the Xi axis since the coefficient of X2 is significant and 

positive. 

5.4.4 Five Dimensional Example 

In the five-factor batch polymerization of an acrylamide experiment (Kiprianova 

and Markovska, 1993, p.83), the input factors were Xi, initiator concentration (%); 

X2, monomer concentration (mol dm~'^); X3, temperature of polymerization (K); 

X4, pH of initial reaction mixture and X5, residence time (S). The experimental 

design chosen was a B5 symmetrical composite design. 

The responses were the intrinsic viscosity and polydispersity coefficient. The 

26-run experimental design and results are given in Table 5.2. For the intrinsic 

viscosity coefficient the full second order model was fitted and is given by 

y = 2.7310 - 0.2850x1 + 0.0962x2 - 0.2265x3 - 0.0561x4 

+0.3656x5 - 0.0332xf - 0.1807x^ - 0.0477x§ 

-0.01122xf + 0.4673xi + 0.2569xiX2 - 0.1175xiX3 (5.25) 

-0.0904xiX5 + O.226OX2X3 + 0.3421x2X4 + 0.2781x2X5 

+0.2517x3X4 + 0.1231x4X5. 

Details of the data and Splus commands are given in Appendix D.5. For this 
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0) 

DC 

mu 

Figure 5.5: Ridge plot for the four factor helicopter example given by Box and Liu 
(1999). The graph gives the dependence of radius of the maximum response against 
the value of the Lagrange multiplier //. 
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Figure 5.6: Optimum ridge co-ordinates and predicted maximum for the four factor 
helicopter example given by Box and Liu (1999). 
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Run 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Xl 

1 
-1 
1 

-1 
1 

-1 
1 

-1 
1 

-1 
1 

-1 
1 

3̂ 2 

1 
1 

-1 
-1 
1 
1 

-1 
-1 
1 
1 

-1 
-1 
1 

X3 

1 
1 
1 
1 

-1 
-1 
-1 
-1 
1 
1 
1 
1 

-1 

X4 

1 
1 
1 
1 
1 
1 
1 
1 

-1 
-1 
-1 
-1 
-1 

X5 

1 
-1 
-1 
1 

-1 
1 
1 

-1 
-1 
1 
1 

-1 
1 

1/ 
4.016 

2.753 

1.495 

3.161 

2.407 

3.765 

2.407 

2.737 

1.879 

3.216 

1.774 
3.222 

3.514 

Run 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

Xl 

-1 
1 

-1 
1 

-1 
0 
0 
0 
0 
0 
0 
0 
0 

X2 

1 
-1 
-1 
0 
0 
1 

-1 
0 
0 
0 
0 
0 
0 

X3 

-1 
-1 
-1 
0 
0 
0 
0 
1 

-1 
0 
0 
0 
0 

X4 

-1 
-1 
-1 
0 
0 
0 
0 
0 
0 
1 

-1 
0 
0 

Jo 

-1 
-1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
1 

-1 

y 
2.275 

3.681 

4.540 

2.383 

3.017 

3.014 

2.091 
2.552 

2.819 
2.897 

2.547 
3.519 
2.882 

Table 5.2: Symmetrical composite design type B5 for intrinsic viscosity model. 

example. 

B = 

-0.03321875 

0.12843750 

-0.05875000 

0.00981250 

-0.04518750 

0.1284375 

-0.1807187 

0.1130000 

0.1710625 

0.1390625 

-0.05875000 

0.11300000 

-0.04771875 

0.12587500 

-0.00962500 

0.00981250 

0.17106250 

0.12587500 

-0.01121875 

0.06156250 

-0.0451875 

0.1390625 

-0.0096250 

0.0615625 

0.4672813 

Ridge analysis was used to obtain the direction of improvement, that is, min

imum viscosity. The eigenvalues of B in ascending order are 

Al = -0.3581658, A2 = -0.1760145, A3 = 0.0302720, 

A4 = 0.1805130, A5 = 0.5178010. 

Figure 5.7 gives a plot of {i versus R. For this problem, a minimum is required, 

and therefore the co-ordinates of the minimum response can be found using values 

oi p< -0.35816577. 

Figure 5.8 gives a plot of the coordinates X i , . . . , X5 and the corresponding 

value of R as well as the predicted minimum response. Since the eigenvalues are 
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of different signs we have a saddle point. The stationary point is at 

X5 = - - B - ^ b = (1.6182,0.9126, -0.8136,0.4824, -0.5178)^. 
Z* 

at a distance of 2.1657 units from the centre of the experiment. The A canonical 

form is 
is = 2.7310 + 0.3449X1 +0.2801X2-O.II66X3 

+0.1485X4 - 0.2133X5 + 0.5178X2 + 0.1805X1 (5.26) 

+0.0303X32 - O.I76OX42 - 0.3580X1, 

where 

Xl = -0.025x1 - 0.248x2 + 0.0828x3 + 0.209x4 + 0.942x5, 

Xl = -0.204x1 - 0.427x2 - 0.526x3 - 0.6426x4 + 0.295x5, 

X3 = 0.866x1 + 0.242x2 - 0.4297x3 - 0.077x4 + 0.014x5, 

X4 = -0.241x1 - 0.118x2 - 0.679x3 + O.68OX4 - 0.067x5, 

X5 = 0.387x1-0.827x2 + 0.267x3 + 0.274x4 + 0.143x5. 

The design is not rotatable, so the double linear regression method was used to 

determine the standard errors of the eigenvalues. They are 0.1674, 0.0829, 0.1412, 

0.1131, and 0.1255 respectively. Hence, in order to achieve lower viscosities, 

experimentation should be conducted in either direction along the X5 axis. 

5.5 Uncertainty of Canonical Direction 

The four examples considered in this chapter show how useful canonical analysis 

is. For the two-dimensional example and the three-dimensional example, the 

canonical analysis revealed that the response surfaces could be described as rising 

ridges, while for the four-dimensional and five-dimensional examples, the response 

surfaces are saddles. In all cases, the canonical analysis indicates a direction 

which will lead to more optimal conditions. In this section the uncertainty of the 

indicated direction will be examined. 

5.5.1 Two Dimensional Example 

For the two dimensional example, the uncertainty in the orientation of this direc

tion is given by the standard error of the estimate of 9. which was 0.0793, based 
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-o 
(0 

Figure 5.7: Ridge plot for the five factor polymilization acrylamide experiment given 
by Kiprianova and Markovska (1993). The graph gives the dependence of radius of the 
minimum response against the value of the Lagrange multiplier p. 
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Figure 5.8: Optimum ridge co-ordinates and predicted minimum for the five factor 
polymilization acrylamide experiment given by Kiprianova and Markovska (1993). 



CHAPTER 5. CONSTRAINTS AND SECOND ORDER MODELS 110 

on 6 degrees of fireedom. A 95% confidence interval for the true value of 9 based 

on the t-distribution extends from 2.256 to 2.646 radians and includes 6.2% of 

possible directions. 

5.5.2 Three Dimensional Example 

For the three dimensional example, equation (5.18) indicates that there is a ris

ing ridge and therefore experimentation should be conducted along the Zi axis 

in order to increase the response. The estimated direction cosines of Zi are func

tions of the estimated values of ^12,6'i3 and 2̂3 and the multivariate delta method 

could be used to give a confidence cone for the true direction cosines. However, 

a simpler approximate method was adopted. First, the appropriate Householder 

transformation, Hu, to take the direction cosines of Zi to (0, 0,1)^, was deter

mined. Then, a large number (say N = 10,000) of observations with mean 

(2.062,2.689,0.513)^ and variance V*, given in equation (5.17), was generated. 

For each observation equations (5.14-5.16) were used to convert the simulated 

value of {91, 92, 93)^ into a simulated direction vector. The simulated direction 

vectors were then pre-multiplied by Hu and the first two co-ordinates were taken, 

which corresponds to projecting the simulated direction vector onto the plane or

thogonal to the path of steepest ascent. With N = 10,000 random samples the 

variance-covariance matrix of the first two co-ordinates was calculated to be 

0.00180 -0.00144 

^ -0.00144 0.00789 

Since 

( (5 -^ )^ (V**) -^ ( (5 -a )~x ' (2 ) , 

where 6 = (0, 0) and 5 is the projection of the direction cosine vector onto the 

plane orthogonal to the the path of steepest ascent, an approximate 95% joint 

confidence region for 5i and 82 can be generated as an ellipse with semi-axes 

a, = , / M ,„d „, = J ^ 
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where Ai = 677.2966 and A2 = 121.8066 are the eigenvalues of {N'*)-\ The 

computed surface area above the projected region corresponds to a fraction of 

0.00523 and hence excludes 99.5% of possible directions. Splus commands that 

were used are given in Appendix D.13. 

5.5.3 Four Dimensional Example 

Again, following the method developed by Ankenman (2003). the model 

y = bo + x^B{e)(j) + x^D(6>)AD^(6>)x + £ 

was fitted, using the Splus commands given in Appendix D.12. where now D is 

the product of six matrices involving the rotation angles ^12, ̂ 13, ̂ 14, ̂ 23, ̂ 24 and 

934. The estimated values of these angles are 5.567, 5.701. 0.607. 3.396, 5.214 and 

1.763 radians respectively, with variance-covariance matrix given by 

/ 

V* 

0.0034 

0.0039 

0.0016 

0.0040 

0.0008 

0.0014 

0.0616 -0.0016 

-0.0015 \ 

0.0041 

0.0001 

0.0532 

-0.0034 

0.2618 / 

0.0086 0.0006 0.0027 

0.0006 0.0037 0.0007 

0.0027 0.0007 0.0066 

0.0034 0.0039 0.0016 

0.0040 0.0008 0.0014 -0.0016 0.0239 

\ -0.0015 0.0041 0.0001 0.0532 -0.0034 

Using the estimated 9 values we get the same canonical analysis equations as in 

equations (5.21-5.24). 

To determine the uncertainty involved with the Xi axis, a similar method as 

for the three dimensional case is used, with the Splus commands given in Ap

pendix D.14. The estimated direction cosines of Xi are functions of the estimated 

values of ^12, ̂ 13, ^14, ̂ 23, ̂ 24 and ^34. First, the appropriate Householder transfor

mation, Hu, was determined to take the direction cosines of Xi to (0, 0,0,1)-^. A 

large number (say TV = 10, 000) of observations with mean (2.062, 2.689,0.513)^ 

and variance V* was then generated. For each observation the simulated value 

of the 6 vector was transformed into a simulated direction vector. The simulated 

direction vectors were pre-multiplied by Hu, and the first three co-ordinates were 
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taken, which corresponds to projecting the simulated direction vector onto the 

hyperplane orthogonal to the path of steepest ascent. With N = 10, 000 ran

dom samples the variance-covariance matrix of the first three co-ordinates was 

calculated to be 

^ 0.0067 -0.0007 -0.0017 \ 

V** = -0.0007 0.0031 0.0005 . 

\ -0.0017 0.0005 0.0032 / 

Since 

{6-d)''{Y*T\S-S)-^x\^)-

where 6 = (0,0,0) and S is the projection of the direction cosine vector onto 

the plane orthogonal to the the path of steepest ascent, we can generate a 95% 

confidence region for 61,62, and 3̂ which is an eUipsoid with semi-axes 

;xi(0-95) ^ xi(0-95) , xi(0-95) 
ai = ^ / — ^ ^ , a 2 = y — ^ ^ , and a3 = ^ ^ ^ , 

where Ai = 416.566, A2 = 334.877 and A3 = 131.777 are the eigenvalues of 

{V**)-\ which gives ai = 0.2132, 02 = 0.1338 and 03 = 0.1199. Using the 

inequalities (2.21-2.22), the upper and lower bounds for the the computed surface 

area as a proportion of the total surface area of the sphere above the projected 

region are 0.072 and 0.117. However, since for a maximum or saddle point the sign 

of the canonical axis is arbitrary, the computed surface area should be compared 

to the surface area of the four dimensional hemisphere and hence both bounds 

need to be multiplied by two, showing that the 95% confidence cone for the Xi 

canonical axis includes between 14.4% and 23.4% of possible directions. There is 

quite a large amount of uncertainty in the direction. 

5.5.4 Five Dimensional Example 

A similar approach can be used for the five dimensional example. The rotation 

matrix D involves 10 rotation angles. Note that since the response surface is a 

saddle, as for the four dimensional case, when computing the proportion of direc

tions included in the confidence cone for the X5 axis, the appropriate comparison 
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to the surface area of the cap associated with the confidence cone for the canon

ical direction is the surface area of the five dimensional hemisphere and not the 

surface area of the five dimensional sphere. 

5.6 Precision of Ridge Analysis 

In the previous section, the uncertainty associated with a direction for further 

experimentation, identified by canonical analysis, was examined. It should be 

noted that the ridge co-ordinates usually converge quite quickly onto the canon

ical axes and hence the results in the previous section can be used to give the 

uncertainty associated with a ridge analysis solution. 

If desired, before the ridge co-ordinates converge onto the canonical axes, an 

alternative assessment of uncertainty can be undertaken. One way would be 

to use either of the methods developed by Peterson et al. (2002) or Gilmour 

and Draper (2003). A helpful way to view these results would be to plot the 

maximum ridge co-ordinates and predicted maximum as in Figure 5.2, but with 

an additional vertical axis giving the proportion of the surface area of the circle 

or sphere covered by the confidence region for the co-ordinates corresponding to 

the optimal conditions. 

An additional method would be to use the results of Chapter 2 to determine 

the precision of the best direction on the path of steepest ascent. The method is 

discussed below. 

Points on the path of steepest ascent for second-order models are given by the 

solution of 

x5 = - i (B- /xI ) -^b 

for various values of // greater than the largest eigenvalue of B. At these points, 

the gradient of the response at x^ 

y = bo + h'^xs + x jBx5 
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can be determined as 

dx 
= b^ + 2Bxs 

>Q 

(5.27) 

(5.28) 

where 

b g = ( 6o 6i i &22 • • • bkk bi2 . . . bk-i,k 

The variance-covariance matrix of the gradient is given by 

A{X^V-'X)-'A^a\ (5.29) 

In general, equation (5.29) will be heterogeneous and non-orthogonal. To 

determine the precision of the path as described by the gradient direction, the 

method of Chapter 2 for heterogeneous regression parameters can be applied 

For a two dimensional case, for example. using G = A ( X T V - i X ) - i A T - ' 

A = 
0 1 0 2x 10 0 X20 

0 0 1 0 2x20 a:io 

where (xio, X20) is a point on the path. For each radius the percentage included 

in the confidence cone can be calculated, and a plot of the percentages can be 

overlaid on the ridge co-ordinates graph. 

5.7 Conclusion 

In this chapter, methods for determining the precision of the path of steepest 

ascent subject to constraints have been developed. 

When there is a linear constraint the original path needs to be projected 

onto the constraint plane. Even if the errors are homogeneous and the design 

is orthogonal, the projected regression coefficients will have a non-orthogonal 

variance-covariance matrix. However, using the method developed in Chapter 2, 

it is easy to determine the precision of the projected path. 
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For a quadratic response, canonical analysis and ridge analysis are appropri

ate. As the radius increases the ridge analysis solution tends to asymptote to 

a canonical axis. A method for determining the precision of the canonical axes 

has been presented, using the method developed by Ankenman (2003) to fit the 

canonical second order model. 

The methods developed by Peterson et al. (2002) and Gilmour and Draper 

(2003) are also relevant. In addition, another method, based on the results of 

Chapter 2 has been suggested. 



Chapter 6 

Discussion and Further Work 

6.1 Introduction 

The objective of this research was to extend some methods used in response 

surface methodology, with the main focus on the precision of the path of steepest 

ascent. The method of steepest ascent is important in experimental work as, 

based on an initial experimental design, it provides the experimenter with a 

direction for future experiments. The method for determining the precision of 

the path of steepest ascent developed by Box (1955) and Box and Draper (1987, 

pp. 190-194) is particularly useful. However, in its present form, it could only 

be applied to orthogonal designs with uncorrelated and homogeneous errors. In 

many instances, including GLMs, the above assumptions are not met. 

In this thesis, a useful extension to the existing method is presented, so that 

it can be applied more generally. In fact, this extension turns out to be useful in 

a variety of situations. In addition, some techniques are proposed for augmenting 

existing designs. These techniques may be particularly useful in situations when 

the path of steepest ascent has not been determined precisely enough. Some 

techniques that can be useful for determining the precision of canonical analysis 

are also developed. 

A possible limitation of the method of steepest ascent occurs when the exper

imental variables are constrained. In this thesis, analogous methods are included 

116 
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for the precision of the path of steepest ascent when a linear constraint is encoun

tered. 

6.2 Homogeneous Case 

The method developed by Box (1955) and Box and Draper (1987, pp. 190-194) is 

described in Chapter 2. An alternative derivation of the method is also presented. 

This method determines the precision of the path of steepest ascent by giving the 

proportion of possible directions included in the confidence cone. It is shown 

that the proportion of all possible directions included in the confidence cone is a 

function of the tail area of the t-distribution. 

The utility of the current method is investigated by applying it to a fractional 

factorial example. The response in this example is a count (of defects); therefore, 

the response needs to be transformed to be able to apply the existing method. 

In the example, there was a significant interaction between a qualitative and 

quantitative variable. If the quantitative variable in the interaction cannot be 

varied, the regression coefficients that determine the path of steepest ascent are 

homogeneous, and therefore the precision of the path of steepest ascent can be 

determined by the current method. On the other hand, if the quantitative variable 

in the interaction can be varied, then one of the two levels of the qualitative 

variable needs to be chosen. In this case, the regression coefficients that determine 

the path of steepest ascent are heterogeneous, and therefore the current method 

cannot be used without modification. 

A modification to the existing method is applied by projecting the confidence 

region, which is a cap of a sphere, onto the hyperplane passing through the origin 

and perpendicular to the path of steepest ascent. This projection provides a hy

perellipsoid, with the semi-axes having equal lengths for the homogeneous case, 

and different lengths for the heterogenous case. Methods are given for obtaining 

the lengths of the axes of the hyperellipsoid. An extension to the current method 



CHAPTER 6. DISCUSSION AND FURTHER WORK 118 

can be accomphshed by considering the structure of the variance-covariance ma

trix. For situations with two regression coefficients, an exact expression is ob

tained. This method, apphed to the homogeneous case considered above, gives 

the same results as the existing method. To apply the new method for higher 

dimensions, however, a transformation onto a rectangular set of coordinates is 

used before applying numerical integration. To determine the surface area of the 

cap, Gaussian quadrature or Monte-Carlo integration is used. 

Some inequalities are developed for the precision of the path of steepest as

cent. These give sharp bounds which, for some practical pmrposes, can be precise 

enough without the need for numerical integration. 

6.3 Heterogeneous Case 

In Chapter 3, the method developed in Chapter 2 is used again, but this time 

with generalised linear models applied to the original count response, rather than 

OLS with a transformed response. Two approaches for the determination of 

confidence regions are studied. First, the Wald approach is apphed for situations 

where overdispersion can be ignored and when it must be considered. The results 

show the increased effectiveness when the new method is used directly with the 

count response, rather then using a transformed response, since the size of the 

confidence region is smaller, and hence the percentage included in the confidence 

cone is also smaller. 

A second approach considered is the application of profile likelihoods. Again, 

this method can be used for both the no overdispersion and overdispersion situ

ations. It is shown that the profile likelihood method gives similar results to the 

Wald approach for the example considered, but there may be examples where it 

will outperform the Wald approach. 

The confidence regions obtained using the Wald and profile likelihood methods 

are based on approximate asymptotic results, which may be inaccurate. There

fore, some parametric and nonparametric bootstrap checks are proposed. The 

bootstrap results show when the asymptotic distributions are inappropriate, and 
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what adjustments should be made in order to get accurate results. 

6.4 Augmenting 

In Chapter 4, the focus is on some design aspects of determining the path of 

steepest ascent with sufficient precision. For the homogeneous case, the precision 

of the path can be determined prior to the experiment using standard power tech

niques. A formula is derived involving the distribution function of the noncentral 

F-distribution and the inverse of the t-distribution. Not surprisingly, the power 

depends on the sample size, the experimental error, and the magnitude of the 

regression coefficients vector. 

When the data is heteroscedastic, the precision of the path depends also on 

the direction of the path. There are some directions that are determined more 

precisely than other directions. If the magnitude of the path, but not the direc

tion, can be predicted, then a conservative power analysis can be conducted by 

assuming that the path is in the direction of minimum precision. 

An important case when heterogeneity applies is for GLMs. Two important 

cases are for the Poisson model, often used for modelling counts, and the Binomial 

model, used for modelling proportions. The question considered is how to design 

experiments for GLMs, where the objective is to best determine the direction 

for further experimentation. Using an example with two levels, it is shown that 

considerable improvements over the standard factorial designs can be achieved by 

choosing the design points to minimise the proportion included in the confidence 

cone for the path. 

If the path has not been determined precisely enough, further experiments 

might be required. Methods are given for determining the nature and number of 

these experiments, using either a D-optimal design, or by directly minimising the 

proportion of directions included in the confidence cone for the path of steepest 

ascent. In many cases the D-optimal designs give quite good results. 
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6.5 Constraints and Second Order Models 

The results of chapters 2, 3, and 4 apply to unconstrained shuations. However, in 

many practical situations constraints must be considered. These constraints may 

arise as restrictions on the explanatory/experimental variables, because of a need 

to keep secondary responses at desirable levels, or a need to keep the solution 

within a certain distance from the centre of the experimental region. 

For a linear constraint, the optimum path is followed until the constraint 

is reached, and once it is reached, the path is projected onto the constraint 

plane. The variance-covariance of the projected path coefficients can be easily 

determined, and the method developed in Chapter 2 can be applied. An example 

is given that shows that the projected path may have much less precision than the 

original path once the constraint plane is reached, and hence further experiments 

may be required. 

Four examples are considered involving two to five dimensions. For each of the 

examples, a canonical analysis and ridge analysis was conducted. As the radius 

increases, the ridge solution converges quickly to the canonical axes. A useful 

method for determining confidence cones for the canonical axes was developed 

and applied to the examples. 

6.6 Limitations 

Although the results in this thesis should prove useful to experimenters, there are 

a number of limitations that should be borne in mind. Some of these limitations 

are discussed in this section. 

6.6.1 Correct Model Form 

In response surface methodology, we generally use linear and quadratic regression 

models. It is not suggested that these models are exactly correct, but it is hoped 

that they are sufficiently accurate to make the predictions based on these models 

useful. In general, the accuracy of the model decreases the further from the 
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centre of the experimental region. No consideration of the bias involved has been 

considered, and hence the further we are along the path, the less accurate and 

less useful the results will become. 

6.6.2 Correct Link 

With GLMs, as well as choosing the distribution and the hnear predictor, the 

analyst must specify the link function, the function which hnks the mean of the 

distribution to the linear predictor. In cases where the link is incorrectly specified 

the confidence regions may be inaccurate. The results in this thesis assume that 

the hnk is correctly specified, and if not, the effect on the confidence region is 

relatively minor. 

6.6.3 Overdispersion 

When using GLMs, the decision of whether to include overdispersion is a critical 

one as far as the confidence region is concerned. If there is actually overdispersion 

but it is ignored, the confidence region will likely be smaller than it should be, and 

hence the path might be considered to be determined precisely enough when, in 

reality, further experimentation might be the best course of action. On the other 

hand, if there is no overdispersion, and it is adjusted for, the confidence regions 

will be generally inflated in size, and further experiments might be conducted 

when the most fruitful action would be to do experiments along the path. 

6.6.4 Known Constraint Functions 

In Chapter 5, it is shown how to determine the precision of the modified path 

when there is a constraint. It is assumed that the constraint is known. However, 

sometimes the constraint is not known, but is estimated from previous experi

ments, or from the current experiment using one or more secondary responses. 

The effect of estimating the constraint function is not considered in this thesis. It 

is expected that including the uncertainty in the constraint function will increase 
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the size of the confidence region, and hence the proportion of possible directions 

included in the confidence cone. 

6.7 Future Work 

There are a number of areas that warrant further research: 

6.7.1 Consideration of Bias and Variance 

As we follow the path, we get further and further away from the centre of the 

experimental region, and the level of the lack of fit of the response surface will 

increase. However, at this stage, the methods developed ignore this lack of fit, and 

only consider the variance. Obtaining a more accurate measure of uncertainty, 

by considering both bias and variance,would strengthen the applicability of the 

results. For that reason, the results are only useful within a hmited spherical 

region. 

6.7.2 GLMs with Varying Dispersion 

One important motivation for the use of experimental design is the desire to 

improve the quahty of products and processes. The idea of using experimental 

designs to minimise the variability subject to the mean being on target is a very 

useful one, and has been promoted by Taguchi and others. 

In GLMs there is a relationship between the mean and the variance function. 

If desired, an overdispersion factor can be used; however, there are some practical 

cases where both the mean and the variability can depend on the experimental 

variables. Smyth (1989) gives a model where both the mean and variance can be 

modelled using GLMs. 

If it is desired to minimise the variability subject to the estimate being on 

target, the results of the previous chapter can be adopted. An extension to 

considering the impact of the estimation of the secondary response would be 

to consider the case when the primary and secondary responses are calculated 
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using GLMs. In this case, the primary response would be the variance, while the 

secondary response would be the mean. 

6.7.3 Comparison of D-Optimal and Minimum Propor

tion Designs 

In Chapter 4, simulations using an orthogonal array were used to show, over the 

ranges studied, that D-optimal designs were relatively efficient compared to the 

minimum proportion designs. This is not surprising since a D-optimal design 

gives the minimum sized confidence region for the regression coefficients. How

ever, some of the simulations showed that the minimum proportion designs can 

provide much more efficient estimators of the path of steepest ascent in some 

situations. Further examination and conduct of simulations studies similar to 

those in Chapter 4 are desirable. In particular, the literature on computer ex

periments (see, for example. Sacks, Welch, Mitchell and Wynn, 1989) could be 

used to determine the efficiency of the D-optimal design relative to the minimum 

proportion design, depending on the expected response at the centre of the ex

perimental region, the expected size and orientation of the regression coefficients 

vector, and (for Binomial data) the sample size. Using this methodology, a best 

unbiased linear predictor relating these parameters to the performance of designs 

could be developed and used in the planning of future experiments. Extensions 

to higher order dimensions should also be done. 

6.7.4 Allocation of Observations for Binomial Data 

In Chapter 4, methods were considered for determining the best locations of ex

perimental observations when the data follows a Binomial or Poisson distribution, 

and the path is desired with maximum precision. It is shown that if estimates of 

the response surface are available, designs can be found that offer a considerable 

improvement over the standard factorial designs. 

For Binomial data, only equal sample sizes were considered. Even more im

provement could be obtained by allowing the number of observations at each set 
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of conditions to be different. 

6.7.5 Bayesian Designs 

In Chapter 4, the designs are based on assuming particular values of the regression 

coeflacients. If we replace these estimates by prior distributions, different optimum 

designs will be selected. A study of these Bayesian designs for the path of steepest 

ascent would be extremely useful. 

6.7.6 Application to Designs with Randomisation Restric

tions 

Frequently, one or more of the experimental variables are harder to vary than 

some of the others. In these cases, split-plot designs are used (see, for example. 

Box and Jones, 1992). With these designs, the estimated parameters are het

erogeneous, and therefore the method for determining the precision of the path 

of steepest ascent developed in Chapter 2 could be apphed. For second order 

designs, Letsinger et al. (1996) determined how best a Central Composite Design 

should be conducted to allow for these randomisation restrictions. However, no 

work to date has examined how path of steepest ascent experiments should be 

conducted with randomisation restrictions. 

6.7.7 Multiple Responses 

In most practical cases there is more than one response. One approach pre

sented by Derringer and Suich (1980) is to develop a desirability function which 

transforms the multiresponse problem into a single response function by means 

of mathematical transformations. This method has been extensively studied by 

Harrington (1965); del Castillo and Montgomery (1993), and del Castillo et al. 

(1996). However, as Khuri (1999) points out, the known methods only apply to 

continuous responses, and extensions to GLMs is of vital importance. Not much 

has appeared in the literature on the effectiveness of the method for the precision 

of the path of steepest ascent when there are multiple responses and GLMs. 
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6.7.8 Est imated Constraint Functions 

As indicated previously, the constraints considered in Chapter 5 are assumed to 

be known. However, in practice, these constraints are often estimated. While it is 

possible to determine the path giving the maximum primary response subject to 

the estimated secondary response being less than a certain value, sa>' k. it might 

be more appropriate to optimise the primary response subject to there being a 

high probability that the actual secondary response is less than k. This extension 

would have wide apphcation in a variety of practical situations. 

6.7.9 GLMs and Second Order Models 

The examples studied in Chapter 5 each had a continuous response, which was 

assumed to follow a normal distribution. It should be possible to extend the 

method of Ankenman (2003) to cover GLMs, and to determine the precision of a 

canonical axis using a similar method to that given in section 5.5. 

6.7.10 Canonical Analysis and Ridge Analysis 

Canonical analysis and ridge analysis are complementary techniques for studying 

the nature of fitted second order response surfaces. The direction of steepest as

cent determined by ridge analysis usually converges quite rapidly onto a canonical 

axis found using canonical analysis. The method of determining the precision of 

the canonical axis, as given in section 5.5, should be useful for both canonical 

analysis and ridge analysis. It would also be useful to compare the results of the 

method with the methods developed by Peterson et al. (2002) and Gilmour and 

Draper (2003) as applied to ridge analysis. 
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Appendix A 

Splus commands for Chapter 2 

A. l Da ta set used in chapters 2 and 3 

B _ c ( - 1 , - 1 , 1 , 1 , - 1 , - 1 , 1 , 1 , - 1 , - 1 , 1 , 1 , - 1 , - 1 , 1 , 1 ) 
D _ c ( - 1 , - 1 , - 1 , - 1 , - 1 , - 1 , - 1 , - 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) 
F F _ c ( - l , - 1 , 1 , 1 , 1 , 1 , - 1 , - 1 , 1 , 1 , - 1 , - 1 , - 1 , - 1 , 1 , 1 ) 
G _ c ( l , - 1 , 1 , - 1 , - 1 , 1 , - 1 , 1 , 1 , - 1 , 1 , - 1 , - 1 , 1 , - 1 , 1 ) 
d e f e c t s _ c ( 5 6 , 1 7 , 2 , 4 , 3 , 4 , 5 0 , 2 , l , 0 , 3 , 1 2 , 3 , 4 , 0 , 0 ) 
t r r e s p . c ( 7 . 5 2 , 4 . 1 8 , 1 . 5 7 , 2 . 1 2 , 1 . 8 7 , 2 . 1 2 , 7 . 1 2 , 1 . 5 7 , 
1 . 2 1 , 0 . 5 0 , 1 . 8 7 , 3 . 5 4 , 1 . 8 7 , 2 . 1 2 , 0 . 5 0 , 0 . 5 0 ) BGplus_(B-i-B*G)/2 
BGminus_(B-B*G)/2 
chap23ex_as.data.frame(cbind(B,D,FF,G,BGplus,BGminus, 

defects,trresp)) 

A.2 Analysis using transformed response and 
original design 

The following command was used to analyse data in Table 2.1 using the trans

formed response (left panel). 

ch241eftf it_lm(trresp~D+FF+B+G+B:G,data=chap23ex) 

127 



APPENDIX A. SPLUS COMMANDS FOR CHAPTER 2 128 

A.3 Analysis using transformed response and 
modified design 

The following command was used to analyse data in Table 2.1 using the trans

formed response (right panel). 

ch24rightfit_lm(trresp~D+FF+BGplus+BGminus+G,data=chap23ex) 

A.4 Gaussian quadra ture functions 

The following functions were used to obtain Gaussian quadrature for three di

mensional data. 

gauss l_funct ion(r , t h , a = 0.6450, b = 0.5341) 
{ 

(r * a * b ) / s q r t ( l - r~2 * a"2 * (cos( th))"2 - r~2 * b"2 * 
( s in( th) )~2) 

} 

gauss2_function(n) 

{ 

if(n == 2){ 

absc <- c( - sqrt(l/3), sqrt(l/3))} 

else if(n == 3) { 

absc <- c(-0.77459667, 0, 0.77459667)} 

else if(n == 4) { 

absc <- c(-0.86113631, -0.33998104, 0.33998104, 

0.86113631)} 

else if(n == 5) { 

absc <- c(-0.90617985, -0.53846931, 0, 0.53846931, 

0.90617985)} 

else if(n == 6) { 

absc <- c(-0.93246951, -0.66120939, -0.23861918, 

0.23861918,0.66120939, 0.93246951)} 

else if(n == 7) { 



APPENDIX A. SPLUS COMMANDS FOR CHAPTER 2 129 

absc <- c(-0.94910791, -0.74153119, -0.40584515, 

0, 0.40584515,0.74153119, 0.94910791)} 

else if(n == 8) { 

absc <- c(-0.96028986, -0.79666648, -0.52553241, 

-0.18343464,0.18343464, 0.52553241, 0.79666648, 

0.96028986)} 

else if(n == 10) { 

absc <- c(-0.97390653, -0.86506337, -0.67940957, 

-0.43339539, -0.14887434, 0.14887434, 0.43339539, 

0.67940957, 0.86506337, 0.97390653)} 

if(n == 2) { 

weight <- c(l, 1) 

} 

else if(n == 3) { 

weight <- c(0.55555555, 0.88888888, 0.55555555) 

} 

else if(n == 4) { 

weight <- c(0.34785485, 0.65214515, 0.65214515, 

0.34785485)} 

else if(n == 5) { 

weight <- c(0.23692689, 0.47862867, 0.56888889, 

0.47862867,0.23692689)} 

else if(n == 6) { 

weight <- c(0.17132449, 0.36076157, 0.46791393, 

0.46791393,0.36076157, 0.17132449)} 

else if(n == 7) { 

weight <- c(0.12948497, 0.27970539, 0.38183005, 

0.41795918,0.38183005, 0.27970539, 0.12948497)} 

else if(n == 8) { 

weight <- c(0.10122854, 0.22238103, 0.31370665, 

0.36268378,0.36268378, 0.31370665, 0.22238103, 

0.10122854)} 

else if(n == 10) { 

weight <- c(0.06667134, 0.14945135, 0.21908636, 

0.26926672, 0.29552422, 0.29552422, 0.26926672, 

0.21908636, 0.14945135, 0.06667134)} 

else if(n == 32) { 

weight <- c(0.00701814576495, 0.0162774265831, 

0.0253910098329, 0.0342745478477, 

0.0428359896785, 0.0509978738117, 

0.0586839394615, 0.0658220603578, 
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0.0723456094297, 0.078193695762, 

0.083311711103, 0.0876518688047, 

0.0911736454878, 0.0938441590423, 

0.0956384754512, 0.0965398415811, 

0.0956384754512, 0.0938441590423, 

0.0911736454878, 0.0876518688047, 

0.083311711103, 0.078193695762, 

0.0723456094297, 0.0965398415811, 

0.0658220603578, 0.0586839394615, 

0.0509978738117, 0.0428359896785, 

0.0342745478477, 0.0253910098329, 

0.0162774265831, 0.00701814576495) 

} 

weightmat <- matrix(0, n, n) 

abscmat <- matrix(0, n, n) 

weightmat <- outer(weight, weight, "*") 

absmat <- outer(0.5 + 0.5 * absc, pi -•- pi * absc, "gaussl") 

sa <- (2 * pi''(1.5))/gamma(1.5) 

(2 * p i ) / ( 4 * sa) * sum(weightmat * absmat) 
} 

A.5 perinc 

The following function takes a linear model object and determines the semiaxes of 

the ellipsoid formed when projecting the confidence cone for the path of steepest 

ascent onto the plane orthogonal to the path. For two dimensions, it determines 

the exact proportion included in the confidence cone, and approximates it using 

numerical integration, or Monte-Carlo integration for higher dimensions, as weh 

as giving upper and lower bounds. 

perinc_function(lmobject,which=-l,mcssize=1000) 
{ 
bl_lmobject$coefficients[which] 

Gmat_solve(summary(Imobj ect)$cov.unsealed[which,which]) 
df_lmobj ec t$df . res idua l 
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sigma_summary(Imobject)$sigma 
oval _t(bl)y,*%Gmat%*%bl-(length(bl)-l)*sigma"2*qf (0.95, 

l e n g t h ( b l ) - l , d f ) 
Hmat_Gmat%*7,cbind(bl)7.*%rbind(bl)y,*%Gmat-cval [1,1] *Gmat 

eigs_-sort(-eigen(Hmat)$values) 
p r i n t ( e i g s ) 
a _ s q r t ( e i g s [ 1 ] / ( e i g s [1]-e igs [-1])) 
p r i n t ( a ) 

if (length(bl)==2) 
-C 
p inc l_as in (a [ l ] ) / p i 
cat ("Percent Included=",round(1000*100*pincl)/1000, 
"Percent Excluded=",round(1000*100*(1-pincl))/lOOO,"\n") 

} 
e l se if (length(bl)==3) 

{ 
lowerbound_a[ l ] / (2*a[2] )*( l - sqr t ( l -a [2]^2) ) 
upperbound_a[2]/(2*a [1] )*(1-sqr t (1-a [1]^2)) 
f f_ func t ion( the ta , a l , a2 ){ 

r_ l / sqr t (cos( the ta ) '^2 /a l~2+s in( the ta ) ' ' 2 /a2"2) 
p t ( s q r t ( 2 ) * s q r t ( l - r ~ 2 ) / r , 2 ) } 

p inc l_ l - in tegra te ( f f , lower=0,upper=2*pi ,a l=a[1] , 
a2=a[2])$ in tegra l / (2*pi ) 
cat("Lower Bound=",round(1000*100*lowerboimd)/lOOO, 
"Upper Bound=",round(1000*100*(upperbound))/1000,"\n") 
cat("Percent Included=",round(1000*100*pincl)/1000, 
"Percent Excluded=",round(1000*100*(1-pincl))/1000, 
"\n") 

} 
e l se if (length(bl)==4) 

{ 
lowerbd4d_(( (p i*a[1]*a[3] ) / (a [2] ) )*( (1 /a [3] )* 

a t a n ( l / ( ( l - 2 * a [ 3 ] ^ 2 ) / ( 2 * a [ 3 ] * 
s q r t ( l - a [ 3 ] ^ 2 ) ) ) ) - ( 2 * ( l - a [ 2 ] ^ 2 ) ) / 
( s q r t ( a [ 2 ] ~ 2 - a [ 3 ] ' 2 ) ) * 

a s inh( sq r t ( ( a [2 ]^2-a [3 ]^2) / ( l - a [2 ] ' ^2 ) ) ) ) ) / (2*p i^2) 
uppe rbd4d_( ( (p i*a [2 ]*a [3 ] ) / ( a [ l ] ) )* ( ( l / a [3 ] )*a t an ( l / 

( ( l - 2 * a [ 3 ] ^ 2 ) / ( 2 * a [ 3 ] * s q r t ( l - a [ 3 ] - 2 ) ) ) ) - ( 2 * 
( l - a [ l ] " 2 ) ) / s q r t ( a [ l ] " 2 - a [ 3 ] " 2 ) ) * a s i n h ( s q r t ( 

( a [ l ] ' 2 - a [ 3 ] ~ 2 ) / ( l - a [ l ] ^ 2 ) ) ) ) / ( 2 * p i ^ 2 ) 
x_matrix(rnorm(4*mcssize),mcssize,4) 
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z_x/sqrt(apply(x''2,l, "sum")) 

pincl_nrow(z[apply(z[,-4]'^2/a''2,l,"sum") <=1 & 

z[,4]>0,] )/mcssize 

cat("Lower Bound=",round(1000*100*lowerbound)/1000, 

"Upper Bound=",round(1000*100*(upperbound))/1000,"\n") 

cat("Approximate Percent Included=",round(1000*100* 

pincD/lOOO, "Approximate Percent Excluded=", 

round(1000*100*(1-pincl))/1000,"\n") 

} 

else 

{ 

lowerbd4d_l-pt(sqrt(length(bl)-l)*sqrt(l-

a[length(bl)-l]~2)/a[length(bl)-l],length(bl)-l) 

upperbd4d_l-pt(sqrt(length(bl)-l)*sqrt(l-a[l]"2)/ 

a[l],length(bl)-l) 

x_matrix(rnorm(mcssize*length(bl)),mcssize, 

length(bl)) 

z_x/sqrt(apply(x~2,1,"sum")) 

pincl_nrow(z[apply(z[,-length(bl)] "2/a''2,l, 

"sum") <=1 & z[,length(bl)]>0,] )/mcssize 

cat("Lower Bound=",round(1000*100*lowerbound)/lOOO, 

"Upper Bound=",round(1000*100*(upperbound))/lOOO,"\n") 

cat("Approximate Percent Included=",round( 

1000*100*pincl)/1000,"Approximate Percent Excluded=", 

round(1000*100*(l-pincl))/1000,"\n") 

} 
pincl 

} 

Examples of Use: 

perinc(ch241eftfit,which=2:3) 

perinc(ch24rightfit,which=2:4) 
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Splus commands for Chapter 3 

B. l Analysis using GLMs and original design 

The following command was used to analyse data in Table 2.1 using GLMs (left 

panel). 

ch31fit_glm(defects~D+FF+B+G-t-B:G,family=poisson,data=chap23ex, 
family=poisson) 
summary(ch31fit,cor=F) 

B.2 Analysis using GLMs and modified design 

The following command was used to analyse data in Table 2.1 using GLMs (right 

panel). 

ch32fit_glm(defects~D+FF+BGplus+BGminus+G,family=poisson, 
data=chap23ex) 
summary(ch32fit,cor=F) 
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B.3 perincglm 

The following function takes a generahsed linear model object and determines the 

semiaxes of the ellipsoid formed when projecting the confidence cone for the path 

of steepest ascent onto the plane orthogonal to the path. For two dimensions, it 

determines the exact proportion included in the confidence cone and approximates 

it using numerical integration, or Monte-Carlo integration for higher dimensions, 

as well as giving upper and lower bounds. 

perincglm_function(glmobj ect ,which=-l ,overdispersion=F) { 
bl_glmobject$coefficients[which] 
Gmat_solve(summary (glmobject)$cov.unsealed[whicli, which]) 
df_glmobj ec t$df . res idua l 
if (overdispersion==T){ 
cval_t(bl)7.*y,Gmat7o*7obl-(length(bl)-l)*glmobject$deviance* 
q f (0 .95 , l eng th (b l ) -1 ,d f ) / d f} 
e lse {cval_t(bl)7o*7,Gmat7o*7,bl-qchisq(0.95,length(bl)-l)} 
Hmat_Gmat7.*7.cbind(bl)7o*7.rbind(bl)7.*7.Gmat-cval [1,1] *Gmat 
eigs_-sort(-eigen(Hmat)$values) 
p r i n t ( e i g s ) 
a _ s q r t ( e i g s [ 1 ] / ( e i g s [ 1 ] - e i g s [ - 1 ] ) ) 
p r i n t ( a ) 
if (length(bl)==2) 

{ p i n c l _ a s i n ( a [ l ] ) / p i 
cat("Percent Included=",round(1000*100*pincl)/1000, 
"Percent Excluded=",round(1000*100*(l-pincl))/1000, 

"\n") 

} 
else if (length(bl)==3) 

{lowerbound_a[l]/(2*a[2])*(l-sqrt(l-a[2]~2)) 

upperbound_a[2]/(2*a[l])*(l-sqrt(l-a[l]'^2)) 

ff_function(theta,al,a2){ 

r_l/sqrt(cos(theta)"2/al~2+sin(theta)-2/a2^2) 

pt(sqrt(2)*sqrt(l-r^2)/r,2) 

} 
pincl_l-integrate(ff,lower=0,upper=2*pi,al=a[1] , 
a2=a[2])$integral/(2*pi) 
cat("Lower Bound=",round(1000*100*lowerbound)/lOOO, 

"Upper Bound=",round(1000*100*(upperbound))/lOOO, 
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"\n") 

cat("Percent Included=",round(1000*100*pincl)/1000, 

"Percent Excluded=",round(1000*100*(l-pincl))/1000, 

"\n") 

} 
else if (length(bl)==4) 

{lowerbd4d_(((pi*a[l]*a[3])/(a[2]))*((l/a[3])* 
a tan( l / ( ( l -2*a[3]-2) / (2*a[3]*sqr t ( l -a[3]-2))) ) -
(2*(l-a[2]~2))/(sqrt(a[2]^2-a[3]^2))* 
asinh(sqrt((a[2] ^2-a[3] "2)/( l-a[2] ^2))))) /(2*pi''2) 

upperbd4d_ (( (pi*a [2] *a [3] ) / (a [1])) * ((1/a [3]) * 
atan(l /(( l-2*a[3]~2)/(2*a[3]*sqrt(l-a[3] ' '2))))-(2* 
( l -a[ l ]~2)) / (sqr t(a[ l ] '2-a[3]~2))*asinh(sqrt 
( (a[ l ] -2-a[3]^2) / ( l -a[ l ] -2)) ) ) ) / (2*pi-2) 
x_matrix(rnorm(4*mcssize),mcssize,4) 
z_x/sqrt(apply(x~2,l,"sum")) 
pincl_nrow(z[apply(z[,-4]^2/a~2,l,"sum") <=1 & 

z[,4]>0,] )/mcssize 
cat("Lower Bound=",round(1000*100*lowerbound)/ 

1000,"Upper Bound=", 

round(1000*100*(upperbound))/1000,"\n") 

cat("Approximate Percent Included=",round 

(1000*100*pincl)/1000, 

"Approximate Percent Excluded=", 
round(1000*100*(1-pincl))/1000,"\n") 

} 
else { 

lowerbd4d_l-pt(sqrt(length(bl)-l)* 

sqrt(l-a[length(bl)-l]~2)/a[length(bl)-l] , 

length(bl)-l) 
upperbd4d_l-pt(sqrt(length(bl)-l)*sqrt(l-a[l]^2)/ 

a[l],length(bl)-l) 
x_matrix(rnorm(mcssize*length(bl)),mcssize, 

length(bl)) 
z_x/sqrt(apply(x~2,l,"sum")) 
pincl_nrow(z [apply (z[,-length(bl)]'^2/a'^2,l, 

"sum") <=1 & z[,length(bl)]>0,] )/mcssize 

cat("Lower Bound=",round(1000*100* 

lowerbound)/1000,"Upper Bound=",round(1000*100* 

(upperbound))/1000,"\n") 

cat("Approximate Percent Included=", 
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round(1000*100*pincl)/1000, 
"Approximate Percent Excluded=", 
round(1000*100*(1-pincl))/1000,"\n") 

} 
p inc l} 
} 

Examples of Use: 

perincglm(ch31fit,which=2:3) 
perincglm(ch31fit ,which=2:3,overdispersion=T) 
perincglm(ch32fit,which=2:4) 
perincglm(ch32fit ,which=2:4,overdispersion=T) 

B.4 profpath 

The following function takes a generalised model object and computes profile 

likelihood confidence regions for the path of steepest ascent. 

profpath_funct ion(dataframe,which,others,response, 
lev=c(test$deviance+qchisq( .95,2) , tes t$deviance+ 
( tes t$deviance / tes t$df . res idua l )*( length(which) -1)* 
q f ( . 95 , l eng th (which ) -1 , t e s t$d f . r e s idua l ) ) ) 
{ 
whichothers_c(which,others) 
y_as.vector(dataframe[,response]) 
x_as.matr ix((dataframe[,whichothers])) 
test_glm(y~x,family=poisson) 

test$deviance 

e3_c(0,0,l) 

gamma_test$coefficients[2:(length(which)+l)] 
u_gamma-sqrt ( t (gamma) 7o*7ogamma) *e3 
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u_u/sqrt(t(u)7,*7.u) 

Hu3d_diag(3) -2*u7.*7.t (u) 

gaml_seq(-.5,.5,.01) 

gam2_gaml 

dev_matrix(0,length(gaml),length(gam2)) 
gam3_dev 

for (i in 1:length(gaml)) 

{ 

for (j in 1:length(gam2)) 

{ 

cat(i,j,"\n") 

gam3[i , j ]_sqrt( l-gaml[i]~2-gam2[j]~2) 
gamvec_c(gaml[i] ,gam2[j] ,gam3[i , j ] ) 
dev[i,j]_glm(y~I(x[,l:(length(which))]7.*7.(Hu3d)7,*7. 
gamvec)+x[,-( l : ( length(which)))] , 
family=poisson)$deviance 
} 

} 
lev_c(tes t$deviance+qchisq( .95,2) , tes t$deviance+ 
( tes t$deviance / tes t$df . res idua l )*( length(which) -1)* 
q f ( .95 , l eng th (which ) -1 , t e s t$d f . r e s idua l ) ) 
profcont_contour(gaml,gam2,dev,levels=lev,save=T,plotit=T) 

} 

profcont_profpath(chap23ex,which=c(2,3,5),others=c(4,6), 
response=7) 
prof contl_profpath(chap23ex,wliich=c(2,3,5) ,o thers=c(4 ,6) , 
response=7,lev=c(22.599,23.045,30.236,37.437)) 
profcont l [ [4] ] 

Examples of Use: 

profpath(chap23ex,which=c(2,3,5) ,others=c(4,6), response=7) 
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B.5 contourprop 

The following function takes a contour object and computes the approximate 

proportion of directions included in the confidence region for the path of steepest 

ascent for three dimensional models. 

contourprop_function(contourobject,which) 
{ 
xlc_contourobj ect[[which] ] $x 
x2c_contourobj ect[[which]]$y 
x l c _ x l c [ ! i s . n a ( x l c ) ] 
x2c_x2c[l is .na(x2c)] 
th_atan(xlc ,x2c) 
ra_ra [order( th) ] 
t h_ th [o rde r ( th ) ] 
ra .sqr t (xlc"2+x2c^2) 
parsum_rep(0, length(th)) 
for ( i in 2 : l eng th ( th ) ) 

{ 
parsum [i] _parsum [i-1] -i-(th [i] - t h [ i -1] ) / (2*pi) * ( 
l - 0 . 5 * ( p t ( s q r t ( 2 ) * s q r t ( l - r a [ i - l ] " 2 ) / r a [ i - l ] , 2 ) + 
p t ( s q r t ( 2 ) * s q r t ( l - r a [ i ] ~ 2 ) / r a [ i ] ,2) ) ) 

} 
parsum[length(th)] 

} 

Examples of Use: 

contourprop(profcont,2) 
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B.6 boots 

The following function takes a linear model object and performs parametric boot

strap simulations in order to determine correct contour level to get the appropriate 

coverage. 

boot3_function(dataframe,which,others,response) { 
whichothers_c(which,others) 
y_as .vector(dataframe[,response]) 
x_as.matrix((dataframe [,whichothers])) 
test_glm(y~x,family=poisson) 
xl_as .matr ix((dataframe[,which])) 
x2_as .matr ix((dataf rame[ ,o thers] ) ) 
y _ r p o i s ( t e s t $ r e s i d u a l s , t e s t $ f i t t e d . v a l u e s ) 
deviancel_glm(y~x,family=poisson)$deviance 
deviance2_glm(y~I(xl7.*%test$coeff i c i e n t s [ 2 : (length(which) 
-1-1)]) +x2, f amily=poisson) $deviance 
deviance2-deviancel 

} bootres3_rep(0,999) for ( i in 1:999) { 
c a t ( i , " \ n " ) 
bootres3 [i] _boot3 (chap23ex, wliich=c ( 2 , 3 , 5 ) , otliers=c (4 ,6) , 
response=7) 

} 
plot(qchisq(seq(.001,.999,.001),2),sort(bootresS), 
xlab="Chi-squared(2) quantiles",ylab="Bootstrap deviance") 

abline(a=0,b=l) 
abline(v=qchisq(.95,2)) 

sort(bootres3) [950] 
qchisq(seq(.001,.99,.001),2) 
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B.7 boot4 

The following function takes a linear model object and performs nonparamet

ric bootstrap simulations in order to determine correct contour level to get the 

appropriate coverage. 

boot4_function(dataframe,which,others,response) 

{ 
whichothers_c(which,others) 
y_as.vector(dataframe[,response]) 
x_as.matr ix((dataframe[,whichothers])) 
test_glm(y~x,family=poisson,dispersion=0) 
pr_res id( tes t , type="pearson") 
prstand_pr/summary(test)$dispersion 

mapr_prstand-mean(prstand) 

rs_sample(mapr,length(y)) 
muhat.predict(test,type="response") 
y_round(muhat-i-sqrt (summary (test) $dispersion*muhat)*rs) 

y[y<o]_o 
xl_as.matrix((dataframe[,which])) 

x2_as.matrix((dataframe[,others])) 
deviancel_glm(y~x,family=poisson)$deviance 
deviance2_glm(y~I(xl7.*7.test$coeff icients [2: (length(which)+l)]) 

+x2,family=poisson)$deviance 

deviance2-deviancel 

} 
bootres4_rep(0,999) 

for (i in 1:999) 

{ 
cat(i,"\n") 
bootres4[i] _boot4(chap23ex,which=c(2,3,5),others=c(4,6), 

response=7) 

} plot(qf(seq(.001,.999,.001),2,10),sort(bootres4), xlab="F(2,10) 

quantiles",ylab="Bootstrap deviance") 

abline(a=0,b=l) 

abline(v=qf(.95,2,10) ) 



Appendix C 

Splus commands for Chapter 4 

c . l powerfn 

Power function for proportion of directions included in 100Q;% confidence cone 

for the path of steepest ascent. The arguments are: 

k 

1 — alpha 

nub 

Â  

P 

sigmabetasq 

sigmasq 

dimension 

confidence level 

residual degrees of freedom 

sample size 

proportion of directions 

EiPf 
a^ 

powerfn_function(k,alpha,N,nub,p,sigmabetasq,sigmasq){ 
1-pf(qf(l-alpha,k-l ,nub)* 
(qt(l-p,k-l)~2+(k-l))/k,k-l,nub,N*sigmabetasq/sigmasq)} 

Examples of Use: 

powerfn(5, .05,32,26, .02,2,1) 

141 
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pden 

Density function for percentage included for homoscedastic data. Note that the 

function uses numerical derivatives since Splus does not give density of noncentral 

F. 

pden_function(gamma,k,nub,ncp,h=.000001) 
{ 
X_qf( .95,k-l ,nub)*(qt( l -gamma,k-l)~2+(k-l)) 
gX_(pf(X+h,k-l ,nub,ncp)-pf(X,k-l ,nub,ncp))/ 
h-2*gX*qf( .95,k- l ,nub)*(- l*qt( l -gamma,k- l ) ) / 
d t (q t ( l -gamma,k- l ) ,k - l ) 

} 

C.2 approxp 

Approximate means and standard deviations for percent included for homoscedas

tic data. 

approxp_function(k,nub,lambda) 
{ 

approxmean_((lambda+k-1)*nub)/((k-l)*(nub-2)) 
approxvar_2*nub'^2* ( (k - l ) ~2+ (2*lambda+nub-2) * (k- l ) +lambda* ( 
lambda+2*nub-4))/((k-l)^2*(nub-4)*(nub-2)~2) 
pmean_pt(sqr t (approxmean/qf( .95,k- l ,nub)-(k- l ) ) ,k- l ) 
psd_sqr t (approxvar)*dt (sqr t (approxmean/qf( .95 ,k- l ,nub)- (k- l ) ) , 
k - l ) / ( 2*qf(.95,k-l ,nub)*sqrt(approxmean/ 
q f ( . 9 5 , k - l , n u b ) - ( k - l ) ) ) 
l ist(pmean,psd) 

} 
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Examples of Use: 

approxp(2,10,30) 

C.3 heterofn 

Function to give expected proportion of directions included in 95̂ ;̂  confidence 

cone for the path of steepest ascent, when the angle between the 2^ design and 

the mean function is theta, and the angle between the design and the variance 

function is phi. The magnitude of the mean coefficients is meannorm, while the 

magnitude of the variance coefficients is heteronorm. 

heterofn_function(theta, phi, meannorm,heteronorm) 
{ 
xdes <- matrix(c( l , 1, 1, 1, - 1 , 1, - 1 , 1, - 1 , - 1 , 1, 1), 4, 3) 
vmat <- diag(exp(heteronorm* cos(phi) * xdes[, 2] + 

heteronorm* sin(phi) * xdes[, 3])) 

bvmat <- solve(t(xdes) 7o*7o solve(vmat)yo*7o xdes) 

gmat <- solve(bvmat[2:3, 2:3]) 

bb <- c(meannorm * cos(theta), meannorm * sin(theta)) 

hmat <- gmat 1*1 bb %*% t(bb) %*% gmat - as.vector(t(bb)7.*7. 

gmat7.*7. bb - qchisq(0.95, 1)) * gmat 

evals <- rev(sort(eigen(hmat)$values)) 
al <- sqr t ( eva l s [ l ] / ( eva l s [1 ] - evals[2]) ) 
a s in (a l ) /p i 

} 

Examples of Use: 

heterofn(pi/4,pi/6,5,1.51293) 
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C.4 heteropowerlik 

Function to give proportion of directions included in the 957c confidence cone 

for the path of steepest ascent with two dimensions, when only the first factor 

has a non-zero effect, the angle between the 2^ design and the mean function is 

theta, and the angle between the design and the variance function is phi. The 

magnitude of the mean coefficients is meannorm. while the magnitude of the 

variance coefficients is heteronorm. The proportion of directions is determined 

using profile likelihood techniques. 

heteropowerlik_function(bnorm, t h e t a , heteronorm, phi) 
{ 

xdes<-matr ix(c( l , 1, 1, 1, 1, 1, 1, 1, - 1 , 1, - 1 , 1, - 1 , 1, 
-1, 1, -1, -1, 1, 1, -1, -1, 1, 1), 8, 3) 

vmat <- (exp (heteronorm*cos (phi) *xdes [, 2] -t-heteronorm* 

sin(phi)*xdes[,3])) 

vmat<-diag(vmat) 

wt<-l/diag(vmat) 

y<-bnorm*cos (theta) *xdes [, 2] -i-bnorm*sin (theta) * 

xdes [, 3] -(-rnorm(8) /sqrt (wt) 

genlinmod <- summary(glm(y " xdes - 1, weights = wt)) 

bbl <- genlinmodScoefficients[2:3] 

disp <- genlinmod$dispersion 

list(bbl,disp) 

e2_c(0,l) 

u_bbl-sqrt(t(bbl)7.*7.bbl)*e2 

u_u/sqrt(t(u)7o*7.u) 

Hu2d_diag(2)-2*u7o*7.t(u) 

gaml_seq(-l,l,.01) 

dev.rep(0,length(gaml)) 

gam2_dev 

for (i in 1:length(gaml)) 

{ 
gam2[i]_sqrt(1-gaml[i]"2) 
gamvec_c(gaml[i],gam2[i]) 
dev[i] _glm(y~I (xdes [,2:3] \%*\%(Hu2d)\7o*\7.gamvec),weights=wt)$ 
deviance 

} 
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} 

plot(gaml,dev-(disp*qf(0.95,1,5)+disp)) 

abline(h=0) 

al.approx(dev[1:101],seq(-l,0,.01),disp*qf(0.95,1,5)+disp) $y 

a2_approx(dev[101:201],seq(0,l,.01),disp*qf(0.95,l,5)+disp)$y 

pinc_(asin(a2)-asin(al))/(2*pi) 
pine 

Examples of Use: 

heteropowerl ik(4,0 ,1 .51293,pi /6) 

C.5 augdet 

Determinant criteria for augmenting runs for the example in chapters 2 and 3. 

augdet_function(x) 

{ 
xmat_rbind(cbind(Dphd,Fphd,BGplus,rep(1,16),Gphd), 
cb ind(mat r ix (x , l eng th (x ) /3 ,3 ) ,ma t r ix (1 , l eng th (x ) /3 ,2 ) ) ) 
umat_diag(exp(as. vector (xmat7o*yoch32fit$ 
c o e f f i c i e n t s [ c ( 2 : 4 , 1 , 6 ) ] ) ) ) 
varmat_t (xmat) 7o*7oiimat7o*7oxmat 
c r i t .varmat [1:3,1:3] -varmat [1:3,4:5] 7,*7.solve (varmat [4:5 ,4:5]) %*7o 
varmat[4:5,1:3] 
d e t ( c r i t ) 

} 

C.6 augfun 

Minimum proportion of directions included in 95% confidence cone criteria for 

augmenting runs for the example in chapters 2 and 3. 
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a u g f u n _ f u n c t i o n ( x , o v e r d i s p e r s i o n = F ) 
{ 

xmat_rb ind(cb ind(Dphd ,Fphd ,BGplus , rep(1 ,16) ,Gphd) , 
c b i n d ( m a t r i x ( x , l e n g t h ( x ) / 3 , 3 ) , m a t r i x ( l , l e n g t h ( x ) / 3 , 2 ) ) ) 
umat_diag (exp ( a s . v e c t o r (xmat7.*7.ch32fit$ 
c o e f f i c i e n t s [ c ( 2 : 4 , 1 , 6 ) ] ) ) ) 
varmat . s o l v e ( t (xmat) 7.*7oUmat7o*7.xmat) 
G l l p _ v a r m a t [ l : 3 , l : 3 ] 
Gmatp_solve(GlIp) 
b l p _ c h 3 2 f i t $ c o e f f i c i e n t s [2:4] 

i f (overd i spers ion==T) 
{ 

d f _ 1 0 + l e n g t h ( x ) / 3 

cval_t(blp)7,*7.Gmatp7.*7.blp-(length ( b l p ) - l ) * c h 3 2 f i t $ d e v i a n c e * 
q f ( 0 . 9 5 , l e n g t h ( b l p ) - l , d f ) / d f 
} 

e l s e 
{ 

cval_t(blp)7o*7oGmatp7.*7.blp-qchisq(0.95, l e n g t h ( b l p ) - l ) 
} 

Hmatp_Gmatp7o*7oblp7o*7ot(blp)7o*7oGmatp-as. v e c t o r (cval)*Gmatp 
e v a l s _ r e v ( s o r t ( e i g e n ( H m a t p ) $ v a l u e s ) ) 
a l . e v a l s [ 1 ] / ( e v a l s [ 1 ] - e v a l s [ 2 ] ) 
a 2 _ e v a l s [ 1 ] / ( e v a l s [ 1 ] - e v a l s [ 3 ] ) 
a _ c ( a l , a 2 ) 
f f _ f u n c t i o n ( t h e t a , a l , a 2 ) 

{ 
r _ l / s q r t (cos ( t h e t a ) ~ 2 / a l ' ' 2 + s i n ( t h e t a ) '^2/a2^2) 
p t ( s q r t ( 2 ) * s q r t ( l - r " 2 ) / r , 2 ) 

} 
p i n e 1 _ 1 - i n t e g r a t e ( f f , l o w e r = 0 , u p p e r = 2 * p i , 
a l=a [1 ] , a 2 = a [ 2 ] ) $ i n t e g r a l / ( 2 * p i ) 

p i n c l 

} 
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C.7 Commands to determine best set of aug
menting runs 

Commands to determine best set of augmenting runs with determinant criteria 

and minimum percentage included criteria, with and without overdispersion, for 

1, 2 and 3 runs. 

yd l_n lminb(s ta r t=run i f (3 , - l ,+ l ) ,ob jec t ive=augde t , 
lowers- l ,upper=l) 
ydl$parameters 

augfun(ydl$parameters) 

augfun(ydl$parameters,overdispersion^!) 

yfl_nlminb(start=runif(3,-1,+1),objective=augfun, 
lower=-1,upper=l) 

yfl$parameters 
augfun(yfl$parameters) 
yf lo_nlminb (start=runif (3, -1, -t-1), ob j ect ive=augf un, 

lower=-l,upper=l, 
overdispersion=T) 
yflo$parameters 
augfun(yflo$parameters,overdispersion=T) 

yd2_nlminb(start=runif(6,-1,+1),obj ective=augdet, 

lower=-l,upper=l) 

yd2$parameters 
augfun(yd2$parameters) 
augfun(yd2$parameters,overdispersion=T) 
yf2_nlminb(start=runif(6,-1,+1),objective=augfun, 

lower=-l,upper=l) 

yf2$parameters 

augfun(yf2$parameters) 

yf2o_nlminb(start=runif(6,-1,+1),objective=augfun, 

lower=-1,upper=1, 

overdi spers ion=T) 

yf2o$parameters 

augfun(yf2o$parameters,overdispersion=T) 

yd3_nlminb(start=runif(9,-l,+l),objective=augdet, 

lower=-l,upper=l) 

yd3$parameters 

augfun(yd3$parameters) 
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augfun(yd3$parameters,overdispersion=T) 
yf3_nlminb(s tar t=runi f (9 , - l ,+ l ) ,objec t ive=augfun, 
lower=-l ,upper=l) 
yf3$parameters 

augfun(yf3$parameters) 

yf3o_nlminb(start=runif(9,-l,+l),objective=augfun, 

lower=-l,upper=l, 

overdispersion=T) 

yf3o$parameters 

augfun(yf3o$parameters,overdispersion=T) 

C.8 poisfund 

Function to give the negative of the determinant criteria for a Poisson experiment 

for the example in section 4.6.1. 

p o ] Lsfund_function(x, a, b . 
{xmat <- matr ix(c(rep( 

cc) 
1, l eng th (x ) /2 ) . 

Ip <- a + b * xmat[, 2] + cc * xmat[. 
lambdap <- exp(lp) 
umat <- diag(lambdap) 
varmat <- t(xmat) 7o*7o 
c r i t <- varmat[2:3, 2: 
varmat[1, 2 : 3 , drop = 

- d e t ( c r i t ) } 

umat 7o*7o xmat 
3] - varmat[2:3, 

F] /varmat[1, 1] 

x) 
3] 

1, 

, length (: 

drop=F] 

0 / 2 , 

7.*7, 

3) 

C.9 poisfunp 

Function to give the percentage of directions included in the confidence region 

for the path of steepest ascent for the example in section 4.6.1. 
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poisfunp_function(x, a, b, cc, nn) 

{xmat <- matrix(c(rep(l, length(x)/2), x), 

length(x)/2, 3) 

Ip <- a + b * xmat[, 2] + cc * xmat[, 3] 

lambdap <- exp(lp) 

umat <- diag(lambdap) 

varmat <- solve(t(xmat)7.*7.umat7.*7.xmat) 

Gllp <- varmat[2:3, 2:3] 

Gmatp <- solve(Gllp) 

blp <- c(b, cc) 

ccalc <- t(blp)7.*7o Gmatp7o*7. blp-qchisq(0.95,1) 
Hmatp <- Gmatp 7.*% blp7«*7.t(blp)7,*7o 

Gmatp-as.vector(ccalc)*Gmatp 
evals <- rev(sort(eigen(Hmatp)$values)) 
al <- sqrt(evals[1]/(evals[1] - evals[2])) 
pine <- (2 * asin(al))/(2 * pi) 
pine} 

C.IO poissim 

Function to compare D-optimal and minimum percentage designs for Poisson 

data. 

po 
{ 

issim_function(aval, bval, ccval, nruns) 

mini <- 1 

min2 <- 1 

min3 <- 1 

for(ii in 1:50) { 

cat(ii) 

ydval <- nlminb(start = runif(2 * nruns, -

objective = poisfund, lower = -

upper = 1, a = aval, b 

cc = ccval) 

cat("ydval$parameters", 

= bval. 

"\n") 

print(matrix(ydval$parameters, nruns 

-1, 

2)) 

-1,1), 
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print(poisfunpred(ydval$parameters, 

a = aval, b = bval, cc = ccval)) 

cat("pinc for ydval$parameters", "\n") 

print(poisfunp(ydval$parameters, a = aval, 

b = bval, cc =ccval, nn = nnval)) 

current <- poisfund(ydval$parameters, 

a = aval, b - bval, cc = ccval) 
cat(ii, mini, current, "\n") 

mini <- min(mini, current, na.rm = T) 

if(abs(current - mini) < le-005 I ii == 1) { 

cat("current D-optimal", ii, "\n") 

min3 <- poisfunp(ydval$parameters, 

a = aval, b = bval,cc = ccval)} 

ypval <- nlminb(ydval$parameters, 

objective = poisfunp, lower = -1, upper = 1, 

a = aval, b = bval, cc = ccval, 

trace = T) 

print(matrix(ypval$parameters, nruns, 2)) 

print(poisfunpred(ypval$parameters, 

a =aval, b = bval, cc = ccval)) 

cat("pinc for ypval$parameters", "\n") 

print(poisfunp(ypvalSparameters, a = aval, 
b = bval, cc = ccval, nn = nnval)) 
min2 <- min(min2, poisfunp(ypval$parameters, 

a = aval, b = bval, cc = ccval), na.rm = T) 

} 
cat(min3, min2, min2/min3, "\n") 

min2/min3 

C . l l bcfnS 

Function to determine the efficiency of the D-optimal design relative to the min

imum proportion designs for Poisson data using the 100 run orthogonal array 

given by Sloane (2005), and saved in matrix "orth". 
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bcfn3_function(lambdahat, u, v){ 

a <- log(lambdahat) 

cc <- u/sqrt(l + tan(v)'^2) 
b <- cc * tan(v) 

poissim(a, b, cc,4)} 

Examples of Use: 

pres_rep(NA,100) 
for ( i in 1:100){ 

c a t ( i , " \ n " ) 
r e s . t r y (bcf n3 (5-t-20/9*orth [i 

p i / 3 6 * o r t h [ i , 3 ] ) ) 
,1 ] ,0 

i f ( ! i s . n u l l ( r e s ) ) { p r e s [ i ] _res}} 
h i s t ( p r e s ) 

5+2/9' t=orth[i , 2 ] , 

C.12 binfund 

Function to give the negative of the determinant criteria for a Binomial experi

ment for the example in section 4.6.2. 

binfund_j 
{ xmat 

Ip <-
pp <-
umat 

function(x, a, b , cc, nn) 
<- ma t r i x ( c ( r ep ( l , l eng th (x ) /2 ) , 

- a + b * xmat[, 2] + cc * xmat[. 
- e x p ( l p ) / ( l + exp d p ) ) 
<- diag(nn * pp * (1 - pp)) 

varmat <- t(xmat) 7o*7o umat 7o*7o xmat 
c r i t 
= F] 

<- varmat[2:3, 2:3] - varmat[2:3 

x ) . 
3] 

, 1, 

l eng th (x ) /2 . 

drop 
7o*7o varmat [1 , 2 : 3 , drop = F]/varmat [1 , 1] 

- d e t ( c r i t ) } 

3) 
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C.13 binomfunp 

Function to give the percentage of directions included in the confidence region 

for the path of steepest ascent for the example in section 4.6.2. 

binomfunp_function(x, a, b, cc, nn) 

{ xmat <- matrix(c(rep(l, length(x)/2), x), length(x)/2, 3) 
Ip <- a + b * xmat[, 2] + cc * xmat[, 3] 
pp <- e x p ( l p ) / ( l -I- exp d p ) ) 
umat <- diag(nn * pp * (1 - pp)) 

varmat <- solve(t(xmat) Vo*! umat %*1 xmat) 
Gllp <- varmat[2:3, 2:3] 
Gmatp <- solve(Gllp) 
blp <- c(b, cc) 

ccalc <- t(blp) %*% Gmatp %*7, blp - qchisq(0.95, 1) 
Hmatp <- Gmatp 7o*7o blp 7y/o t(blp) 7o*7c Gmatp 

- as.vector(ccalc) * Gmatp 

evals <- rev(sort(eigen(Hmatp)Svalues)) 
al <- sqrt(evals[1]/(evals[1] - evals[2])) 
pine <- (2 * asin(al))/(2 * pi) 

pine} 

C.14 binsim 

Function to compare D-optimal and minimum percentage designs for Binomial 

data. 

binsim_function(aval, bval, ccval, nnval, nruns) 

{ mini <- 1 

min2 <- 1 

min3 <- 1 

fordi in 1:50) { 

cat(ii) 
ydval <- nlminb(start = runif(2 * nruns, 

objective = binfund, lower = -1, upper 
-1,1), 

=1, 
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a - aval, b = bval, cc= ccval, nn = nnval) 

cat("ydval$parameters", "\n") 

print(matrix(ydval$parameters, nruns, 2)) 

print(binomfunpred(ydval$parameters, 

a =aval,b = bval,cc = ccval, nn = nnval)) 

cat("pine for ydval$parameters", "\n") 

print(binomfunp(ydval$parameters, 

a = aval, b = bval, cc =ccval, nn = nnval)) 

current <- binfund(ydvalSparameters, 

a = aval, b = bval, cc =cval, nn = nnval) 

catdi, mini, current, "\n") 

mini <- min(mini, current, na.rm = T) 

if(abs(current - mini) < le-005 | ii == 1) { 

cat("current D-optimal", ii, "\n") 

min3 <- binomfunp(ydval$parameters, 

a = aval, b = bval,cc = ccval, nn = nnval)} 

ypval <- nlminb(ydval$parameters, 

objective = binomfunp, lower=-l,upper = 1, 

a = aval, b = bval, cc = ccval, nn = nnval, 

trace = T) 

print(matrix(ypvalSparameters, nruns, 2)) 

print(binomfunpred(ypval$parameters, 

a = aval, b = bval, cc = ccval, nn = nnval)) 

cat("pine for ypval$parameters", "\n") 

print(binomfunp(ypvalSparameters, 

a = aval, b = bval, cc = ccval, nn = nnval)) 

min2 <- min(min2, binomfunp(ypvalSparameters, 

a = aval, b = bval, cc = ccval, nn=nnval),na.rm = T)} 

cat(min3, min2, min2/min3, "\n") 

min2/min3}} 

Examples of Use: 

binsim(log(0.6/(1-0.6)),sqrt(5),2*sqrt(5),50,4) 
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C.15 bcfn4 

Function to determine the efficiency of D-optimal design relati\-e to the minimum 

proportion designs for Binomial data using the 100 run orthogonal array given 

by Sloane (2005), and saved in matrix "orth". 

> bcfn4_function(phat, u, v, nn) 
{ a <- log(phat/(l - phat)) 

cc <- u/sqrt(l + tan(v)"2) 
b <- cc * tan(v) 
binsim4(a, b, cc, nn)} 

Examples of Use: 

bres_rep(NA,100) 
for (i in 1:100){ 

ca t ( i , " \n") 
bres_try(bcfn4(0.2+0 

pi /36*or th[ i ,3] , 
.6/9*orth[i , l ] 
20+60/9*orth[i 

i f ( ! i s .nul l ( res) ){bres[ i ]_res}} 
hist(bres) 

, l-i-orth[i 
,4])) 

,2 ] , 
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Splus commands for Chapter 5 

D.l Commands for linear constraints 

The following commands were used for the example in section 5.2. First, the 

proportion of directions included in the 95% confidence cone for the unconstrained 

path of steepest ascent was calculated. 

bvec_as.vector(c(3.8,2.6,1.9)) 

xmat.matrix(1,8,4) 

for (i in 2:4){xmat [,i]_rep(c(-l,l) ,each=2''(i-2) ,length.out=8)} 

Gmat_solve(solve(t (xmat)7.*7.xmat)) [2:4,2:4] 

Hmat_Gmat7o*7.bvec7.*7ot (bvec) 7.*7.Gmat-as. numeric (t (bvec) 7«*7.Gmat7o*7o 

bvec-qchisq(.95,2))*Gmat 
evals_rev( sort(eigen(Hmat)Svalues)) 
a l _ s q r t ( e v a l s [ 1 ] / ( e v a l s [ 1 ] - e v a l s [ 2 ] ) ) 
l - p t ( s q r t ( 2 ) * s q r t ( l - a l " 2 ) / a l , 2 ) 

Second, the equation of the projected path was computed. 

avec_c(5,10,10) 
pmat_avec7o*7osolve(t(avec)7o*7oavec)7o*7ot(avec) 
(diag(3)-pmat)7.*7.bvec 

155 
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Finally, the proportion of directions included in the 959c confidence cone for the 

constrained path of steepest ascent was calculated. 

e3vec_c(0,0,1) 

uvec_avec-sqrt (as. numeric (t (avec)7o*7.avec)) *e3vec 

uvec_uvec/sqrt (as. numeric (t (uvec)7,*7.uvec)) 

Hu_diag(3)-2*uvec7.*7,t(uvec) 

bnew_(Hu7.*7.(diag(3)-pmat) 7o*7,bvec) [1:2] 

Gmat_ (Hu7,*7. (diag (3) -pmat) 7o*7. (8*diag (3)) 7o*7. 
(diag(3) -pmat)7.*7.Hu) [1:2,1:2] 
Hmat_Gmat7.*7.bnew7.*7,t (bnew) 7.*7.Gmat-as. numeric (t (bnew) 7.*7,Gmat7.*7. 
bnew-qchi sq(.95,1))*Gmat 
evals_rev( sort(eigen(Hmat)Svalues)) 
a l . s q r t ( e v a l s [ 1 ] / ( e v a l s [ 1 ] - e v a l s [ 2 ] ) ) 
l - p t ( s q r t ( l - a l ' ' 2 ) / a l , l ) 

D.2 Two dimensional example 

Two dimensional example given in Box et al. (1978, p.519). 

x l _ c ( - l , 1 , - 1 , 1 , 0 , 0 , - s q r t ( 2 ) , s q r t ( 2 ) , 0 , 0 , 0 , 0 ) 
x 2 _ c ( - 1 , - 1 , 1 , 1 , 0 , 0 , 0 , 0 , - s q r t ( 2 ) , s q r t ( 2 ) , 0 , 0 ) 
y2d_c(78.8 ,84 .5 ,91 .2 ,77 .4 ,89 .7 ,86 .8 , 

83 .3 ,81 .2 ,81 .2 ,79 .5 ,87 .0 ,86 .0) 
twoddata_as.data.frame(cbind(xl ,x2,y2d)) 
twodfit_lm(y2d~xH-x2+I(xl^2)+I(x2"2)+I(xl*x2),data=twoddata,y=T) 
summary(twodfit,cor=F) 

D.3 Three dimensional example 

Three dimensional example given Box and Draper (1987, p.360). 
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xl_c(-l,1,-1,1,0,0,-1,1,-1,1,0,0,-sqrt(2),sqrt(2),0,0,0,0, 
-sqrt(2),sqrt(2),0,0,0,0) 

x2_c(-l,-1,1,1,0,0,-1,-1,1,1,0,0,0,0,-sqrt(2),sqrt(2), 0,0, 
0,0,-sqrt(2),sqrt(2),0,0) 

x3_c(l,-1,-1,1,0,0,-1,1,1,-1,0,0,0,0,0,0,-sqrt(2),sqrt(2), 

0,0,0,0,-sqrt(2),sqrt(2)) 

y3d_c(40,18.6,53.8,64.2,53.5,52.7,39.5,59.7,42.2,33.6,54.1, 

51.0,43.0,43.9,47.0,62.8,25.6,49.7,39.2,46.3,44.9,58.1,27.0,50.7) 

blocks_as.factor(c(rep(l,6),rep(2,6),rep(3,6),rep(4,6))) 

threeddata_as.data.frame(cbind(blocks,xl,x2,x3,y3d)) 

threedfit_lm (y3d~as. factor (blocks)+xl+x2+x3+I (xl "2)-(-I (x2"2) + 

I(x3~2)+1(xl*x2)+1(xl*x3)+1(x2*x3),data=threeddata,y=T) 

summary(threedfit,cor=F) 

D.4 Four dimensional example 

Four dimensional example given by Box and Liu (1999) 

xl_c(-l,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,0,0, 
-2,2,0,0,0,0,0,0,0,0,0,0) 
x2_c(-l,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,0,0, 

0,0,-2,2,0,0,0,0,0,0,0,0) 
x3_c(-l,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1,0,0, 

0,0,0,0,-2,2,0,0,0,0,0,0) 
x4_c(-l,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,0,0, 

0,0,0,0,0,0,-2,2,0,0,0,0) 

y4d_c(367,369,374,370,372,355,397,377,350,373,358, 
363,344,355,370,362,377,375,361,364,355,373, 

361,360,380,360,370,368,369,366) 

blockl_c(rep(l,18),rep(0,12)) 

block2_c(rep(0,18),rep(l,12)) 

blocks.as.factor(c(rep(1,18),rep(2,12))) 
fourddata.as.data.frame(cbind(blockl,block2,xl,x2,x3,x4,y4d)) 
fourdfit_lm(y4d~blockl+block2+xl+x2-i-x3+x4+I(xl^2)+I(x2^2) + 

I(x3^2)+I(x4~2)+I(xl*x2)+I(xl*x3)+I(xl*x4)+I(x2*x3)+ 
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I(x2*x4)+1(x3*x4)-1,data=fourddata,y=T) 
summary(fourdf it,cor=F) 

D.5 Five dimensional example 

Five dimensional example given by Kiprianova and Markovska (1993, p.83). 

xl_c(rep(c(l,-l),9),rep(0,8)) 

x2_c(rep(c(l,1,-1,-1),4),c(0,0,1,-1,0,0,0,0,0,0)) 

x3_c(rep(c(l,1,1,1,-1,-1,-1,-1),2),c(0,0,0,0,1,-1,0,0,0,0)) 
x4_c(rep(l,8),rep(-l,8),c(0,0,0,0,0,0,l,-l,0,0)) 

x5_c(l,-l,-l,l,-l,l,l,-l,-l,l,l,-l,l,-l,-i,l,rep(0,8),l,-l) 
y5d_c(4.016,2.753,1.495,3.161,2.407,3.765,2.407,2.737, 
1.879,3.216,1.774,3.222,3.514,2.275,3.681,4.540, 

2.383,3.017,3.014,2.091,2.552,2.819,2.897,2.547,3.519,2.882) 
f iveddata_as.data.frame(cbind(xl,x2,x3,x4,x5,y5d)) 

fivedfit_lm(y5d~xH-x2+x3-i-x4+x5+I(xl~2)+I(x2~2)+I(x3"2)+I(x4'~2) + 
I(x5"2)+I(xl*x2)-i-I(xl*x3)+I(xl*x4)-i-I(xl*x5)+I(x2*x3)+I(x2*x4) + 
I (x2*x5) +1 (x3*x4) -i-I (x3*x5) -t-I (x4*x5), data=f iveddata) 
summary(f ivedf it,cor=F) 

D.6 ridgeplot 

Function to give ridge plot. 

ridgeplot_function(Imobject,nblocks=l,mulower,muupper,radupper) 

{ 
if (nblocks>l) 

betahat_summary(lmobject)Scoefficients[ ,1][-(2:nblocks)] 
e l se 

betahat_summary(lmobject)Scoefficients[,1] 
nn_round((sqr t ( l+8*length(betahat ) ) -3) /2) 
bvec.betahat[2:(nn+1)] 
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Bmat_matrix(0,nn,nn) 
for ( i in l :nn) 
{ 
Bmat [ i , i ] _betahat [i+nn+1] 

} 
pos_2*nn+l 
for ( i in 1:(nn-1)) 

{for (j in ( i+ l ) :nn ){ 
pos_pos+l 
c a t ( i , j , p o s , " \ n " ) 
Bmat[i , j ]_0.5*betahat[pos] 
Bmat [j , i ] _Bmat [ i , j ] } } 

pr in t (bvec) 
print(Bmat) 

muval_seq(mulower,muupper,length=1000) 
radres_rep(0,1000) 
for ( i in 1:1000) 

{xs_-0. 5*solve (Bmat-muval [ i] *diag(nn) )7,*7obvec 
radres [i] _as . vector (sqr t ( t (xs) 7o*7oXs))} 

plot(muval,radres,yl im=c(0,radupper) , type="l",xlab="mu", 
ylab="Radius")} 

Examples of Use: 

ridgeplot(twodf it,nblocks=1,mulower=-10,muupper=5,radupper=5) 

ridgeplot(threedfit,nblocks=4,mulower=-20,muupper=10,radupper=5) 

ridgeplot(fourdfit,nblocks=l,mulower=-10,muupper=5,radupper=5) 

ridgeplot(fivedfit,nblocks=l,mulower=-l,muupper=l,radupper=5) 

D.7 maxplot 

Function to give co-ordinates of maximum response versus radius and estimated 

maximum response. 
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maxplot_function(Imobj ect,mulower,muupper,nblocks=l) { 
if (nblocks>l) 

{ betahat_summary(lmobject)Scoefficients[ , l] 
[ - (2 :nblocks)]} 

e l se betahat_summary(Imobject)Scoefficients[,1] 
nn_round((sqr t (1+8*length(betahat) ) -3) /2) 
bvec_betahat[2:(nn+1)] 
Bmat.matrix(0,nn,nn) 
for ( i in l :nn) { 

Bmat [ i , i ] .be taha t [i+nn+1]} 
pos_2*nn+l 
for ( i in 1:(nn-1)) 

{for (j in ( i+1):nn){ 
pos_pos+l 
c a t d , j , p o s , " \ n " ) 
Bmat [ i , j ] _0. 5*betahat [pos] 
Bmat [j , i ] _Bmat [ i , j ] } } 

pr in t (bvec) 
print(Bmat) 
mu_seq(mulower,muupper,length=1000) 
xs_matrix(0,1000,nn) 
R_rep(0,1000) 
ymax_rep(0,1000) 
for ( i in 1:length(mu)){ 

xcoord_-0. 5*solve (Bmat-mu [i] *diag(nn)) 7o*7obvec 
xs[ i , ]_xcoord 
R [i] _sqrt ( t (xcoord) 7o*7oxcoord) 
ymax[i] _betahat [1] +t (xcoord) 7o*7obvec+t (xcoord) 7o*7o 
Bmat7o*7oxcoord 
c a t ( i , y m a x [ i ] , " \ n " ) } 

r a t io_ (ymax-min (ymax)) / (max (ymax) -min (ymax)) 
c a t ( r a t i o , " \ n " ) 
oldpar_par() 
par (mar=c(5 .1 ,4 .1 ,4 .1 ,4 .1) ) 
ymaxrange_pretty(range(ymax)) 
matplot(R,cbind(xs,min(xs)+(max(xs)-min(xs))* 

(ymax-min(ymax))/(max(ymax)-min(ymax))), 
type="l",xlab="Radius",ylab="Ridge Co-ord ina tes" , l ty=l ,co l= l ) 

axis(side=4,at=min(xs)+(max(xs)-min(xs))* 
(jrmaxrange-min(ymax)) / (max (ymax) -min(ymax)), 

lab=ymaxrange,srt=90) 
mtext("Maximum Response",side=4,line=3) 

par (o ldpar )} 
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Examples of Use: 

maxplot(twodfit,mulower=-0.025,muupper=5) 

maxplot(threedfit,mulower=l.9,muupper=5,nblocks=4) 

maxplot(f ivedf it,mulower=-5,muupper=-0.41) 

maxplot(f ourdf it,mulower=3.9,muupper=20,nblocks=2) 

D.8 canonical 

Function to perform canonical analysis on fitted second degree regression equa

tion, give location of stationary point, and distance of stationary point from 

origin. 

canonical_function(lmobject){ 
betahat_summary(lmobject)Scoefficients[,1] 
nn . round( (sqr t ( l+8*length(be taha t ) ) -3 ) /2 ) 
bvec_betahat[2:(nn+1)] 
Bmat.matrix(0,nn,nn) 
for ( i in l :nn){ 

Bmat [ i , i ] _betahat [i+nn+1]} 
pos_2*nn+l 
for ( i in l : ( n n - l ) ) { 

for (j in ( i+1):nn){ 
pos_pos+l 
Bmat[ i , j ]_0.5*betahat[pos] 
Bmat [ j , i ] _Bmat [ i , j ]}} 

xs_-0. 5*solve (Bmat) 7o*7obvec 
R_sqrt(t(xs)7.*7oXs) 
cat("Canonical Analys is" ," \n") 
print(eigen(Bmat)) 
cat("Location of Sta t ionary Point ") 
c a t (x s , " \n " ) 
cat("Distance of S ta t ionary Point from Origin^ ") 
ca t (R ," \n" )} 
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Examples of Use: 

canonical{twodfit,nblocks=l) 

canonical(threedf it,nblocks=4) 

canonical(fourdfit,nblocks=2) 

canonical(fivedfit,nblocks=l) 

D.9 dlr 

Function to perform double hnear regression. 

dlr_function(lfflobject,nblocks=l){ 
if (nblocks>l) 

betahat_suimnary(Imobject)Scoefficients [,1] [-(2:nblocks)] 
e l se 

betahat_summary(lmobject)$coefficients[,1] 
nn_round((sqr t ( l+8*length(betahat ) ) -3) /2) 
bvec_betahat[2:(nn+1)] 
Bmat.matrix(0,nn,nn) 
for ( i in l :nn){ 

Bmat [ i , i ] . b e t a h a t [i+nn+1]} 
pos_2*nn+l 
for (i in 1:(nn-l)){ 

for (j in (i+l):nn){ 

pos_pos+l 

Bmat[i,j]_0.5*betahat[pos] 

Bmat[j,i]_Bmat[i,j]}} 

x.model. matrix (Imobj ect) [, (nblocks+1): (nblocks+nn)]7.*7.( 

eigen(Bmat)Svectors) 

xx_matrix(0,nrow(x),nblocks+2*nn+(nn-l)*nn/2) 

XX[,1:nblocks]_model.matrix(Imobj ect)[,1:nblocks] 

XX [,(nblocks+1):(nblocks+nn)]_x 

xx[, (nblocks+nn+1): (nblocks+2*nn)] _x'~2 

newcol_nblocks+2*nn 

for (i in 1:(nn-l)){ 

for (j in (i+1):nn){ 

newcol_newcol+l 

catd, j ,newcol, "\n") 
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XX[,newcol]_x[ , i ]*x[ , j ]}} 
summary(lm(lmobject$y~xx-l),cor=F)} 

Examples of Use: 

dlr{twodfit,nblocks=l) 

dlr(threedf it,nblocks=4) 

dlr(fourdfit,nblocks=2) 

dlr(fivedfit,nblocks=l) 

D.IO Direct fitting of canonical form-two dimen
sions 

zl2dfn <- function(xl, x2, theta) 

{ 
cos(theta) * xl +sin(theta)* x2 

} 
z22dfn <- function(xl, x2, theta) 

{ 
- sin(theta) * xl + cos(theta) * x2 

} 

test2dplin <- nls(y2d ~ cbind(rep(l, length(y2d)), 

zl2dfn(xl, x2, theta), z22dfn(xl, x2, theta), 

I(zl2dfn(xl, x2, theta)^2), I(z22dfn(xl, x2, theta)~2)), 

data = twoddata, start = list(theta = pi/4), algorithm = 

"plinear", trace = T) 

summary(test2dplin) 
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D . l l Direct fitting of canonical form-three di
mensions 

zfn_function(xl, x2, x3, thetal2, thetal3, theta23){ 
testl2 <- diag(3) 
testl2[c(l, 2), c(l, 2)] <-matrix(c(cos(thetal2), 

- sin(thetal2),sin(thetal2), cos(thetal2)), 2, 2) 
testl3 <- diag(3) 
testl3[c(l, 3), c(l, 3)] <-matrix(c(cos(thetal3), 

- sin(thetal3),sin(thetal3), cos(thetal3)), 2, 2) 
test23 <- diag(3) 

test23[c(2, 3), c(2, 3)] <-matrix(c(cos(theta23), 

- sin(theta23),sin(theta23), cos(theta23)), 2, 2) 
test23 7o*7. test 13 7o*7o test 12} 

testplin3_nls(y"cbind(blockl,block2,block3,block4, 

(I(zfn(xl,x2,x3,thetal2,thetal3,theta23)[1,1]*xl+ 
zfn(xl,x2,x3,thetal2,thetal3,theta23)[l,2]*x2+ 

zfn(xl,x2,x3,thetal2,thetal3,theta23)[1,3]*x3)), 

(I(zfn(xl,x2,x3,thetal2,thetal3,theta23)[2,1] *xl+ 

zfn(xl,x2,x3,thetal2,thetal3,theta23)[2,2]*x2+ 
zfn(xl,x2,x3,thetal2,thetal3,theta23)[2,3]*x3)), 

(I(zfn(xl,x2,x3,thetal2,thetalB,theta23)[3,1] *xl+ 
zfn(xl,x2,x3,thetal2,thetal3,theta23)[3,2] *x2+ 

zfn(xl,x2,x3,thetal2,thetalS,theta23)[3,3]*x3)), 
(I(zfn(xl,x2,x3,thetal2,thetal3,theta23)[l,l]*xl+ 

zfn(xl,x2,x3,thetal2,thetal3,theta23)[1,2] *x2+ 
zfn(xl,x2,x3,thetal2,thetal3,theta23)[1,3]*x3)'2), 

(I(zfn(xl,x2,x3,thetal2,thetal3,theta23)[2,1]*xl+ 
Zfn(xl,x2,x3,thetal2,thetal3,theta23)[2,2]*x2+ 

zfn(xl,x2,x3,thetal2,thetalB,theta23)[2,3]*x3)^2), 
(I(zfn(xl,x2,x3,thetal2,thetal3,theta23)[3,1]*xl+ 

zfn(xl,x2,x3,thetal2,thetal3,theta23)[3,2] *x2+ 

zfn(xl,x2,x3,thetal2,thetal3,theta23)[3,3]*x3)^2)), 
data=mydata,start^list(thetal2=l.89,thetal3=2.8,theta23=0.58), 

algorithm="plinear",trace=T) 
testplin3s_nls(y~cbind(blockl,block2,block3,block4, 

I(zfn(xl,x2,x3,thetal2,thetal3,theta23) [2,1]*xl+ 

zfn(xl,x2,x3,thetal2,thetal3,theta23)[2,2] *x2+ 

zfn(xl,x2,x3,thetal2,thetal3,theta23)[2,3]*x3), 

I(zfn(xl,x2,x3,thetal2,thetal3,theta23)[3,1]*xl+ 

zfn(xl,x2,x3,thetal2,thetal3,theta23)[3,2] *x2+ 

zfn(xl,x2,x3,thetal2,thetal3,theta23)[3,3]*x3), 

I(zfn(xl,x2,x3,thetal2,thetal3,theta23)[3,1]*xl+ 

zfn(xl,x2,x3,thetal2,thetal3,theta23)[3,2]*x2+ 

Zfn(xl,x2,x3,thetal2,thetal3,theta23)[3,3]*x3)^2), 

data=threeddata,start=list(thetal2=l.9,thetal3=2.8,theta23=0.6), 

algorithm="plinear",trace=T) 
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D.12 Direct fitting of canonical form-four di
mensions 

zfn_function(xl,x2,x3,x4,thetal2,thetal3,thetal4,theta23, 
theta24,theta34) 

{ 

testl2_diag(4) 

testl2[c(1,2),c(1,2)]_matrix(c(cos(thetal2),-sin(thetal2), 

sin(thetal2),cos(thetal2)),2,2) 
testl3_diag(4) 

testl3[cd,3),c(l,3)]_matrix(c(cos(thetal3),-sin(thetal3), 
sin(thetal3),cos(thetal3)),2,2) 

testl4_diag(4) 

testl4[c(l,4),c(l,4)]_matrix(c(cos(thetal4),-sin(thetal4), 

s in( thetal4) ,cos( thetal4)) ,2 ,2) 
test23_diag(4) 
test23[c(2,3),c(2,3)] .matrix(c(cos(theta23),-sin(theta23), 

sin(theta23),cos(theta23)),2,2) 
test24_diag(4) 
test24[c(2,4),c(2,4)]_matrix(c(cos(theta24),-sin(theta24), 

sin(theta24),cos(theta24)),2,2) 
test34_diag(4) 
test34[c(3,4),c(3,4)]_matrix(c(cos(theta34),-sin(theta34), 

sin(theta34),cos(theta34)),2,2) 
test347,*7.test247,*7.test237.*7.testl47.*7.testl37.*7.testl2} 
testplin4_nls(y4d~cbind(blockl,block2,I(zfn(xl,x2,x3, 

x4,thetal2,thetal3,thetal4,theta23,theta24,theta34) 

[1,1] *xl+zfn(xl,x2,x3,x4,thetal2,thetal3,thetal4, 

theta23,theta24,theta34)[1,2]*x2+zfn(xl,x2,x3,x4, 

thetal2,thetal3,thetal4,theta23,theta24,theta34) 

[1,3]*x3+zfn(xl,x2,x3,x4,thetal2,thetal3,thetal4, 

theta23,theta24,theta34)[1,4]*x4),I(zfn(xl,x2,x3,x4, 

thetal2,thetal3,thetal4,theta23,theta24,theta34) 

[2,1]*xl+zfn(xl,x2,x3,x4,thetal2,thetal3,thetal4, 

theta23,theta24,theta34) [2,2]*x2+zfn(xl,x2,x3,x4, 

thetal2,thetal3,thetal4,theta23,theta24,theta34) 

[2,3]*x3+zfn(xl,x2,x3,x4,thetal2,thetal3,thetal4, 

theta23,theta24,theta34)[2,4]*x4),I(zfn(xl,x2,x3,x4, 

thetal2,thetal3,thetal4,theta23,theta24,theta34) 
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[3,1]*xl+zfn(xl,x2,x3,x4,thetal2,thetal3,thetal4, 
theta23,theta24,theta34) [3,2]*x2+zfn(xl,x2,x3,x4, 
thetal2,thetal3,thetal4,theta23,theta24,theta34) 
[3,3]*x3+zfn(xl,x2,x3,x4,thetal2,thetal3,thetal4, 
theta23,theta24,theta34) [3,4]*x4),I(zfn(xl,x2,x3,x4, 
thetal2,thetal3,thetal4,theta23,theta24,theta34) 
[4,1]*xl+zfn(xl,x2,x3,x4,thetal2,thetalS,thetal4, 
theta23,theta24,theta34)[4,2]*x2+zfn(xl,x2,x3,x4, 
thetal2,thetal3,thetal4,theta23,theta24,theta34) 
[4,3]*x3+zfn(xl,x2,x3,x4,thetal2,thetal3,thetal4, 
theta23,theta24,theta34) [4,4]*x4),I(zfn(xl,x2,x3,x4, 
thetal2,thetal3,thetal4,theta23,theta24,theta34) 
[1,1] *xl+zfn(xl,x2,x3,x4,thetal2,thetal3,thetal4, 
theta23,theta24,theta34)[1,2]*x2+zfn(xl,x2,x3,x4, 
thetal2,thetal3,thetal4,theta23,theta24,theta34) 
[1,3] *x3+zfn(xl,x2,x3,x4,thetal2,thetal3,thetal4, 
theta23,theta24,theta34) [1,4]*x4)"2,I(zfn(xl,x2,x3,x4, 
thetal2,thetal3,thetal4,theta23,theta24,theta34) 
[2,1]*xl+zfn(xl,x2,x3,x4,thetal2,thetal3,thetal4, 
theta23,theta24,theta34)[2,2]*x2+zfn(xl,x2,x3,x4, 
thetal2,thetal3,thetal4,theta23,theta24,theta34) 
[2,3]*x3+zfn(xl,x2,x3,x4,thetal2,thetal3,thetal4, 
theta23,theta24,theta34)[2,4]*x4)^2,1(zfn(xl,x2,x3, 
x4,thetal2,thetal3,thetal4,theta23,theta24,theta34) 
[3,l]*xl+zfn(xl,x2,x3,x4,thetal2,thetal3,thetal4, 
theta23,theta24,theta34)[3,2]*x2+zfn(xl,x2,x3,x4, 
thetal2,thetal3,thetal4,theta23,theta24,theta34) 
[3,3]*x3+zfn(xl,x2,x3,x4,thetal2,thetal3,thetal4, 
theta23,theta24,theta34)[3,4]*x4)^2,I(zfn(xl,x2,x3,x4, 

thetal2,thetal3,thetal4,theta23,theta24,theta34) 

[4,l]*xl+zfn(xl,x2,x3,x4,thetal2,thetal3,thetal4, 

theta23,theta24,theta34) [4,2]*x2+zfn(xl,x2,x3,x4, 

thetal2,thetal3,thetal4,theta23,theta24,theta34) 

[4,3]*x3+zfn(xl,x2,x3,x4,thetal2,thetal3,thetal4, 

theta23,theta24,theta34)[4,4]*x4)^2),data=fourddata, 

start=list(thetal2=pi/4,thetal3=pi/4,thetal4=pi/4, 

theta23=pi/4, theta24=pi/4,theta34=pi/4), 

algorithm="plinear",trace=T) 

summary(testplin4) 
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D.13 Calculation of precision of canonical axis-
three dimensions 

parms_summary(testplin3s)Sparameters 
e3_c(0 ,0 , l ) 

d i rcos_as .vec tor (zfn(x l ,x2 ,x3 ,parms[ l ] ,parms[2] ,parms[3]) [2 , ] ) 
uvec_e3-dircos 

uvec_uvec/sqrt(t(uvec)7.*7.uvec) 
Hu_diag(3) -2*uvec7,*7.t (uvec) 
Hu7o*7odircos 

projres_matrix(0,10000,3) 

meanval_(testplin3s)Sparameters[1:3] 

covval.summary(testplin3s)Scov.unsealed[1:3,1:3] * 

summary (testplin3s)Ssigma'^2 

for (i in 1:10000){cat(i,"\n") 

parms im_as.vector(rmvnorm(1,mean=meanval, 

cov=covval)) 

proj res[ i , ]_as .vector(zfn(xl ,x2,x3,parmsim[l] ,parmsim[2] , 
parmsim[3]) [2 , ] ) 
pro j res [i, ] _as. vector (Hu7o*7oas. vector (pro j res [i, ]))} 

plot(projres[, 1:2]) 

a_sqrt(qchisq(.95,2) /eigen(solve(var(projres[,1:2]) ))Svalues) 
ff .function (theta, al, a2) {r_l/sqrt (cos (theta) '~2/al"2 
+sin(theta)~2/a2^2)pt(sqrt(2)*sqrt(l-r"2)/r, 2)} 
1-integrate(ff,lower=0,upper=2*pi,al=a[1], 
a2=a[2])Sintegral/(2*pi) 

D.14 Calculation of precision of canonical axis-
four dimensions 

thetastar4d_summary(testplin4)Sparameters[1:6] 

vstar4d_summary(testplin4)Scov.unsealed[1:6,1:6]* 

summary(testplin4)$sigma"2 

yvec_zfn4d(xl,x2,x3,x4,thetastar4d[l],thetastar4d[2] , 
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thetastar4d [3] ,thetastar4d[4] ,thetastar4d[5] ,thetastar4d[6]) [1,] 
evec_c(0,0,0,1) 
uvec_yvec-evec 

uvec_uvec/sqrt(t(uvec)7o*7oUvec) 
Hu_diag(4)-2*uvec7.*7.t(uvec) 
projres4_matrix(0,10000,4) 
meanval_thetastar4d 
covval_vstar4d 
for (i in 1:10000){catd, "\n") 

parmsim4d_as.vector(rmvnorm(l,mean=meanval, 
cov=covval)) 

projvec_as.vector(zfn4d(xl,x2,x3,x4,parmsim4d[1], 
parmsim4d[2] ,parmsim4d[3], 

parmsim4d[4] ,parmsim4d[5] ,parmsim4d[6])[!,]) 
pro j res4 [ i , ] _as. vector (Hu7.*7.pro j vec)} 

plot (projres4[ , l :2]) 
a_sqrt (qchisq(.95,2)/-sort(-eigen(solve(var(projres4[,1:3]))) 
Svalues) 
lowerbd4d_(((pi*a[l3*a[3])/(a[2]))*((l/a[3])* 

atan(l/((l-2*a[3]^2)/(2*a[3]* 
sqrt( l -a[3]~2))))-(2*(l-a[2]~2)) / 
(sqrt(a[2]-2-a[3]~2))* 

asinh(sqrt((a[2]~2-a[3] '2) /( l -a[2]-2))))) / (2*pi-2) 
upperbd4d_(((pi*a[2]*a[3])/(a[l]))*((l/a[3])*atan(l/ 

((l-2*a[3]~2)/(2*a[3]*sqrt(l-a[3]"2))))-(2* 
(l-a[l]"2))/sqrt(a[l]~2-a[3] '^2))*asinh(sqrt( 

(a[l]~2-a[3]-2)/( l-a[l]^2))))/(2*pi~2) 
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