
Carbon nanotube based composite membranes for 
water desalination by membrane distillation

This is the Published version of the following publication

Dumee, Ludovic, Sears, Kallista, Finn, Niall, Duke, Mikel and Gray, Stephen 
(2010) Carbon nanotube based composite membranes for water desalination 
by membrane distillation. Desalination and Water Treatment, 17. pp. 72-79. 
ISSN 1944-3994  

The publisher’s official version can be found at 
http://dx.doi.org/10.5004/dwt.2010.1701
Note that access to this version may require subscription.

Downloaded from VU Research Repository  https://vuir.vu.edu.au/15821/ 



 1 

Carbon nanotube based composite membranes for water desalination 
by membrane distillation 

 
 

Ludovic Dumée1,2,#, Kallista Sears1#, Jürg Schütz1, Niall Finn1  
1 CSIRO Materials Science and Engineering, Bayview Ave, Clayton Vic 3168, Australia 

 

Stephen Gray2, Mikel Duke2 

2 Victoria University Werribee Campus, Hoppers Lane, Werribee PO Box 14428 
Melbourne, Victoria, 8001, Australia 

Corresponding authors: # ludovic.dumee@csiro.au & kallista.sears@csiro.au 

 

Abstract— New technologies are required to improve desalination efficiency and increase water 
treatment capacities. One promising low energy technique to produce potable water from either sea 
or sewage water is Membrane Distillation (MD). However, to be competitive with other desalination 
processes, membranes need to be designed specifically for the MD process requirements. Here we 
report on the design of Carbon Nanotube (CNT) based composite material membranes for Direct 
Contact Membrane Distillation (DCMD). The membranes have been thoroughly characterized and 
also tested in a DCMD setup under different feed temperatures and test conditions. We demonstrate 
that Bucky-paper membranes can be used for purification of synthetic seawater via the DCMD 
process and, most importantly, that the composite Bucky-paper (BP) structures show improved 
lifetime and performance compared to their self-supporting BP counterparts.   
 

I. INTRODUCTION 

Carbon nanotube (CNT) [1] based membranes have attracted interest over the past 5 years. Several 

groups have reported on CNT composite material membranes for applications such as pervapouration of 

cyclohexane/benzene [2], nanofiltration [3]-[4] and separation of hydrocarbons [5]. However to our 

knowledge no-one has focused on CNT based membranes for use in Membrane Distillation (MD). MD is 

an alternative technique for the purification of sea or sewage water. In a Direct Contact Membrane 

Distillation (DCMD) setup a hydrophobic membrane acts as a barrier between a warm feed (e.g. sea water) 

and a cold permeate of fresh water. A difference in water vapour pressure is generated due to the 

temperature gradient across the membrane and leads to water vapour transfer from the hot to cold side.  

The water vapour condenses on the cold side creating fresh water as illustrated by the schematic in Figure 1 

[6]-[7]-[8]. However, specific membranes need to be designed for MD to become competitive with other 

desalination techniques. 

We previously demonstrated that CNT Bucky-paper (BP) membranes, a non-woven structure of 

entangled CNTs, could be used to desalinate synthetic seawater via DCMD process[9]. However ageing of 

the membranes over time limited their performance.  

Comment [MCD1]: Stephen’s name 
should be last as he is the project leader. 

mailto:ludovic.dumee@csiro.au


 2 

This paper focuses on processing composite structures from the CNT BPs, as a method of improving 

membrane lifetime and performance. These CNT composite membranes were characterized and tested in a 

DCMD test apparatus.  Deleted: setup.
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EXPERIMENTAL DETAILS 

A. Carbon nanotube growth 

 The CNTs were grown by chemical vapor deposition at CSIRO Material Science and Engineering, 

Melbourne Australia. A 5 nm thick iron catalyst film was deposited onto a silicon substrate bearing a thin 

Silicon Dioxide layer. A mixture of Helium (95%) - Acetylene (5%) was used as the carbon feedstock and 

heated to between 650 and 750°C. The CNTs typically have an outer diameter of ~10-15 nm and length of 

150-300 µm [10]. 

   

B. Carbon nanotube bucky-paper composite material membrane fabrication 

 First, as grown CNTs were dispersed in propan-2-ol. The suspensions were sonicated up to 5 times, for 

15 minutes and at 150 W, in a sonicating bath. Once well-dispersed CNT suspensions were achieved, they 

were filtered through a Millipore filtration unit. The CNTs were captured on a Poly-ether-sulfone (PES) 

membrane (0.22 μm pore size, Millipore) to produce a self-supporting CNT BP. As shown in Figure 2, the 

structure morphology appears to be a randomly entangled network of fully dispersed CNTs.  

  

 Composite CNT BP membranes were produced by three methods. The first method involved hot 

pressing self-supporting BPs between two layers of porous poly-propylene (PP) supports (55% porosity, 

Figure 3). The three layers were maintained between two stainless steel plates and hot-pressed at low 

pressures for 15 min at 80ºC. This structure is referred to throughout the text as the “sandwiched BP” 

composite. 

The second structure is a slight variation of the first and referred to as the “filtered sandwiched BP” 

composite. Suspensions of dispersed CNTs were filtered through a PP support (with a PES membrane 

underneath). In this case the CNTs are collected on and within the pores of the PP support. The PP-CNT 

cake was sandwiched with another layer of poly-propylene support and the layers hot-pressed together 

under the same conditions mentioned above. 

Finally, a number of “polymer infiltrated BP” membranes were formed by partially embedding a 

self-supporting BPs by vacuum filtration of a polymer/solvent solution, across the self-supporting 

membrane. Solutions at 5% of either Poly-Styrene (PS) or Poly-Vinyl Di-Fluoride (PVDF) in 

Di-Methyl-Formamide (DMF) were used. After polymer infiltration, 99.99% pure DMF was filtered 

through the membrane to remove any non-bonded polymer. 

  

 Poly-Tetra-Fluoro-Ethylene (PTFE) 0.22 micron nominal pore size membranes, purchased from 
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Millipore, were also characterized and tested as control membranes. 

 

C. Membrane characterization  
 Scanning electron microscopy (SEM) was used to investigate the surface structure of the composite 

BP membranes and was performed with a Philips FEG SEM at 2 kV and 7.5 mm working distance.  An 

FEI Nova nanolab 200 Dual Beam Focused Ion Beam (FIB) was used to form cross sections of the BP 

membranes. Milling was performed with a 1 nA, 30 kV Ga ion beam, followed by 0.3 nA cleaning steps.  

Contact angles were measured with a 2 mL pycnometer as described in [11].  An average BET surface 

area was determined by N2 adsorption on a Micromeretics Tristar 3000 [12].  The samples were first 

degassed for 70 hours and then analysed at 77K.  Finally, a pocket goniometer PG-3 from Fibro Systems 

was used to determine contact angle. The tests were performed at 20ºC with 4 μL drops of deionised water 

[13]. 

 

D. Direct contact membrane distillation setup 

 In our DCMD setup the membranes were placed inside a sealed PTFE module. A peristaltic pump 

fitted with two coupled heads was used to control both permeate and feed flow rates, which were kept 

constant at 300 ml/min. The temperatures of the water streams were also kept constant and no major 

temperature drops between the inlet and the outlet of the module were measured. The temperature was 

therefore considered constant over the membrane area. The electrical conductivity and temperature of the 

hot and cold electrolytes as well as the water level transferred to the cold side were monitored over time 

and data logged. Tests were performed with deionised water and synthetic seawater (35 g/L NaCl solutions 

at 11 mS/cm). The membrane test area was a 25.4 mm diameter disc.  

 Each membrane was tested under a range of 6 different feed temperatures (20ºC; 35ºC; 50ºC; 65ºC; 

80ºC and 95ºC), while the cold feed was kept constant at 5ºC. Partial pressure differences were calculated 

for each set of temperatures using Antoine’s equation: 









−
−

= 45
3841328.23
TeP  (1) 

where the water vapour partial pressure P is in Pa and the temperature T in Kelvin (K). 
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II. RESULTS 

A. Membrane Characterization  

 Self-supporting BP membranes (Figure2) are a network of randomly orientated CNTs. These 

self-supporting BPs were thoroughly characterized in a previous study [9] and found to exhibit many 

properties desirable for DCMD [7]. Most importantly they exhibit a high porosity (~90%) and contact angle 

with deionised water (~120°), a thermal conductivity of ~2.3 W/m×K and a tensile Young’s modulus of ~1 

GPa. Both SEM analysis and particle exclusion tests gave an average pore size of ~25 nm, and BET tests 

indicated a high specific surface area of ~200 m2/g comparable with other reports in the literature [14].   

 

 The “sandwiched BP” composite structures were expected to exhibit similar properties to the 

self-standing BPs. As shown in Figure 3, the primary effect of the PP support is to reduce the BP surface 

area exposed to both permeate and feed streams. The process of hot pressing may also slightly compact the 

BP structure but further characterization work is needed to confirm this. The characterization results are 

summarized in Tables 1.  BET surface area is also much lower for “sandwiched BP”. This value is an 

artifact of the measurement since PP supports exhibit much lower surface area than self-supporting BPs, 

while being, in weight, the major component of the composite. The specific surface area of the active layer 

of the membrane is expected to be similar to a self-supporting membrane. In contrast, the polymer 

infiltrated BP membranes exhibit a lower specific surface area of ~50 m2/g, as well as a reduced 

hydrophobicity of ~100°, compared to the pure self-supporting membranes.  Figure 4 shows the surface of 

a representative BP which was infiltrated with a 5% PS solution. The PS seemed to coat partially some 

nanotubes reducing the membrane specific surface area. The reduced hydrophobicity is likely caused by the 

higher surface energy of the infiltrated polymer [15], although a reduced surface roughness, due to the 

slight compression, may also contribute.  

 

B. Membrane Distillation Results 

1) Membrane Permeability  

The measured fluxes are plotted in Figure 5 as a function of the water vapour partial pressure 

difference across the membrane. While self-supporting BP membranes presented fluxes around 6 to 10 

kg/m2×h maximum, composite membranes showed fluxes up to 15 kg/m2×h, for water partial pressure 

differences in the range of 5 to 45 kPa. As expected from theory [16] , the flux increases linearly with water 

vapour partial pressure for every membrane. Permeances were calculated by taking the gradient of a the 

best linear fit to the curves in Figure 5. Permeabilities were calculated by multiplying permeances by the 
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average active thickness of the membrane.  

 The calculated permeabilities were comprised between 1.6 and 3.3 x 10-12 kg/(m×s×Pa) for the 

composite CNT membranes (Table 3). These values are up to four times the permeabilities of 

self-supporting membranes, clearly demonstrating the potential of composite BP membranes. 

 “Sandwiched BP” membranes gave the best permeabilities of all the composite BP membranes, with a 

value of 3.3 x 10-12 kg/(m×s×Pa). Although the “filtered sandwich BP” membrane was very similar in 

structure, its permeability was half that of the “sandwich BP” membrane. This may result from a thicker 

CNT active layer. The “filtered sandwich BP” membranes were processed by filtering the CNTs through 

the PP support so that CNTs partially occupied the pores of the PP support while also forming a layer on 

top of it. Further characterisation work is needed to confirm this. The lower permeabilities measured for the 

“polymer infiltrated BP” membranes are consistent with the characterisation results indicating a reduced 

porosity and specific surface area due to the polymer presence.  

  

 Even if composite BP membranes show improved performances, those values were still 0.5 to 2.5 

times lower than the PTFE permeability (Table 2). 

 This may be firstly attributed to the BP membrane thermal conductivity, which was ~10 times greater 

than that of PTFE. This higher thermal conductivity could lead to higher heat transfers between feed and 

permeate thus reducing temperature gradient and vapour pressure difference across the membrane. 

Secondly, the pore shape of the PTFE membranes was different from the non-woven structure of the BPs. 

BP pores are an interconnected network of interstitial gaps between CNTs, while PTFE membrane pores 

are thin and long due to the stretching of the PTFE films during their processing. Their pores are also likely 

to be much straighter than the BPs’ pores, leading to a less tortuous path. Also, the BP average pore size 

was ~10 times smaller than for PTFE membranes, and the Theory of Knudsen diffusion predicts that the 

molar flux should be proportional to the radius of the pores, which would have an important impact on the 

results [17].   

 Finally membrane ageing, as discussed in the next section, may also contribute to lowering the 

performances But further work is needed to confirm this assumption.   

 

 

2) Lifespan and salt rejection 

The composite BP membranes exhibited improved salt rejection and lifespan compared with 

self-supported structures. The lifespan was defined as the time taken for the salt rejection to drop below 

90%. As shown in Figure 6, a slow increase in permeate conductivity, and hence a reduction in salt 
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rejection, was observed over time for the most of the tested BP membranes. This was related to membrane 

ageing as discussed later. The best lifetime of 39 hours was recorded for the “sandwiched BP” composite 

membranes and is 13 times higher than for self-supporting BP membranes. Most of the membranes 

maintained high salt rejections for longer than 25 hours of continuous operationfor different tests conditions, 

whereas all self-supporting membranes cracked after approximately 3 hours of continuous testing. This 

improvement was likely due to extra reinforcement given by the PP supports and infiltrated polymers.  

The average salt rejection was increased from 90% for self-supporting BPs to 95% on average for the 

composite BP membranes (Table 2). With further optimization of the composite structures it is hoped that 

99.99% efficiency will be achieved as observed for control PTFE membranes.  

 While the composite BP membrane results are encouraging, membrane ageing is still the major factor 

limiting their performance at this stage. Cross sections of the BP structures were exposed by Focus Ion 

Beam milling, as shown in Figure 7. Cracks were found propagating in some regions across the membranes. 

EDS analysis showed the presence of salts in these cracks, confirming that bridges of salty water cross the 

membrane from the feed to permeate. However, crack formation in composite membranes was slower 

because the PP supports or infiltrated polymers reduced cracking. Lifespan was increased and the rate of 

conductivity rise slowed down substantially when composite rather than self support CNT BPs were used.  

 The composite BP structures will be further optimised and other embedding methods and structures 

investigated to further extend membrane lifespan and improve their performance. 
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III.  CONCLUSION 

 We demonstrated that composite material BP membranes have comparable flux and permeability to 

PTFE membranes. The lifespan of BP membranes was increased by a factor 10, with membranes lasting for 

more than 39 hours of continuous operation when reinforcing was used, while the salt rejection efficiency 

of the composite structures was on average  95%, reaching 98.5% for multi-layer composite structures. 

 “Sandwiched composite BP” were in this work the most efficient structures and multi-layer 

composite membranes showed encouraging results and behaviour. However, different geometries or 

material supports should be considered for optimizing the performances of the membranes. 

 Further work is required to fully understand their properties and behaviour and to maximise their 

potential in MD. Work is under way to fully characterize the BP thermal behaviour and identify how their 

heat diffusivity and heat conductivity affect the flux and temperature gradient. Other composite material 

membranes will be processed to optimize the performances of CNT BP membranes in DCMD. Membranes 

based on larger pore size CNTs may lead to improved flux and performance, while stiffer reinforcements or 

better connectivity between CNTs may further reduce ageing effects. Furthermore, different setups such as 

Vacuum Membrane Distillation (VMD) may be tested if considered more suitable than DCMD for the BP 

structure and properties. 
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Figure 2 Representative SEM image of the surface of a self-supporting BP membrane. 
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Figure 3 Representative SEM image of the structure of the PP support. 
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Figure 4 Representative SEM image of at the surface of a PS infiltrated composite BP membrane. 
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Figure 7 Left: SEM image of a section milled with a Focus Ion Beam through a BP membrane after 
testing in the DCMD setup. Right: corresponding EDS analysis showing the presence of salts in the 
crack. 
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Table 1 Properties of BP membranes 

                

 Contact Porosity Pore size Bubble LEP BET Thermal 
 angle  SEM imaging point water  conductivity 
  º % nm PSI PSI m2/g W/m2×K 
PTFE 0.2μm pores 130 70-75 200-400 14.5 50 21 0.25 
Self-supporting BP 115-125 85-90 25-100 5.5 8 197 2.3 
Composite multi layer 90-100 ~75 25-100 - - 21* - 
Polymer infiltrated composite 95-110 ~60 25-100 - - 50 - 
        

* Mass of sample included the PP support in the calculation 

 
 

Table 2 Salt rejection, permeability and life of tested membranes 

          

 Thickness Salt Rejection* Lifespan** Permeability 
  µm % hours 10-12 kg/(m*s*Pa) 
PTFE 0.2μm pores ~200 99.9 - 5.51 
Self-supporting BP from 20 ~ 90 3 0.83 
Composite multi layer ~120-140 95.5 39 3.31 
Filtrated BP through support ~120-140 94.7 34 1.55*** 
Polymer infiltrated PS ~40-80 98.5 19 2.57 
Polymer infiltrated PVDF ~40-80 96.5 16 1.89 
Poly-propylene support ~100 - - - 
      

* For intact membranes 

** Calculated for 90% salt rejection 

*** Thickness of active layer considered: 40 μm 
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