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ABSTRACT

In this  study an attempt  is  made to  mathematically  model  and predict  algal  blooms in Tolo 

Harbour (Hong Kong) using Genetic Programming (GP). Chlorophyll  plays a vital role and is 

taken as  a  measure  of  algal  bloom biomass  and 8  other  variables  are  taken as  input  for  its 

prediction. It is observed that GP evolves multiple models with almost same values of errors – of 

– measure. Previous studies on GP modeling primarily focused on comparing the GP results with 

actual values. In contrast, in this study, the main aim is to propose a systematic procedure for 

identifying the most appropriate GP model from a list of feasible models (with almost same error-

of measure) using physical understanding of the process aided by data interpretation. The study of 

the GP-evolved equations shows that they correctly identify the ecologically significant variables. 

Analysis of final GP evolved mathematical model indicates that of the 8 variables assumed to 

affect the algal bloom, the most significant effect is due to chlorophyll, total inorganic nitrogen 

and dissolved oxygen, as far as one week prediction is concerned. For higher lead prediction 

(biweekly),  secchi  disc  depth  and temperature  appears  as  significant  variables  in  addition  to 

chlorophyll.

Key Words: Genetic Programming, Mathematical Modeling, Harmful Algal Bloom

INTRODUCTION

The  Algal  bloom phenomenon  (particularly  the  red  tide)  has  been  widely  reported  and  has 

become a serious environmental problem owing to its adverse influence on aquatic life as well as 

human  health.  The  need  for  better  understanding  of  the  the  Harmful  Algal  Bloom  (HAB) 
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dynamics and the complex ecological processes involved is felt clearly over the years (Lee and 

Qu, 2004). In spite of extensive research already undertaken, the causality and dynamics of algal 

blooms  are  not  well-understood  and  the  prediction  of  algal  blooms  remains  a  very  difficult 

problem, owing to the extremely complicated ecological dynamics. Thus, it is very desirable to 

obtain mathematical models that can give some insight into the physics of the process, while 

having the capability to predict the occurrence of algal blooms with an acceptable accuracy and 

lead time.

Conventionally, phytoplankton dynamics have been carried out using the process- based models 

by  incorporating  physical  and  biotic  environmental  variables  in  water  quality  model.  This, 

however, is reported to suffer from the uncertainty of kinetic coefficients used in such models. In 

the  recent  past,  many  studies  have  reported  successful  application  of  data-driven  Artificial 

Intelligence  based  techniques,  particularly  Artificial  Neural  Network  (ANN)  and  Genetic 

Programming (GP). For example, as early as in 1997, Recknagel et al (1997) demonstrated that 

ANN is capable of modeling the non-linear  and complex algal growth phenomena.  Lee et  al 

(2003)  found  that  the  algal  concentration  in  the  samples  from  Tolo  Harbour  is  dependent 

primarily on  their antecedent  concentrations  in the immediate  past weeks, and the result  was 

supported by interpretation of the neural networks’ weights. 

Coad et al (2005) observed that with antecedent chlorophyll-a, feed forward neural network with 

logistic  function  is  able  to  predict  the  future  chlorophyll-a  reasonably well,  indicating  the 

sufficiency of historical  values of chlorophyll-a in its future modeling. Muttil and Chau (2006) 

reported that both ANN and GP correctly identified the ecologically significant variables, and 

that  long  term  algal  growth  can  be  predicted  using  only  chlorophyll-a  as  input. They  also 

observed that when ‘Maximum initial tree size’ and ‘Maximum tree size’ are restricted to 45 and 

20 respectively, the evolved equation contains only 4–8 variables and thus the equation is easy to 

interpret. Whigham and Recknagel (1999) compared the GP evolved equations with ANN models 

to  demonstrate  the  applicability  of  GP  to  non–linear  processes  in  natural  systems  such  as 

freshwater  systems.  They  concluded  that  the  transparent  nature  of  GP  solutions  may  allow 
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inference about underlying process to be made and also highlighted issues with scaling data for 

machine learning and the difficulty involved with producing understable models.

Bobbin  and  Recknagel  (1999) discuss  the  application  of  Genetic  Algorithms  (GAs)  for  the 

construction of rule based models and found that GA can be used to extract and develop rules 

from water quality time series and that can be used for prediction and elucidation of timing and 

magnitudes of  algal bloom events. Sam et al (2005) studied the monitoring of algal bloom in 

Jakarta  Bay,  Indonesia  using  Terra–Aqua  MODIS  (Moderate  resolution  Imaging  spectro–

radiometer) satellite data and found that a  combination of high resolution of ALOS image and 

high repetitions of MODIS image will make the algal bloom phenomenon clearer. 

Chau  and  Muttil  (2007) studied  the  ecological  and related  water  quality  data  from different 

periods from several monitoring stations in Tolo Harbour, Hong Kong by descriptive data mining 

techniques and the results from box plots reveals the spatial,  temporal patterns, which in turn 

helps to find out the stations which are most susceptible to eutrophication, its nutrient source and 

control measures.  Recknagel et al (1997) did a study on predictive potential of phytoplankton 

models by ANN and compared with other models such as AD HOC inductive models and found 

that predictive accuracy improved with increased event and time resolution of data. Recknagel et 

al (2002) compare the potential of ANN and GA in terms of forecasting and understanding of 

algal blooms in Lake Kasumigaura, Japan and found that models evolved by GA performs better 

than ANN models and provide more transparency for  physical explanation as well.  Lui et al. 

(2007) studied  modeling  of  algal bloom  with  vector  autoregressive  model  with  exogenous 

variables in Hong Kong.

Most of the reported works on HAB studies by ANN and GP focuses primarily on prediction of 

algal growth and compare the potential of each other. The present study focuses on developing 

GP based mathematical models with an emphasis on the procedure to select the best model which 

can  ensure  the  best  prediction  performance  for  the  extreme  values.  In  addition,  whenever 

possible, an attempt is also made to interpret or at least get some insight into the algal bloom 

process  with  the  GP evolved  models.   Mathematical  models  are  developed  for  weekly  and 
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biweekly forecast for the water quality data from Tolo Harbour, Hong Kong. The next section 

briefly describes the GP approach. This is followed by the study area description. Then model 

development and analysis of the results are presented. Finally conclusions are arrived at. 

 GENETIC PROGRAMMING

GP is very similar to using a GA, being an evolutionary algorithm based on Darwinian theories of 

natural selection and survival of the fittest. However, GP operates on parse trees, rather than on 

bit strings as in a GA, to approximate the equation (in symbolic form) that best describes how the 

output relates to the input variables. The algorithm considers an initial population of randomly 

generated programs (equations), derived from the random combination of input variables, random 

numbers and functions.  The functions can include arithmetic operators (plus, minus, multiply, 

divide), mathematical functions (sin, cos, exp, log), logical/comparison functions (OR/AND) etc., 

which  have to  be  appropriately  chosen  based  on  some  understanding  of  the  process.  This 

population of potential solutions is then subjected to an evolutionary process and the ‘fitness’ (a 

measure of how well they solve the problem) of the evolved programs are evaluated; individual 

programs that best fit the data are then selected from the initial population. 

The programs that best  fit  are selected to exchange part  of the information between them to 

produce better programs through ‘crossover’ and ‘mutation’, as used in GAs (to mimic the natural 

reproduction process).  Here,  exchanging the parts  of best  programs with each other  is  called 

crossover, copied exactly into the next generation is called reproduction and randomly changing 

programs to create new programs is called mutation (Koza 1992). The user must decide a number 

of  GP parameters before  applying  the  algorithm to  model the  data,  such as  population  size, 

number of generations, crossover and mutation probability, etc. The programs that fitted the data 

less well are discarded. This evolution process is repeated over successive generations and is 

driven towards  finding symbolic  expressions  describing  the  data,  which  can  be scientifically 

interpreted to derive knowledge about the process being modeled. 

Tree Based Genetic Programming
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The primitives of GP, the function and terminal nodes, must be assembled into a structure before 

they may be executed. Three main types of structure exist: tree, linear and graph. In this study, 

the  method  utilized  for  modeling  algal  bloom  is  a  tree-based  genetic  programming  (TGP) 

approach.  TGP was introduced  by Koza as  an  extension  of  the  GA,  in  which  programs are 

represented  as  tree  structures  and  expressed  in  the  functional  programming  language,  LISP 

(Koza, 1992). A comprehensive description of GP is beyond the scope of this paper. Details on 

GP can be obtained from Koza (1992) and from  Babovic and Keijzer (2000) for explanations 

from a water resources perspective.

In this study, GPKernel, developed by DHI Water and Environment (Babovic and Keijzer, 2000) 

is used for implementing GP.  GPKernel is a command line based tool for finding functions on 

data. For a detailed explanation of various features of GPKernel, the reader is referred to Babovic 

and Keijzer (2000).

CASE STUDY DESCRIPTION

Tolo Harbour is a semi-enclosed bay in the Northeastern coastal waters of Hong Kong (Figure 1). 

It  is  connected  to  the open sea at  Mirs  Bay.  The nutrient  enrichment  in  the  harbour  due to 

municipal and livestock waste discharges has been a major environmental concern over the past 

two decades. The organic loads are derived from the two major treatment plants at Shatin and 

Taipo (Figure 1), non-point sources from runoff and direct rainfall. Eutrophication has resulted in 

frequent algal blooms and red tides, particularly in the weakly flushed tidal inlets inshore, with 

occasional massive fish kills due to severe dissolved oxygen depletion or toxic red tides. Various 

studies have shown that the ecosystem health state of the Tolo Harbour had been progressively 

deteriorating since the early 1970s up to late 1980s. Tolo Harbour had reached a critical stage in 

the late eighties, which resulted in the development of an integrated action plan, the Tolo Harbour 

Action Plan (THAP), by the Hong Kong Government.  The implementation of THAP in 1988 

achieved significant effectiveness on the reduction of pollutant loading and on the improvement 

of the water quality. 
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A number of field- and process-based modeling studies on eutrophication and dissolved oxygen 

dynamics of this harbour have been reported The monthly/biweekly water quality data, collected 

as  part  of  the  routine  water  quality  monitoring  program  of  the  Hong  Kong  government’s 

Environmental Protection Department (EPD), are used in this study as a basis for the modeling.  

In order to isolate the ecological process from the hydrodynamic effects as much as possible, the 

data from the most weakly flushed monitoring station, TM3 (Figure 1), are used. The ecological 

variables are all depth-averaged. The biweekly observed data are linearly interpolated to get the 

daily values. In addition, daily meteorological data (thus no interpolation required) of wind speed, 

solar radiation and rainfall recorded by the Hong Kong Observatory are used. It should be noted 

that whenever a coarse sampling frequency (biweekly in this study) is used, the value of any input 

variable at an interval shorter than the monitoring interval must be interpolated from data. This 

inevitably  introduces  some  of  the  actual  observations  (which  we  seek  to  predict)  into  the 

modelling  process.  To  avoid  this  problem,  one  approach  can  be  that  the  algal  dynamics  is 

predicted  with  a  lead-time  of  the  minimum monitoring  interval  of  the  original  observations, 

which  is  biweekly in  the  data  used  in  this  study.  We have done the  modeling  for  biweekly 

prediction  (t  +  14  days)  in  this  study.  In  addition,  we  also  preferred  to  include  7  day lead 

prediction (given the limitations in the data we had) in order to study the model performance.

Modeling algal  biomass  basically  involves  estimating  the chlorophyll  at  any particular  future 

time,  by  giving  the  chlorophyll,  chy (μg/L)  along  with  other  input  variables  such  as  total 

inorganic nitrogen, TIN (mg/L); phosphorus, PO4 (mg/L); dissolved oxygen, DO (mg/L); secchi-

disc depth, SD (m); water temperature, Temperature (°C); daily rainfall, Rain (mm); daily solar 

radiation,  SR (MJ/m2)  and  daily  average  wind  speed,  MWS  (m/s)  at  time  (t)  influence  the 

eutrophication.

The data used in this study is available from 1988 to 1996. 

PERFORMANCE MEASURES

The forecast performance is evaluated using two goodness-of-fit measures, the root-mean-square 

- error (RMSE) and the correlation coefficient (CC) as defined below:
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where  X is  any variable that  is  being  forecasted;  the 

subscripts  m  and  s  represent  the  measured  and  simulated  values;  the  average  value  of  the 

associated variable is represented with a ‘bar’ above it; and n is the total  number of training 

records.

MODEL DEVELOPMENT

The chlorophyll  prediction  at  7  day lead  period  and 14 day lead  period  can  be functionally 

represented as

 

( ) )4(,,,,,,,, 714 ++ = tttttttttt chyMWSSRTempSDDOPOchyTINfchy

where the variable holds the meaning as described earlier. Chyt+14 is the 14 day ahead prediction, 

Chyt+7 is the 7 day ahead prediction and Chyt is the current value of chlorophyll. GP is run for 17 

experiments with its parameters,  namely, crossover rate, mutation rate, number of generations, 

population  size,  etc,  which  are  optimized  by  trial  and  error,  are  presented  in  Table  1. The 

functional  set  consists  of  simple  arithmetic  functions,  trigonometric  functions,  logarithmic 

function and exponential functions. The procedure adopted in this study for selecting the best 

model from the list of various models evolved by GP is described as below:

(a) Identification of the maximum and minimum value of Chyt in the time series. 

(b) Separate the time series into two categories viz.,  (i)  for training the GP in a specified 

range of Chyt and (ii) Validating GP outside this range i.e. those containing Chyt close to the low 

and high extremes. 

(c) The GP is trained with those input vectors which contain intermediate values of Chyt. 
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(d) The GP evolved models for each experiment is validated separately for both intermediate 

values of Chyt and values which are close to the lower and higher extremes. This is to test how 

various models perform for Chyt values extrapolated outside the training range of Chyt. 

(e) From the models  obtained in step (d) above, the best  models with almost  equal  error 

measures  are selected.  These are then analyzed to see their  meaningfulness in explaining the 

physics of the process. 

(f) The best model obtained from (e) above is subjected to sensitivity analysis to identify the 

significance of the input variables.

The above procedure is applied to 7 lead day prediction and the GP evolved models are listed in 

Table 2. For biweekly prediction, two different input vectors are considered:

(i) Direct Prediction:  Input vectors as adopted in  Eq (4) i.e. with the known values of 

input variables at time ‘t’, direct prediction is aimed for t+14.

(ii) Sequential Prediction: Input vectors include the predicted Chyt+7 (from the best model) 

as a new variable in addition to the input variables used in Eq (4).

The procedure for selecting the best model, as described above is also adopted to select the best 

model for predicting Chyt+14.

RESULTS AND DISCUSSIONS

GP model was run with 65% of the data as training set and 20% as test set and the remaining as 

production set. Table 2 lists 10 best models from various runs of GP for predicting chlorophyll at  

7-lead day. The maximum and minimum value of Chyt is 0.2 μg/l and 40 μg/l. In this study, GP 

is trained for chlorophyll value in the range 4 to 20 μg/l. The models evolved are validated for 

chlorophyll value within this range and outside this range i.e. less than 0.2 < Chyt < 4 and 20 < 

Chyt < 40. The RMSE values are shown in Table 2 for the different models. Surely it will be 

interesting  to  know what  will  happen if  the training is  done on the extremes  and testing on 

medium range. However, in this study, the number of data for extreme range is too few compared 
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to the medium range. This will obviously result in a poor training and therefore poor output. 

Therefore,  this  is  not  used  in  this  study.  The  suggested  approach  is  superior  to  traditional 

temporally  based  selection  approach  because  traditional  methods  do  not  guarantee  good 

performance on extremes (as observed in many other hydrological applications  such as flood 

predictions etc).

It can be observed that all the models give almost same RMSE for chlorophyll value inside the 

range 4 to 20 μg/l. It can be inferred that for a given process (for sample data), more than one 

model is feasible. This can be explained through Figure 2, where one can clearly see how various 

linear and non-linear models can be fit for a given range of data value. However, the predictions 

from different models deviate when extrapolated either below or above the training range. So, in 

order to choose the best model from the ones listed in Table 2, the RMSE outside training range 

has to be compared. It is surely possible in some cases that training based on a range of 4 till 20, 

and  validating  based  on  the  rest  of  the  data  will  provide  the  best  models,  that  have  better 

generalization ability based on the data under consideration, and not necessarily because they are 

physically relevant. However, given the complexity of algal bloom modeling, the chances of the 

physical relevance are much more enhanced when the data is validated outside the training range 

(as explained from Figure 2). Most of the earlier approaches on GP training have focused on the 

entire range, but this does not guarantee the performance of the model, particularly when we are 

interested in future prediction (where the possibility of values falling outside range are surely 

high). Since our main intention is to predict the algal growth at a larger lead time, this approach 

seems more meaningful than the traditionally adopted approach.

It can be seen in Table 2 that model 9 and model 10 have RMSE of about 2.58 μg/l and all other 

models have higher value. Therefore, these two models can be expected to describe the process 

better given the limitations on data availability. Due to linear interpolation of biweekly data to 

obtain daily data, the performance of naïve model (model 1 in Table 2 evolved by GP itself) 

appears as good as some of the other models evolved by GP for 7 lead day prediction. Therefore, 

this model is not considered in the analysis.
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Since model 1, 3 and 6 have almost equal RMSE and not too much different from models 9 and 

10, it can be argued that as long as all inputs considered are physically relevant, excluding some 

models  on  physics  basis  cannot  be  justified.  However,  our  contention  here  is  that  at  closer 

observation, a particular model seems to explain the process better than the other (though the 

inputs to both the models are physically relevant) under some given conditions (in this case, for 

example,  presence  of  TIN seems  to  be  more  meaningful,  than  a  model  without  this  input). 

Therefore, we chose to focus on more physically relevant models. 

A in depth analysis of model 9 and 10 are discussed here. Although they have approximately 

same RMSE value, the variables presumed to describe the process are not the same. For example, 

model 9 is governed by Chyt, DOt and TINt, whereas model 10 is governed only by Chyt and SDt. 

The  presence  of a  nutrient  variable (TIN)  is  more  meaningful  because  the  growth  and 

reproduction of phytoplankton are dependent on the availability of various nutrients. Similarly,  

DO level is also very important for algal growth as it enhances certain chemical reactions as well 

as required for the respiration of the organisms. Under these considerations, it is more appropriate 

to choose model 9 as the best evolved model for 7 lead day chlorophyll prediction:

However, it is important to note that Eq (5) looks very difficult to physically interpret because of 

presence of triple-square-root function. One reason for this could be that both power and square 

root  functions  are  used  in  GP modeling  (besides  lack  of  sufficient  data  coupled  with  multi-

variable inputs), which played a role to make the square root function have a dominating effect. 

However, we still prefer to choose this model to the other because of revealing vital information 

such as the presence of TIN and DO as influencing variables.

In order to investigate the importance of different variables in Eq (5) above, a sensitivity test is 

carried out and the results are summarized in Table 3. As seen from the table, chlorophyll is most 

sensitive  as  even  5%  error  in  its  estimation  affects  the  prediction  considerably.  Similar 

conclusions were arrived by Coad et al (2005) on the importance of chlorophyll. So, chlorophyll 

has to be very accurately estimated. Though the other two variables are more stable even with 
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15% error in their estimation, we prefer to keep these variables in the model because of their 

physical relevance in the algal growth. 

Figure 3 shows the plot of prediction obtained with  model  9 in Table 2 (presented as Eq (5) 

above) and the actual Chyt+7.  As seen from the figure, the model  captures most of the peaks 

without phase error with a few exceptions especially in the under prediction of the maximum 

chlorophyll level (40.1 μg/l). On closer examination, for lower range of chlorophyll values, some 

phase lag is observed.

The biweekly prediction of chlorophyll (Chyt+14) is also attempted at. Initially, the input vector to 

GP is kept same as that used for weekly prediction i.e. Eq (3). The best ten GP evolved models 

are  listed  in  Table  4  with  RMSE  value  for  both  inside  and  outside  the  training  range  of 

chlorophyll. The results show that the best predicted model has a RMSE as high as 5.32 μg/l. 

The  14  day prediction  model as  obtained  above shows that  Chyt,  DOt and  SDt governs  the 

process. In an attempt to improve the prediction, GP input vector is modified by including the 7 

day prediction of chlorophyll as obtained above. This modified chlorophyll prediction model for 

the 14 day lead period prediction is shown in Eq (4):

The best results from various GP runs are listed in Table 5. The best model obtained is model 10, 

which is presented below as Eq (7):

It is also interesting to note from Table 4 and Table 5 that the RMSE of the evolved models is 

nearly same when the models  are  validated  for  Chy within  the training range.  However,  the 

11

( )7
*

3
tanh1

2

714
















 +−−= ++
tt

tt
ttt TempSD

chySD
chychychy

( ) )6()log(*))log(log(14 













++=+

t

t
tttt SD

chy
DOSDDOchy

http://dx.doi.org/10.1016/j.marpolbul.2010.05.020


Marine Pollution Bulletin, Vol. 60 (10), 2010, pp. 1849 – 1855.
Published version can be downloaded from: http://dx.doi.org/10.1016/j.marpolbul.2010.05.020

results drastically differ when validated for Chy outside the training range. Further, inclusion of 

Chyt+7 has reduced the RMSE of the best model to 3.98 μg/l. Further, the temperature of the water 

body also seems to affect the process. Because of the presence of Chyt+7, the effect of DO and 

TIN are automatically included.  Thus,  in  addition to Chy,  TEMP and SD affect  the process. 

Similar conclusions on the variables affecting algal bloom modeling has been arrived at by other 

researchers,  for  example,  Recknagel  et  al.  (2002),  Bobbin  and Recknagel  (1999),  Lee  et  al. 

(2003) and Muttil and Lee (2005). 

Figure 4 shows the plot of prediction obtained with model 10 in Table 5 (presented as Eq (7) 

above) and the actual Chyt+14. As seen from this figure, a phase error up to 1 week is observed for 

both lower and higher values of chlorophyll and also with few under predictions.

CONCLUSION

The following conclusions can be arrived at based on the present study:

(a) The procedure outlined in this  study illustrates  a simple way to select  the best model 

evolved from various GP runs (in terms of selection of training and validating set). It is very clear 

that for a better confidence in the use of GP model, it is better to select that model which gives 

best performance when validated outside the training range. 

(b) The prediction of Chyt+7 most significantly depends on Chyt. Though TIN and DO also 

affect the process, they are more stable with respect to measurement error.

(c) The prediction  of  Chyt+14  most  significantly  depends  on  Chyt+7 and  Chyt.  In  addition, 

TEMP and SD are also found to influence the process.

(d) Due to linear interpolation of biweekly data to obtain daily data, the performance of naïve 

model appears as good as one of the other models evolved by GP for 7 lead day prediction.  

However, such models do not appear for biweekly predictions.

(e) It  is  strongly  believed  that  more  meaningful  insight  can  be  obtained  to  predict  the 

complex algal bloom process using GP only once the suggested methods are validated on other 

data sets.
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GP                          - Genetic Programming 

Chy                        - Chlorophyll

Chyt+7                     - Chlorophyll at day 7

TIN                         - Total Inorganic Nitrogen 

DO                          - Dissolved Oxygen 

HAB                        - Harmful Algal Bloom 

ANN                        - Artificial Neural Network 

GA                          - Genetic Algorithm

MODIS                    - Moderate Resolution Imaging Spectro–Radiometer 

ALOS                     - Advanced Land Observation Satellite 

TGP                        - Tree-based Genetic Programming 

EPD                        - Environmental Protection Department 

PO4                         - Phosphorus

SD                          - Secchi-disc Depth

SR                          - Daily Solar Radiation

MWS                      - Daily Average Wind Speed

RMSE                     - Root-Mean-Square-Error

CC                          - Correlation Coefficient
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Table 1: Values of parameters used in GP runs

Parameter Value

Population Size

Maximum equation size

Crossover rate

Mutation rate

Stopping criterion

Elitism used Yes
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Model No. GP evolved equations
RMSE

(Within the 
Training Range)

RMSE
(Outside the 

Training Range)
1 3.857 2.915
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3
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Table 3: Sensitivity analysis for GP evolved best model for Chyt+7

Variables Error measure Actual value 5% 10% 15%
Chlorophyll CC 0.931 .931 .931 .931

RMSE (μg/l) 2.583 2.63 2.72 2.84
TIN CC 0.931 .931 .931 .931

RMSE (μg/l) 2.583 2.583 2.583 2.583
DO CC 0.931 .931 .931 .931

RMSE (μg/l) 2.583 2.59 2.6 2.609
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Table 4: Best ten GP evolved models for predicting Chyt+14 without including Chyt+7

Model No. GP evolved equations
RMSE

(Within the 
Training Range)

RMSE
(Outside the 

Training Range)

        1
5.576 6.25

2 ( ) ( ) 
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Table 5: Best ten GP evolved models for predicting Chyt+14 with Chyt+7 as additional input

Model No. GP evolved equations
RMSE

(Within the 
Training Range)

RMSE
(Outside the 

Training Range)
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Figure 1: Location of study site: Tolo Harbour

Taipo

TM3
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Figure 2: Demonstration sketch for illustrating fitting of different models for a given sample data
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Figure 3: Comparison of actual and predicted value of chlorophyll at 7-lead day (using the model 

presented in Eq (5))
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Figure 4: Comparison of actual  and predicted value of chlorophyll  at 14-lead day  (using the 
model presented in Eq (7))
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