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ABSTRACT 

Drought is a natural phenomenon, and has widespread and significant impacts on the 

world’s economy, environment, industries and the community. Early detection of 

droughts helps to implement drought mitigation strategies and measures, before they 

occur. Therefore, drought forecasting plays an important role in the planning and 

management of water resources systems, especially during dry climatic periods. 

However, drought assessment and forecasting are not always easy. This study 

developed an objective drought assessment tool through a Drought Index (DI), and 

then developed a drought forecasting tool using the developed DI to forecast future 

drought conditions. These tools can be used to assist water managers to assess droughts 

effectively and forecast future drought conditions, which will allow them to plan ahead 

the water management activities during droughts. The Yarra River catchment in 

Australia was considered as the case study catchment, since the management of water 

resources in this catchment has great importance to majority of Victorians. 

To achieve the objectives of this study, an evaluation of existing DIs was first 

conducted in terms of their suitability for the assessment of drought conditions in the 

study catchment. Based on the findings of the evaluation study, a new Nonlinear 

Aggregated Drought Index (NADI) was developed and evaluated for the Yarra River 

catchment. The NADI considers five hydro-meteorological variables (i.e., rainfall, 

potential evapotranspiration, streamflow, storage reservoir volume and soil moisture 

content) that affect the droughts. It proved to be more useful than the other DIs in this 

study. It uniquely describes the broad perspective of drought beyond the traditional 

meteorological, hydrological and agricultural subcategories, and also more 

representative of the fluctuations in water resources variables within the hydrologic 

cycle. The Artificial Neural Network (ANN) technique, which has proved to be one of 

the most successful drought forecasting modeling techniques, was then used to develop 

and test several drought forecasting models to forecast the NADI values as drought 

forecasts. The results showed that the best developed drought forecasting models were 

capable of forecasting drought conditions reasonably well up to 6 months ahead. 

The major innovation of this study was the development of the NADI for assessing 

drought conditions. Moreover, the new drought forecasting model using the NADI, 

forecasts the overall dry conditions better than the traditional rainfall based DI 

forecasting models. 
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1. INTRODUCTION 
 

Background; Motivation for this Study; Aims of the Study; 
Research Methodology in Brief; Research Significance, 
Outcomes and Innovations; Outline of the Thesis 

 

 

1.1. Background  

Drought is one of the world’s costliest natural disasters, causing an average 

US$6–8 billion in global damages annually, and affecting more people than any other 

form of natural catastrophe (Keyantash and Dracup, 2002). In Australia, many parts of 

land suffer from frequent droughts. Australia is often referred to as the driest inhabited 

continent on earth and this is evident when rainfall and run-off are compared with 

other countries (Davidson, 1969; Pigram, 2006). It has also been seen that many parts 

of Australia have experienced their worst single and multi-year droughts on record 

over the last decade (Tan and Rhodes, 2008). These recent frequent droughts have 

severely stressed water supply systems and the community that depends on them. 

Drought management has therefore become an important issue especially in south-

eastern Australia. The frequency of drought occurrences is reasonably well studied for 

the purpose of drought management using the historic time series of hydro-

meteorological variables such as rainfall and streamflow. However, the forecasting 

aspect, which is very important from the point of view of drought preparedness and 

early warning, is still fraught with great difficulty (Panu and Sharma, 2002). 

Nevertheless, Beran and Rodier (1985) and Panu and Sharma (2002) suggested that it 

may be possible to forecast the probable timings of inception and termination of 

droughts reasonably well over a short period such a month or a season. 

Typically, when a drought event and resultant disaster occur, governments and 

donors follow impact assessments, and response, recovery and reconstruction 

activities, to return the region or locality to a pre-disaster state. All these activities are 
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generally followed with the assessment of the past drought condition which is often 

carried out with a drought assessment tool. Although, in general people cope with 

drought impacts by taking recovery actions after any drought, the society can reduce 

drought vulnerability and therefore lessen the risks associated with droughts by making 

a future drought plan. Moreover, the likelihood of increasing frequency, duration and 

severity of droughts in Australia due to possible climate change impacts reinforces the 

need for future drought plans (Hennessy et al., 2008). Therefore, it is well recognized 

that preparedness for drought is the key to the effective mitigation of drought impacts 

which is becoming more important for water resources managers to handle the 

challenges in water resources management. 

There are several methods that have been used in the past as the drought 

assessment tools such as measurement of lack of rainfall, shortage of streamflow, 

reduced levels of water storage, and Drought Indices (DIs). Of these, DIs are widely 

used for drought assessment (Heim Jr, 2002; Keyantash and Dracup, 2002; Smakhtin 

and Hughes, 2004; Morid et al., 2006). DI is a function of a number of hydro-

meteorological variables (e.g., rainfall and streamflow), and expresses with a numeric 

number which is more functional than raw data during decision making (Hayes, 2003). 

However, defining an appropriate DI is not always an easy task, and researchers and 

professionals face challenges for developing a suitable DI (Panu and Sharma, 2002). 

Therefore, the development of an appropriate DI for defining drought conditions is the 

first task in this thesis.    

Historically little attention has been given to drought forecasting aspect which 

is very important from the point of view of drought preparedness and early warning as 

mentioned earlier. Because of this emphasis on crisis management, many societies 

have generally moved from one disaster to another with little, if any, reduction in risk 

(Wilhite, 2005). In addition, in drought-prone regions, another drought event is likely 

to occur before the region fully recovers from the last event. However, early indication 

of drought conditions could reduce future impacts and lessen the need for government 

intervention in the future (Panu and Sharma, 2002; Wilhite, 2005). Therefore, the 

development of a drought forecasting tool that can be used for drought preparedness is 

considered as the second task in this thesis. 
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1.2. Motivation for this Study 

In Australia, drought and drought management have always been an important 

issue in the context of water resources management. In this regard, drought forecasting 

activities in Australia had been more intensified in recent years because of the 

occurrences of the longest dry circumstances in history in the last decade (Neal and 

Moran, 2009). However, as was mentioned in Section 1.1, drought forecasting is not 

yet well advanced. Therefore, the lack of an appropriate drought forecasting tool to 

forecast future drought conditions was the principle motivation of this research project. 

This study was also motivated by the fact that there is a lack of an appropriate 

drought assessment tool (such as a DI) that can be used to define critical drought 

conditions for providing government support to the drought affected community 

(Senate Standing Committee on Rural and Regional Affairs, 1992). In 1992, the 

Commonwealth and State governments in Australia agreed on a National Drought 

Policy (NDP) (Senate Standing Committee on Rural and Regional Affairs, 1992), 

which was then reaffirmed in 1994 and revised in 1997 (White and Karssies, 1999). In 

the NDP, the concept of drought Exceptional Circumstances (EC) was introduced to 

provide support to farmers and rural communities. To be classified as a drought EC 

event, the event must be rare, that is, it must not have occurred more than once on 

average in every 20-25 years. However, it has shown that based on the concept of 

drought EC, some regions have been continuously drought-declared for 13 of the past 

16 years (Hennessy et al., 2008). The Australian primary industries ministers of the 

Commonwealth and State Governments have now agreed that the current approach of 

defining drought EC is no longer the most appropriate in the context of a changing 

climate (Hennessy et al., 2008). Therefore, the development of an appropriate drought 

assessment tool (i.e., DI) to define drought conditions including drought EC is an 

important issue. 

This study was also motivated by the fact that although there are many DIs 

developed around the world, the majority of the existing DIs were developed for 

specific regions. Suitability of these DIs had not been tested for Australia, although 

few studies have been carried out in other parts of the world (Heim Jr, 2002; 

Keyantash and Dracup, 2002; Smakhtin and Hughes, 2004; Morid et al., 2006). 
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1.3. Aims of the Study 

The main aim of this research project was to develop a drought forecasting tool 

to forecast future drought conditions across short to medium term time horizons. In 

addition, the development of a generic DI was the sub-aim of this study. For the 

development of generic DI, a DI evaluation study on the existing DIs was first 

considered. In the development of the generic DI, all important hydro-meteorological 

variables responsible for droughts were considered so that the generic DI can provide 

an objective method for defining drought conditions including the drought EC. Once 

the generic DI namely Nonlinear Aggregated Drought Index (NADI) was developed, 

the time series of this index was considered for developing drought forecasting models 

to forecast NADI values to represent the future drought conditions. 

1.4. Research Methodology in Brief 

In order to achieve the abovementioned aims, the following tasks were 

conducted in this research project: 

1. Review of drought assessment and drought forecasting methods 

2. Selection of study area, and data collection and processing 

3. Evaluation of selected drought indices 

4. Development of a generic Nonlinear Aggregated Drought Index 

5. Development of drought forecasting models 

Brief descriptions of each of the above tasks are given below. 

1.4.1. Review of Drought Assessment and Drought Forecasting 

Methods 

As was mentioned in Section 1.1, there are several methods that have been used 

in the past as the drought assessment tools. Among those, several DIs have been most 

commonly used for drought assessment by researchers and professionals around the 

world (e.g., Gibbs and Maher, 1967; Shafer and Dezman, 1982; McKee et al., 1995; 

Keyantash and Dracup, 2004). However, most of these DIs were developed for specific 
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regions, and some DIs are better suited than others for specific uses (Redmond, 2002; 

Hayes, 2003). Therefore, a review of the existing DIs was first conducted in this 

research to understand the suitability of existing DIs for use in the regions outside of 

those for which they were originally developed for. Similarly, there are several drought 

forecasting modeling techniques that have been used for developing drought 

forecasting models (e.g., Kim and Valdes, 2003; Mishra and Desai, 2005; Barros and 

Bowden, 2008; Cutore et al., 2009). A review of these techniques was carried out to 

select the appropriate drought forecasting modeling technique for developing drought 

forecasting models in this study. 

1.4.2. Selection of Study Area, and Data Collection and Processing 

The Yarra River catchment in Victoria (Australia) was selected as the case 

study area in this research to develop and evaluate the DIs and drought forecasting 

model. This catchment was selected, since the management of water resources in this 

catchment has great importance to majority of Victorians and one third of Victorian 

population depends on the water resources of this catchment. Hydro-meteorological 

data (for several locations in the Yarra River catchment) were collected from several 

organizations to use in this research. Data processing was then carried out to obtain the 

catchment representative values which were used for development and evaluation of 

the DI and the drought forecasting model. 

1.4.3. Evaluation of Selected Drought Indices 

As was mentioned in Section 1.4.1, existing DIs were developed mostly for use 

in specific regions, and therefore may not be directly applicable to other regions due to 

inherent complexity of drought phenomena, different hydro-climatic conditions and 

catchment characteristics (Redmond, 2002; Smakhtin and Hughes, 2007). There had 

been few DI evaluation studies around the world (Heim Jr, 2002; Keyantash and 

Dracup, 2002; Smakhtin and Hughes, 2004; Morid et al., 2006). However, no such 

study had been conducted in Australia as was mentioned in Section 1.2. Therefore, an 

evaluation of some selected DIs was carried out to investigate the most appropriate DI 

for defining drought conditions in the Yarra River catchment. A number of decision 

criteria were used in this DI evaluation study. 
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1.4.4. Development of a Generic Nonlinear Aggregated Drought Index 

Based on the findings of the DI evaluation study (Section 1.4.3), a generic DI 

namely, the Nonlinear Aggregated Drought Index (NADI) was developed using five 

hydro-meteorological variables (i.e., rainfall, potential evapotranspiration, streamflow, 

storage reservoir volume and soil moisture content) for the case study catchment. The 

NADI was developed to overcome an important limitation of the Aggregated Drought 

Index (ADI), which was found to be the best DI for the Yarra River catchment in the 

DI evaluation study (Section 1.4.3). Nonlinear Principal Component Analysis 

(NLPCA) was introduced and used to aggregate the above mentioned five hydro-

meteorological variables in this study to develop the NADI. The NADI was then 

evaluated to investigate how well this DI defined drought conditions for the Yarra 

River catchment. 

1.4.5. Development of Drought Forecasting Model 

Several drought forecasting models based on the different combinations of 

potential input variables were developed to forecast the NADI values as future drought 

forecasts. The Artificial Neural Network (ANN) which was found to be the best 

suitable technique for developing drought forecasting models (e.g., Kim and Valdes, 

2003; Mishra and Desai, 2006; Mishra et al., 2007; Barros and Bowden, 2008; Cutore 

et al., 2009) was used in this research. Two types of ANN architectures namely, 

Recursive Multi-Step Neural Network (RMSNN) and Direct Multi-Step Neural 

Network (DMSNN) were used in the model development. The best drought forecasting 

model for each type of ANN architectures was then selected by conducting a 

comparative performance evaluation between the developed models. 

1.5. Research Significance, Outcomes and Innovations 

In this section, the significance of the research project and the overall outcomes 

are discussed. A list of innovative ideas which have been evolved from this study is 

also presented in this section. 
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1.5.1. Significance 

This research project has produced several significant contributions in the field 

of water resources management, especially in the management of water resources 

during continuing dry climatic conditions. These contributions are outlined below: 

• As was mentioned in Section 1.2, majority of the existing DIs were 

developed for use in a specific region, and the suitability of these DIs had 

not been investigated for any Australian catchment, although some 

suitability studies had been carried out in other parts of the world. 

Therefore, the evaluation of existing DIs that was carried out in this 

research was the first study for any Australian catchment. The ADI was 

found to be the best DI amongst the existing DIs investigated in this study. 

The overall outcome of this DI evaluation study (Section 1.5.2) was a 

valuable contribution to the hydrologic and water resource management 

community throughout the world in general and to Australia in particular. 

• The outcome of the quantitative assessment of DIs has provided evidence 

that by considering all potential hydro-meteorological variables responsible 

for droughts, the drought conditions including the drought EC can be 

defined more robustly than other DIs which consider only rainfall as the 

single variable (Section 1.5.2). This study also led to the development of the 

generic NADI. The developed NADI in this study is therefore a significant 

contribution towards developing drought impact assistance plans by 

providing an objective method for defining drought EC. 

• The developed drought forecasting model is a useful tool, which can 

become part of a drought preparedness and early warning system to provide 

early indication of future drought conditions. 

1.5.2. Outcomes 

The outcomes of this study are outlined below: 
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• Amongst the existing DIs, the ADI was found to be the best DI for defining 

drought conditions of the Yarra River catchment. However, the use of linear 

Principal Component Analysis (PCA) in ADI assumed that the hydro-

meteorological variables which were used for developing the ADI have 

linear relationships between them and therefore could not capture the 

nonlinear relationship between the variables, when they exist. 

• The NLPCA technique which was introduced in this study in developing 

the new generic NADI was able to capture the nonlinear relationships 

between the variables. It also showed that NLPCA was able to explain more 

variance of the data of the input variables than the traditional linear PCA. 

• The NADI was found to be the most suitable DI for defining drought 

conditions within the Yarra River catchment. A comparative study that was 

conducted between NADI and ADI showed that the NADI was a better DI 

than the ADI. 

• The ANN modeling technique was found to be the most suitable technique 

for developing the drought forecasting models to forecast future drought 

conditions. 

• As was mentioned before, two types of ANNs namely - RMSNN and 

DMSNN were used for developing the drought forecasting models in this 

study. Forecasting drought conditions in the Yarra River catchment using 

the RMSNN model were found to be slightly better than the DMSNN 

model for forecast lead times of 2 to 3 months, and the DMSNN model had 

given slightly better forecasting results than the RMSNN model for lead 

times of 4 to 6 months. 

1.5.3. Innovations 

Several innovative ideas were developed in this study which are outlined 

below: 

• The major innovation of this study was the development of a generic DI, 

namely NADI for assessing drought conditions. The NADI has also proved 

that it was more representative of the fluctuations in water resources 
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variables within the hydrologic cycle. The NADI also proved to be more 

robust than the other DIs. 

• The NLPCA technique was widely used in many engineering fields such as 

in computer science, mainly for data reduction and signal processing 

purposes. However, this study was the first to apply this technique for data 

aggregation and has proven success by capturing the nonlinear relationships 

between the hydro-meteorological variables in the NADI development. 

• Drought forecasting models were developed in this study using the time 

series of NADI to forecast the NADI values as forecasts of future drought 

conditions. These models forecast the overall dry conditions within the 

catchment better than the traditional rainfall based DIs which forecast only 

the meteorological drought conditions. 

1.6. Outline of the Thesis 

The outline of the thesis is presented in Figure 1.1. This figure shows that the 

thesis consists of seven chapters. The first chapter describes the background of the 

research project, the motivation for the study, the aims, a brief methodology, the 

significance, outcomes and innovations of this project. The second chapter presents a 

critical review of literature related to the research project. Details on the case study 

catchment and its importance to the Victorians, drought history in Victoria, data used 

in this research, and their sources and processing are illustrated in the third chapter. 

The fourth chapter provides details on the evaluation of selected DIs for the case study 

catchment. Development of the NADI and its evaluation for drought assessment in the 

Yarra River catchment are presented in the fifth chapter. The sixth chapter provides the 

development of drought forecasting models, their performance evaluation, and the 

selection of the best models in this study. Finally, a summary of the thesis and the main 

conclusions, and the recommendations for future work are presented in the seventh 

chapter. 
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Figure 1.1 Outline of the thesis  
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2. REVIEW OF DROUGHT ASSESSMENT AND 
DROUGHT FORECASTING METHODS 
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2.1. Overview 

Drought is a complex natural phenomenon and has significant impacts on 

effective water resources management. In general, drought gives an impression of 

water scarcity due to insufficient precipitation, high evapotranspiration and over-

exploitation of water resources or a combination of all above (Bhuiyan, 2004). There 

are three main drought categories, i.e., meteorological, hydrological and agricultural 

droughts. The meteorological drought is expressed solely based on the level of dryness 

measured in terms of rainfall deficiency (Keyantash and Dracup, 2004). The 

hydrological drought, on the other hand, is defined based on deficiency in water 

availability in terms of streamflow, reservoir storage and groundwater depths (Wilhite, 

2000). The agricultural drought is expressed based on soil moisture deficits, and 

considers rainfall deficits, soil water deficits, variation of evapotranspiration, etc. 

(Hounam, 1975). In addition, the American Meteorological Society (1997) introduced 

another drought category called socio-economic drought. This category of drought 

occurs when physical water shortages start to affect the health, well-being and quality 

of life of people. This drought starts to affect the supply and demand of economic 

products such as water, fish production, hydroelectric power generation, etc. Drought 

places enormous demand on rural and urban water resources, and immense burden on 

agricultural and energy production. Therefore, timely determination of the level of 

drought will assist the decision making process in reducing the impacts of drought. 

As was mentioned in Section 1.1, there are several methods that have been used 

in the past as drought assessment tools such as measurement of lack of rainfall, 

shortage of streamflow, Drought Indices (DIs) among others. However, traditionally 
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the estimation of future dry conditions (or drought forecasting) has been conducted 

using DIs as the most common drought assessment tools. This is because the DI is 

expressed by a number which is believed to be far more functional than raw data 

during decision making (Hayes, 2003). The DI in general is a function of several 

hydro-meteorological variables such as rainfall, temperature, streamflow and storage 

reservoir volume. In defining DIs, some researchers and professionals argue that 

drought is just deficiency in rainfall and can be defined with the rainfall as the single 

variable. Based on this concept, majority of the available DIs including Percent of 

Normal (PN) (Hayes, 2003), Deciles (Gibbs and Maher, 1967) and many others were 

developed with rainfall as the only variable. These rainfall based DIs are widely used 

than other DIs due to their less input data requirements, flexibility and simplicity of 

calculations (Smakhtin and Hughes, 2004). However, other drought researchers and 

professionals believe that rainfall based DIs do not encompasses drought conditions of 

all categories of droughts, since they can be used only for defining meteorological 

droughts (Keyantash and Dracup, 2004; Smakhtin and Hughes, 2004). Smakhtin and 

Hughes (2004) also stated that the definition of droughts should consider significant 

components of the water cycle (such as rainfall, streamflow and storage reservoir 

volume), because the drought depends on numerous factors, such as water supplies and 

demands, hydrological and political boundaries, and antecedent conditions 

(Steinemann, 2003). Byun and Wilhite (1999) had also supported this idea previously, 

stating that a valid drought index should comprise of a mixture of hydro-

meteorological variables. Based on these ideas, two DIs, viz., Surface Water Supply 

Index (SWSI) (Shafer and Dezman, 1982) and Aggregated Drought Index (Keyantash 

and Dracup, 2004), had also been developed considering a number of hydro-

meteorological variables such as rainfall, streamflow and others. It should also be 

noted that most of the DIs that had been developed were regionally based and some 

DIs are better suited than others for specific uses (Redmond, 2002; Hayes, 2003; 

Mishra and Singh, 2010). Therefore, a review of the existing DIs is necessary before 

adapting any of the existing DIs, for use in areas/catchments outside those areas for 

which they were originally developed. 

Similarly, there are several techniques that have been used for developing 

drought forecasting models including Autoregressive Integrated Moving Average 

(ARIMA) (Mishra and Desai, 2005), Markov Chains (Paulo and Pereira, 2007) and 
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Artificial Neural Network (ANN) (Kim and Valdes, 2003; Mishra and Desai, 2006; 

Mishra et al., 2007; Barros and Bowden, 2008; Cutore et al., 2009). Understanding 

these techniques will help in selecting the appropriate method in developing a drought 

forecasting model.  

There are two aims of the current chapter: (1) to review the existing drought 

assessment tools (e.g., DIs) which have been used to define the drought conditions, and 

(2) to review the existing drought forecasting modeling techniques which have been 

used for developing drought forecasting models. The outcome of this chapter will be 

the identification of the most suitable DI and drought forecasting technique for use in 

this research. 

The chapter first reviews the existing drought assessment tools, followed by the 

review of the existing drought forecasting techniques. A summary of the review are 

presented at the end of the chapter. 

2.2. Drought Assessment Tools 

As stated earlier, there are several drought assessment tools that have been used 

in the past, and of these, Drought Indices (DIs) have been most commonly used to 

assess drought conditions around the world, since it is more functional than raw data in 

decision making. These DIs were used to trigger drought relief programs and to 

quantify deficits in water resources to assess the drought severity. Also, they were used 

as drought monitoring tools. 

In the mid-twentieth century, Palmer (1965) first introduced a DI called Palmer 

Drought Severity Index (PDSI) in the U.S. to define meteorological droughts using a 

water balance model. The application of PDSI became popular immediately after its 

development and was the most prominent DI used in the U.S. until its limitations were 

recognized by Alley (1984). There were also other DIs developed around the world at 

different times including the widely used Percent of Normal (PN) (Willeke et al., 

1994), Deciles (Gibbs and Maher, 1967), Standardized Precipitation Index (SPI) 

(McKee et al., 1993) and Surface Water Supply Index (SWSI) (Shafer and Dezman, 
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1982), and the theoretically sound Aggregated Drought Index (ADI) (Keyantash and 

Dracup, 2004). There are many other DIs that have been developed around the world 

which have limited use or which are regionally based. Details of some of the well 

known DIs and their usefulness are presented below. 

It should be noted that mathematical details on any of the DIs are not provided 

in this section, as all of them were not used in this research. Mathematical details will 

be provided only for the DIs that were used in this study in the various sections of 

Chapters 4 and 5. Moreover, the threshold ranges of these DIs which are used to 

classify droughts will also be provided in these chapters. The reader is referred to the 

original references for details of the other DIs. 

2.2.1. Palmer Drought Severity Index 

Palmer (1965) developed a meteorological drought index (widely known as 

Palmer Drought Severity Index (PDSI)) considering criteria for determining when a 

drought or a wet spell begins and ends. These criteria considered the following two 

conditions: (1) an abnormally wet month in the middle of a long-term drought should 

not have a major impact on the index, and (2) a series of months with near-normal 

rainfall following a serious drought does not mean that the drought is over. The PDSI 

is also described in detail by Alley (1984). 

The PDSI uses a simple monthly water budget model, with inputs of rainfall, 

temperature and available catchment soil moisture content. It does not consider 

streamflow, lake and reservoir levels or other hydro-meteorological variables that 

affect droughts (Karl and Knight, 1985). Human impacts on the water balance, such as 

irrigation, are also not considered. The PDSI is also known as the Palmer Hydrological 

Drought Index (PHDI). This is because the concept used in the model is based on 

moisture inflow (i.e. rainfall), outflow as moisture loss due to temperature effect and 

storage as soil moisture content (Karl and Knight, 1985). 

The PDSI has been widely used for a variety of applications across the United 

States including the States of New York, Colorado, Idaho and Utah as part of their 

drought monitoring systems and also to trigger drought relief programmes (Loucks and 
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van Beek, 2005). It was most effective at measuring impacts that were sensitive to soil 

moisture conditions (Willeke et al., 1994). It has also been useful as a drought 

monitoring tool, and had been used to trigger actions associated with drought 

contingency plans (Willeke et al., 1994). Alley (1984) identified three positive 

characteristics of the PDSI that contributed to its popularity: 

1) It provided decision-makers with a measurement of the abnormality of 
recent weather for a region, 

2) It provided an opportunity to place current conditions in historical 
perspectives, and 

3) It provided spatial and temporal representations of historical droughts. 

Although the PDSI has been widely used within the U.S., it has little 

acceptance elsewhere (Smith et al., 1993; Kogan, 1995). It does not do well in regions 

where there are extremes in variability of rainfall or runoff, such as in Australia and 

South Africa (Hayes, 2003). Nevertheless, the usefulness of the PDSI had been tested 

outside the U.S. by several researchers including Bruwer (1990) and du Pisani (1990) 

in South Africa. They found that the PDSI was a poor indicator of short-term (i.e., 

periods of several weeks) changes in moisture status affecting crops and farming 

operations. The limitations of the application of PDSI had also been highlighted by 

Alley (1984), Karl and Knight (1985) and Karl (1986). 

2.2.2. Percent of Normal 

Percent of Normal (PN) is one of the simplest drought monitoring tools which 

is commonly used by the TV weathercasters and general audiences (Hayes, 2003). The 

U.S. Army Corps of Engineers have used the PN across the U.S. for setting policy, 

making short and long term plans for water use, and also for making operational 

decisions. The PN was also used in New South Wales, Australia by Osti et al. (2008) 

for classifying drought conditions. It is expressed as the actual rainfall in percentage 

compared to the normal rainfall. Usually either the long-term mean or median rainfall 

value at a location was used as the normal rainfall and was considered as 100% 

(Hayes, 2003; Morid et al., 2006). One of the disadvantages of using the PN is that the 

mean rainfall is often not the same as the median rainfall Hayes (2003), and therefore 
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there is a confusion in selecting the mean or the median for defining the PN. The PN 

can be calculated for a variety of time scales including monthly, multiple monthly 

(e.g., 1-, 3-, 6-, 12-, 24- and 48- month), seasonal and annual or water year. However, 

PN in multiple monthly time scales is still calculated for each month except 

accumulating only the specified numbers of present and past month rainfall values. For 

example, 3- month April PN value means that the rainfall from February to April 

month were accumulated and used to calculate the PN 3- month April value. There are 

no threshold ranges published for this DI; usually, lower PN (PN<100%) values 

indicate dry conditions. Further details on PN are given in Section 4.3.1. 

2.2.3. Deciles 

Deciles were developed by Gibbs and Maher (1967) in Australia. In Deciles, 

the long-term monthly rainfall record is first ranked from highest to lowest to construct 

a cumulative frequency distribution. The distribution is then divided into ten parts, 

which are called "deciles". The first "decile" is the rainfall amount not exceeded by the 

lowest 10% of the rainfall occurrences. The second "decile" is the rainfall amount 

between the lowest 10 and 20% of occurrences. The definitions of these deciles 

continue until the rainfall amount identified by the tenth "decile" which is the largest 

"decile" within the long-term record. 

The Deciles approach has been used as the meteorological measurement of 

droughts within the Australian Drought Watch System, as it was relatively simple to 

calculate, and required less data and fewer assumptions than more comprehensive DIs 

such as the PDSI (Smith et al., 1993). In this system, farmers and ranchers could 

request government assistance only if the drought was considered to have a return 

period of more than 20-25 years (i.e., approximately in deciles 1 and 2) and has lasted 

for longer than 12 months (White and O'Meagher, 1995). One disadvantage of the 

Deciles approach is that a reasonable long rainfall record (i.e., generally 30-50 years) is 

required to calculate the deciles accurately (Hayes, 2003). However, Smakhtin and 

Hughes (2004) noted that this was not a shortcoming of the approach, but rather a 

requirement of the statistical analysis. Further details on Deciles are given in Section 

4.3.2. 
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2.2.4. Surface Water Supply Index 

The Surface Water Supply Index (SWSI) was developed by Shafer and Dezman 

(1982) for Colorado, U.S.A., as an indicator of the surface water conditions. The 

objective of the development of the SWSI was to incorporate both hydrological and 

climatological features into a single index (Shafer and Dezman, 1982; Doesken et al., 

1991). Four input variables are required to calculate the SWSI such as snow water 

content, streamflow, rainfall and storage reservoir volume. The snow water content, 

rainfall and storage reservoir volume are used to calculate the SWSI values for the 

winter months. During the summer months, streamflow replaces the snow water 

content. 

To determine the SWSI for a particular river basin, the monthly catchment 

average values are calculated first at all rainfall, reservoirs and snow water 

content/streamflow measuring stations over the basin. These monthly data are then 

fitted to individual probability distributions for each month and for each input variable. 

Each variable has a weight assigned individually for each of the 12 months depending 

on its typical contribution to the surface water within that basin. The weighted 

variables are summed to determine the SWSI value representing the entire basin for 

each month. In determining variable weights, Shafer and Dezman (1982) hypothesized 

that the additive nature of the variables causes the SWSI to be normally distributed and 

they have used the Chi-square statistic (Cochran, 1952) to optimize the goodness of fit. 

The SWSI has been used, to trigger the activation and deactivation of the 

Colorado Drought Plan. It has also been applied in other western states in the U.S. 

including Oregon, Montana, Idaho and Utah. One of the advantages of SWSI is that it 

gives a representative measurement of surface water supplies across the basin (Shafer 

and Dezman, 1982). However, the SWSI had not considered some of the other 

important hydro-meteorological variables such as soil moisture content and potential 

evapotranspiration that affect droughts. The SWSI also suffers from another limitation, 

which is the subjectivity involved in determining weights that are used in SWSI 

calculations. Furthermore, the additional changes in the water management within the 

basin, such as flow diversions or new reservoirs, mean that the entire SWSI algorithm 
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for that basin needs to be redeveloped to account for these changes. Thus, it is difficult 

to maintain a homogeneous time series of the index (Heddinghaus and Sabol, 1991). 

Further details on SWSI are given in Section 4.3.4. 

2.2.5. Standardized Precipitation Index 

McKee et al. (1993) developed the Standardized Precipitation Index (SPI) as an 

alternative to the PDSI for Colorado, U.S.A. The SPI was designed to quantify the 

rainfall deficit as a drought monitoring tool, and has been used to monitor drought 

conditions across Colorado since 1994 (McKee et al., 1995). Monthly maps of the SPI 

for Colorado can be found on the Colorado State University home page 

(http://ulysses.atmos.colostate.edu/SPI.html). It is also currently being used by the 

National Drought Mitigation Center and the Western Regional Climate Center in the 

U.S. 

To calculate SPI, the long-term historical rainfall record is fitted to a 

probability distribution (generally the gamma distribution), which is then transformed 

into a normal distribution (McKee and Edwards, 1997). 

The rainfall deficits over different time scales have different impacts on 

different water resources components such as groundwater, soil moisture content and 

streamflow. As an example, soil moisture conditions respond to rainfall anomalies 

relatively quickly (e.g., days/weeks to a month), while groundwater, streamflow and 

reservoir storage reflect the longer-term rainfall anomalies (e.g., months to seasons). 

Because of this reason, the SPI was originally calculated for a monthly or multiple 

monthly time scales (i.e. 1-, 3-, 6-, 12-, 24- and 48- month) as in the PN (McKee et al., 

1993). 

To date, SPI finds more applications around the world than other DIs due to its 

less input data requirements and flexibility in the SPI calculations (Hughes and 

Saunders, 2002; Hayes, 2003; Bhuiyan, 2004; Smakhtin and Hughes, 2004; Mishra and 

Desai, 2005; Morid et al., 2006; Bacanli et al., 2008). Osti et al. (2008) used the SPI to 

identify and characterize droughts in New South Wales (NSW), Australia. Barros and 
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Bowden (2008), used the SPI to forecast drought conditions within the Murray-Darling 

River basin in Australia. Although, the SPI has more popularity than any other DI, it is 

not strong enough to define the wider drought conditions since many other important 

hydro-meteorological variables (e.g., streamflow, soil moisture condition, 

evapotranspiration and reservoir storage volume) that affect droughts were not 

considered in SPI (Keyantash and Dracup, 2004; Smakhtin and Hughes, 2004). Further 

details on SPI are given in Section 4.3.3. 

2.2.6. Aggregated Drought Index 

The Aggregated Drought Index (ADI) is a multivariate DI developed by 

Keyantash and Dracup (2004) in California, U.S. It comprehensively considers all 

categories of drought (i.e., meteorological, hydrological and agricultural) through 

selection of input variables that are related to each drought type. The ADI input 

variables represent volumes of water fluctuating within the catchment. The six hydro-

meteorological variables (i.e., rainfall, streamflow, potential evapotranspiration, soil 

moisture content, snow water content and reservoir storage volume) were used as the 

input variables to calculate the ADI (Keyantash and Dracup, 2004). These variables 

may be used selectively, depending on the characteristics of the catchment of interest. 

For example, if a region does not have snow, then snow water content can be omitted 

in the ADI calculation. Similar to the SWSI, the ADI has been used to assess the 

surface water conditions within the basin/catchment. However, the SWSI does not 

consider potential evapotranspiration and soil moisture content which have important 

roles in drought occurrence. 

The Principal Component Analysis (PCA) was used as the numerical approach 

to extract the essential hydrologic information from the input data set to develop the 

ADI. The PCA has been widely used in the atmospheric and hydrologic sciences to 

describe dominant patterns appearing in observational data (Barnston and Livezey, 

1987; Lins, 1997; Hidalgo et al., 2000). The PCA was carried out on the hydro-

meteorological monthly data for three selected catchments in California, U.S in the 

study carried out by Keyantash and Dracup (2004). The first Principal Component 

(PC) was considered as the ADI value for each month (Keyantash and Dracup, 2004), 
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since it explains the largest fraction of the variance described by the full p-member 

standardized data set, where p is the number of input variables. 

The ADI thresholds values were calculated probabilistically for the selected 

catchment using the empirical cumulative distribution function of ADI values. These 

thresholds are used to classify the drought conditions. Keyantash and Dracup (2004) 

used the SPI thresholds to generate the ADI thresholds. The SPI dryness thresholds are 

the Gaussian variates of -2, -1.5, -1 and 1 standard deviations, which correspond to 

2.3th, 6.7th, 16.0th and 84.0th percentiles in SPI distributions. The ADI values 

corresponding to these percentiles were used as the ADI thresholds for the catchment 

for which ADI values were developed.  

The ADI methodology provides an objective approach for describing wider 

drought conditions beyond the traditional meteorological droughts. However, the use 

of PCA in ADI assumes that the variables have linear relationships between them in 

formulating Principal Components (PCs) (Monahan, 2000, 2001; Linting et al., 2007). 

Therefore, if nonlinear relationships exists between the variables which are used in the 

ADI, then the PCs generated through PCA will represent less variance in the data than 

expected (Linting et al., 2007). Moreover, difficulties may arise in data poor regions in 

getting all required data to develop the ADI. Further details on ADI are given in 

Section 4.3.5. 

2.2.7. Other Drought Indices 

There are many other DIs that were cited in the literature which had limited 

applications. A list of some of these DIs and their brief descriptions are presented in 

Table 2.1. It can be seen from this table that majority of the DIs were developed using 

the rainfall as the single variable. Also it can be seen that most of these DIs have 

limited use, mainly in the U.S.A. Further details on the applicability of these DIs and 

their limitations can be found in Alley (1984), Keyantash and Dracup (2002), Heim Jr 

(2002), Tsakiris et al. (2002), Morid, et al. (2006), Hayes (2003), Smakhtin and 

Hughes (2004), and Loucks and van Beek (2005). 
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Table 2.1 Other Drought Indices 

Drought Index Drought Definition Application 

Munger Index                             

(Munger, 1916) 

Length of period in days with daily rainfall less than 

1.27 mm. 

Daily measure of comparative forest fire 

risk in the Pacific Northwest, U.S.A. 

Kince Index                                  

(Kincer, 1919) 

30 or more consecutive days with daily rainfall less than 

6.35 mm. 

Producing seasonal rainfall distribution 

maps in the U.S.A. 

Marcovitch Index                

(Marcovitch, 1930) 

Drought Index = ½(N/R)2; where N is the total number 

of two or more consecutive days above 32.2 0C in a 

month and R is the total rainfall for the month. 

Alarming bean beetle in the eastern United 

States of America. 

Blumenstock Index             

(Blumenstock Jr, 1942) 

Length of drought in days, where drought is terminated 

by occurrence of 2.54 mm of rainfall in 2 days. 

Short term drought management in the 

U.S.A. 

Keetch - Byram Index (KBDI)            

(Keetch and Byram, 1968) 

Rainfall and soil moisture analyzed in a water budget 

model with a daily time step. 

Used by fire control managers for wildfire 

monitoring and prediction in the U.S.A. 
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Crop Moisture Index (CMI)            

(Palmer, 1968) 

The CMI was developed from procedures within the 

calculation of the PDSI. The PDSI was developed to 

monitor long-term meteorologicall wet and dry spells, 

however the CMI was designed to evaluate short-term 

moisture conditions across major crop producing 

regions. The CMI is computed using the mean 

temperature and total rainfall for each week within the 

catchment, as well as the CMI value of the previous 

week. 

Used in the U.S. to monitor week to week 

changes in moisture conditions affecting 

crops. 

Reclamation Drought Index (RDI)       

(Weghorst, 1996) 

RDI is calculated at the river basin (or the catchment) 

level using a monthly time step, and incorporates 

temperature, rainfall, snow water content, streamflow 

and reservoir levels. 

Used as a tool for defining drought severity 

and duration, which assisted the Bureau of 

Reclamation in the U.S.A. in providing 

drought mitigation measures. 

Effective Drought Index (EDI)           

(Byun and Wilhite, 1999) 

The EDI is the rainfall amount needed return to normal 

condition (or to recover from the accumulated deficit 

since the beginning of a drought). 

Used to monitor day to day drought 

conditions in the U.S.A. It was also tested 

in Iran (Morid et al., 2006). 
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2.3. Drought Forecasting Techniques 

There are several modeling techniques that have been used to develop drought 

forecasting models including Autoregressive Integrated Moving Average (ARIMA) 

and Seasonal Autoregressive Integrated Moving Average (SARIMA) (Mishra and 

Desai, 2005; Durdu, 2010), Markov Chain (Paulo and Pereira, 2007), Loglinear 

(Moreira et al., 2008), Artificial Neural Network (ANN) (Kim and Valdes, 2003; 

Mishra and Desai, 2006; Mishra et al., 2007; Barros and Bowden, 2008; Cutore et al., 

2009) and Adaptive Neuro-Fuzzy Inference System (ANFIS) (Bacanli et al., 2008). 

These techniques have been used to forecast the DI values to represent future drought 

conditions for future planning of water resources management activities. In the review, 

it was found that two types of drought forecasting models have been used around the 

world to provide: (1) deterministic forecasts where the models were used to forecast DI 

values for future time steps from the current time step; ARIMA, SARIMA, ANN and 

ANFIS models come under this type, and (2) probability based drought class transition 

forecasts where the models were used to estimate the probability drought class 

transition from one stage at current time step to another for future time steps; Markov 

Chain and Loglinear models fall under this type of models. Details of these drought 

forecasting modeling techniques are discussed below. 

It should be noted that in-depth mathematical details and calibration procedures 

for any of the drought forecasting modeling techniques are not provided in this section, 

as all of them were not used in this research. Mathematical details and calibration 

procedures will be provided only for the technique that was used in this study; these 

will be given in various sections in Chapter 6. The reader is referred to the original 

references for details of the other techniques. 

2.3.1. Autoregressive Integrated Moving Average Model 

A useful class of models for time series forecasting called Autoregressive 

Moving Average (ARMA (p, q)) models is formed by combining an Autoregressive 

(AR) model of order p and a Moving Average (MA) model of order q. This ARMA (p, 

q) model is defined by Equation (2.1). 
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where, xt  is the random variable at discrete time (usually t 

= 0, ±1, ±2, ...) 

tε   independent random variables with mean μ and 

variance σε2 

1φ , …, pφ    are coefficients for AR model 

1θ , …, qθ    are coefficients for MA model 

Also known as Box-Jenkins type models (Thyer, 2001), this class of models 

has been widely used by many researchers and professionals for hydrological time 

series simulation. With ARMA (p, q) models, it is assumed that the time series to be 

modeled is stationary and approximately normal (Salas et al., 1980; Chatfield, 2003). 

However, in practice most time series are non-stationary (Chatfield, 2003). Therefore, 

the ARMA (p, q) model has been extended to Autoregressive Integrated Moving 

Average (ARIMA) model (also known as ARIMA (p, d, q) model) in order to fit the 

non-stationary time series by allowing differencing of the time series (Salas et al., 

1980; Chatfield, 2003). Differencing of the time series removes its non-stationarity and 

it can be done for first, second or in general the dth times. As an example, the first and 

second order differences are defined by Equations (2.2) and (2.3) respectively. Salas et 

al. (1980) noted that in practice only one or two difference operations are used, and 

Chatfield (2003) mentioned that the first difference is often found to be adequate in 

many cases. 

1t t tu x x −= −          (2.2) 

1 1 1 2 1 2( ) ( ) 2t t t t t t t t t tw u u x x x x x x x− − − − − −= − = − − − = − +    (2.3) 



Chapter 2: Review of Drought Assessment and Drought Forecasting Methods 

 Page 2-15

The behavior of the differenced series ut or wt can be then represented in 

ARIMA (p, d, q) model by Equation (2.4). 

1 1

1 1

                 or

− −
= =

− −
= =

= φ + ε − θ ε

= φ + ε − θ ε

∑ ∑

∑ ∑

p q
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t i t i t j t j
i j

u u

w w

       (2.4) 

Box and Jenkins (1976) popularized the ARIMA (p, d, q) model for forecasting 

hydrologic variables including rainfall and streamflow. Mishra and Desai (2005) 

introduced the ARIMA model for drought forecasting in the Kansabati river basin in 

India, and this approach was recently adopted by Durdu (2010) in the Buyuk Menderes 

river basin, Western Turkey. Mishra and Desai (2005) developed the drought 

forecasting model to forecast SPI values for multiple time scales (i.e. 3-, 6-, 9-, 12- and 

24- months). They found that their model is only able to forecast 1- month ahead SPI 

values, and was not able to forecast longer lead time values due to the seasonality 

effects in the data used in the model. Therefore, Mishra and Desai (2005) further 

improved the model by removing the seasonality effects in the data, which is discussed 

in Section 2.3.2. 

2.3.2. Seasonal Autoregressive Integrated Moving Average (SARIMA) 

Model 

In practice, most time series contain a seasonal periodic component, which 

repeats at every ω observations (Chatfield, 2003). With monthly observations, ω = 12 

and typically expect xt to depend on values at annual lags, such as xt-12, and perhaps xt-

24, as well as on more recent non-seasonal values such as xt-1 and xt-2. Box and Jenkins 

(1976) generalized the ARIMA (p, d, q) model to deal with seasonality, and defined a 

general multiplicative seasonal ARIMA model using seasonal differencing in 

Equations (2.2) and (2.3) as defined by Equations (2.5) and (2.6). 

t t tu x x −ω= −          (2.5) 
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where, ω is the period. As stated earlier, typically ω is equal to 12 for monthly 

series. If necessary, to achieve stationarity the seasonal differencing could be repeated 

D times. For example, for D = 2 and ω = 12 

12 12 12 24 12 24( ) ( ) 2t t t t t t t t t tw u u x x x x x x x− − − − − −= − = − − − = − +    (2.6) 

This model is commonly known as the Seasonal Autoregressive Integrated 

Moving Average (SARIMA) model. In short notation, the SARIMA model described 

as ARIMA (p, d, q) (P, D, Q)s, where (p, d, q) is the non-seasonal part of the model 

and (P, D, Q)s is the seasonal part of the model. 

The SARIMA model was used by Mishra and Desai (2005) to develop a SPI- 

based drought forecasting model by removing seasonality. The technique was also 

used by Durdu (2010) in the Buyuk Menderes river basin, Western Turkey to forecast 

drought conditions using several time scales SPI time series. Both Mishra and Desai 

(2005) and Durdu (2010) found that their SARIMA models were able to give 

reasonably good results up to 2 month ahead drought forecasts. The results were better 

for higher time scale SPI series (i.e. 9-, 12-, and 24- month), and with these higher time 

scale SPI forecasting models, forecasting had produced good results up to 3 month 

ahead forecasts (Mishra and Desai, 2005). Both studies conducted by Mishra and Desai 

(2005) and Durdu (2010) demonstrated that the improved results might be due to the 

increase in rainfall accumulation in higher SPI time series which reduced the noise 

more effectively. Mishra and Desai (2005) also recommended that the SARIMA 

models can be used in other river basins for forecasting SPI series of multiple time 

scales. 

2.3.3. Markov Chain Model 

A Markov chain (Cinlar, 1975) is a stochastic process having the property that 

the value of the process at time t, Xt, depends only on its value at time t – 1, Xt–1, and 

not on the sequence of values Xt–2, Xt–3, . . ., X0 that the process had passed through in 

arriving at Xt–1. This can be written as (Mishra et al., 2009): 
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The conditional probability, ( )1Prob t j t iX a X a−= = , gives the probability that 

the process at time t will be in ‘‘state j’’ given that at time t – 1 the process was in 

‘‘state i’’. The ( )1Prob t j t iX a X a−= =  is commonly called first-order transition 

probability and usually denoted by pij. 

If a process is divided into m states, then m2 transition probabilities must be 

defined. The m2 transition probabilities can be represented by an (m x m) matrix P 

given as 

11 12 1

21 22 2

31 32 3

1 2

      ...   
      ...   
      ...   
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     ...   
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      (2.8) 

This is called the transition probability matrix of the Markov chain where sum 

of row elements is always 1 and the size of the matrix is equal to the number of states 

to be considered (Ochola and Kerkides, 2003). The transition probability matrix can be 

estimated from the observed data by tabulating the number of times the observed data 

had gone from state i to state j, nij. Then, an estimate of pij would be  

1

ij
ij m

ijj

n
p

n
=

=
∑

         (2.9) 

Since the Markov chain approach was introduced by A. A. Markov in 1906, it 

has been widely applied in the disciplines of natural science, engineering, economics 

and management (Liu et al., 2009). This approach has also been widely used in 

drought forecasting (Lohani and Loganathan, 1997; Lohani et al., 1998; Paulo and 
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Pereira, 2007; Liu et al., 2009). Paulo and Pereira (2007) stated that the Markov chain 

modeling approach is useful in understanding the stochastic characteristics of droughts 

through the analysis of probabilities for each severity class, times for reaching the non-

drought class from any drought severity state, and residence times in each drought 

class. Lohani and Loganathan (1997) and Lohani et al. (1998) developed an early 

warning system for drought management using the PDSI and the Markov chain, in two 

climatic areas of Virginia (U.S.A.). The same approach was also adopted for 

developing a meteorological drought forecasting model by Liu et al. (2009) in Laohahe 

catchment in northern China. In their study, spatio-temporal distributions of PDSI were 

analyzed and forecasted by Markov chain. Steinemann (2003) adopted six classes of 

severity, from wet to dry conditions, similar to those in PDSI, and used the Markov 

chain to characterize probabilities for drought class and duration in a class. The results 

obtained were used to propose triggers for early-activating of the drought preparedness 

plans at the basin scale. Paulo et al. (2005), and Paulo and Pereira (2007) used the 

Markov chain approach to characterize drought conditions and forecast the SPI drought 

classes. They found that the approach can be satisfactorily used as a predictive tool for 

forecasting transitions among drought severity classes up to 3 months ahead. Liu et al. 

(2009) demonstrated two shortcomings of the Markov chain technique for forecasting 

drought conditions. They were: (1) the predictive performance decreased greatly as the 

severity of drought increased, and (2) the predictive performance was not always 

satisfactory for drought state transitions, and the prediction performance was only 

acceptable for the successive and smooth states. 

2.3.4. Log linear Model 

The log linear model is one of the special cases of generalized linear models 

which can be used with Poisson-distributed data. It is an extension of the linear 

modeling process that allows models to fit data that follow probability distributions 

other than the normal distribution, such as the Poisson distribution. It is also known as 

an extension of the two-way or two-dimensional contingency tables where the 

relationships between two or more discrete, categorical variables are analyzed by 

taking the natural logarithm of the cell frequencies within a contingency table. The 

variables used in the loglinear model are called as “response variables” (Agresti, 

1990). 
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In a recent study, Moreira et al. (2008) used the three-dimensional loglinear 

model for drought forecasting in Alentejo and Algarve regions in Portugal using the 

12-month SPI. With the three-dimensional loglinear model, it is possible to compute 

how most probable is the transition from class i to class j compared with the transition 

from class i to class k by analyzing the value of the odds. The odd is defined here by 

the ratio Eij / Eik, where Eij and Eik are the expected frequencies of transitions from class 

i to class j and from class i to class k respectively. Modeling is performed for the cell 

counts in contingency tables (Haberman, 1977). The Poisson sampling model is 

usually used for the counts in the contingency tables and assumes that the counts are 

independent Poisson random variables. The use of three-dimensional loglinear model 

aims at fitting the observed frequencies of transitions between each drought class, 

denoted as Oijk, and to model the corresponding expected frequencies, denoted as Eijk, 

which are the estimates of the observed frequencies for each cell of a three-

dimensional contingency table (Table 2.2). In this table, four drought classes are 

considered. In general, several models are fitted to the response variables. Moreira et 

al. (2008) found that the quasi-association model is proved to be most adequate model 

with the drought class transitions. Further mathematical details on quasi-association 

model for the three-dimensional contingency table (i.e., Table 2.2) are given in  

Moreira et al. (2008). 

Table 2.2 Three-dimensional contingency table for two consecutive transitions 

between drought classes (Moreira et al., 2008) 

 

The above contingency table (i.e., Table 2.2), has three classification criteria, 

i.e. drought classes at months t - 2, t - 1 and t respectively with four levels from 1 to 4. 

The levels 1, . . ., 4 are associated with the drought classes: 1 - non-drought class, 2 - 

near normal drought class, 3 - moderate drought class, and 4 - severe/extreme drought 
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class. The observed frequencies (Oijk) are the response variables for the three-

dimensional loglinear model and refer to the observed number of transitions between 

the drought class i at month t – 2, drought class j at month t - 1 and drought class k at 

month t. For example, the observation O111 is the number of times that a given study 

area stays for three consecutive months in drought class 1 (Non-drought). Therefore, 

the three-dimensional loglinear model allows modeling of the expected frequencies of 

drought class transitions corresponding to a 2 months step transition from drought class 

i to class j (t - 2 to t - 1) and from class j to class k (t - 1 to t). 

The drought forecasting study using the three-dimensional loglinear model 

conducted by Moreira et al. (2008) showed that the technique was a useful tool for 

short-term drought warning systems, i.e., knowing the drought class values for two 

previous months it is possible to make reliable predictions for drought class in the two 

following months. However, they found that the forecast and the actual drought classes 

did not match in few cases. This happened when the SPI value was near the upper or 

lower boundary of the class, which can easily change to the nearby class when the 

rainfall deficit increases or higher rainfall occurs. Results showed that forecasting of 

drought class transitions was able to describe the trend of drought initiation and 

development as well as the trend for drought dissipation. It should be noted that the 

loglinear modeling for predicting more than two consecutive drought classes require a 

very large number of model parameters, and then the respective contingency tables 

become complex, and the interpretation of the model results is difficult (Moreira et al., 

2008). Hence, it is not foreseen to use the loglinear models to increase the lead time of 

forecasts. The approach is therefore appropriate only for short-term drought monitoring 

and mitigation measures, e.g. 2 months ahead. 

2.3.5. Artificial Neural Network Model 

An Artificial Neural Network (ANN) is an information processing system that 

resembles the structure and operation of the brain (Hassoun, 1995; ASCE Task 

Committee on Application of Artificial Neural Networks in Hydrology, 2000; Maier et 

al., 2010). The ANN modeling approach was developed in the 1940s by McCulloch 

and Pitts (1943) and gradually progressed with advances in calibration methodologies 
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(Rumelhart et al., 1986). Given sufficient data and complexity, ANN can be designed 

to model any relationship between a series of independent and dependent variables – 

inputs and outputs to the network respectively (Hornik et al., 1990; ASCE Task 

Committee on Application of Artificial Neural Networks in Hydrology, 2000; Luk et 

al., 2000). One of the advantages of the ANN technique is that there is no need for the 

modeler to fully define the intermediate relationships (i.e., physical processes) between 

inputs and outputs (Morid et al., 2002; Anctil et al., 2004; Tran et al., 2009). This 

feature makes ANNs particularly suitable for the analysis of complex processes, like 

drought forecasting, where the relationships of a large number of input variables with 

the output need to be explored (Morid et al., 2007). Because of this advantage, in 

recent years, the ANN modeling approach has been used in many research fields 

including drought forecasting (Sajikumar and Thandaveswara, 1999; Kim and Valdes, 

2003; Mishra and Desai, 2006; Mishra et al., 2007; Morid et al., 2007; Barros and 

Bowden, 2008; Maity and Kumar, 2008; Ochoa-Rivera, 2008; Cutore et al., 2009). A 

brief description of the ANN modeling approach is given below. 

The ANN modeling approach mimics the human brain in processing 

information through a network of neurons which are connected together. In this sense, 

a biological neuron acts as a function which receives a set of input signals and 

produces an output. The biological nervous systems of humans come in various 

architecture; some are simple, while others are complex. But all these different types 

are composed of the same type of building blocks, called the neural cells or neurons. 

Figure 2.1 shows the basic structure of a biological neuron. A neuron receives signals 

or inputs, and produces a response or an output, after processing information through 

cell of the body of the neuron. In the biological neuron, the inputs and the response are 

electrical pulses. The input pulses are passed to the neuron through multiple channels 

(i.e. dendrites) and the output is passed forward via its only one output channel (i.e. 

axons). Each dendrite has a contact point (called synapses) which acts as a gate to open 

or close, and thus allows some input signals to flow in or stops some others depending 

on the mode of operation. 
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Figure 2.1 Basic structure of a biological neuron 

Analogous to the biological neuron, an ANN has multiple-input channels (i.e. 

dendrites), a cell body and a output channel (i.e. axon), as shown in Figure 2.2. Like 

input pulses in the biological neuron, input signals (X1, X2, …, Xp) are passed to the 

neuron through multiple input channels. Each channel has an associated weight called 

connection weight. These weights (w1, w2, …, wp) allow choosing the important signals 

among all input signals by their large weight values. The neuron has a special input 

signal to the cell of the body called bias weight (i.e. b as shown in Figure 2.2). The bias 

weight simulates the function of synapse that can allow (being non-zero value) and 

stop (being zero-value) the input signals going through cell body. The transmitted 

signals are integrated usually just by adding up all input signals. A mathematical 

function called the activation function (which will be discussed shortly) in the cell 

body is used to produce an output signal. The mathematical relationship between the 

input signals and the output in an ANN therefore can be formulated as: 

( )
p

i i
i

Y f I f w X b⎛ ⎞
= = +⎜ ⎟

⎝ ⎠
∑        (2.10) 

where: Xi  is the input signal i 

wi  is the weight attached to the input signal i 
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p  is the number of input signals 

b  is the bias at the cell of the body 

Y  is the output signal 

f  is the activation function 

 

Figure 2.2 A typical artificial neural network 

The activation function is a mathematical formula that gives the output of a 

processing element (i.e. cell body) considering its input signals (Maier and Dandy, 

1998). It allows mappings between input and output signals (Maier and Dandy, 2000; 

Tran, 2007). Several activation functions can be used for the neurons. The non-linear 

sigmoidal, hyperbolic tangent and linear activation functions as shown in Figure 2.3 

have often been used in ANN models as they proved to be successful in most cases 

(Karunanithi et al., 1994; Maier and Dandy, 1998, 2000; Mishra and Desai, 2006). 

Furthermore, according to Bishop (1995), the use of these functions with a single 

hidden layer can approximate any non-linear relationship in real world problems. 

There are various types of ANN model architectures that have been proposed 

and used. Generally, ANN architectures have been divided into two types, namely 

feed-forward and recurrent networks (Figure 2.4). In feed-forward networks, the 

information propagation is only in one direction, i.e., from input layer to the output 

layer. In recurrent networks, on the other hand, information may propagate not only in 

the forward direction but also in the backward direction through feedback loops. The 

output layer neurons may feed back the output to input and/or hidden layer neurons. 
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There is another type of ANN model architecture called hybrid architecture as shown 

in Figure 2.4 that uses hybrid modeling approaches to exploit the advantages of the 

available modeling paradigms in order to capture the complexities involved in 

environmental and hydrological systems. In this approach, several combinations of 

available modeling approaches are used to model the complexity involved in the 

problem to be studied. Details on different types of ANN model architecture are 

available in Fausett (1994) and Samarasinghe (2006). However, more details on some 

of the ANN model architectures used in this study will be presented in Chapter 6. 

 

Figure 2.3 Typical activation functions 

As outlined earlier, there are several ANN model applications of drought 

forecasting and to date it was found to be the most widely used modeling approach in 

drought forecasting around the world (e.g. Kim and Valdes, 2003; Mishra and Desai, 

2006; Mishra et al., 2007; Morid et al., 2007; Barros and Bowden, 2008; Ochoa-

Rivera, 2008; Cutore et al., 2009). Mishra and Desai (2006) successfully demonstrated 

ANN models on drought forecasting in Kansabati River basin, India. They tested two 

types of ANN approaches, namely Recursive Multi-Step Neural Network (RMSNN) 

and Direct Multi-Step Neural Network (DMSNN) to forecast SPI values. The results 

obtained from their study showed that the RMSNN approach was best suited for 1-

month ahead forecasting, while the DMSNN approach outperformed the RMSNN 

approach for longer forecasting lead time up to 4 months. These two approaches were 

used by Cutore et al. (2009) in Sicily (Italy), where the Palmer Hydrological Drought 
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Index (PHDI) was used to forecast future drought conditions. However, they concluded 

that there were no significant differences in the results obtained from these two 

approaches. Morid et al. (2007) developed several drought forecasting models using 

Effective Drought Index (EDI) as the DI and different combinations of the past EDI 

values, rainfall and others variables such as North Atlantic Oscillation (NAO) and 

Southern Oscillation Index (SOI) as predictors. Similar models were also developed 

using SPI as the DI. More than 25 different ANN models were tested for each DI at six 

rainfall stations in the Tehran Province of Iran with forecast lead times from 1 to 12 

months. They found that the best model developed in their study was able to forecast 

values for lead times up to 6 months with high forecasting accuracy, particularly in the 

case of the EDI. Similar forecasting capabilities were found by Kim and Valdes (2003) 

who had used ANN to forecast Palmer Drought Severity Index (PDSI) in Conchos 

River basin, Mexico. 

 

Figure 2.4 Taxonomy of ANN model architectures (Maier et al., 2010) 
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2.3.6. Adaptive Neuro-Fuzzy Inference System Model 

The Fuzzy Logic (FL) approach proposed by Zadeh (1965) is based on the 

linguistic uncertainty expression rather than on numerical uncertainty. The Fuzzy 

Inference System (FIS) is a rule based system consisting of three conceptual 

components: (1) a rule-base, containing fuzzy if-then rules, (2) a data-base, defining 

the Membership Function (MF) that transforms the input value into a membership 

degree (i.e., a value between 0 and 1), and (3) an inference system, combining the 

fuzzy rules to produce the system results (Firat and Gungor, 2007, 2008). The 

Adaptive Neuro-Fuzzy Inference System (ANFIS), consisting of the combination of 

ANN and FIS, has been used by many researchers to organize the network structure 

itself and to adapt the parameters of the fuzzy system for many engineering problems, 

such as modeling of a hydrological time series (Nayak et al., 2004; Firat and Gungor, 

2007, 2008). The ANFIS has the potential to capture the benefits of both ANN and FIS 

approaches in a single framework (Nayak et al., 2004; Sen and Altunkaynak, 2006; 

Firat and Gungor, 2007, 2008), and eliminates the basic problem in the fuzzy system 

design (i.e., defining the MF parameters and the design of fuzzy if–then rules) by 

effectively using the learning capability of ANN for automatic fuzzy rule generation 

and parameter optimization. 

The ANFIS is developed by Jang (Jang, 1993; Jang et al., 1997) which has a 

feed-forward ANN structure, where each layer is called a neuro-fuzzy system 

component (Buyukbingol et al., 2007). Bacanli et al. (2008) introduced the ANFIS 

modeling approach for developing early drought warning system using SPI values. It 

simulates Takagi-Sugeno-Kang (TSK) fuzzy rule of type-3 (Sugeno and Kang, 1988) 

where the consequent part of the rule (i.e., the layer 4 in Figure 2.5 which will be 

described shortly) is a linear combination of input variables and a constant. The basic 

structure of an ANFIS is shown in Figure 2.5. The ANFIS model is briefly described 

below for a simple case in which only two input variables (x and y) and one output f (x, 

y) are considered. Suppose that the rule base consists of two fuzzy if-then rules of TSK 

type: 
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Rule 1: IF x is A1 and y is B1,  THEN 1 1 1 1( , )= = + +f f x y p x q y r ,  

  

Rule 2: IF x is A2 and y is B2  THEN 2 2 2 2( , )= = + +f f x y p x q y r . 

where Ai and Bi are the linguistic labels such as low, medium, high, etc., and pi, 

qi and ri are the consequence parameters. Bacanli et al. (2008) used SPI(t - 1) and P(t - 

1) which are the SPI and rainfall values respectively at time (t - 1) as the two inputs (x 

and y) and SPI(t) which is the SPI value at time t as the output f (x, y). 

 

Figure 2.5 Basic structure of Adaptive Neuro-Fuzzy Inference System (Firat and 

Gungor, 2008) 

Layer 1 - called fuzzification layer and the output from this layer is given by 

Equation (2.11). 

( )1
ii AO x= μ         (2.11) 

Where x is the input to node i, and Ai is the linguistic label (low, medium, high, 

etc.) associated with this node function. The generalized bell MF (gbell MF) is usually 

used as the MF with maximum equal to 1 and minimum equal to 0: 
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where ai, bi and ci are the parameters of the function. These are adaptive 

parameters and their values are adapted during the model calibration. 

Layer 2 – called rule layer, every node in this layer is labeled with “Π ” which 

multiplies the incoming signals and sends the product out. Each node output represents 

the firing strength of a rule. For instance, 

( ) ( ) ( )2 ,
i ii i A BO w x y x y= = ∗μ μ ,  1,  2i =     (2.13) 

Layer 3 – called normalization layer and every node in this layer is labeled with 

“N”. The ith node calculates the ratio of the ith rule’s firing strength to the sum of all 

rules’ firing strength: 

( )3

1 2

,i
i i

w x y
O w

w w
= =

+
,  1,  2i =       (2.14) 

Layer 4 – called consequent layer and output from this layer is given by 

Equation (2.15). 

( )4
i i i i i i iO w f w p x q y r= ⋅ = + + ,  1,  2i =     (2.15) 

Layer 5 – called output layer that computes the overall output as the summation 

of all incoming signals. It is the last step of the ANFIS, i.e.,  

( )5  ,i i ii
Q overall output f x y w f= = = ⋅∑      (2.16) 
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ANFIS uses the hybrid learning algorithm to calibrate the network. The 

combination of back-propagation algorithm with least-squares approximation or back-

propagation algorithm is used in the hybrid learning algorithm for optimizing 

parameters in layers 1 and 4 respectively. The mathematical details of these algorithms 

are given in Jang et al. (1997), Nayak et al. (2004), and Bacanli et al. (2008). 

The study conducted by Bacanli et al. (2008) showed that the ANFIS model 

can be successfully used to develop accurate and reliable drought forecasting models. 

They compared the performances of several ANFIS models which were developed for 

forecasting 1-month ahead drought condition with different time scale (i.e., 1-, 3-, 6-, 

9- and 12- month) SPI time series  at 10 stations. They found that the model with the 

higher time scale (i.e., 12- month SPI) at all stations was better than the other models. 

The reason for this is related to the SPI values calculated for longer time scales contain 

long periods of dry and wet periods. Passages between positive and negative values 

occur more frequently in shorter time scale of SPI and this also results in instability in 

calculations. 

2.4. Summary 

There are several drought assessment tools that have been used in the past, and 

among those tools Drought Indices (DIs) have been used most commonly by 

researchers and professionals around the world to define drought conditions. Some of 

these DIs and their usefulness were discussed in this chapter. Majority of these DIs 

(e.g., Percent of Normal (PN), Deciles and Standardized Precipitation Index (SPI)) 

were defined with the rainfall as the single variable. However, many researchers and 

professionals have suggested that DIs should include all significant hydro-

meteorological variables that affect droughts, to define wider drought circumstances. 

Based on this idea, the Surface Water Supply Index (SWSI) had been developed 

considering a number of hydro-meteorological variables (i.e., rainfall, 

streamflow/snow water content and storage reservoir volume). However, the SWSI did 

not consider other important hydro-meteorological variables such as soil moisture 

content and potential evapotranspiration that affect droughts. The Aggregated Drought 

index (ADI) was the most recent DI that was developed using several significant 
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hydro-meteorological variables that affect droughts (i.e., rainfall, streamflow, storage 

reservoir volume, soil moisture content, snow water content and potential 

evapotranspiration) which describe the fluctuations in the hydrologic cycle. The 

strength of the ADI is that it describes wider drought circumstances (i.e., total shortage 

of water resources within the catchment) compared to other DIs describing individual 

meteorological, hydrological and agricultural droughts. 

In the review of the existing DIs, it was found that majority of the DIs had been 

developed for specific region and some DIs are better suited than others for specific 

uses. Consequently, any of existing DI may not be directly applicable to other regions 

due to different hydro-climatic conditions and many other factors. Therefore, a 

quantitative assessment of existing DIs is considered necessary, to see whether they are 

applicable to a region for which these DIs are not specifically developed for. This is 

conducted in Chapter 4, evaluating PN, Deciles, SPI, SWSI and ADI for use in the 

Yarra River catchment in Australia. 

Various drought forecasting modeling techniques have been used in the past by 

researchers and professionals. The literature review conducted in this chapter 

highlighted that the ARIMA model showed better drought forecasting only for 1-

month ahead forecasts, and due to the seasonality effects in the data these models are 

not able to forecast for longer lead times. The SARIMA model, on the other hand, was 

able to give reasonably good results up to 2 months ahead drought forecasts. It was 

also found that the drought forecasting with the SARIMA model had given better 

results when higher time scale SPI time series (i.e. 9-, 12-, and 24- month) were used 

and were able to give good results for up to 3 month ahead forecasts. This might be 

due to increase in rainfall accumulation in higher time scale SPI time series which 

reduced the noise more effectively. The log linear modeling approach had also shown 

good capability for forecasting drought conditions up to 2 months ahead. However, the 

approach had not been recommended for forecasts of more than 2 months due to the 

increasing number of model parameters (beyond 2 months forecasts), which makes the 

respective contingency tables complex and difficult in the interpretation of the model 

results. The Markov chains modeling approach, on the other hand, showed that it can 

be used to forecast drought conditions satisfactorily up to 3 months ahead. However, it 
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was found that the predictive performance in the Markov Chains model decreased 

greatly as the severity of drought increased and the predictive performance was not 

always satisfactory for drought state transitions. The ANFIS have shown suitability for 

1-month ahead drought forecasting with longer time scale (i.e., 12- month) SPI values 

and the forecasts results were not satisfactorily with short time scale (i.e., 1-, 3-, 6- 

month) SPI values. As was seen with the SARIMA model, the reason for this is related 

to the SPI values calculated for long periods containing longer periods of dry and wet 

periods. Passages between positive and negative values occur more frequently in 

shorter time scale of SPI and this also results in instability in calculations. It should be 

noted that the ANFIS modeling technique has not yet been tested for forecasting 

drought conditions beyond 1-month forecasts. 

The ANN modeling approach was found to be the most widely used and 

successful drought forecasting approach around the world. It has shown great ability in 

modeling and forecasting nonlinear and non-stationary DI time series, due to its innate 

nonlinear properties and flexibility for modeling. The results of the past studies have 

shown that the ANNs were capable to forecast drought conditions for longer lead time 

steps (i.e. 6 months ahead) than any other model. Therefore, the ANN modeling 

approach was used in this study for developing the drought forecasting model for the 

Yarra River catchment in Australia which will be presented in Chapter 6. 
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3.1. Overview 

As stated in Chapter 1, the Yarra River catchment located in Victoria (one of 

the states in Australia) was used as the case study in this thesis. The Yarra River is one 

of the rivers in Victoria and is a major source of water supply for Melbourne residents 

(EPA Victoria, 1999). The water resources management of this catchment is important 

in terms of a wider range of water uses as well as downstream user requirements and 

environmental flows. However, due to frequent droughts and increasing water demand 

in recent years, pressure on the water resources management activities have increased 

within the Yarra River catchment (Tan and Rhodes, 2008). Many initiatives have taken 

place recently for protecting the environmental health of the waterways of this 

catchment, especially during drought periods (EPA Victoria, 1999; Melbourne Water, 

2007). 

Hydro-meteorological data of the Yarra River catchment were used in this 

research for developing drought indices (DIs) and for the development of the drought 

forecasting model. Historical drought records in Victoria were also used throughout the 

research work for evaluating DIs. 

This chapter first describes the Yarra River catchment with respect to land use 

conditions, its importance and water resources. Then the drought history in Victoria is 

described, followed by sources of hydro-meteorological data which were used in this 

thesis. The hydro-meteorological data processing is then presented. Finally, a summary 

is presented at the end of the chapter. 
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3.2. Yarra River Catchment 

3.2.1. Description of Yarra River Catchment 

The Yarra River catchment is located in the eastern part of Victoria and is 

shown in Figure 3.1. The Yarra River flows from east to west, and has a total 

catchment area of 4,044 square kilometers, and a stream course of  245 kilometers 

from its source in the Great Dividing Range to the end of its estuary at Port Phillip 

Bay, as shown in Figure 3.2 (Melbourne Water, 2010). This figure also shows the 

location of several storage reservoirs within the catchment and the Melbourne Central 

Business District (CBD) area. The Yarra River catchment consists of a series of sub-

catchments based on major tributaries, whose total length is about 1,800 kilometers 

(EPA Victoria, 1999). Due to natural divisions and different landuse activities in the 

catchment, the Yarra River catchment has been divided into three reaches – Upper, 

Middle and Lower, as shown in Figure 3.2 (EPA Victoria, 1999). Each reach has its 

own distinct characteristics. 

The Upper reach of the catchment, from the Great Dividing Range to the 

Warburton Gorge, consists of mainly dense and extensive forested area with less 

human population. Major tributaries of the upper reach flows through these forested 

and mountainous areas, which have been reserved for water supply purposes for more 

than 100 years (Melbourne Water, 2010). 

The Middle reach of the catchment, from the Warburton Gorge to Warrandyte, 

flows mainly through rural floodplains and valleys. There is limited urban 

development within this reach. It is notable as the only part of the catchment with an 

extensive flood plain area. The river gradient decreases and valley widens as the river 

approaches downstream. There are several gorges in this segment, which restrict the 

flow of the river, in particular, the Yering Gorge as indicated in Figure 3.2. Majority of 

the land in this reach is used for agricultural purposes (Gardner, 1994). 

The Lower reach of the catchment, downstream of Warrandyte, flows through 

the mainly urbanized floodplain area of Melbourne. Large areas of this reach consists 

of hard surfaces such as paved roads, roofs, car parks, concrete channels, etc. (EPA 

Victoria, 1999). Most of the land along rivers and creeks of the lower reach have been 

cleared for urban development. 
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Figure 3.1 Yarra River catchment
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Figure 3.2 Details of Yarra River catchment (adapted from Melbourne Water, 2010)
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3.2.2. Importance of Yarra River Catchment 

The Yarra River catchment is an important water resources catchment for 

Victoria, where over one-third of Victoria’s population (approximately 1.5 million) 

lives in this catchment. Although the Yarra River is not large by Australian standards, 

it is a very productive catchment as it generates the fourth highest water yield per 

hectare of catchment in Victoria (Melbourne Water, 2009). The catchment water 

resources support a range of uses valued by the Melbourne’s community, including 

urban water supply, agricultural, horticultural industries and downstream user 

requirements, as well as flow requirements for maintaining environmental flows. There 

are eight major storage reservoirs within the catchment as shown in Figure 3.2. They 

are Upper Yarra, Sugarloaf, Silvan, Yan Yean, Greenvale, Maroondah and 

O’Shannassy within the catchment, and Thomson reservoir, which is outside the 

catchment. However, water from Thomson is transferred to Upper Yarra reservoir 

mainly for urban water supply purposes. Extensive harvesting of potable water occurs 

from the tributaries of the Upper reach of the Yarra River through Upper Yarra and 

O’Shannassy reservoirs, which have altered the natural flow regime of the Yarra River 

and its tributaries (EPA Victoria, 1999). There are many licensed water extraction 

points in the Yarra River and its tributaries including 200 licensed users within the 

Yarra River main stream (Melbourne Water, 2007). There are also numerous farm 

dams within the catchment, and water extraction from the rivers and creeks for 

agriculture is prevalent. A range of recreational activities, metropolitan parks and 

biodiversity conservation is also located around the catchment waterways. 

3.2.3. Sources of Water Resources in Yarra River Catchment 

Like many other catchments, rainfall is the main source of water resources in 

the Yarra River catchment. However, the catchment receives some amount of water 

from the Thomson reservoir (which is in the Thomson River catchment) to the Upper 

Yarra reservoir. The average annual rainfall varies from 1080 mm at Upper Yarra 

reservoir near Warburton, to 615 mm at Burnley near Melbourne (Melbourne Water, 

2009). However, the annual average rainfall has declined during the last decade within 
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the Yarra River catchment compared to the long-term historical average (Muttil et al., 

2009). Figure 3.3 shows the annual catchment average rainfall for the Yarra River 

catchment based on the 22 rainfall measuring stations (which will be discussed in 

Section 3.4) for the period from 1960 to 2008. This figure shows that the annual 

catchment average rainfall was around 982.7 mm when consider all years from 1960 to 

2008. This figure also shows that the annual catchment average rainfall from 1960 to 

1996 was around 1031.9 mm, and it was only around 831.1 mm for the period from 

1997 to 2008. It shows that the annual catchment average rainfall has dropped within 

the Yarra River carchment by more than 200 mm 1997 onwards. This reduction in 

rainfall puts pressure on the availability of water resources from its sources. 

 

Figure 3.3 Annual catchment average rainfall for the Yarra River catchment 

3.3. Drought History in Yarra River Catchment 

Several droughts have occurred in the past in Victoria including 1967-1968, 

1972-1973, 1982-1983, 1997-1998, 2003-2004 and 2006 onwards. These historical 

droughts were recorded in Keating (1992) and Tan and Rhodes (2008) after 

considering rainfall and storage records at that time and comparing them against their 

average values. They had also recorded that during these droughts there were severe 

deficiency in water resources in terms of rainfall and storage reservoir volume, and 

also had negative socio-economic impacts due to the shortage of water. Based on the 
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hydro-meteorological data of the Yarra River catchment (which will be discussed in 

Section 3.4), the following observations are made: 

1) During the 1967-1968 drought, the monthly catchment-average rainfall had fallen 

below 5% of its normal (i.e. monthly catchment average rainfall for the period 

from 1960 to 2008) (in February 1968) and the storage volume fell below 25% 

capacity (in April 1968). 

2) During the 1972-1973 drought, the monthly catchment-average rainfall had fallen 

below 6% of its normal (in December 1972) and the storage volume fell below 

55% capacity (in January 1973). This drought was relatively short in duration. 

3) Of all droughts recorded until 1990, the worst drought occurred in Victoria was 

in 1982-1983. This drought has affected most areas in eastern Australia, and 

sparked the Ash Wednesday bushfires, which burnt 13,000 hectares of 

Melbourne's water supply catchments, and caused massive dust storms (Keating, 

1992). During this period, the monthly catchment-average rainfall had fallen 

below 8% of its normal (in February 1983) and the storage volume fell below 

20% capacity (in May 1983). 

4) During the period of 1997-2008, inflows into Melbourne Water’s four major 

harvesting reservoirs (i.e. Thomson, Upper Yarra, O’Shannassy and Maroondah 

shown in Figure 3.2) have been below the long-term average. Three major 

droughts (1997-1998, 2002-2003 and 2006 onwards) have occurred during this 

twelve-year extended dry period (Tan and Rhodes, 2008). It should be noted that 

this long-term dry circumstances is still continuing and therefore drought from 

2006 is noted here as the 2006 onwards drought. The monthly catchment-average 

rainfall during 1997-2008 dry period dropped to the approximately 69 mm, 

whereas the average monthly rainfall prior to this period (1960-1996) was around 

86 mm. The storage volume also fell below 22% capacity (in May 2007). 

 Along with the reduction in annual average rainfall, and the diversity of water 

uses and activities (Section 3.2), pressure upon water resource management within the 

Yarra River catchment has become more intense in recent years especially during the 
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droughts. Therefore, the management of water resources in terms of droughts is 

important within the Yarra River catchment. 

3.4. Hydro-meteorological Data Sources 

Data required for this project to compute the DIs and the drought forecasting 

model development work were rainfall, potential evapotranspiration, streamflow, 

storage reservoir volume and soil moisture content. Justifications for selecting these 

variables for this study will be given in the various sections of Chapters 4, 5 and 6. 

They were collected from a number of organizations such as Bureau of Meteorology 

(BOM) (i.e., rainfall data), SILO database (Jeffrey et al., 2001) (i.e. potential 

evapotranspiration data) and Melbourne Water Corporation (i.e., streamflow and 

storage reservoir volume data). Soil moisture content data were not available for the 

catchment, and therefore a two-layer water budget model of Palmer (1965) was 

adapted to determine the soil moisture content in the catchment, which is further 

elaborated in Section 3.5.4. Data measurement locations for rainfall, evaporation, 

streamflow and storage reservoir volume are shown in Figure 3.4. Twenty two rainfall, 

six evaporation and one streamflow stations were considered in this study. Of the six 

evaporation stations, two stations are outside of the catchment area; however they were 

considered in this study as they are very close to the study area and no other 

evaporation gauges are present in the southern part of the catchment. These 

evaporation data have also been used to calculate potential evapotranspiration in the 

SILO database (Jeffrey et al., 2001).  

Data ranged from 1960 to 2008 (49 years) were used in this study which were 

either available or estimated for all variables (i.e., rainfall, potential evapotranspiration, 

streamflow, storage reservoir volume and soil moisture content). These data were 

available in different time scales (i.e., daily and monthly) for different variables. 

However, DIs were developed at monthly time scale, since monthly DIs are suitable 

for operational purposes and have lower sensitivity to observational errors (McKee et 

al., 1993; Mishra and Singh, 2010). Therefore, data processing was carried out to 

obtain the catchment representative monthly values. The procedures that were used in 

data processing are described in Section 3.5. 
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Figure 3.4 Locations of the hydro-meteorological data measurements
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3.5. Hydro-meteorological Data Processing 

3.5.1. Rainfall and Potential Evapotranspiration Data 

As mentioned in Section 3.4, twenty two rainfall and six evaporation stations 

(Figure 3.4) were used to compute the monthly catchment values. The station numbers, 

names and geographical coordinates of each of the measuring stations are presented in 

Tables 3.1 and 3.2 for rainfall and evaporation measuring stations respectively, and 

their spatial locations are shown in Figure 3.4. Data from these stations were used, as 

all these stations had long historical records from 1960 to 2008. 

Table 3.1 Description of rainfall measuring stations 

Station No. Station Name Latitude (oS) Longitude (oE) 
86018 Caulfield (Racecourse) -37.88 145.04 
86027 Croydon (Samuel Street) -37.79 145.28 
86033 Brighton Bowling Club -37.91 145.00 
86035 Eltham -37.70 145.15 
86036 Epping -37.63 144.99 
86066 Lilydale -37.75 145.34 
86070 Maroondah Weir -37.64 145.55 
86071 Melbourne Regional Office -37.81 144.97 
86073 Mickleham -37.55 144.88 
86074 Mitcham -37.82 145.19 
86090 O'Shannassy Reservoir -37.71 145.79 
86094 Powelltown Dnre -37.86 145.74 
86095 Prahran (Como House) -37.84 145.00 
86096 Preston Reservoir -37.72 145.00 
86106 Silvan -37.83 145.44 
86117 Toorourrong -37.48 145.15 
86121 Warburton -37.75 145.68 
86125 Whittlesea -37.51 145.12 
86131 Yan Yean -37.56 145.13 
86142 Mt St Leonard DPI -37.57 145.50 
86219 Coranderrk Badger Weir -37.69 145.56 
86271 Upper Yarra Dam -37.67 145.89 
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Table 3.2 Description of evaporation measuring stations 

Station No. Station Name Latitude (oS) Longitude (oE) 
85277 Noojee (Slivar) -37.90 145.97 
86071 Melbourne Regional Office -37.81 144.97 
86104 Scoresby Research Institute -37.87 145.26 
86142 Mt St Leonard DPI -37.57 145.50 
86282 Melbourne Airport -37.66 144.83 
86351 Bundoora (Latrobe University) -37.72 145.05 

Two commonly used averaging methods namely arithmetic average and 

Thiessen polygon (Thiessen, 1911) were used to compute the monthly rainfall and 

potential evapotranspiration values for the catchment using data for twenty two rainfall 

and six evaporation stations. Figure 3.5 and Figure 3.6 show the comparisons between 

the two methods used to compute the monthly catchment total rainfall and 

evapotranspiration respectively. Figure 3.5 shows that the Thiessen polygon estimates 

for rainfall are relatively higher than the arithmetic average especially for higher 

rainfalls. However, both methods produce similar results for potential 

evapotranspiration (Figure 3.6). Since the Thiessen polygon method is an area-

weighted method, the monthly catchment total values obtained from the Thiessen 

polygon method were considered in this study for both rainfall and potential 

evapotranspiration. 

 

 

 

 

 

 

 

Figure 3.5 Monthly catchment total rainfall (mm) 
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Figure 3.6 Monthly catchment total potential evapotranspiration (mm) 

3.5.2. Streamflow Data 

There are approximately fifteen streamflow gauging stations in the Yarra River 

mainstream. However, only the gauging station at Warrandyte (Figure 3.4) was used in 

this study, since it is the only station that had long records (i.e. 1960 to 2008) of 

streamflow measurements. It is also a good representative station in the Yarra River 

mainstream, because of its location close to the centroid of the catchment. The station 

number of the Warrandyte streamflow gauge station is 229200B, and the geographical 

coordinates are -37.74o S and 145.21o E. Daily streamflow data at Warrandyte are used 

to compute average daily streamflow for each month; they were considered as the 

catchment representative data, to account for the fluctuations in streamflow discharge. 

3.5.3. Storage Reservoir Volume Data 

Seven storage reservoirs exist within the study area as shown in Figure 3.4. In 

addition, Thomson reservoir, which is located outside of the catchment area, transfers 

water to the Upper Yarra reservoir (Figure 3.4). Of these eight storage reservoirs, only 

Upper Yarra and Thomson reservoirs contribute to supply water to downstream users 

in the Yarra River catchment especially for maintaining environmental flows. These 

releases could influence the drought conditions of the catchment. Therefore, these two 

storage reservoirs were considered in this study. Percent full of daily storage reservoir 

volume data were used to obtain the average percent full of storage reservoir volume 
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for each month. Percent full is defined here as the percentage storage volume with 

respect to the total storage capacity within the system. Percent full was considered 

instead of the absolute storage reservoir volume, as Thomson was operational only 

since 1983 and percent full will give consistent values throughout the analysis period. 

3.5.4. Soil Moisture Data 

Soil moisture content was used to account for the fluctuations in water stored in 

the plant root zone. As outlined in Section 3.4, the two-layer water budget model of 

Palmer (1965) was adapted in this study to calculate the monthly basin average soil 

moisture content. The model considers the soil to have two arbitrary layers (i.e., the 

surface layer and underlying layer) as shown in Figure 3.7.  

 

Figure 3.7 Two layer water budget model for the Yarra River carchment (adapted from 

Palmer, 1965) 

The upper layer (called surface layer) is roughly equivalent to the plough layer. 

This is the layer which receives rainfall and from which the evaporation takes place. In 

moisture accounting, it is assumed that evapotranspiration takes place at the potential 

rate from this surface layer until all available moisture in the layer is removed. Only 

then, moisture can be removed from the underlying layer of soil. Likewise, it is 

assumed that there is no recharge to the underlying layer until the surface layer soil 

moisture is brought to field capacity. The available water holding capacity of the soil in 
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the underlying layer depends on the depth of the effective root zone and the soil 

characteristics in the area under study. 

Watson (1999) in a study of forest water yield in the Yarra River catchment 

used the maximum water holding capacity (both in the surface layer and underlying 

layer) as 670 mm (water) / 1000 mm (soil) under saturated conditions. This assumption 

was made following the analyses presented by Campbell (1999) using soil moisture 

tension data. Therefore, 670 mm (water) / 1000 mm (soil) under saturated conditions 

was used as the total available water holding capacity (AWC) in the two-layer water 

budget model in this study. It should be noted that there are some non-forest area 

within the catchment; however, the selection of the above AWC value depends on soil 

characteristics rather then whether forest or non-forest area. Similar to Palmer (1965), 

25 mm was used as the water holding capacity for the surface layer and the remaining 

645 mm was used for the underlying layer. Monthly water balance was then conducted 

in the two layers as was done by Palmer (1965), considering catchment average rainfall 

and potential evapotranspiration calculated in Section 3.5.1. In the water balance 

model, it was assumed that the surface runoff was generated only when available water 

was greater than the water holding capacity in both layers. Moreover, the loss from the 

underlying layer depends on initial moisture content (i.e., available moisture content at 

beginning of the month) as well as on the potential evapotranspiration (PE) and the 

AWC of the soil system. Therefore, the moisture losses from surface and underlying 

layers were calculated using Equations (3.1) and (3.2) respectively. 

Ls = '
sS or ( )PE P−  whichever is smaller, and    (3.1) 

Lu = 
'

( ) u
s

SPE P L
AWC

− − ,  Lu 
'
uS≤      (3.2) 

 where Ls  = moisture loss from surface layer (mm), 
'
sS  = available moisture stored in surface layer at start of month (mm) (i.e., 

≤ 25 mm), 

PE  = potential evapotranspiration for the month (mm), 

P  = rainfall for the month (mm), 

Lu  = loss from underlying layer (mm), 
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'
uS  = available moisture stored in underlying layer at start of month (mm) 

(i.e. ≤ 645 mm), and 

AWC  = total available water holding capacity of the both surface and 

underlying layer (i.e. 670 mm (water) / 1000 mm (soil) under 

saturated conditions). 

The model was run with a start month (i) which considered the catchment soil 

moisture content equal to the AWC. Therefore, the catchment soil moisture content at 

the end of month i, Wi:  

Wi = AWC = 750 mm       (3.3) 

For the following month i+1, the available moisture stored in the surface layer 

at the start of month, '
, s iS = 25 mm and underlying layer, '

, u iS = 645 mm. The 

catchment soil moisture content at the end of month i+1, Wi+1, was then calculated as: 

Wi+1 = 

( ) ( )
( )
( ) ( )

' '
, i , i

' '
, i , i

' '
, i , i

,

,                  

,

s u s u

s u

s u

S S L L

S S

S S P PE

⎧ + − +
⎪⎪ +⎨
⎪

+ + −⎪⎩

 
when
when
when

P
P
P

PE
PE
PE

>
=
<

,  Wi+1 AWC≤   (3.4) 

Equation (3.4) implies that when PE is larger than P then there will be moisture 

loss from the system, while when P is larger than PE then there will be moisture added 

in the system until it reaches the AWC. If PE is equal to the P in any month then there 

will not be any change in soil moisture content in the catchment for that month. The 

calculations were continued using Equations (3.1), (3.2) and (3.4) for the rest of the 

months. 

The catchment average total yearly rainfall and potential evapotranspiration for 

the Yarra River catchment is shown in Figure 3.8. It shows that the year, 1960, was 

relatively wet and the rainfall was much higher than the potential evapotranspiration. 

Moreover, it was found that the rainfall was continuously much higher than the 
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potential evapotranspiration for six months from April to September in 1960. 

Therefore, for running the water budget model, the start month was considered as 

September 1960 and the AWC for this month was considered as 670 mm. The 

catchment soil moisture content for the months following September 1960 were 

calculated using Equations (3.1), (3.2) and (3.4). As mentioned above, the months from 

April to September in 1960 were relatively wet, therefore the soil moisture content for 

the months from April to August in 1960 were also considered at AWC (i.e., 670 mm) 

and back calculations were carried out to calculate the soil moisture content for the 

months from January to March in 1960. 

 

Figure 3.8 Catchment average total yearly rainfall and potential evapotranspiration for 

the Yarra River catchment 

3.6. Summary 

The Yarra River catchment located in Victoria (Australia) is a valuable asset to 

all Melbourne residents. The water resources from this catchment are important in 

terms of a wide range of water uses as well as downstream user requirements and 

environmental flows. Many initiatives have been taken by several water authorities 

including EPA Victoria and Melbourne Water Corporation for protecting catchment 

waterways and mitigating water demand in drought circumstances. However, frequent 

droughts and increasing water demand in recent years have increased pressure upon 
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water resources management within the catchment, and therefore, the management of 

water resources in terms of droughts is important within the Yarra River catchment. 

Data on several hydro-meteorological variables (i.e., rainfall, potential 

evapotranspiration, streamflow and storage reservoir volume) were collected for the 

Yarra River catchment from Bureau of Meteorology, SILO database and Melbourne 

Water Corporation to compute the Drought Indices (DIs) for use in the catchment and 

for drought forecasting model development work. However, the soil moisture content 

data were not available for the catchment, and therefore the two-layer water budget 

model of Palmer (1965) was adapted to determine the soil moisture content in the 

catchment.  

Data were collected or estimated for the period from 1960 to 2008 (49 years). 

These data were available in two time scales (i.e., daily and monthly) for these hydro-

meteorological variables. However, DIs and drought forecasting model were developed 

using a monthly time step as the monthly drought forecasting was suitable for 

operational purposes, and also monthly data have lower sensitivity to observational 

errors. Therefore, the data that were not on monthly basis were converted to represent 

the monthly time scale. These data (i.e., rainfall, potential evapotranspiration, 

streamflow, storage reservoir volume and soil moisture content) were collected and/or 

estimated, and analyzed for three specific purposes in this thesis for use in the Yarra 

River catchment: 

1. To evaluate the existing drought indices (Chapter 4), 

2. To develop the Nonlinear Aggregated Drought Index (Chapter 5), and  

3. To develop the drought forecasting model (Chapter 6). 
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4. EVALUATION OF SELECTED 
DROUGHT INDICES 

 

Overview; Study Area and Data Used; 
Methodology Used for Development of Drought 
Indices; Analysis of Drought Indices; Evaluation 
of Drought Indices; Summary 

 

 

4.1. Overview 

Drought Indices (DIs) have commonly been used around the world to quantify 

drought conditions. As discussed in Section 2.1, in most cases, DIs were developed for 

a specific region, and therefore they may not be directly applicable to other regions due 

to inherent complexity of the drought phenomena, different hydro-climatic conditions 

and different catchment characteristics (Redmond, 2002; Smakhtin and Hughes, 2007; 

Mishra and Singh, 2010). Suitability of some of the existing DIs had been analyzed for 

different climatic regions around the world, of which details can be found in Keyantash 

and Dracup (2002), Heim Jr (2002), Smakhtin and Hughes (2004) and Morid et al. 

(2006). However, no such study had been conducted in Australia which is often 

referred to as the driest inhabited continent on the Earth (Davidson, 1969). Pigram 

(2006) noted that Australia not only has the lowest rainfall and runoff in proportion to 

its area, but also the lowest percentage of runoff to rainfall. He also noted that 

evapotranspiration is high in Australia and, on average, consumes 87% of all moisture 

that reaches the ground, compared to about 60% for North America and Europe. 

Frequent droughts are common in Australia than elsewhere in the world, and these 

droughts have become more recurrent in the last 50 years, for instance in the south-

eastern part of Australia (Keating, 1992; Tan and Rhodes, 2008). Because of these 

reasons, it is worthwhile to study the suitability of the existing DIs for use in Australia 

for drought management; these DIs are predominantly developed for use in other parts 

of the world. 
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The work presented in this chapter is the first part of this research project, 

which is aimed to develop a Drought Forecasting Model for management of water 

resources within the Yarra River catchment. The management of water resources in 

this catchment has great importance to the Melbourne’s community as described in the 

Section 3.2.2. Selection of an appropriate DI that can be used for defining drought 

conditions within the Yarra River catchment is therefore an important issue for this 

project. Five existing DIs from different drought perspectives (i.e., meteorological, 

hydrological and agricultural) were evaluated in this study. They were: widely used 

rainfall based DIs, namely, the Percent of Normal (PN), Deciles and Standardized 

Precipitation Index (SPI) as the meteorological DIs; Surface Water Supply Index 

(SWSI) as the hydrological DI; and the Aggregated Drought Index (ADI) which 

considers all three categories of droughts (i.e. meteorological, hydrological and 

agricultural droughts). PN, Deciles and SPI had been used in Australia in the past as 

mentioned in Section 2.2 (Gibbs and Maher, 1967; Osti et al., 2008), but to date SWSI 

and ADI have not been used in Australia. This is the first study conducted in Australia 

to evaluate the suitability of existing DIs for drought management in an Australian 

catchment. This is also the first study where the ADI was tested outside the area where 

it was originally developed in the U.S. Qualitative assessment of the abovementioned 

selected DIs were discussed in Section 2.2. The current chapter aims to conduct a 

quantitative assessment of these DIs for the Yarra River catchment. 

The chapter begins with some reference to the study area and the data used in 

this study (which was detailed in Chapter 3), followed by the methodology used for the 

development of the selected five DIs. Analysis of the DIs are then presented, followed 

by the evaluation of the DIs. The summary drawn from the study are presented at the 

end of the chapter. 

4.2. Study Area and Data Used 

The Yarra River catchment was used in this study. The details of the catchment 

and importance of its water resources for Victorian people were elaborated in Chapter 

3. Five hydro-meteorological variables (i.e., rainfall, potential evapotranspiration, 

streamflow, storage reservoir volume and soil moisture content) which have effects on 
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droughts were used in the evaluation of DIs. Measurement locations of these data were 

shown in Figure 3.4, and the data processing to obtain the monthly values was also 

described in Chapter 3. Data from 1960 to 2008 (49 years) were used in this study 

which were either available or computed for all five variables. 

4.3. Methodology Used for Development of Drought Indices 

4.3.1. Percent of Normal 

Percent of Normal (PN) is expressed as the actual rainfall in percentage 

compared to the normal rainfall (Hayes, 2003; Morid et al., 2006). Usually, the long-

term mean or median rainfall value has been considered as the normal (Smakhtin and 

Hughes, 2004). However, Hayes (2003) commented that the use of PN implies a 

normal distribution where the mean and median are the same, and the use of the mean 

can easily be misunderstood and can give different indications of drought conditions as 

the mean rainfall is often not the same as the median rainfall in a long-term record. 

Nevertheless, the mean was used in this study, since the difference between mean and 

median for the catchment average monthly rainfall data was not statistically significant 

at 5% level. As was mentioned in Section 2.2.2, PN can be calculated in a variety of 

time scales ranging from a single month to a group of months representing a particular 

season, calendar year or water year. However, PN in this study was calculated using 

the monthly time step. As was mentioned in Section 2.2.2, no threshold ranges had 

been published for this DI; usually, lower PN (PN<100%) values indicate dry 

circumstances. However, in this study, drought classifications for PN and their 

threshold values were proposed to define drought conditions which are presented in 

Table 4.1. Descriptions of drought classifications are proposed in PN similar to the 

other DIs. Each of the drought classifications in PN are considered with equal intervals 

as in Deciles except for further splitting of the lowest and highest classifications into 

two additional classifications to be consistent with the other DIs (i.e. SPI, SWSI and 

ADI). 
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Table 4.1 Drought classification based on PN 

> 180% of normal rainfall Extremely wet 

> 160% to ≤ 180% of normal rainfall Very wet 

> 120% to ≤ 160% of normal rainfall Moderately wet 

> 80% to ≤ 120% of normal rainfall Near normal 

> 40% to ≤ 80% of normal rainfall Moderate drought 

> 20% to ≤ 40% of normal rainfall Severe drought 

20% ≤ of normal rainfall Extreme drought 

 

4.3.2. Deciles 

As was discussed in Section 2.2.3, Deciles is a meteorological drought 

measurement tool which uses rainfall. In calculating Deciles, the long-term monthly 

rainfall records were first ranked from highest to lowest to construct a cumulative 

frequency distribution. This distribution was then split into ten parts (or deciles) based 

on equal probabilities (Gibbs and Maher, 1967). The threshold ranges of Deciles used 

to define drought conditions are presented in Table 4.2 (Gibbs and Maher, 1967). 

Table 4.2 Drought classification based on Deciles (Gibbs and Maher, 1967) 

Deciles 1-2 (lowest 20%) Much below normal 

Deciles 3-4 (next lowest 20%) Below normal 

Deciles 5-6 (middle 20%) Near normal 

Deciles 7-8 (next highest 20%) Above normal 

Deciles 9-10 (highest 20%) Much above normal 
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4.3.3. Standardized Precipitation Index 

The Standardized Precipitation Index (SPI) is a drought monitoring tool and has 

been used to quantify rainfall deficit to monitor drought conditions. To calculate the 

SPI values, first the long-term rainfall record is fitted with a probability distribution. 

Tsakiris et al. (2002) and Sonmez et al. (2005) used the gamma distribution as it fits 

the rainfall time series well. The current study also used the gamma distribution to fit 

the long-term rainfall record; gamma distribution is defined by its probability density 

function of Equation (4.1). 

1 /1f ( ; , )
( )

xx x eα− − β
αα β =

β Γ α
 for x, α, β > 0                             (4.1) 

where, α and β are the shape and scale parameters respectively; x is the rainfall 

amount; and Γ(α) is the gamma function. The maximum likelihood method was used to 

estimate the optimal values of α and β parameters using Equations (4.2) and (4.3) 

respectively. 

1 4A
1 1

4A 3
= + +

⎛ ⎞
α ⎜ ⎟

⎝ ⎠
        (4.2)  

x
=β
α

                     (4.3) 

where, sample statistic, ( ) ( )ln
A ln

n
x

x= − ∑ ; 
−

x  is the rainfall average; and n is 

the number of observations. 

The resulting parameters were then used to derive the cumulative probability 

for non-zero rainfalls using Equation (4.4). 



                                                          Chapter 4: Evaluation of Selected Drought Indices 

 Page 4-6

1 /

0 0

1F( ; , ) ( ; , )dx dx
( )

x x
xx f x x eα− − β

αα β = α β =
β Γ α∫ ∫     (4.4) 

which can be expressed by Equation (4.5). 

1

0

1F( ; , ) dt
( )

x
tx t eα− −α β =

Γ α ∫        (4.5) 

where, t /x= β  

Since the gamma function is undefined for x = 0 and the rainfall time series 

data may contain zero rainfalls, the cumulative probability of zero and non-zero 

rainfalls, H(x) was calculated using Equation (4.6). 

( ) ( )H q 1 q F( ; , )x x= + − α β        (4.6) 

where, q is the probability of zero rainfall. If m is the number of zeros present 

in a rainfall time series, then q is estimated by m/n. 

The cumulative probability was then transformed into a standardized normal 

distribution so that the SPI mean and variance were zero and one respectively. 

Following McKee and Edwards (1997), Hughes and Saunders (2002) and Mishra and 

Desai (2006), the current study employed the approximate transformations provided by 

Abramowitz and Stegun  (1965) to transform the cumulative probability distribution 

into a standardized normal distribution, which are given in Equations (4.7) and (4.8): 

2
o 1 2

2 3
1 2 3

SPI
c c k c kk

1 d k d k d k
⎛ ⎞+ +

= − −⎜ ⎟+ + +⎝ ⎠
, when 

( )( )2
1k ln

H x

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 

for 0 < H(x) ≤ 0.5  (4.7) 
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2
o 1 2

2 3
1 2 3

SPI
c c k c kk

1 d k d k d k
⎛ ⎞+ +

= + −⎜ ⎟+ + +⎝ ⎠
, when 

( )( )2
1k ln

1 H x

⎛ ⎞
⎜ ⎟=
⎜ ⎟−⎝ ⎠

 

for 0.5 < H(x) ≤ 1  (4.8) 

where, co = 2.515517, c1 = 0.802853, c2 = 0.010328, d1 = 1.432788, d2 = 

0.189269, d3 = 0.001308. 

Similar to PN, the SPI values can be calculated for multiple monthly time 

scales (e.g. 3-, 6-, 12-, 24- and 48- month time scales) of interest as was discussed in 

Section 2.2.5. However, in this study SPI was calculated using a monthly time step. 

The SPI threshold ranges that are used to define drought conditions are presented in 

Table 4.3 (McKee et al., 1993). 

Table 4.3 Drought classification based on SPI (McKee et al., 1993) 

2.00 or more Extremely wet 

1.50 to 1.99 Very wet 

1.00 to 1.49 Moderately wet 

0.99 to -0.99 Near normal 

-1.00 to -1.49 Moderate drought 

-1.50 to -1.99 Severe drought 

-2.00 or less Extreme drought 

 

4.3.4. Surface Water Supply Index 

The Surface Water Supply Index (SWSI) is a technique to measure the surface 

water condition as the measure of the drought condition (Section 2.2.4). The SWSI 

considers rainfall, streamflow / snow water content (streamflow in summer and snow 

water content in winter) and storage reservoir volume. The snow water content was not 
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considered in the current study, as it is not relevant within the study region. The 

mathematical formulation of SWSI is given in Equation (4.9). 

( ) ( ) ( )/a b c 50
SWSI

12
rn sf sn rsPoN PoN PoN

=
⎡ ⎤× + × + × −⎣ ⎦    (4.9) 

where, PoN is the probability of non-exceedance (%); rn, sf / sn and rs refer to 

rainfall, streamflow / snow water content and storage reservoir volume components 

respectively; and a, b and c are weights for each component and must meet the 

condition a+b+c = 1. Subtracting 50 and dividing by 12 is a cantering and 

compressing procedure designed to make the SWSI values range between -4.2 and 

+4.2. The SWSI thresholds values are shown in Table 4.4 (Shafer and Dezman, 1982). 

Table 4.4 Drought classification based on SWSI (Shafer and Dezman, 1982) 

4.00 or more Abundant supply 

3.99 to 1.99 Wet 

2.00 to -0.99 Near normal 

-1.00 to -1.99 Incipient drought 

-2.00 to -2.99 Moderate drought 

-3.00 to -3.99 Severe drought 

-4.00 or less Extreme drought 

 

4.3.5. Aggregated Drought Index 

The Aggregated Drought Index (ADI) is a multivariate DI that 

comprehensively considers all physical forms of drought (i.e., meteorological, 

hydrological and agricultural) through selection of input variables that are related to 

each drought type as discussed in Section 2.2.6. The ADI considers several variables 

that define the hydrologic cycle, including the most important eight variables: rainfall, 

potential evapotranspiration, streamflow, storage reservoir volume, soil moisture 

content, snow water content, groundwater flow and temperature. Of these eight 
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variables, six influential variables namely rainfall, potential evapotranspiration, 

streamflow, storage reservoir volume, soil moisture content and snow water content 

were used for ADI formulation by Keyantash and Dracup (2004). These variables 

except the snow water content were considered in this study, as snow water content is 

not relevant for the study area. Groundwater flow was excluded in this study for three 

reasons as explained by Keyantash and Dracup (2004): (1) data on historic 

groundwater levels are not easily accessible for this catchment; (2) groundwater flow 

into heterogeneous aquifers across the catchment is difficult to assess; and (3) 

groundwater recharge/depletion is a slow process and it occurs at longer time scales, 

which extends beyond the ADI time scale of one month used in this study. Keyantash 

and Dracup (2004) argued that drought generally represents shortage of surface water 

and that the drought effects should be observed more directly in water-related 

variables. Because of this reason, groundwater was not included in the ADI 

formulation in their study as it does not represent the water quantity. For similar 

reasons, temperature was also not included in this study. 

Principal Component Analysis (PCA) was used to aggregate the 

aforementioned variables (i.e., rainfall, potential evapotranspiration, streamflow, 

storage reservoir volume and soil moisture content). Computation of the principal 

components (PCs) requires constructing a square (p x p, where p is the number of 

variables) symmetric correlation matrix to describe the correlations between the 

original data. Twelve correlation matrices were used, one for each month. These 

correlation matrices then underwent PCA. An advantage of the correlation-based PCA 

approach used in the development of ADI is that the ADI is not impacted by the 

measurement units of the input data, as all input variables are standardized before they 

are used in ADI computations. 

PCs are a re-expression of the original p-variable data set in terms of 

uncorrelated components Zj (1 < j ≤ p). Eigenvectors derived through PCA are unit 

vectors (i.e., magnitude of 1) that establish the relationship between the PCs and the 

original data as shown in Equation (4.10). 

 Z  X E=         (4.10) 
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where, Z is the (n x p) matrix of PCs (i.e., uncorrelated components), in which 

n is the number of observations, X is the (n x p) matrix of standardized observational 

data and E is the (p x p) matrix of eigenvectors. 

As described by Keyantash and Dracup (2004), the ADI was considered as the 

first PC (PC1), normalized by its standard deviation as in Equation (4.11): 

, ,1,ADI Z /i k i k k= σ        (4.11) 

where, ADIi,k is the ADI value for month k in year i, Zi,1,k is the first PC for 

month k in year i, and σk is the sample standard deviation of Zi,1,k over all years for 

month k. 

The ADI utilizes only the PC1 because it explains the largest fraction of the 

variance described by the full p-member, standardized data set. Since PCs are 

orthogonal vectors, it is not mathematically proper to combine them into a single 

expression (Keyantash and Dracup, 2004). Considering all 12 months, PC1 described 

an average of 56.4% of the data set variance in this study. This figure was ranged from 

58.0 to 63.0% in Keyantash and Dracup (2004) where they had developed ADI for 

three catchments in California, U.S.A. Once the ADI values were computed for each 

year and each month, they were reordered into a single time series in chronological 

order. 

To determine ADI thresholds, the empirical cumulative distribution of above 

ADI values was constructed and is shown in Figure 4.1. The ADI thresholds values 

were then calculated for the study catchment using this empirical cumulative 

distribution function. These thresholds were used to classify the drought conditions. 

Keyantash and Dracup (2004) used the SPI thresholds to generate ADI thresholds. The 

SPI dryness thresholds are the Gaussian variates of -2, -1.5, -1 and 1 standard 

deviations (Table 4.3), which corresponds to 2.3th, 6.7th, 16.0th and 84.0th percentiles in 

SPI distributions. The ADI thresholds corresponding to these percentiles were -1.70,    

-1.41, -0.96 and 0.92 respectively for the study catchment (Figure 4.1). These ADI 

thresholds and relevant drought classifications for the study catchment are presented in 

Table 4.5. 
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Figure 4.1 Computation of ADI thresholds for the study catchment 

Table 4.5 Drought classification based on ADI for the study catchment 

-0.95 to 0.92 Near normal 

-1.40 to -0.96 Moderate drought 

-1.69 to -1.41 Severe drought 

-1.70 or less Extreme drought 

 

4.4. Analysis of Drought Indices 

Drought Indices (i.e., PN, Deciles, SPI, SWSI and ADI) were computed for the 

Yarra River catchment using monthly data of input variables using the methodology 

described in Section 4.3. The input variables used were rainfall, potential 

evapotranspiration, streamflow, storage reservoir volume and soil moisture content, 

and the data from 1960 to 2008 (Section 4.2) were used to compute the above DIs.  

As described in Section 3.3, there were several historical droughts recorded in 

Victoria, especially in the last 50 years (i.e. 1967-1968, 1972-1973, 1982-1983, 1997-

1998, 2003-2004 and 2006 onwards). All these historical droughts were considered in 
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this study to investigate how well the DIs analyzed were capable in defining drought 

conditions. Traditionally, the drought assessment has been done with drought severity 

defined by a DI (Yevjevich, 1967; Keyantash and Dracup, 2002). The drought severity 

(S) is the product of the drought duration (D) (during which the DI values are 

consistently below a truncation level) and the drought magnitude (M) (which is the 

mean departure of DI values from that truncation level during the drought period). 

Generally, the drought is a slow process and lasts for a longer period. In this case, the 

probability distribution of the departure of the DI values of these droughts from the 

truncation level follows a normal distribution and hence either the mean or the median 

value can be used to define M. However, in this study, the median value was used to 

define M, since there were some droughts with short durations and the number of data 

points describing the probability distribution of the departure of the DI values of these 

droughts from the truncation level is small, and also the median is not affected by the 

outliers (Helsel and Hirsch, 1993). The relationship between S, M and D is shown in 

Figure 4.2. Using this nomenclature, the five DIs considered in this study are analyzed 

in this section using the above historical droughts. 

 

Figure 4.2 Relationship between Drought Severity, Drought Magnitude and Drought 

Duration (adapted from Yevjevich, 1967; Keyantash and Dracup, 2002) 

Time series plots of the DIs are shown in Figure 4.3. In Figure 4.3, the shaded 

vertical areas represent the historical droughts detected by each DI (i.e., DIs values 

below the truncation line). This figure shows that the rainfall based DIs (i.e., PN, 

Deciles and SPI) have shown similarities in detecting historical droughts. These three 

indices showed rapid fluctuations over the whole period, and also even during the 
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detected droughts. They have given some indication of the historical droughts. 

However, in Figure 4.3 it is difficult to see the historical droughts within these periods. 

This is because during the drought, when large rainfall events occurred for short 

periods, these indices have produced large index values indicating that the drought has 

ceased, which was clearly not the case. It can be also seen from Figure 4.3 that drought 

durations detected by these three indices were almost similar for all historical droughts 

except for the 1982-1983 drought. In Figure 4.3, both SWSI and ADI indices showed 

smoother transitional characteristics during droughts, and from dry to wet spells and 

vice versa. Because of this characteristic, the historical droughts detected by SWSI and 

ADI are clearer than those detected by PN, Deciles and SPI. Furthermore, the ADI 

showed the DI values were consistently below the drought defining threshold during 

the duration of the droughts compared to SWSI, which had few values above the 

threshold during the duration of the drought.  

Characteristics of historical droughts as detected by PN, Deciles, SPI, SWSI 

and ADI are presented in Table 4.6. The table shows median and maximum intensity 

of droughts together with their drought classifications, in addition to their duration and 

severity. By comparing drought classifications in Tables 4.1 to 4.5, it can be seen that 

they are similar for four classifications (i.e. near normal, moderate drought, severe 

drought and extreme drought) in PN, SPI and ADI. The classification in Deciles on 

‘Much below normal’ can be split into ‘severe’ and ‘extreme’ drought classifications 

considering the deciles 2 and 1 respectively, and the classification ‘below normal’ in 

Deciles can be considered as ‘moderate drought’. Similarly, the classifications on ‘near 

normal’ and ‘incipient’ in SWSI can be combined into the ‘near normal’ classification. 

The above discussion brings in a homogeneous classification of drought across all five 

DIs considered in this study. This homogeneous classification is used in Table 4.6 to 

classify drought conditions. In general, the classification based on median intensity is 

similar (within one level of classification) in all 5 DIs for all droughts, but SWSI 

shows markedly different classifications for 1972-1973 and 1997-1998 droughts for 

maximum intensity compared to the other DIs. Generally the drought durations 

detected by rainfall based DIs (i.e. PN, Deciles and SPI) for each drought are similar. 

These durations are also similar for SWSI and ADI, but quite different from those of 

rainfall based DIs. 
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Figure 4.3 Time series plots of drought indices; A: Percent of Normal, B: Deciles, C: 
Standardized Precipitation Index, D: Surface Water Supply Index and E: Aggregated 

Drought Index
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Table 4.6 Characteristics of historical droughts as detected by PN, Deciles, SPI, SWSI and ADI 

  PN Deciles SPI SWSI ADI 
 Historical drought known as 1967-1968 drought 

Median intensity, M (53) Moderate (19) Severe 
(close to moderate) 

(-0.87) Near normal (-2.33) Moderate (-0.81) Near normal 

Duration, D (months) 15 15 15 16 15 
Severity, S -705a -1215 a -13.05 -37.28 -12.15 
Maximum intensity, Mmax (4) Extreme 

(Feb, '68) 
(0) Extreme 
(Feb, '68) 

(-3.62) Extreme 
(Feb, '68) 

(-3.97) Severe 
(Feb, '68) 

(-1.96) Extreme 
(Feb, '68) 

 Historical drought known as 1972-1973 drought 

Median intensity, M (78) Moderate (36) Moderate (-0.26) Near normal (-1.41) Near normal (-0.52) Near normal 
Duration, D (months) 11 11 11 5 9 
Severity, S -242 a -704 a -2.86 -7.05 -4.68 
Maximum intensity, Mmax (6) Extreme 

(Dec, '72) 
(1) Extreme 
(Dec, '72) 

(-3.36) Extreme 
(Dec, '72) 

(-2.84) Moderate 
(Dec, '72) 

(-1.60) Severe 
(Dec, '72) 

 Historical drought known as 1982-1983 drought 
Median intensity, M (76) Moderate (29) Moderate (-0.33) Near normal (-2.54) Moderate (-1.10) Moderate 
Duration, D (months) 20 11 17 21 22 
Severity, S -480 a -781 a -5.61 -53.34 -24.2 
Maximum intensity, Mmax (8) Extreme 

(Feb, '83) 
(1) Extreme 
(Feb, '83) 

(-3.11) Extreme 
(Feb, '83) 

(-3.86) Severe 
(Feb, '83) 

(-2.55) Extreme 
(Nov, '82) 

  continue 
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 PN Deciles SPI SWSI ADI 
 Historical drought known as 1997-1998 drought 

Median intensity, M (71) Moderate (32) Moderate (-0.40) Near normal (-1.03) Near normal (-0.86) Near normal 
Duration, D (months) 17 17 17 20 21 
Severity, S -493 a -1156 a -6.8 -20.6 -18.06 
Maximum intensity, Mmax (7) Extreme 

(Feb, '97) 
(1) Extreme 
(Feb, '97) 

(-3.27) Extreme 
(Feb, '97) 

(-2.40) Moderate 
(Aug, '98) 

(-1.51) Severe 
(Aug, '98) 

 Historical drought known as 2003-2004 drought 

Median intensity, M (68) Moderate (30) Moderate (-0.48) Near normal (-2.07) Moderate (-1.04) Moderate 
Duration, D (months) 18 16 16 23 32 
Severity, S -576 a -1120 a -7.68 -47.61 -33.28 
Maximum intensity, Mmax (30) Severe 

(Feb, '03) 
(5) Extreme 
(Feb, '03) 

(-1.64) Severe 
(Feb, '03) 

(-3.35) Severe 
(Nov, '02) 

(-1.89) Extreme 
(Jan, '03) 

 2006 onwards drought 

Median intensity, M b (67) Moderate (29) Moderate (-0.49) Near normal (-2.66) Moderate (-1.47) Severe 
(close to moderate) 

Duration, D (months) ------------------------------------------------ Still continuing -------------------------------------------- 
Severity, S ------------------------------------------------ Still continuing -------------------------------------------- 
Maximum intensity, M b

max (23) Severe 
(Apr, '07) 

(3) Extreme 
(Apr, '07) 

(-2.00) Extreme 
(Apr, '07) 

(-4.00) Extreme 
(Sept, '08) 

(-2.19) Extreme 
(Oct, '06) 

a M values were rescaled from 0 – 100 to -100 – 0 for calculating S values 
b Median and maximum intensity are until 2008 
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Ranking of all historical droughts detected by PN, Deciles, SPI, SWSI and ADI 

based on median intensity, duration, severity and maximum intensity are presented in 

Table 4.7. All droughts were arranged in descending order in Table 4.7 for the above 

parameters, most severe drought being rank 1. These rankings were also compared 

with those of historical records (Keating, 1992; Tan and Rhodes, 2008). Note that the 

median drought intensities for these historical droughts have not been published in 

Keating (1992) and Tan and Rhodes (2008).  

Table 4.7 Ranking of historical droughts* 

 Historical** PN Deciles SPI SWSI ADI 

1972/73 1972/73 1967/68 1982/83 1982/83

1982/83 1997/98 2003/04 1967/68 2003/04

1997/98 2003/04 1997/98 2003/04 1997/98

2003/04 1982/83 1982/83 1972/73 1967/68

Median 
intensity, M  - 

1967/68 1967/68 1972/73 1997/98 1972/73

1982/83 1997/98 1972/73 2003/04 2003/04

2003/04 2003/04 1982/83 1982/83 1982/83

1997/98 1967/68 2003/04 1997/98 1997/98

1967/68 1982/83 1967/68 1967/68 1967/68

Duration, D 
Longest, D 

was in 
2003/04 

1972/73 1972/73 1972/73 1972/73 1972/73

1967/68 1967/68 1967/68 1982/83 2003/04

2003/04 1997/98 2003/04 2003/04 1982/83

1997/98 2003/04 1997/98 1967/68 1997/98

1982/83 1982/83 1982/83 1997/98 1967/68

Severity, S 
Highest, S 

was in 
2003/04 

1972/73 1972/73 1972/73 1972/73 1972/73

1967/68 1967/68 1967/68 1967/68 1982/83

1972/73 1972/73 1972/73 1982/83 1967/68

1997/98 1997/98 1997/98 2003/04 2003/04

1982/83 1982/83 1982/83 1972/73 1972/73

Maximum 
intensity, Mmax 

Maximum 
intensity, 

Mmax was in 
1982/83 

2003/04 2003/04 2003/04 1997/98 1997/98

*2006 onwards drought was not included in this ranking since it is still continuing 

 **Historical drought records were obtained from Keating (1992) and Tan and 
Rhodes (2008) 
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Table 4.7 showed that in ranking historical droughts, SWSI and ADI had 

produced exactly the same ranks for drought duration, whereas the rainfall based DIs, 

PN, Deciles and SPI had given the same ranks for maximum intensity. In addition, 

similarities were also found both in SWSI and ADI for top rank in median intensity, 

whereas PN, Deciles and SPI had produced the top rank for severity. The above 

findings show some similarities in terms of ranking in rainfall based DIs (i.e., PN, 

Deciles and SPI) and in SWSI/ADI. The reason for this is that the rainfall based DIs 

use only rainfall in defining DI, whereas multiple inputs describing the hydrologic 

cycle are used in SWSI/ADI. Table 4.7 also shows that all five DIs had produced the 

lowest drought duration and the lowest severity ranking for 1972-1973 drought. 

However, it is important to highlight that in comparison to the published details of 

historical droughts only the ADI ranking had produced the longest duration, the highest 

severity and the maximum intensity as published for historical droughts. The 2006 

onwards drought is not included in the rankings in Table 4.7 as the duration and the 

severity of this drought cannot be calculated since the drought is still occurring. 

4.5. Evaluation of Drought Indices 

In this section, DIs that were analyzed for the Yarra River catchment were 

evaluated to investigate how they satisfied desirable properties of a good DI and how 

they could be useful for this catchment. In judging the overall usefulness of the DIs, 

Redmond (1991) proposed a number of desirable properties. Keyantash and Dracup 

(2002) used six decision criteria from these desirable properties, namely robustness, 

tractability, sophistication, transparency, extendability and dimensionality, for 

evaluating some of the DIs used in the U.S. They believed that these criteria would 

give a reasonable framework for evaluation of the DIs without excessive 

complications. Except the dimensionality criterion, the decision criteria used by 

Keyantash and Dracup (2002) was used in this study. The dimensionality criterion was 

not considered, since it is mostly covered by the transparency criterion, as stated also 

by Keyantash and Dracup (2002). To account for the relative importance of each 

decision criterion, a set of weights called relative importance factors were used by 

Keyantash and Dracup (2002). However, these relative importance factors were 

determined subjectively without giving any justification. They stated that the 
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determination of relative importance factors depends on professional experience and 

personal judgment, and researchers and practitioners are free to modify these weights 

to suit their own perspectives (Keyantash and Dracup, 2002). The current study 

considered that each decision criterion has equal importance for evaluation of DIs for 

the Yarra River catchment. However, it should be noted that the Revised Simos 

Procedure of Figueira and Roy (2002), which is a modified version of the original 

Simos Procedure (Simos, 1990), can be used to objectively determine the weights for 

decision criteria, eliciting preferences from drought researchers and professionals. This 

method has been successfully used by Kodikara et al. (2010) in determining weights 

for multi-objective operation of an urban water supply system. 

A range of raw scores from 1 to 5 (5 being the most desirable) were assigned to 

each of the five selected decision criteria to evaluate the DIs for the Yarra River 

catchment. The raw scores were given based on the qualitative and quantitative 

assessment of DIs. The qualitative assessment are based on findings of various 

researchers in the past on evaluating DIs (described in Section 2.2) and the 

theoretical/computational aspects of DIs (described in Section 4.3). The quantitative 

assessment is based on how well these DIs modeled the historical droughts in the Yarra 

River catchment which was presented in Section 4.4. The sum of the weighted scores 

of each criterion (i.e., raw scores multiplied by relative importance factor) was the total 

weighted score for each index. These total weighted scores were used for comparative 

evaluation of DIs for the Yarra River catchment in this study. Since the relative 

importance factors were not considered in this study, they were considered as 1. 

Therefore, the maximum possible total weighted score any DI could have is 25. The 

total weighted scores were calculated for each index and are presented in Table 4.8. 

The rationale for the allocated raw scores of each criterion for the Yarra River 

catchment is given below. 

4.5.1. Robustness 

Robustness represents the usefulness of the DI over a wide range of physical 

conditions. Ideally a DI should be responsive, but not temperamental (Keyantash and 

Dracup, 2002). The ADI was quite responsive as well as it was not temperamental in 
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detecting historical drought conditions (Figure 4.3). Therefore, a raw score of 5 was 

given for the robustness criterion to the ADI (Table 4.8). The SWSI developed as a 

hydrological DI showed good agreement with the ADI for detecting historical droughts 

(Figure 4.3). However, Figure 4.3 showed that the ADI was superior to the SWSI in 

detecting historical drought conditions in some cases (e.g., in detecting drought in 

1997-1998), showing some temperamental characteristics in SWSI. Moreover, as seen 

before (Table 4.6), the drought classification detected in SWSI was markedly different 

to other DIs for 1972-1973 and 1997-1998 droughts in terms of maximum intensity. 

Therefore, the robustness score for the SWSI was given as 3 (Table 4.8). The rainfall 

based DIs (i.e., PN, Deciles and SPI) as mentioned earlier have shown similarities in 

detecting historical droughts. They were quite responsive to the rainfall variations as 

they are solely dependent on rainfall. However, it is seen that these DIs are very 

temperamental. Furthermore, they do not account for overall water resources 

variability within the catchment, rather they show the rainfall variability. The SPI 

nevertheless showed slightly better robustness characteristics than PN and Deciles 

(Figure 4.3). Therefore, the robustness score of 2 was assigned to SPI, and score of 1 

each to both PN and Deciles. 

Table 4.8 Comparative scores of DIs based on weighted evaluation criteria 

Raw scores (1-5) 

Drought 
Index 

R
ob

us
tn

es
s 

T
ra

ct
ab

ili
ty

 

T
ra

ns
pa

re
nc

y 

So
ph

is
tic

at
io

n 

E
xt

en
da

bi
lit

y 

Total weighted 
scores 

PN 1 5 5 1 5 17 

Deciles 1 5 4 1 5 16 

SPI 2 4 3 1 4 14 

SWSI 3 3 3 3 4 16 

ADI 5 2 3 5 3 18 
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4.5.2. Tractability 

Tractability implies the practical aspect of the drought index. A tractable index 

requires low level of numerical computations, less number of input variables and less 

extensive database with historical data (Keyantash and Dracup, 2002). PN and Deciles 

require simple numerical computations and use only rainfall as the input variable. SPI 

also requires only rainfall, but the computations are complex than in PN and Deciles. 

SWSI and ADI require more input variables, most being in ADI. The level of 

computational difficulty is almost the same in SWSI and ADI. In terms of the database, 

all DIs require rainfall data. However, SWSI requires more hydro-climatic data and 

most for ADI. Therefore, raw scores for PN, Deciles, SPI, SWSI and ADI are assigned 

as 5, 5, 4, 3 and 2 respectively (Table 4.8). 

4.5.3. Transparency 

Transparency represents the clarity of the objective and rationale behind the 

drought index (Keyantash and Dracup, 2002). A DI is considered to be transparent if it 

is understandable by both the scientific community and the general public, and 

therefore transparency may represent general utility. PN and Deciles in general are 

understandable to both the scientific community and the general public, but PN more 

than Deciles, and therefore, the scores of 5 and 4 were assigned for PN and Deciles 

respectively (Table 4.8). Compared to PN and Deciles, the indices of SPI, SWSI and 

ADI are not relatively easy to understand by the general public, but they are 

understandable by drought researchers and professionals. The level of 

understandability seems to be the same in these three DIs. Therefore, a score of 3 was 

assigned to these three DIs for the transparency criterion (Table 4.8). 

4.5.4. Sophistication 

Sophistication considers the conceptual merits of the drought characterization 

approach (Keyantash and Dracup, 2002). Sometimes, the computational technique of 

the DI is complex and the DI itself might not be quite understandable (i.e., neither 

tractable nor transparent), but it may be sophisticated and appreciable from the proper 
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perspective. The ADI is least tractable and less transparent, but it is more useful than 

PN, Deciles, SPI and SWSI in defining drought intensity, duration and severity (Figure 

4.3 and Table 4.7). As outlined in Section 4.4, only the ADI was able to pick the most 

severe historical drought in terms of the longest duration, highest severity and 

maximum intensity, which was same as in the published records (Table 4.7). 

Therefore, ADI is more sophisticated than PN, Deciles, SPI and SWSI, and a score of 5 

was assigned to ADI (Table 4.8). SWSI had detected the worst drought only in terms 

of the longest duration of historical droughts as in the published records. The rainfall 

based DIs (i.e., PN, Deciles and SPI) have not detected any of these characteristics of 

historical droughts as in published records. Therefore, raw scores of 1 were assigned to 

PN, Deciles and SPI, and 3 for SWSI. 

4.5.5. Extendability 

Extendability corresponds to the degree to which the DI may be extended 

across time to alternate drought scenarios (Keyantash and Dracup, 2002). For example, 

all DIs evaluated in this study use basic measured data (e.g., rainfall, streamflow and 

storage volume), and therefore were constructed for the period where historical data 

were available. They are extendable for future, provided these data will be available. 

When long records of future data will be available, they can be used to update the 

classification thresholds. These calculations are easy for PN and Deciles, and more 

complex for SPI, SWSI and ADI (almost with the same level of complexity). However, 

ADI requires further calculations to compute the soil moisture content, which is an 

input to ADI. Therefore, PN and Deciles were assigned a score of 5, SPI and SWSI 

were assigned a raw score of 4 and ADI was assigned a raw score of 3 (Table 4.8). 

4.5.6. Sensitivity of Raw Scores on Ranking 

It should be noted that a significant effort has been spent in this study to assign 

raw scores (which were discussed in Sections 4.5.1 to 4.5.5) in some objective form to 

each of the decision criterion, based on the results of past studies and modeling of 

historical droughts for the DIs that were investigated (in this study). However, the 

researchers and professionals may select nearby raw scores compared to the current 
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scores in Table 4.8, which might give a different ranking. Therefore, a sensitivity 

analysis was conducted using the Monte Carlo simulation (Mooney, 1997) technique. 

In the sensitivity analysis, the current raw scores in Table 4.8, if they are not either 1 or 

5, were considered have 50% probability and the remaining 50% probability was 

assigned equally to the adjacent raw scores. For example, the raw score 3 in Table 4.8 

was considered have 50% probability, and 25% probability was assigned to adjacent 

raw scores of 2 and 4. The raw scores 1 and 5 in Table 4.8 were considered to have 

75% probability, while the adjacent score was assigned 25% probability. For example, 

the raw score 1 was given 75% probability and the adjacent raw score 2 was assigned 

the remaining 25%. Then, 10, 000 possible raw score combinations were randomly 

generated for each of the 5 decision criteria of each DI with probabilities assigned to 

them as discussed above, and the total weighted score was computed for each 

combination of 5 criteria of each DI. The modes of these total weighted scores of each 

DI were then calculated as the measure of central tendency, as the mode is most 

suitable for measuring the central location when the most frequently occurring value is 

important and data consist of discrete values as in this study (Helsel and Hirsch, 1993; 

Gravetter and Wallnau, 2008). The modes of the total weighted scores from the 

sensitivity analysis were found to be exactly same as those of Table 4.8. This means 

that the subjective nature of assigning raw scores did not have any impact in the overall 

ranking of the DIs investigated in this study. 

4.5.7. Overall Evaluation 

According to Table 4.8, the overall rankings of the DIs in terms of the total 

weighted score are ADI, PN, SWSI and Deciles and SPI; however, the indices SWSI 

and Deciles show same ranking. Therefore, this study shows that the ADI is a better DI 

than PN, Deciles, SPI and SWSI in quantifying the drought conditions of the Yarra 

River catchment. As can be seen from Figure 4.3, the ADI was the most stable DI 

having smooth transitional characteristics during the droughts as well as during other 

periods. The ADI has modeled the characteristics of historical droughts better than any 

other DI. The SPI has produced the lowest total score within the group of rainfall based 

DIs. This is because of the complexity of SPI calculations and relative difficulty in 

understanding the SPI by the general public. 
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Based on the results in Table 4.8 and the sensitivity analysis, the ADI was 

found to be superior to the other DIs for the Yarra River catchment, followed by PN. 

However, the ADI requires more data than PN, but this has been already considered in 

the evaluation of the DIs for the Yarra River catchment. Nevertheless, if the results are 

to be generalized for other catchments especially in Victoria without detailed 

evaluation of the DIs, then there is an argument that PN can be considered as a better 

DI than the ADI for catchments, where data are not available or difficult to obtain to 

compute the ADI. 

4.6. Summary 

Drought assessment has been a challenging task among drought researchers and 

professionals. There are many Drought Indices (DIs) that have been developed around 

the world and are commonly used to quantify drought conditions as was discussed in 

Chapter 2. It was found that in most cases, DIs are developed for a specific region, and 

therefore may not be directly applicable to other regions due to inherent complexity of 

drought phenomena, different hydro-climatic conditions and catchment characteristics. 

Suitability of some of the existing DIs had been analyzed for different climatic regions 

around the world. However, no such study had been conducted in Australia which is 

the driest inhabited continent on the Earth. In this chapter, an examination of the 

performance of five DIs namely Percent of Normal (PN), Deciles, Standardized 

Precipitation Index (SPI), Surface Water Supply Index (SWSI) and Aggregated 

Drought Index (ADI) for modeling historical droughts within the Yarra River 

catchment in Victoria (Australia) is presented. 

Historical droughts recorded in Victoria during 1967-1968, 1972-1973, 1982-

1983, 1997-1998, 2003-2004, and 2006 onwards were used in this study to investigate 

how well the above DIs were capable in defining drought conditions. However, the 

2006 onwards drought was not included in the ranking of historical droughts, since it is 

still continuing. The study showed that PN, Deciles and SPI have shown similarities in 

detecting historical droughts as was expected, because they were developed using 

rainfall as the single variable. These three indices also showed rapid fluctuations over 

the whole period, and also even during droughts indicating that the drought has ceased 
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when large rainfall events occurred for short periods. It was difficult to see the 

historical droughts within these periods with those rainfall based DIs. Both SWSI and 

ADI showed smoother transitional characteristics during droughts, and from dry to wet 

spells and vice versa. However, SWSI has limitations in the wide range of applications 

as important parameters such as soil moisture content and evapotranspiration that 

directly affect the agricultural droughts have not been considered in the development 

of SWSI as was discussed in Section 2.2.4. In comparison to published details of 

historical droughts, ADI showed better agreement in detecting historical droughts than 

the other DIs. 

Five decision criteria - robustness, tractability, sophistication, transparency, 

and extendability - were used in this study to evaluate the performance of the above 

DIs in modeling historical droughts and to use these indices in drought management of 

the Yarra River catchment. Analysis showed that the ADI was more robust and 

sophisticated than SWSI. The other three DIs were of the same level in terms of 

robustness and sophistication, except that SPI was little more robust than PN and 

Deciles. However, the rainfall based DIs (i.e. PN, Deciles and SPI) were less robust 

and sophisticated than ADI and SWSI. In terms of the tractability criterion, PN and 

Deciles had the same raw score and more tractable than SPI, SWSI and ADI in that 

order, the ADI being the least tractable. The analysis also showed that ADI, SWSI and 

SPI had the same raw score for the transparency criterion and less transparent than the 

PN and Deciles, PN having the highest transparency score. Finally, PN and Deciles 

were found to be more extendable than SPI, SWSI and ADI in that order with ADI 

having the least score and SPI and SWSI having the same score. 

Overall, the study has found that the ADI was a better DI for modeling 

droughts and the management of droughts in the Yarra River catchment than the other 

DIs analyzed in this study. It has modeled the characteristics of historical droughts 

better than any other DI. It was also the most stable having smoother transitional 

characteristics during droughts as well as during other periods. Although a significant 

effort has been spent on reducing subjectivity in assigning raw scores for each of the 

decision criterion in relation to each DI, still there can be some subjectivity involved in 

these raw scores. A sensitivity analysis was conducted to investigate how the overall 
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ranking changes with respect to likely values of raw scores; interestingly, it was found 

that there was no difference in the overall ranking. Furthermore, the evaluation in this 

study considered equal importance to all decision criteria. However, the evaluation can 

be improved by incorporating relative importance factors for each of the decision 

criterion, and this information can be obtained through Revised Simo’s Procedure, 

eliciting information from drought researchers and professionals. 
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5. DEVELOPMENT OF NONLINEAR AGGREGATED 
DROUGHT INDEX 

 

Overview; Study Area and Data Used; Methodology Used for 
Development of Nonlinear Aggregated Drought Index; 
Analysis of NADI for Drought Assessment; Comparative 
Evaluation of NADI and ADI; Summary 

 

 

5.1. Overview 

Defining drought conditions is an important task in drought management. There 

are many drought defining tools, and of these tools, Drought Indices (DIs) have been 

most commonly used to define the drought conditions in the world as discussed in 

Section 2.2. Some of the well known DIs were evaluated for their potential use in this 

research project (for the Yarra River catchment) and presented in Chapter 4. It was 

found that the Aggregated Drought Index (ADI) was the most suitable DI for this 

research project. As discussed in Section 4.3.5, the Principal Component Analysis 

(PCA), also known as the linear PCA (Lorenz, 1956; Barnston and Livezey, 1987; 

Lins, 1997; Hidalgo et al., 2000) was used to combine the hydro-meteorological 

variables in ADI. However, the linear PCA assumes that the variables used in the ADI 

have linear relationships between them in formulating Principal Components (PCs). 

Ellis et al. (2006) and Linting et al. (2007) noted that if nonlinear relationships 

between variables exist, as is often the case with environmental data (Gauch, 1982), 

then the linear PCA technique may not perform well or correctly. Therefore, the 

Nonlinear Principal Component Analysis (NLPCA) which was originally developed by 

Guttman (1941) is introduced and used in the current study to avoid the limitation of 

the use of linear PCA used in ADI (Section 4.3.5), which has led to the development of 

a novel Nonlinear Aggregated Drought Index (NADI) in this research project. 

The objective of this chapter is to present the findings of the development and 

evaluation of the NADI method of drought assessment. The chapter begins with a brief 
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description of the study area and data used in this study, followed by the methodology 

used for the development of NADI. Analysis of NADI for drought assessment which 

was conducted to investigate how well the NADI define the historical drought 

conditions is then presented, followed by the comparative evaluation of NADI and 

ADI. Finally, summary drawn from the study are presented at the end of the chapter. 

5.2. Study Area and Data Used 

Similar to Chapter 4, the Yarra River catchment was used as the case study to 

demonstrate the applicability of NADI. The details of the Yarra River catchment and 

its importance were described in Chapter 3. Similar to the development of ADI, five 

hydro-meteorological variables (i.e. rainfall, potential evapotranspiration, streamflow, 

storage reservoir volume and soil moisture content) were used in the development of 

NADI. Monthly time step was used in the development of NADI time series. The same 

data that were described and used in Chapter 4 were used in the development of NADI 

for the Yarra River catchment. 

5.3. Methodology Used for Development of Nonlinear 

Aggregated Drought Index 

A flowchart showing the overall steps followed during the NADI development 

is presented in Figure 5.1. Details are given in Section 5.3.1 to 5.3.4 including an 

example. First two steps in Figure 5.1 are self-explanatory. The third step segregates 

(or groups) data by categories of months to model the seasonal effects. The NLPCA 

was then performed individually for each month and produced the PCs. The NADI 

values were then computed separately for each of 12 months based on the first PC (or 

PC1), normalized by its standard deviation as the NADI value, as was done with the 

ADI (Section 4.3.5). These monthly NADI values were then merged to a single NADI 

time series in chronological order. Finally, the NADI thresholds are computed using 

the computed NADI time series. 
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Figure 5.1 Flow chart of the NADI computational process 
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5.3.1. Computation of Principal Components using Nonlinear 

Principal Component Analysis 

Generally, NLPCA has been used as a data redundant technique (Kramer, 1991; 

Monahan, 2000, 2001; Linting et al., 2007). However, in this study, the NLPCA is 

introduced and adopted as the numerical approach to aggregate five hydro-

meteorological variables (i.e., rainfall, potential evapotranspiration, streamflow, 

storage reservoir volume and soil moisture content) in the development of NADI. The 

use of NLPCA in the development of NADI is similar to the use of linear PCA in the 

development of ADI in Chapter 4 and used by Keyantash and Dracup (2004). The 

NLPCA is similar to the linear PCA in most aspects, with only difference being that in 

linear PCA the PCs are obtained through a linear combination of variables, whereas, in 

NLPCA the PCs obtained through a linear combination of transformed variables. The 

variable transformations are performed in NLPCA using an iterative process (which 

will be discussed shortly) where the observed data are replaced with new numeric 

values. By doing so, the PCs generated through NLPCA capture the nonlinear 

relationships between the variables and account for more variance in the data than the 

linear PCA (Linting et al., 2007). 

In linear PCA, PCs are a re-expression of the original m-variable data set in 

terms of uncorrelated components Zj (1 < j ≤ m). As was discussed in Section 4.3.5, 

eigenvectors derived through linear PCA are unit vectors (i.e., magnitude of 1) that 

establish the relationship between the PCs and the original data as shown in Equation 

(5.1). 

 Z  H E=          (5.1) 

where, Z is the (n x m) matrix of PCs (i.e. uncorrelated components), in which n 

is the number of observations, H is the (n x m) matrix of standardized observational 

data (also called component scores) and E is the (m x m) matrix of eigenvectors (also 

called component loadings). 

Usually, in linear PCA, component scores and component loadings are obtained 

from a singular value decomposition of the standardized data matrix or an eigenvalue 
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decomposition of the correlation matrix. However, the same results are obtained in the 

NLPCA through an iterative process as was mentioned above in which a least squares 

loss function is minimized. The loss to be minimized is the loss of information due to 

representing the variables by a small number of components: in other words, the 

difference between the variables and the component scores weighted by the component 

loadings. It should be noted that in NLPCA, the variable transformation task and the 

linear PCA model estimation (i.e., computation of component scores and component 

loadings) were performed simultaneously through the iterative process. Computer 

programs or modules that perform NLPCA are available in two major commercial 

statistical packages: the module PRINQUAL in SAS (SAS Institute, 1992) and the 

module CATPCA in SPSS (Meulman et al., 2004; SPSS, 2006). The CATPCA (i.e., 

Categorical Principal Component Analysis) module of SPSS software was used in this 

study to perform the NLPCA and the way NLPCA was performed in CATPCA is 

described mathematically below. 

Suppose (n x m) is an observational data matrix (H), where n is the number of 

observations and m is the number of variables. Each variable hj in the jth column of H 

has a vector of n (n x 1) observational data, with j = 1, . . . , m. Twelve matrices of H 

were used separately for NLPCA, one for each month. Assume that after optimal 

iterative process in NLPCA, the matrix H is replaced by the (n x m) matrix of Q, 

containing the transformed variables qj ( ( )j j jq hφ= ). Various types (e.g., nominal, 

ordinal and spline) of nonlinear transformation can be chosen in the CATPCA module 

based on the data. Spline type transformation which is suitable for numeric and 

continuous data was used for nonlinear variable transformation in this study, since 

numeric and continuous data were used in the matrix H. If X is the (n x p) matrix of 

component scores, p is the number of components, and A is the (m x p) matrix of 

component loadings, with its jth row indicated by ajs (where, s = 1, . . ., p), then the loss 

function (L(Q, X, A)) that can be used in NLPCA for the minimization of the 

difference between the transformed data and the PCs can be expressed as: 

( )
2

1

1 1 1

Q, X, A −

= = =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑∑ ∑

pm n

ij is js
j i s

L n q x a      (5.2) 
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In matrix notation, this function can be written as 

( ) ( ) ( )1

1

Q, X, A tr X X
m

j j j j
j

L n q a q a−

=

′= − −∑      (5.3) 

where tr denotes the trace function that sums the diagonal elements of a matrix. 

For example, 

2

1 1
tr 

= =

′ = ∑∑
m n

ij
j i

B B b         (5.4) 

It was proven that the loss function in Equation (5.3) is equivalent to Equation 

(5.5) (Gifi, 1990). 

( ) ( ) ( )1

1

Q, X, A tr X X
m

j j j j
j

L n q a q a−

=

′′ ′= − −∑      (5.5) 

The loss function given by Equation (5.5) is used in CATPCA, because the 

vector representations of variables as well as the representations of transformed data as 

a set of group points can be incorporated in the loss function in Equation (5.5) (Linting 

et al., 2007). 

Loss function in Equation (5.5) is minimized in an alternating least squares way 

by cyclically updating one of the three sets of parameters Q, X and A, while keeping 

the other two fixed. This iterative process is subjected to conditions below: 

1) the transformed variables are standardized, so that 

j jq q′ = n          (5.6) 

2) the component scores are restricted by requiring 
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X X In′ =          (5.7) 

where I is the identity matrix. 

3) the component scores are centered; thus, 

1 X 0′ =          (5.8) 

where “1” indicates a vector of ones. 

The condition presented by Equation (5.6) is required to solve the 

indeterminacy between qj and aj in the inner product j jq a′ . The condition in Equation 

(5.7), on the other hand, is applied to avoid the solutions A = 0 and X = 0. Moreover, 

the conditions presented by Equations (5.7) and (5.8) imply that the columns of X 

containing the components scores whose mean is zero and the standard deviation is 

one, and the components are uncorrelated. 

The abovementioned iterative process is continued until the improvement in the 

subsequent loss values is below some user-specified small value. In CATPCA, starting 

values of X are randomly selected.  

As was mentioned above, the PCs that are generated through NLPCA are a re-

expression of the m-variable transformed data set, in terms of uncorrelated components 

Yj (1 < j ≤ m). Therefore, the relationship between the PCs and the transformed data 

can be presented in NLPCA by Equation (5.9). 

 Y Q E=          (5.9) 

where, Y is the (n x m) matrix of PCs (i.e., uncorrelated components), Q is the 

(n x m) matrix of transformed variables and E is the (m x m) matrix of eigenvectors. 
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5.3.2. Computation of NADI Time Series 

As explained in Section 5.3.1, PCs were generated through NLPCA for each of 

12 months separately. The NADI values were then calculated individually for each 

month of each year where the NADI values were considered as the first PC (PC1), 

normalized by its standard deviation: 

,1,
,

i k
i k

k

Y
NADI

σ
=        (5.10) 

where, NADIi,k is the NADI value for month k in year i, Yi,1,k is the PC1 during 

year i for month k and σk is the standard deviation of Yi,1,k over all years for month k. 

The NADI utilizes only the PC1 because it explains the largest fraction of the 

variance described by the full m-member, standardized data set, as was the case with 

ADI (Section 4.3.5). Moreover, PCs are orthogonal vectors, and therefore it is not 

mathematically proper to combine them into a single expression (Keyantash and 

Dracup, 2004). Therefore, only the PC1, which is the dominant mode, was adopted to 

describe the bulk of water anomalies in the observational data. Considering all 12 

months, PC1 which is generated through NLPCA, described an average of 60.0% of 

the data set variance in this study, whereas the PC1 that was generated through linear 

PCA described only 56.4% of the data set variance (Section 4.3.5). The total percent of 

variance accounted by PC1 in the individual month is shown in Figure 5.2. This figure 

shows that the PC1 accounted lowest variance in June (49.0%), while the highest 

variance was in October (67.1%). 

The PC1 is standardized in Equation (5.10) to enable each month’s NADI to 

represent a normalized expression of variability. Without standardization, months that 

routinely possess a higher degree of hydrologic variability cause the chronological plot 

of NADI values to highly jump (Keyantash and Dracup, 2004). It is shown in 

Appendix that the NADI time series for a single month has a mean of zero but 

possesses non-unit standard deviation. 
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Figure 5.2 Percent of variance accounted by PC1 in different months 

Once the computations of NADI values were completed for each year and each 

month (using Equation (5.10)), they were combined and reordered into a single NADI 

time series in chronological order. 

5.3.3. Example Calculation of NADI Values for Month of January 

Consider the computation of the NADI time series for the month of January. 

The 49 years of January data for rainfall (P), potential evapotranspiration (E), 

streamflow (Q), storage reservoir volume (V) and soil moisture content (W) are 

arranged columnarly into an (49 x 5) matrix of observations HJanuary, which is shown in 

Figure 5.3. The monthly data in this figure for P, E, Q, V and W are reported in their 

original units of millimeters, millimeters, megaliters per day, percent full of total 

storage capacity and millimeters respectively. However, these different measurement 

units of the input data will not have any impact in the final NADI values as the input 

variables have gone through a standardization process in the NLPCA (condition (1) in 

Equation (5.6)). 

The matrix HJanuary was then used in CATPCA module in SPSS to generate the 

(49 x 5) matrix of QJanuary containing optimal transformed variables and the (5 x 5) 

matrix of eigenvectors related to the five PCs. However, only (5 x 1) matrix of EJanuary 

containing eigenvectors related to the PC1 is used in this study (Section 5.3.2). The 

matrix QJanuary and EJanuary are shown in Figure 5.4. 
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January

51.5 165.4 417 93.09 658
36.3 175.5 697 98.27 439
63.0 154.9 293 85.40 363
182.7 145.9 790 79.41 568
10.7 157.2 276 86.54 403
29.7 147.3 573 98.90 526
61.6 158.8 276 71.50 458
36.7 140.8 420 96.57 552
43.3 167.3 143 35.76 350
39.4 165.5 3

H =

16 96.41 486
107.0 129.1 571 97.00 529
75.7 144.5 802 92.84 545
51.0 133.9 708 98.96 545
63.7 161.7 148 54.46 339
62.8 160.1 391 96.96 497
42.5 145.2 667 96.93 522
40.1 148.9 523 83.05 486
70.3 151.3 491 94.51 492
67.7 140.4 308 73.64 409
53.6 167.5 556 97.78 559
71.8 136.9 281 78.97 439
47.4 170.0 235 81.26 439
81.7 161.0 271 78.44 439
53.2 152.3 163 32.14 260
71.2 132.9 287 89.09 423
39.9 149.8 346 86.71 444
65.1 137.3 902 91.23 585
39.0 141.9 618 89.64 499
84.5 161.5 537 82.42 506
81.1 148.1 819 75.90 553
6.9 154.0 343 67.58 410
93.6 148.8 492 72.78 479
69.1 123.6 1292 94.96 525
80.5 145.1 1497 96.74 598
79.7 142.8 2303 85.71 608
92.7 140.5 519 81.02 431
92.9 133.9 1058 87.43 579
58.5 162.3 723 95.08 458
74.0 155.7 319 66.50 275
43.2 151.2 348 59.85 314
70.2 136.3 463 49.22 350
30.4 162.5 368 55.13 400
58.9 136.6 452 53.94 420
34.5 167.8 209 44.07 247
68.3 142.3 310 47.74 332
42.4 145.3 429 52.07 427
72.9 152.3 342 49.24 422
41.5 165.0 212 27.94 247
56.0 165.0 226 32.37 270
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Figure 5.3 Observational data matrix H for the monthly of January 
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January

-0.34 1.20 0.11 0.82 1.34
-1.12 2.14 1.00 1.28 0.02
0.19 0.29 -0.63 0.26 -1.04
3.07 -0.40 1.08 0.01 1.12
-1.68 0.49 -0.96 0.40 -0.52
-1.31 -0.30 0.68 1.28 0.81
0.06 0.69 -0.96 -0.41 0.25
-1.12 -0.79 0.11 1.13 1.01
-0.76 1.40 -2.22 -1.

Q =

91 -1.16
-1.01 1.20 -0.63 1.13 0.46
1.90 -1.80 0.68 1.13 0.88
0.69 -0.50 1.08 0.82 0.95
-0.48 -1.39 1.00 1.28 0.95
0.19 0.89 -2.22 -0.91 -1.27
0.19 0.79 -0.09 1.13 0.65
-0.89 -0.50 0.94 1.13 0.81
-1.01 -0.10 0.56 0.13 0.46
0.44 0.09 0.42 0.97 0.56
0.32 -0.89 -0.63 -0.32 -0.38
-0.34 1.40 0.68 1.13 1.07
0.57 -1.09 -0.63 -0.11 0.02
-0.62 1.61 -1.34 0.01 0.02
1.03 0.89 -0.96 -0.11 0.02
-0.34 0.09 -2.22 -2.10 -1.96
0.57 -1.49 -0.63 0.53 -0.24
-1.01 -0.10 -0.34 0.40 0.02
0.19 -1.09 1.17 0.68 1.17
-1.01 -0.69 0.78 0.68 0.65
1.14 0.89 0.56 0.13 0.65
0.92 -0.20 1.11 -0.22 1.01
-1.70 0.29 -0.34 -0.58 -0.38
1.45 -0.20 0.42 -0.41 0.46
0.44 -2.22 1.42 0.97 0.81
0.92 -0.50 1.54 1.13 1.25
0.92 -0.69 1.71 0.40 1.28
1.45 -0.79 0.56 0.01 -0.11
1.45 -1.39 1.28 0.40 1.17
-0.07 0.99 1.00 0.97 0.25
0.69 0.39 -0.34 -0.65 -1.89
-0.89 -0.01 -0.34 -0.81 -1.57
0.44 -1.19 0.28 -1.02 -1.16
-1.31 0.99 -0.09 -0.87 -0.52
-0.07 -1.19 0.28 -0.91 -0.24
-1.22 1.40 -1.34 -1.31 -2.02
0.44 -0.69 -0.63 -1.10 -1.37
-0.89 -0.40 0.11 -0.95 -0.11
0.57 0.09 -0.34 -1.02 -0.24
-0.89 1.20 -1.34 -2.52 -2.02
-0.21 1.20 -1.34 -2.10 -1.89
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Figure 5.4 Matrices Q and E containing optimal transformed variables and 

eigenvectors related to the PC1 
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The (49 x 1) matrix of PC1 (YJanuary) is then computed for the month of January 

using Equation (5.9) and is shown in Figure 5.5. 

January

-0.34 1.20 0.11 0.82 1.34
-1.12 2.14 1.00 1.28 0.02
0.19 0.29 -0.63 0.26 -1.04
3.07 -0.40 1.08 0.01 1.12
-1.68 0.49 -0.96 0.40 -0.52
-1.31 -0.30 0.68 1.28 0.81
0.06 0.69 -0.96 -0.41 0.25
-1.12 -0.79 0.11 1.

Y  =    = January JanuaryQ E

13 1.01
-0.76 1.40 -2.22 -1.91 -1.16
-1.01 1.20 -0.63 1.13 0.46
1.90 -1.80 0.68 1.13 0.88
0.69 -0.50 1.08 0.82 0.95
-0.48 -1.39 1.00 1.28 0.95
0.19 0.89 -2.22 -0.91 -1.27
0.19 0.79 -0.09 1.13 0.65
-0.89 -0.50 0.94 1.13 0.81
-1.01 -0.10 0.56 0.13 0.46
0.44 0.09 0.42 0.97 0.56
0.32 -0.89 -0.63 -0.32 -0.38
-0.34 1.40 0.68 1.13 1.07
0.57 -1.09 -0.63 -0.11 0.02
-0.62 1.61 -1.34 0.01 0.02
1.03 0.89 -0.96 -0.11 0.02
-0.34 0.09 -2.22 -2.10 -1.96
0.57 -1.49 -0.63 0.53 -0.24
-1.01 -0.10 -0.34 0.40 0.02
0.19 -1.09 1.17 0.68 1.17
-1.01 -0.69 0.78 0.68 0.65
1.14 0.89 0.56 0.13 0.65
0.92 -0.20 1.11 -0.22 1.01
-1.70 0.29 -0.34 -0.58 -0.38
1.45 -0.20 0.42 -0.41 0.46
0.44 -2.22 1.42 0.97 0.81
0.92 -0.50 1.54 1.13 1.25
0.92 -0.69 1.71 0.40 1.28
1.45 -0.79 0.56 0.01 -0.11
1.45 -1.39 1.28 0.40 1.17
-0.07 0.99 1.00 0.97 0.25
0.69 0.39 -0.34 -0.65 -1.89
-0.89 -0.01 -0.34 -0.81 -1.57
0.44 -1.19 0.28 -1.02 -1.16
-1.31 0.99 -0.09 -0.87 -0.52
-0.07 -1.19 0.28 -0.91 -0.24
-1.22 1.40 -1.34 -1.31 -2.02
0.44 -0.69 -0.63 -1.10 -1.37
-0.89 -0.40 0.11 -0.95 -0.11
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Figure 5.5 Matrix of first Principal Component (PC1) for the month of January 
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Finally, the NADI values for the month of January for each of 49 years are 

computed using Equation (5.10), and are shown in Figure 5.6 where the standard 

deviation of PC1 for the month of January for all 54 years is 2.88. 
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Figure 5.6 NADI values for the month of January  
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The NADI values for the other months were calculated separately in a similar 

manner. 

5.3.4. Thresholds Determination of NADI 

As mentioned in Section 5.3.2, the NADI values which were computed for each 

year and each month were combined and reordered into a single NADI time series in 

chronological order. Similar to the ADI thresholds calculation (Section 4.3.5), the 

NADI thresholds values were calculated probabilistically for the study catchment using 

the empirical cumulative distribution function of all NADI values. This is shown in 

Figure 5.7. These thresholds were used to classify the drought conditions. The SPI 

thresholds were used to generate NADI thresholds as was done for the ADI. The SPI 

dryness thresholds are the Gaussian variates of -2, -1.5, -1 and 1 standard deviations 

(Table 4.3), which corresponds to 2.3th, 6.7th, 16.0th and 84.0th percentiles in SPI 

cumulative distributions. The NADI thresholds corresponding to these percentiles were 

-2.27, -1.64, -0.84 and 0.88 respectively for the study catchment, as can be seen from 

Figure 5.7. These NADI thresholds and relevant drought classifications for the study 

catchment are presented in Table 5.1. 

 

Figure 5.7 Computation of NADI thresholds for the Yarra River catchment 
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Table 5.1 Drought classification based on NADI thresholds 

> -0.84 to ≤ 0.88 Near normal 

> -1.64 to ≤ -0.84 Moderate drought 

> -2.27 to ≤ -1.64 Severe drought 

≤ -2.27 Extreme drought 

5.4. Analysis of NADI for Drought Assessment 

As was discussed in Section 4.4, drought assessment has been commonly done 

with drought severity defined by a DI (Yevjevich, 1967; Keyantash and Dracup, 2002), 

where the drought severity (S) is the product of the drought duration (D) (during which 

DI values are consistently below a truncation level) and the drought magnitude (M) 

(which is the mean departure of DI values from that truncation level during the 

drought). However, as was also discussed in Section 4.4, the median value was used in 

this study as the M value instead of the mean. The relationship between S, M and D 

was shown in Figure 4.2. Using this nomenclature, the historical droughts recorded in 

Victoria in the last 50 years (i.e. 1967-1968, 1972-1973, 1982-1983, 1997-1998, 2003-

2004 and 2006 onwards; details of these droughts were presented in Section 3.3) were 

assessed with the NADI and are presented below. All these historical droughts were 

considered to investigate how well the NADI was capable in defining drought 

conditions for the Yarra River catchment. 

The NADI time series plots for the Yarra River catchment is shown in Figure 

5.8. In this figure, different levels of drought intensity (i.e., drought classes) are 

presented with the horizontal dotted lines based on the NADI thresholds of Table 5.1. 

The shaded vertical areas, on the other hand, represent various historical droughts that 

occurred in Victoria in 1967-1968, 1972-1973, 1982-1983, 1997-1998, 2003-2004 and 

2006 onwards, which were well documented (Keating, 1992; Tan and Rhodes, 2008). 

However, the shaded areas in Figure 5.8 were determined based on the negative NADI 

values during historical drought periods. 
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Figure 5.8 NADI time series for the Yarra River catchment showing severity levels and historic droughts 
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Figure 5.8 shows that the abovementioned historical droughts were well 

detected by NADI. From this figure, it can also be seen that the NADI showed 

smoother transitional characteristics during droughts, and from dry to wet spells and 

vice versa. Because of this characteristic, the historical droughts were defined clearly 

with the NADI. Moreover, the different levels of drought intensity in Figure 5.8 shows 

that the droughts in 1967-1968, 1972-1973, 1982-1983 and 2006 onwards have 

reached the level of extreme drought condition, whereas the droughts in 1997-1998 and 

2003-2004 reached the level of moderate and severe drought condition respectively.  

The period from 1997 onwards is also commonly known in Melbourne as the 

12 years extended dry period or the longest dry circumstances in Victoria in the history 

where three major drought years (i.e. 1997-1998, 2002-2003 and 2006 onwards) have 

occurred during this period (Tan and Rhodes, 2008). Figure 5.8 shows that the NADI 

has detected this extended dry period well, although in few months the NADI values 

had gone above the truncation line (i.e. had positive NADI values). It should be noted 

that although the NADI calculations were done only until December 2008, the drought 

has continued until now. 

Characteristics of historical droughts as detected by NADI are presented in 

Table 5.2. It shows the start and end months of these droughts as detected by NADI 

with negative NADI values during the historical droughts. The drought in 2006 

onwards does not have an end month, since the drought is still continuing (however, 

data were used until 2008 in the analysis in this thesis). The table also shows that the 

2003-2004 drought was started in March 2002 although the drought was known as the 

2003-2004 drought (Tan and Rhodes, 2008). In addition, the 1982-1983 drought has 

started in December 1981 and the 1997-1998 drought has ended in January 1999. 

Table 5.2 also shows median (M) and maximum intensity (Mmax) of historical droughts 

together with their drought classifications, in addition to their duration (D) and severity 

(S). It can be seen that the highest severity of drought as indicated by S was in 2003-

2004 followed by 1982-1983, 1997-1998, 1967-1968 and 1972-1973. It is important to 

highlight that the NADI had detected the droughts with the longest duration, the 

highest severity and the maximum intensity as published for historical droughts 

(Keating, 1992; Tan and Rhodes, 2008). The published details of historical droughts 

were presented in Section 3.3. 
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Table 5.2 Characteristics of historical droughts as detected by NADI 

  
1967

           -
1968

1972
           -

1973

1982 
           - 

1983 

1997
           -

1998

2003
           -

2004

2006 
           - 

Onwards 

Start month February, 1967 June, 1972 December, 1981 June, 1997 March, 2002 June, 2006 

End month April, 1968 January, 1973 August, 1983 January, 1999 August, 2004 - 

Median intensity, M (-0.94) Moderate (-0.78) Moderate (-1.31) Moderate (-0.77) Near normal (-0.92) Moderate (-1.99)* Severe 

Maximum intensity, Mmax 
 (-3.65) Extreme
(February, 1968)

 (-2.42) Extreme
 (December, 1973)

 (-4.04)c Extreme 
 (August, 1982) 

 (-1.55) Moderate
 (August, 1998)

 (-1.90) Severe
(January, 2003)

 (-3.94)* Extreme 
(July, 2008) 

Duration, D (months) 15 8 21 20 30a ----- ** 

Severity, S -14.10 -6.24 -27.51 -15.40 -27.60b ----- ** 

 *M and Mmax are based on data until 2008 

**D and S can not be calculated as 2006 onwards drought still continuing 
aLongest duration 
bHighest severity 
cMaximum intensity 
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The total number of months detected with NADI having extreme, severe and 

moderate drought classifications for each of the historical drought are shown in Figure 

5.9. This figure shows that the number of months was higher in moderate drought class 

in all records of historical droughts followed by severe and extreme drought classes, 

except in 2006 onwards drought where the number of months that was in severe 

drought condition was higher than those of the extreme and moderate drought 

conditions. 

 

Figure 5.9 Number of months in different drought classes detected by NADI 

5.5. Comparative Evaluation of NADI and ADI 

A comparative evaluation of NADI and ADI was conducted in this research 

and presented in this section. This comparative study has provided an important check 

on the appropriateness of the NADI findings. As was mentioned in Section 5.1, the 

ADI was the most suitable DI for defining drought conditions in the Yarra River 

catchment among the DIs that were evaluated in Chapter 4 (viz., PN, Deciles, SPI, 

SWSI and ADI). However, as was also discussed in Section 5.1, the use of NLPCA in 

NADI could improve variance representation by accounting nonlinear relationships 

between the variables and overcome the limitation of the use of linear PCA in the ADI 

development in which linear PCA is not able to capture the nonlinear relationships. It 

*until December 2008
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was shown in Section 5.3.2 that the NADI was able to represent 60.0% of the variance 

of the entire data set compared to 56.4% by ADI. A cross-validation approach was also 

applied to further justify this result by dropping each decade off one at a time and redo 

both assessments, with variance estimated over the dropped decade and averaged over 

all the decades that make up the historical record. In this case, the results show that the 

NADI represent 67.4% of the variance of the entire data compared to 59.4% by ADI. 

These results imply that the application of NLPCA technique was appropriate in this 

study rather than the use of linear PCA. Figure 5.10 shows the percentage variance of 

data explained by ADI and NADI for different months and the average percentage 

variance. This clearly shows that the fluctuations in the hydro-meteorological variables 

are more representative in the NADI than in the ADI. 
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Figure 5.10 Percent variance accounted by NADI and ADI for different months 

The time series of both ADI and NADI for the Yarra River catchment are 

shown in Figure 5.11. Different levels of drought intensity (i.e., drought classes) 

detected by their respective thresholds are presented with the horizontal dotted lines. 

The shaded vertical areas represented various historical droughts that occurred in 

Victoria in 1967-1968, 1972-1973, 1982-1983, 1997-1998, 2003-2004 and 2006 

onwards, as detected by ADI and NADI with the negative values. This figure shows 

that both time series are quite similar. However, the figure shows that the NADI 

thresholds have a wider range than the ADI thresholds. Because of these larger 

threshold ranges between the drought classes, changes in drought intensities can be 

observed more clearly in the NADI time series than in the ADI time series, which 

makes easier to compare different historical drought conditions between each others. 
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Figure 5.11 Time series of NADI and ADI for the Yarra River catchment
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It should be noted that the NADI is similar to the ADI, since both use the same 

input variables and also a similar methodology, except the linear PCA was used in the 

ADI, whereas the NLPCA was used in NADI. This implies that the NADI will have 

similar characteristics to the ADI. Therefore the NADI and ADI were not evaluated 

and compared with respect to the five decision criteria (i.e. robustness, tractability, 

sophistication, transparency, and extendability) that were used in Section 4.5. 

However, it can be seen that there were some improvements in the NADI drought 

assessment approach compared to the ADI approach, especially in terms of the 

representation of fluctuations in the hydro-meteorological variables and larger 

threshold ranges. 

5.6. Summary 

Drought quantification is an important issue for drought management, and has 

always been a challenging task among the drought researchers and professionals. The 

suitability of the use of some existing Drought Indices (DIs) was investigated for the 

Yarra River catchment in Australia and presented in Chapter 4. It was found that the 

Aggregated Drought Index (ADI) was the most suitable DI for the Yarra River 

catchment. However, as was discussed in Chapter 2 (Section 2.2.6), the linear Principal 

Component Analysis (PCA) was used to aggregate the hydro-meteorological variables 

in the ADI development by accounting the variance in variables in which the linear 

PCA may not perform well when nonlinear characteristics exist in the hydro-

meteorological variables which is often the case. To improve the limitation of the use 

of linear PCA in the ADI, a Nonlinear Principal Component Analysis (NLPCA) 

technique was introduced and successfully applied in this study which has led to the 

development of a novel Nonlinear Aggregated Drought Index (NADI) in this research. 

The NADI was constructed using five hydro-meteorological variables that were 

used in the development of ADI: rainfall, potential evapotranspiration, streamflow, 

storage reservoir volume and soil moisture content. The NLPCA technique that has the 

capability to capture nonlinear characteristics was used to aggregate these variables 

through Principal Components (PCs). In NLPCA, the PCs are generated using the 

transformed variables compared to the PCs generated using the observed variables in 
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the linear PCA. The CATPCA (i.e. Categorical Principal Component Analysis) module 

of SPSS software was used in this study to perform the NLPCA. The NADI was 

considered as the first PC, normalized by its standard deviation. Twelve NADI time 

series (one for each month) derived for the study catchment from 1960 to 2008 were 

chronologically re-ordered to produce a single time series. Finally, the NADI values 

were used to generate the thresholds, which were then used to investigate the 

appropriateness of the use of NADI in defining historical drought conditions within the 

Yarra River catchment. 

The NADI time series successfully detected all the past major historical 

droughts that occurred in Victoria in 1967-1968, 1972-1973, 1982-1983, 1997-1998, 

2003-2004 and 2006 onwards. The NADI was compared with the ADI. The results 

showed that the use of NLPCA technique in the NADI captured more variance of the 

input data set than the ADI, which implied that the fluctuations in the hydro-

meteorological variables used were more representative in the NADI than in the ADI. 

Moreover, it was found that the changes in drought intensities can be observed more 

clearly in the NADI time series than the ADI time series due to the larger threshold 

ranges between the drought classes in the NADI. Therefore, the NADI was considered 

to be the best DI for the Yarra River catchment, and hence was used to develop the 

drought forecasting model in Chapter 6. 
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6. DEVELOPMENT OF DROUGHT 
FORECASTING MODEL 

 

Overview; Data Used; Drought Forecasting 
Model Development; Results and Discussion; 
Summary 

 

 

6.1. Overview 

Drought forecasting plays an important role in the mitigation of impacts of 

drought on water resources systems. As discussed in Chapter 2 (Section 2.1), drought 

forecasting is commonly performed using a Drought Index (DI). This is because the 

use of a DI during decision making is believed to be far more functional than raw data 

(Hayes, 2003). Several DIs have been developed around the world in the past. Some of 

the well known DIs were discussed and evaluated for the Yarra River catchment in 

Victoria (Australia) in Chapters 2 and 4 respectively. Based on the conclusions of these 

chapters, a new Nonlinear Aggregated Drought Index (NADI) was developed for the 

Yarra River catchment in this research project and presented in Chapter 5. The NADI 

was evaluated using the historical droughts in Victoria and found to be more robust 

than the other DIs for defining drought conditions for the Yarra River catchment 

(Chapter 5). Therefore, the NADI was used to develop the drought forecasting model 

in this study, which will be presented in this chapter. The use of NADI in forecasting 

drought conditions forecast the overall dryness within the system as the NADI 

considers all significant hydro-meteorological variables (i.e., rainfall, potential 

evapotranspiration, streamflow, storage reservoir volume and soil moisture content) 

that affect the droughts. This study is different to the previous studies on drought 

forecasting which have used only the traditional rainfall based DIs. 

There are several modeling techniques that have been used in the past to 

develop the drought forecasting models. All available techniques and their suitability 

for forecasting future drought conditions were discussed in Chapter 2 (Section 2.3). It 
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was found that the Artificial Neural Network (ANN) modeling approach has shown 

great ability in modeling and forecasting nonlinear and non-stationary DI time series 

than the other techniques, due to its innate nonlinear properties and flexibility for 

modeling. ANN is an information processing system that resembles the structure and 

operation of the human brain; the basic concept of the ANN approach was described in 

Chapter 2 (Section 2.3.5). It was also found that the ANN approach can be used to 

model any relationship between a series of input and output variables by providing 

sufficient data and complexity (ASCE Task Committee on Application of Artificial 

Neural Networks in Hydrology, 2000; Maier and Dandy, 2000; Morid et al., 2007; 

Maier et al., 2010). Therefore, the ANN modeling technique was used in this study to 

develop the drought forecasting model to forecast NADI values for the Yarra River 

catchment. 

The chapter begins with a brief description of the data used for the development 

of the drought forecasting model followed by a description of the drought forecasting 

model development. Then the results and the discussion are presented. The summary 

of the study is presented at the end of the chapter. 

6.2. Data Used 

As mentioned earlier, the Yarra River catchment in Victoria was used in this 

study. The details of the catchment and importance of its water resources for 

Victorians were elaborated in Chapter 3. Five hydro-meteorological variables (i.e. 

rainfall, potential evapotranspiration, streamflow, storage reservoir volume and soil 

moisture content) were used for the development of NADI time series for this 

catchment as was mentioned in Section 5.2. Monthly time step was used in the 

development of NADI time series. This monthly time series data of NADI was used for 

the development of drought forecasting model in this research. The NADI time series 

contains data for 49 years from 1960 to 2008. 

6.3. Drought Forecasting Model Development 

As mentioned in Section 6.1, the ANN technique was used to develop the 

drought forecasting model in this research project. A flowchart of the ANN based 
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drought forecasting model development process is presented in Figure 6.1. This figure 

shows the overall steps followed during the model development; brief descriptions of 

each of these steps are given below. More details on the each of these steps are given 

later under several subsections. 

The first step of the drought forecasting model development process involves 

the selection of ANN model structure and input variables. The choice of an appropriate 

ANN model structure and input variables is based on modeler’s preference, and the 

optimal model structure and input variables generally needs to be determined using an 

iterative process (Maier et al., 2010). These can be done based on a priori knowledge 

and the availability of data. In general, several potential input variables are selected 

from the probable input variables using a number of techniques including correlation 

tests. Thereafter, a number of models are developed based on the different 

combinations of the potential input variables. It should be noted that data pre-

processing was involved before using them for models development. 

The second step of the model development process involves the model 

calibration aiming to find a set of model parameters (i.e. hidden neurons, connection 

weights and biases) that enables a model with a given functional form to best represent 

the desired input/output relationship. The model calibration is not a simple task and in 

general it is done using a suitable optimization algorithm (Maier et al., 2010). Back 

propagation (BP) training with minimizing Mean Squared Error (MSE) was used as the 

optimization algorithm in this study which will be discussed in Section 6.3.3. 

Finally, the model development is completed by validating the calibrated model 

to investigate how the model performs using a separate data set that has not been used 

in the model calibration. This task generally conducted by investigating some model 

performance measures (e.g., correlation coefficient (R), Root Mean Squared Error 

(RMSE) and Mean Absolute Error (MAE)), and if the model outputs compare well 

with the desirable targets, then the model selected as a validated model. The model that 

performs best within all validated models was selected as the best drought forecasting 

model. 
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Figure 6.1 Flow chart of ANN based drought forecasting model development process 
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6.3.1. Selection of ANN Model Structure 

There are a variety of ANN models developed for applications in applied 

science and engineering (Fausett, 1994; Samarasinghe, 2006). Maier and Dandy (2000) 

in their review of ANN models suggested that an ANN model with one hidden layer 

(i.e. three layer ANN model) can approximate any function, given that sufficient 

degree of freedom in terms of connection weights and biases are provided. Therefore, 

the widely used three-layer ANN model (Kim and Valdes, 2003; Mishra and Desai, 

2006; Mishra et al., 2007; Morid et al., 2007) was used in this study. 

To forecast NADI values with several lead times ahead, two different 

approaches namely, Recursive Multi-Step Neural Network (RMSNN) with only one 

output neuron and Direct Multi-Step Neural Network (DMSNN) with multiple output 

neurons were used in this study. The RMSNN approach was introduced and 

successfully used in drought forecasting by Mishra and Desai (2006), whereas 

DMSNN is the commonly used approach in most forecasting models (Sajikumar and 

Thandaveswara, 1999; Kim and Valdes, 2003; Mishra and Desai, 2006; Mishra et al., 

2007; Morid et al., 2007; Ochoa-Rivera et al., 2007). Details of these two types of 

ANN modeling approaches are presented below. 

6.3.1.1 Recursive Multi-Step Neural Network 

Recursive Multi-Step Neural Network (RMSNN) can have a single neuron or 

multiple neurons in both input and hidden layers. However, it consists of only a single 

neuron in the output layer, representing one month lead time forecast. A typical three-

layer RMSNN is shown in Figure 6.2. In this figure, n and m are the number of 

neurons in the input and hidden layers respectively, and the forecasting is done for k 

months. The network is first designed and calibrated considering only 1 month ahead 

forecasts based on the present and several months of past NADI values as inputs. This 

network (with the same number of input variables) is then used for forecasting NADI 

values for multiple lead times recursively as shown in Figure 6.2. Forecasting is carried 

out in this figure at month t for k time steps from (t+1) to (t+k). First, forecast at (t+1) 

is computed based on n months of past NADI values including the NADI value at t. 

This forecast value (NADIt+1) is then used with past NADI values of (n-1) months to 
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forecast NADIt+2. In this way, forecasting was carried out in this study recursively to 

obtain forecasts for twelve months. Beyond 12 months, forecasts were considered to 

have high errors. Note that as forecasting is carried out for multiple time steps away 

from the first time step, and more and more forecast values are introduced as inputs in 

RMSNN instead of known NADI values, thus introducing more errors in the forecasts 

beyond the first forecast. 

 

Figure 6.2 Typical three-layer RMSNN (adapted from Mishra and Desai, 2006) 
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6.3.1.2 Direct Multi-Step Neural Network 

Similar to the RMSNN model, the three-layer Direct Multi-Step Neural 

Network (DMSNN) approach can have a single neuron or multiple neurons both in 

input and hidden layers. However, it can have several neurons in the output layer 

representing multiple month lead time forecasts as shown in Figure 6.3. In this figure, 

n and m are the number of neurons in the input and hidden layers respectively, and the 

forecasting is done for k months as was in the RMSNN model. The network in Figure 

6.3 shows the k multiple lead time forecasts which are forecasted at month t (i.e. 

NADIt+1 to NADIt+k). Similar to the RMSNN model, the DMSNN model is designed 

and calibrated for forecasting drought conditions using the present and several months 

of past NADI values as inputs. However, in the DMSNN model of this study, in 

addition to present and past NADI values, other hydro-meteorological variables (that 

were used in calculating NADI) were also used as inputs to obtain the best forecasting 

model. These additional inputs could not be used in the RMSNN model, since forecast 

values of additional variables were required for the forecast model for forecasts beyond 

the first forecast, which will introduce more errors. The forecast values of these 

additional inputs are not required for the DMSNN model. 

 

Figure 6.3 Typical three-layer DMSNN 
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6.3.2. Selection of Input Variables and Data Pre-Processing 

Unlike the physically-based models, the set of input variables that needs to 

produce the ANN model output is not known prior (ASCE Task Committee on 

Application of Artificial Neural Networks in Hydrology, 2000). However, some 

previous studies have successfully used standard statistical correlation tests for 

selecting the model inputs for ANN models (Maity and Kumar, 2008; Tran et al., 

2009). Therefore, the potential input variables were selected for the ANN forecasting 

models in this study using the standard correlation test considering probable input 

variables (i.e. present and past 11 months NADI and hydro-meteorological variables 

that were used in calculating NADI). In the correlation test, the probable input 

variables that were highly correlated with one step ahead NADI at a predetermined 

level of statistical significance were used as potential input variables. Different 

combinations of these potential input variables were then used for developing several 

potential ANN drought forecasting ANN models. The details of these models are 

presented in Section 6.4. 

The available data of potential input variables is generally divided into three 

parts for calibration and validation of ANN models i.e. training, testing and validation 

(ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, 

2000). It should be noted that the testing and validation terminologies sometimes uses 

opposite to each others. However, in this study, the training and testing data sets were 

used for model calibration, while the validation data set is used for the evaluation of 

the forecasting model performance (i.e. validation). In order to ensure that all variables 

receive equal attention during the calibration process and commensurate with the limits 

of the activation function used in the hidden layer, all inputs values were standardized 

in this study within a range between 0.1 and 0.9 before their use in the ANN models. 

The range from 0.1 to 0.9 was selected to avoid the extreme limits (from 0 to 1) of the 

nonlinear activation function that was used in the hidden neurons. Note that the 

nonlinear sigmoid and linear functions were used as the activation functions in the 

hidden and output neurons respectively in this study, as the combination of sigmoid 

and linear functions gives an advantage to extrapolate beyond the range of the training 

data (Maier and Dandy, 2000). Moreover, the selection of the standardization range 

within the extreme limits of the activation function prevents the chances of weights 
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update to extremely small values and the flatspots during the calibration process 

(Maier and Dandy, 2000). However, the output values were not standardized as the 

linear transfer function was used in the output neurons (Karunanithi et al., 1994). 

6.3.3. Calibration 

The calibration of the ANN model (which is sometimes referred to as training 

(Maier and Dandy, 1998)) determines the optimum model parameters, while 

maintaining the best generalization abilities of the model (i.e. avoiding over-fitting). 

The suitable number of neurons in the hidden layer and the connection weights and 

biases in the network are the parameters to be determined during the calibration 

process. This is generally done by minimizing the mean square error (MSE) of the 

training data set (Maier and Dandy, 2000; Tran et al., 2009). The MSE is one of many 

ways to quantify the difference between original and forecast values. However, there is 

the danger of over-fitting (or overtraining) a network by continuous minimizing of 

MSE. Over-fitting results in a network that memorizes the individual examples, rather 

than trends in the data set as a whole. When this happens, the network performs very 

well over the data set used for training, but shows poor forecasting capabilities when 

supplied with data that were not used in training (ASCE Task Committee on 

Application of Artificial Neural Networks in Hydrology, 2000). To prevent over-

fitting, the early stopping technique described in Bishop (1995) was used in this study. 

The goal of this procedure is to stop calibration when the network begins to over-fit. 

The testing data set was used in parallel with the training data set for this purpose 

during the calibration. 

The number of hidden neurons depends on the nature of the relationship 

between inputs and outputs, and there were no specific rules found in the literature to 

select the number of hidden neurons. Therefore, at the beginning of the calibration 

process, only one hidden neuron was selected, and network weights and biases were 

initialized to small random numeric values (ASCE Task Committee on Application of 

Artificial Neural Networks in Hydrology, 2000). Thereafter, feed-forward training with 

standard back propagation (BP) algorithm (which will be described shortly) was used 

to adjust the connection weights and biases of the ANN models by minimizing the 
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MSE using the training data set, considering several iterations (or epochs). At each 

epoch, the initial weights and biases were considered as the adjusted weights and 

biases of the previous epoch. The pattern of the changes in the MSE for both training 

and testing data sets during the calibration (which consists of several epochs) is shown 

in Figure 6.4. As can be seen from this figure, during the initial epochs, the MSE for 

both training and testing data sets go down. After a certain number of epochs, the MSE 

for the training set continues to decrease, but the MSE associated with the testing data 

set begins to rise (Figure 6.4). This is an indication that further calibration will likely 

result in the network over-fitting the training data. When this occurs, the process of 

calibration is stopped (i.e. early stopping technique of Bishop (1995) was applied), and 

the current set of weights and biases are assumed to be the optimal values for the 

network under consideration. Thereafter, the number of hidden neurons was increased 

sequentially by adding a new neuron to create a new ANN model. The BP algorithm 

was then used to determine the connection weights and biases of this new ANN model. 

Again the early stopping technique of Bishop (1995) was used to select the optimal 

network, but now with respect to the number of hidden neurons. In this case, Figure 6.4 

will have in the horizontal axis the number of hidden neurons. 

 

 

Figure 6.4. MSE versus epochs during calibration process 



                                                  Chapter 6: Development of Drought Forecasting Model 

 Page 6-11

Back Propagation (BP) Training Algorithm 

As was mentioned above, to calibrate (i.e. adjust the connection weights and 

biases) the ANN model, the most commonly used feed-forward training with standard 

BP algorithm (Lorrai and Sechi, 1995; Kim and Valdes, 2003; Mishra and Desai, 2006; 

Mishra et al., 2007; Morid et al., 2007) was used in this study. The BP algorithm was 

first introduced by Werbos (1974), but later became popular in its modified form 

developed by Rumelhart et al. (1986). 

A typical three-layer feed-forward ANN model with BP algorithm is shown in 

Figure 6.5. In this model, the three layers are present: (1) input layer – where data are 

introduced to the network, (2) hidden layer – where data are processed, and (3) output 

layer – where results are produced for the given inputs. In Figure 6.5, the input neurons 

are shown with Xi (i = 1, . . ., n), where n is the number of neurons in the input layer 

representing input variables. The number of hidden neurons in the hidden layer, on the 

other hand, is one of the parameters to be determined during the calibration process. 

The hidden neurons are denoted by Yj (j = 1, . . ., m), where m is the number of hidden 

neurons. A single neuron or a number of output neurons (denoted by Zk) can be in the 

output layer depending on different drought forecasting lead times (e.g. if drought is to 

be forecasted is for up to 3 months lead time using a DMSNN, then there should be 3 

output neurons). However, only one output neuron is shown in Figure 6.5 to provide a 

simple explanation of the BP algorithm. This figure shows an epoch (or an iteration) of 

the calibration process for an ANN with a fixed number of neurons in the hidden layer. 

This essentially means only the weights and biases are calibrated, and not the number 

of hidden neurons in the ANN model. In this figure, the initial (i.e. at the start of an 

epoch) connection weights between input and hidden neurons are shown as wij and the 

connection weights between hidden and output neurons are shown as wjk, whereas 

updated (i.e. at the end of the epoch) connection weights between input and hidden, 

and hidden and output neurons are shown as w*
ij and w*

jk respectively. Similarly, the 

initial biases are presented with bj and bk, and the updated biases are presented with b*
j 

and b*
k for hidden and output neurons respectively (Figure 6.5). In this figure, given 

the sufficient numbers of hidden neurons in the hidden layer, the information received 

in the input layer processes through the hidden and output layers with the activation 

functions to get the output. As was mentioned in Section 6.3.2, the nonlinear sigmoid 
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and linear functions were used in this study as the activation functions in the hidden 

and output neurons respectively. The mathematical relationship between inputs and 

outputs is given explicitly in Equation (6.1). 

    
1 1

. ( )
m n

forecast o jk h ij i j k
j i

ADI f w f w x b b
= =

⎡ ⎤
= + +⎢ ⎥

⎣ ⎦
∑ ∑                (6.1) 

where, xi is the input at ith neuron in the input layer; wij is the weight connecting 

the ith neuron in the input layer and the jth neuron in the hidden layer; bj is the bias for 

the jth hidden neuron; fh is the activation function of the hidden neuron; wjk is the 

weight connecting the jth hidden neuron in the hidden layer and the kth neuron in the 

output layer; bk is the bias for the kth output neuron; and fo is the activation function of 

the output neuron. 

 

Figure 6.5 Typical three-layer feed-forward BP training algorithm (adapted from Kim 

and Valdes, 2003) 

The outputs are compared with the observed or desired outputs and minimize 

the errors by adjusting weights and biases iteratively (Figure 6.5). All weights and 
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biases are initialized to small random numeric values at the beginning of calibration 

(ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, 

2000) as was mentioned earlier. These weights and biases are then updated or modified 

iteratively using the steepest gradient descent method in the BP algorithm to minimize 

the errors between model outputs and observed values. Further mathematical details of 

this iterative process in the BP algorithm are described below. 

The iterative process in the BP algorithm consists of two phases: 1) forward 

pass, during which the information is processed from the input layer to the output 

layer; and 2) backward pass, where the error from the output layer is propagated back 

to the hidden and the input layers by adjusting or modifying weights and biases (ASCE 

Task Committee on Application of Artificial Neural Networks in Hydrology, 2000). 

The calibration process is stopped when no appreciable change is observed in the 

values associated with the connection links (i.e., weights and biases) or some 

termination criterion (e.g., MSE) is satisfied as in Figure 6.4. The BP algorithm is 

adopted from Fausett (1994) and ASCE Task Committee on Application of Artificial 

Neural Networks in Hydrology (2000), and is described stepwise below. Note that the 

algorithm described here is for a network with a specified number of hidden neurons in 

the 3-layer network (Figure 6.5): 

Step 1: Initialize weights and biases (i.e., weights and biases are set to small 

random values). 

Step 2: While stopping condition is false, do Steps 3 – 10. 

Step 3: For each training pair (i.e., combination of inputs and outputs), do Steps 

4 – 9. 

Feed-forward: 

Step 4: Each input neuron (Xi, i = 1, . . . , n) receives input information xi and 

sends this information to all hidden neurons in the hidden layer. 
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Step 5: Each hidden neuron (Yj, j = 1, . . . , m) sums its weighted input 

information using Equation (6.2). 

1
_

n

j j ij i
i

y in b w x
=

= +∑                  (6.2) 

where wij is the connection weights between input and hidden neurons 

and bj is the biases in the hidden neurons. The activation function is 

applied on “y_inj” to compute the output from each hidden neuron using 

Equation (6.3). Sigmoid activation function was used for the hidden 

neurons in this study. 

( _ )j jy f y in=                    (6.3) 

This output information from each hidden neuron is then sent to all 

neurons in the following layer (i.e., output layer in a 3-layer network). 

Step 6: Each output neuron (Zk, k = 1 in Figure 6.5) sums its weighted input 

information from the hidden neurons using Equation (6.4). 

1
_

m

k k jk j
j

z in b w y
=

= +∑               (6.4) 

where wjk is the connection weights between hidden and output neurons 

and bk is the biases in the output neurons. The activation function is then 

applied on “z_ink” to compute the output from each output neuron using 

Equation (6.5). Linear activation function was used for the output 

neurons in this study. 

( _ )k kz f z in=                    (6.5) 
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Back-propagation of error: 

Step 7: Each output neuron receives a target value (tK) corresponding to the 

input values and compares it with the computed output value (zk) to 

compute its error information term using Equation (6.6). 

( ) '( _ )k k k kt z f z inδ = −                   (6.6) 

This δk value is used to calculate weight and biases correction terms 

(used to update wjk and bk later) using Equations (6.7) and (6.8) 

respectively. 

  jk k jw yα δΔ =                    (6.7) 

 k kb α δΔ =                     (6.8) 

where, α is the momentum factor that is used to speed up the training 

process in very flat regions of the error surface and helps prevent 

oscillations in the weights. 

Step 8: Each hidden neuron sums its delta inputs in Equation (6.6) (from 

neurons in the next layer i.e., output layer in a 3-layer network) using 

Equation (6.9). 

1
_  j k jk

k
in w

=

=∑δ δ                    (6.9) 

This “ _ jinδ ” is then multiplied by the derivative of its activation 

function to calculate its error information term using Equation (6.10). 

_  '( _ )j j jin f y inδ δ=                   (6.10) 
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This δj value is used to calculate weight and bias correction terms (used 

to update wij and bj later) using Equations (6.11) and (6.12) respectively. 

  ij j iw xα δΔ =                   (6.11) 

 j jb α δΔ =                    (6.12) 

Update weights and biases: 

Step 9: Weights between the hidden and the output neurons, and the biases in 

the output neuron are updated using Equations (6.13) and (6.14) 

respectively. 

*
jk jk jkw w w= + Δ                   (6.13) 

*
k k kb b b= + Δ                   (6.14) 

Weights between the input and the hidden neurons, and the biases in the 

each hidden neuron are updated using Equations (6.15) and (6.16) 

respectively. 

*
ij ij ijw w w= + Δ        (6.15) 

*
j j jb b b= + Δ                   (6.16) 

Step 10: Test the stopping condition. 
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6.3.4. Validation 

After optimizing model parameters through calibration, the forecasting models 

need to be validated using a validation data set (which is not used in the model 

calibration) as mentioned earlier. This was done in this study, and the performance 

validation was conducted using the correlation co-efficient (R), the mean absolute error 

(MAE) and the root mean squared error (RMSE) (i.e., square root of MSE) values, 

which are commonly used for such evaluation (Mishra and Desai, 2006; Morid et al., 

2007; Bacanli et al., 2008). These measures are given in Equations (6.17) to (6.19). 

mod mod
1

2 2
mod mod

1 1

( )( )

( ) ( )

v

v v

n

obs obs
i

n n

obs obs
i i

NADI NADI NADI NADI
R

NADI NADI NADI NADI

=

= =

− −
=

− −

∑

∑ ∑
              (6.17) 

mod
1

1 vn

obs
iv

MAE NADI NADI
n =

= −∑                  (6.18) 

2
mod

1

1 ( )
vn

obs
iv

RMSE NADI NADI
n =

= −∑                 (6.19) 

where, obsNADI  and modNADI  are the observed and modelled NADI values 

respectively, obsNADI  and modNADI  are the average observed and modelled NADI 

values respectively, and nv is the number of validation data points. 

R is a measure of the strength of the linear relationship between observed and 

forecast NADI values; R varies from 0 to 1, where 0 and 1 values indicate poor and 

prefect forecasting capabilities of the model respectively. MAE and RMSE, on the 

other hand, measure the average magnitude of the errors in a set of forecasts. MAE is a 

linear score which means that all individual differences are weighted equally, whereas 

RMSE gives a relatively high weight to large errors and try to avoid these large errors 

by minimizing the RMSE value. Both the MAE and RMSE values increase from 0 for 
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perfect forecasts to large positives values as the discrepancies between forecasts and 

observations become increasingly large (Kim and Valdes, 2003). In general, when a 

forecasting model has a large R value (e.g., close to 1) and low MAE and RMSE 

values (e.g., close to 0), then the model considered as a good (or validated) model. 

6.4. Results and Discussion 

Computational tasks of the ANN forecasting models were carried out using the 

Neural Network toolbox in MATLAB software (Demuth and Beale, 1994). 

6.4.1. Potential and Best Drought Forecasting ANN Models 

Selection of potential input variables is an important task to obtain the desired 

output from the ANN models. As mentioned in Section 6.3.2, the standard statistical 

correlation test was used to select the potential input variables for the ANN models. 

The correlation test was conducted between one step ahead NADI values, and the 

present and 11 months of past NADI values, and the data of present and 11 months of 

past hydro-meteorological variables that were used in NADI calculations (i.e. rainfall, 

potential evapotranspiration, storage reservoir volume, streamflow and soil moisture 

content). Generally, strong and weak relationships are considered to take values of the 

correlation coefficient between (0.85-1) and (0-0.5) respectively. The values between 

0.5 and 0.85 are considered to have moderate relationships (Tran et al., 2009). The 

correlation co-efficients (R) of the correlation test conducted in this study are presented 

in Table 6.1. In this table, the R values only up to past 5 months are shown, as poor 

correlations were obtained beyond past 4 months. The results show that none of the R 

values are strong and the R values decrease when lead time of the past input variables 

increases (which is to be expected). The present NADI and up to past 4 months NADI 

values show statistically significant moderate correlation at 0.01 level with one step 

ahead NADI (from its present value) and thereafter showing poor correlations. The 

present and the past 1 month storage reservoir volume, the present month streamflow, 

and the present and up to past 2 months soil moisture content also show 0.01 level 

statistically significant moderate correlations with one month ahead NADI (from its 

present value). Rest of the variables studied show poor correlations. Therefore, the 
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potential input variables that were used in the DMSNN model were; the present and up 

to past 4 months NADI values, present and the past 1 month storage reservoir volume, 

the present month streamflow, and the present and up to past 2 months soil moisture 

content. However, only the present and up to past 4 months NADI values were used in 

the RMSNN model (Section 6.3.1). 

Table 6.1 Results of correlation tests with one step ahead NADI 

Present Past Input variables 

t t-1 t-2 t-3 t-4 t-5 

NADI 0.70* 0.60* 0.56* 0.53* 0.50* 0.43*

Rainfall 0.37* 0.31* 0.27* 0.26* 0.25* 0.23*

Potential evapotranspiration -0.15 -0.17 -0.13 -0.12 -0.10 -0.08 

Storage reservoir volume 0.57* 0.51* 0.45* 0.40* 0.36* 0.30*

Streamflow 0.56* 0.48* 0.46* 0.41* 0.35* 0.28*

Soil moisture content 0.60* 0.55* 0.50* 0.45* 0.38* 0.29*

*Correlation is statistically significant at the 0.01 level. 

Bold values are statistically significant moderate correlations. 

The full range of data from 1960 to 2008 for all potential input variables were 

divided into 3-parts for training, testing and validation of the ANN forecasting models. 

Data from 1970 to 2000 were used for training, as this series contained some extreme 

NADI values which are essential for better generalization ability of the ANN models. 

Data from 1960 to 1969 and 2001 to 2008 were used for testing and validation of the 

ANN forecasting models respectively. 

In this study, several potential drought forecasting ANN models were 

developed as was outlined in Section 6.3.2 based on various possible combinations of 

the potential input variables. They are shown in Tables 6.2 and 6.3. It can be seen from 

Table 6.2 that the first potential RMSNN model (i.e., Model 1) was developed only 

based on the present NADI value, which had the strongest correlation (Table 6.1). The 

subsequent RMSNN models (i.e., models from 2 to 5) were developed by sequentially 
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adding more past NADI values. Similar procedure was also followed for developing 

potential DMSNN models 6 to 10 (Table 6.3). It can be seen from Table 6.3 that only 

the present and past 2 NADI values were considered for rest of the models (from 11 to 

28) along with the several combinations of the present and the past 1 month storage 

reservoir volume, the present month streamflow, and the present and up to past 2 

months soil moisture content as input variables. Note that the NADI values beyond the 

past 2 months were not considered in the potential DMSNN models from 11 to 28 as 

no improvements were observed when sequentially added more than the past 2 months 

NADI values (i.e. potential DMSNN models 9 and 10), which will be discussed 

shortly. 

All potential RMSNN and DMSNN models in Tables 6.2 and 6.3 were 

calibrated according to the procedure described in Section 6.3.3. The optimal number 

of hidden neurons found for each model during model calibration is also shown in 

Tables 6.2 and 6.3. It can be seen from the tables that the potential drought forecasting 

ANN models developed in this study required only 2 to 3 hidden neurons in the hidden 

layer for the RMSNN models, whereas only 2 to 4 hidden neurons were required for 

the DMSNN models. Optimum numbers of weights and biases were also obtained for 

each model in Tables 6.2 and 6.3 during the model calibration process. However, they 

are not presented here due to the presentation complexity.  

Table 6.2 Drought forecasting RMSNN models considered 

Model Combination of input variables Optimal number of 
hidden neurons 

1 tNADI  2 

2 1, −t tNADI NADI  3 

3 1 2, ,− −t t tNADI NADI NADI  2 

4 1 2 3, , ,− − −t t t tNADI NADI NADI NADI  2 

5 1 2 3 4, , , ,− − − −t t t t tNADI NADI NADI NADI NADI  3 

NADI is the nonlinear aggregated drought index; 
t is the present month; and 
t-1, t-2, t-3 and t-4 refer to past 1, 2, 3 and 4 months respectively. 
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Table 6.3 Drought forecasting DMSNN models considered 

Model Combination of input variables Optimal number 
of hidden neurons 

6 tNADI  2 

7 1, −t tNADI NADI  2 

8 1 2, ,− −t t tNADI NADI NADI  3 

9 1 2 3, , ,− − −t t t tNADI NADI NADI NADI  2 

10 1 2 3 4, , , ,− − − −t t t t tNADI NADI NADI NADI NADI  3 

11 1 2, , ,− −t t t tNADI NADI NADI V  4 

12 1 2 1, , , ,− − −t t t t tNADI NADI NADI V V  3 

13 1 2, , ,− −t t t tNADI NADI NADI Q  2 

14 1 2, , ,− −t t t tNADI NADI NADI S  2 

15 1 2 1, , , ,− − −t t t t tNADI NADI NADI S S  2 

16 1 2 1 2, , , , ,− − − −t t t t t tNADI NADI NADI S S S  2 

17 1 2, , , ,− −t t t t tNADI NADI NADI V Q   4 

18 1 2, , , ,− −t t t t tNADI NADI NADI V S  3 

19 1 2 1, , , , ,− − −t t t t t tNADI NADI NADI V S S   4 

20 1 2 1 2, , , , , ,− − − −t t t t t t tNADI NADI NADI V S S S  2 

21 1 2, , , , ,− −t t t t t tNADI NADI NADI V Q S  3 

22 1 2 1, , , , ,− − −t t t t t tNADI NADI NADI V V Q  3 

23 1 2 1, , , , ,− − −t t t t t tNADI NADI NADI V V S  3 

24 1 2 1 1, , , , , ,− − − −t t t t t t tNADI NADI NADI V V S S  3 

25 1 2 1 1 2, , , , , , ,− − − − −t t t t t t t tNADI NADI NADI V V S S S  3 

26 1 2 1, , , , , ,− − −t t t t t t tNADI NADI NADI V V Q S  2 

27 1 2 1 1, , , , , , ,− − − −t t t t t t t tNADI NADI NADI V V Q S S  4 

28 1 2 1 1 2, , , , , , , ,− − − − −t t t t t t t t tNADI NADI NADI V V Q S S S  4 

NADI is the nonlinear aggregated drought index (NADI); 
V is the storage reservoir volume; 
Q is the streamflow; 
S is the soil moisture content; 
t is the present month; and 
t-1, t-2, t-3 and t-4 refer to past 1, 2, 3 and 4 months respectively. 
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All calibrated models (presented in Tables 6.2 and 6.3) were validated as 

described in Section 6.3.4. It should be noted that forecasting was carried out over a 

12-month period at each current time step of the validation period except for the last 12 

months, and the R, RMSE and MAE values were computed for each potential drought 

forecasting model over this period. Forecasting during the last 12 months (in the year 

2008) could not be compared against the computed NADI values, since there were no 

computed NADI values in 2009. Although the R, RMSE and MAE values were 

computed for each potential drought forecasting model over this period, in Table 6.4 

the R, RMSE and MAE values are presented only for 1 month lead time forecasts. It 

should be noted that the R values for the rest of the forecasting lead times were 

sequentially decreased, and the RMSE and MAE values were sequentially increased.  

Table 6.4 R, RMSE and MAE values obtained from validation of drought forecasting 

models 

Models R RMSE MAE 

RMSNN models 
1 0.72 0.69 0.55
2 0.74 0.67 0.53 
3 0.75 0.61 0.49 
4 0.74 0.62 0.48 
5 0.71 0.63 0.49 

DMSNN models 
6 0.72 0.68 0.53
7 0.74 0.62 0.49 
8 0.75 0.61 0.48 
9 0.74 0.64 0.52 
10 0.73 0.64 0.51 
11 0.73 0.70 0.56 
12 0.73 0.64 0.49 
13 0.75 0.61 0.49 
14 0.75 0.63 0.51 
15 0.72 0.63 0.51 
16 0.73 0.72 0.58 
17 0.73 0.67 0.52 
18 0.73 0.67 0.53 
19 0.72 0.73 0.60 
20 0.74 0.73 0.60 
21 0.69 0.72 0.58 
22 0.65 0.68 0.53 
23 0.74 0.63 0.50 
24 0.72 0.64 0.50 
25 0.69 0.72 0.57 
26 0.74 0.64 0.51 
27 0.70 0.62 0.48 
28 0.66 0.67 0.51 
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It is seen from the Table 6.4 that the models 3 and 8 give the best drought 

forecasts in terms of all three validation indices (i.e., R, RMSE, MAE) for RMSNN 

and DMSNN models respectively. It shows that the best forecasts were obtained from 

both RMSNN and DMSNN models when the combination of the present and up to past 

2 months NADI values were used as model inputs (i.e., the models 3 and 8 of Tables 

6.2 and 6.3 respectively). Moreover, the best forecasts provided by the RMSNN and 

DMSNN models required only 2 and 3 hidden neurons respectively (i.e. models 3 and 

8 as shown in Tables 6.2 and 6.3 respectively). 

6.4.2. Comparative Study between RMSNN and DMSNN Models 

As mentioned in Section 6.4.1, forecasting was carried out over a 12-month 

period at each current time step of the validation period except for the last 12 months. 

It was found that performance of both RMSNN and DMSNN models (i.e., model 3 and 

8 in Tables 6.2 and 6.3 respectively) decreased with increasing forecasting lead time in 

terms of forecasting ability. It was also found that the models performed poorly beyond 

the forecasts of first 6 months. Therefore, only the results up to 6 month forecasts were 

used for comparing the performance of the two models. 

The comparison of the original NADI time series computed from observed data 

and the forecast NADI time series from both RMSNN and DMSNN models 

considering 6 month forecasts are presented in Figures 6.6 and 6.7 respectively. Each 

figure has six components, showing how 1, 2, 3, 4, 5 and 6 time step forecasts 

compared against computed NADI values. In these figures, comparative performance 

evaluations are presented for all three data sets (i.e. training, testing and validation) to 

show the optimum generalization ability of the forecasting models that was achieved in 

the model calibration process. The R values between the observed and the forecast 

NADI values are also shown in these figures. It can be seen from Figures 6.6 and 6.7 

that the forecast time series matches well with the original NADI time series for all 

three data sets when forecast lead times are smaller and the differences become larger 

when the lead time increases. The R values show that they are close to each other for 

forecasts in all three data sets up to 3 months ahead, which implies the good 

generalization abilities of the forecasting models up to 3 months ahead forecasts. 
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Moreover, the R values within the three data sets decrease when forecast lead times 

increase showing the generalization abilities of the forecasting models decrease with 

the increase in forecasting lead time. 

 

Figure 6.6 Comparison of computed NADI time series with forecast NADI time series 

from RMSNN model (i.e., Model 3) 
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Figure 6.7 Comparison of computed NADI time series with forecast NADI time series 

from DMSNN model (i.e., Model 8) 
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The R, RMSE and MAE values of each lead time forecast obtained by both 

RMSNN and DMSNN models for the validation data set are presented in Table 6.5. It 

shows that in both RMSNN and DMSNN models, R values decrease, and RMSE and 

MAE values increase when forecast lead time increases, which are expected. 

Moreover, Table 6.5 shows that both models produce the same R, RMSE and MAE 

values for one 1-month lead time. However, the forecasting performance is slightly 

better in the RMSNN model than in the DMSNN model for 2 to 3 months ahead 

forecasts in terms of RMSE and MAE, although the performance of both models is the 

same in terms of their R values. However, the DMSNN model results are slightly better 

than those of the RMSNN model for forecasting lead times 4 to 6 months. In terms of 

the R values, the forecast NADI values were statistically significant at 0.01 level in 

both RMSNN and DMSNN models. 

Table 6.5 R, RMSE and MAE values for validation data set 

   t+1 t+2 t+3 t+4 t+5 t+6 
RMSNN 0.75* 0.70* 0.64* 0.56* 0.49* 0.48* 

R 
DMSNN 0.75* 0.70* 0.64* 0.58* 0.50* 0.49* 
RMSNN 0.61 0.67 0.76 0.93 1.05 1.08 

RMSE 
DMSNN 0.61 0.70 0.81 0.92 1.02 1.07 
RMSNN 0.49 0.53 0.60 0.73 0.81 0.87 

MAE 
DMSNN 0.49 0.56 0.64 0.72 0.80 0.86 

*Correlation is statistically significant at the 0.01 level 

The forecast values of NADI were also compared by classes of different 

dryness/wetness (or drought classifications in Table 5.1 in Chapter 5) to evaluate the 

accuracy of forecasts across events of different extremity, which is also ensure cross 

validation of the forecasting model. This approach was also used by Morid et al. 

(2007). For easy reference in this chapter, Table 5.1 is reproduced as Table 6.6, it 

should be noted that wetness thresholds are also included in this table as these 

thresholds were used in the evaluation of forecast accuracy study.  

Percent of forecast accuracy in the validation data set is presented in Table 6.7 

for forecasts up to 6 time steps. In this table, ‘1’ in the DC column (DC = Difference in 

Classes) means that there is only one difference in relation to the level of 

dryness/wetness between the original and the forecast NADI values (e.g., if ‘Extreme 

drought’ is observed in the original computed NADI series and ‘Severe drought’ is 
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forecasted in the forecast NADI series, then DC = 1). Table 6.7 shows that when 

forecasting lead time increases the percent of forecast accuracy decreases, as expected. 

Moreover, for all 6 month forecasts, the DC values of the RMSNN model forecast with 

0 (i.e. original drought classes are exactly same as forecast drought classes) are 

between 52% and 67%, whereas the corresponding figures in the DMSNN model are 

between 53% to 67%. However, if both 0 and 1 DC values are considered together, the 

percent of accuracy becomes between 88 to 98% and 85 to 98% for all 6 month 

forecasts for the RMSNN and DMSNN model respectively. As was seen before (Table 

6.5), Table 6.7 also shows that both RMSNN and DMSNN models show same 

forecasting performance for 1-month lead time. Moreover, the table also shows that the 

RMSNN model gives slightly better forecasts than the DMSNN model for 2 to 3 

months ahead forecasts, while the DMSNN model forecasts are slightly better than the 

RMSNN model forecasts for 4 to 6 months ahead forecasts. 

Table 6.6 Drought classification based on NADI thresholds* 

> 1.63 Extreme wet 
> 1.20 to ≤ 1.63 Severe wet 
> 0.88 to ≤ 1.20 Moderate wet 

> -0.84 to ≤ 0.88 Near normal 
> -1.64 to ≤ -0.84 Moderate drought 
> -2.27 to ≤ -1.64 Severe drought 

≤ -2.27 Extreme drought 
*Reproduced from Table 5.1 

Table 6.7 Percent of forecast accuracy in dry or wet classes – validation data set 

DCa t+1 t+2 t+3 t+4 t+5 t+6 
RMSNN 

0 67 66 64 53 53 52 
1 31 30 31 43 38 36 
2 2 4 4 3 8 11 
3 0 0 1 1 1 1 

(0+1) 98 96 95 96 91 88 
DMSNN 

0 67 64 58 57 54 53 
1 31 32 35 31 32 32 
2 2 4 5 11 12 13 
3 0 0 1 1 2 2 

(0+1) 98 96 93 88 86 85 
DCa: Difference between original and forecast classes of dryness/wetness 
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6.5. Summary 

Drought forecasting is important in terms of planning and operation of water 

systems, especially during continuing dry climatic periods. In the context of drought 

forecasting, researchers and professionals have used several techniques in the past for 

forecasting Drought Index (DI) values as the forecasts of future drought conditions. 

Based on the study on several existing DIs (Chapter 4), a new DI namely Nonlinear 

Aggregate Drought Index (NADI) was developed in this study which was presented in 

Chapter 5. The NADI defines the overall dryness as the drought condition within the 

system by considering all significant hydro-meteorological variables (i.e. rainfall, 

potential evapotranspiration, streamflow, storage reservoir volume and soil moisture 

content) that affect the droughts. The use of NADI in the drought forecasting model 

forecasts the overall dry condition within the catchment beyond the traditional forecast 

of rainfall based DIs as the forecast of drought condition. In this study, the most 

successfully used Artificial Neural Network (ANN) modeling technique was used to 

develop the drought forecasting model to forecast the NADI values. 

Two types of ANNs namely: Recursive Multi-Step Neural Network (RMSNN) 

and Direct Multi-Step Neural Network (DMSNN) were used to forecast the NADI 

values for the Yarra River catchment in Victoria (Australia). The present and several 

months of past NADI values were tested as inputs in the RMSNN model, whereas the 

present and several months of past NADI values along with the present and several 

months of past hydro-meteorological variables that were used in NADI calculations 

were tested as inputs in the DMSNN model. It was found that the best forecasts were 

obtained from both RMSNN and DMSNN models, when the combination of the 

present and up to past 2 months of NADI values were used as model inputs. Moreover, 

the RMSNN model was required only two neurons in one hidden layer to get the best 

forecasts, whereas only three neurons were sufficient for the DMSNN model. The best 

developed RMSNN and DMSNN drought forecasting models were capable of 

forecasting drought conditions reasonably well up to 6 months ahead forecasts; these 

forecasts were statistically significant at 1% significant level. Moreover, it was found 

that both models show the same performance for forecasting 1-month lead time. 

However, the RMSNN model gives slightly better forecasts than the DMSNN model 
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for lead times of 2 to 3 months and the DMSNN model gives slightly better forecasts 

than the RMSNN model for forecast lead times of 4 to 6 months. Poor forecasts were 

observed beyond the forecast lead time of 6 months. 



Chapter 7: Summary and Conclusions, and Recommendations 

 Page 7-1

7. SUMMARY AND CONCLUSIONS, 
AND RECOMMENDATIONS 

 

Summary and Conclusions; Limitations of the Study 
and Recommendations for Further Research 

 

 

7.1. Summary and Conclusions 

The main aim of this study was to develop a drought forecasting tool to forecast 

future drought conditions. Moreover, the study performed a detailed evaluation of 

existing Drought Indices (DIs) to investigate their usefulness under different climatic 

conditions for which they were not originally developed for. These were done using 

the Yarra River catchment in Victoria (Australia) as the case study. The aim of the 

study was achieved by undertaking the following tasks: 

1. Selection of the study area, and data collection and processing 

2. Review and evaluation of the existing Drought Indices 

3. Review of the drought forecasting modeling techniques 

4. Development of the Nonlinear Aggregated Drought Index 

5. Development of the drought forecasting models 

A brief summary and the conclusions drawn from each of these tasks are 

presented in the following sections. 

7.1.1. Selection of Study Area, and Data Collection and Processing 

The Yarra River catchment in Victoria, Australia was selected as the case study 

in this research. It was chosen because the management of water resources in this 
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catchment has great importance, since it is a major source of water supply for 

Melbourne residents (EPA Victoria, 1999). Almost one third of Victorian population 

(approximately 1.5 million) depends on the water resources of this catchment. 

Moreover, the water resources of the catchment support a range of uses valued by the 

Melbourne’s community, including urban water supply, agricultural and horticultural 

industries and downstream user requirements, as well as flow requirements for 

maintaining environmental flows. Therefore, the development of the drought 

forecasting model can be a useful tool for the management of water resources in the 

Yarra River catchment. 

Data related to several hydro-meteorological variables (i.e. rainfall, potential 

evapotranspiration, streamflow, storage reservoir volume and soil moisture content) 

were collected for the Yarra River catchment. These data were required for the 

development of DI and the drought forecasting model. The required data were 

collected for this study from a number of organizations such as Bureau of Meteorology 

(BOM) (i.e. rainfall data), SILO database (Jeffrey et al., 2001) (i.e. potential 

evapotranspiration data) and Melbourne Water Corporation (i.e. streamflow and 

storage reservoir volume data). Soil moisture content data were not available for the 

catchment, and therefore a two-layer water budget model of Palmer (1965) was 

adapted to determine the soil moisture content in the catchment.  

Data used for the DIs and drought forecasting model development were from 

1960-2008 (49 years). Data processing was carried out to obtain the catchment 

representative monthly values as DIs were developed in this study using a monthly 

time step. Monthly DIs are suitable for operational purposes and have lower sensitivity 

to observational errors (McKee et al., 1993). 

Several historical droughts recorded in Victoria including 1967-1968, 1972-

1973, 1982-1983, 1997-1998, 2003-2004 and 2006 onwards were used in this study to 

evaluate the DIs. These historical droughts were recorded in Keating (1992) and Tan 

and Rhodes (2008) after comparing rainfall and storage records at that time against 

their average values. 
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7.1.2. Review and Evaluation of Existing Drought Indices 

There are many DIs that have been developed in the past around the world to 

define drought conditions. No DIs have been used for the Yarra River catchment in the 

past, and therefore the usefulness of the existing DIs were first reviewed in this study. 

It was found that majority of the DIs had been developed for specific regions, and 

therefore may not be directly applicable to other regions due to different hydro-

climatic conditions. Moreover, it was also found that the researchers and professionals 

are confronted with the ambiguity of the drought definition. Some researchers and 

professionals argue that drought is just deficiency in rainfall and should be defined 

with the rainfall as the single variable. However, many others believe that the 

definition of drought should consider significant components of the water cycle (such 

as rainfall, streamflow and storage reservoir volume), because the drought depends on 

numerous factors, such as water supplies and demands, hydrological and political 

boundaries, and antecedent conditions. Therefore, an evaluation study of the existing 

DIs was performed in this research to investigate whether they are applicable to a 

region, in this case the Yarra River catchment, for which these DIs were not 

specifically developed. 

A quantitative assessment of five existing DIs selected from different drought 

perspectives (i.e. meteorological, hydrological and agricultural), was first conducted in 

this study to investigate how well these DIs can define the historical droughts in the 

Yarra River catchment. The selected DIs namely Percent of Normal (PN), Deciles, 

Standardized Precipitation Index (SPI), Surface Water Supply Index (SWSI) and 

Aggregated Drought Index (ADI). Thereafter, an evaluation of these DIs was carried 

out based on both qualitative and quantitative assessments to select the most 

appropriate DI for defining drought conditions in the Yarra River catchment.  

In assessing the overall usefulness of the DIs, five decision criteria - 

robustness, tractability, sophistication, transparency, and extendability - were used in 

this study. It was believed that these criteria consider the desirable properties of a DI 

and would give a reasonable framework for evaluation of the DIs without excessive 

complications. Overall, the study found that the ADI was a better DI for modeling 
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droughts and the management of droughts in the Yarra River catchment. It modeled the 

characteristics of historical droughts better than the other four DIs. It was also the most 

stable DI having smooth transitional characteristics during droughts, and from dry to 

wet spells and vice versa. Although the ADI was the best DI in defining  historical 

droughts amongst the studied DIs, it was found during the literature review that the 

linear Principal Component analysis (PCA) was used in the ADI development which 

assumes that the input variables have linear relationships between them (Monahan, 

2000, 2001; Linting et al., 2007). If nonlinear relationships exist between these 

variables, as is often the case with environmental data (Gauch, 1982), then the linear 

PCA technique may not perform well or correctly (Linting et al., 2007). Therefore, the 

development of a new generic DI by overcoming the limitation of the ADI (i.e., use of 

linear PCA technique) was considered in this study. 

7.1.3. Review of Drought Forecasting Modeling Techniques 

Several drought forecasting modeling techniques have been used in the past for 

forecasting future drought conditions. A review on the existing drought forecasting 

techniques was conducted in this study to understand and select the appropriate 

drought forecasting modeling technique for use in the Yarra River catchment. It was 

found that there were two types of drought forecasting models that have been used 

around the world; (1) the deterministic forecast models such as Autoregressive 

Integrated Moving Average (ARIMA) models, Seasonal Autoregressive Integrated 

Moving Average (SARIMA) models, Artificial Neural Network (ANN) models and 

Adaptive Neuro-Fuzzy Inference System (ANFIS) models, where they were used to 

forecast DI values (at the current time step) for the future time steps, and (2) the 

probability based drought class transition forecast models such as Markov Chain and 

Loglinear models where they were used to estimate the probability of drought class 

transition from one state to another for future time steps at the current time step.  

Amongst all the available drought forecasting modeling techniques, the ANN 

modeling approach was found to be the most widely used and successful drought 

forecasting modeling approach. It has shown great ability in modeling and forecasting 

nonlinear and non-stationary time series, due to its innate nonlinear properties and 
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flexibility for modeling (ASCE Task Committee on Application of Artificial Neural 

Networks in Hydrology, 2000; Maier and Dandy, 2000; Maier et al., 2010). The results 

of the past studies (e.g. Kim and Valdes, 2003; Morid et al., 2007) have also shown 

that the ANNs were capable to forecast drought conditions for longer lead time steps 

(i.e. 6 months ahead) than other models. Therefore, the ANN modeling approach was 

selected for the development of the drought forecasting model in this study. 

7.1.4. Development of Nonlinear Aggregated Drought Index 

A generic DI, namely Nonlinear Aggregated Drought Index (NADI) was 

developed and evaluated for the Yarra River catchment. The aim of the development of 

NADI was to overcome a limitation of the ADI. The limitation of the ADI was the use 

of linear PCA for aggregating hydro-meteorological variables, which considers that 

hydro-meteorological variables have linear relationships among them, which is not 

often the case for environmental data. Nonlinear Principal Component Analysis 

(NLPCA) was introduced and used to aggregate the five hydro-meteorological 

variables (i.e. rainfall, potential evapotranspiration, streamflow, storage reservoir 

volume and soil moisture content) in this study to develop the NADI. The NADI time 

series was then developed for the Yarra River catchment and investigated to see how 

well NADI can define the historical drought records in Victoria. The results showed 

that the NADI time series successfully defined the past major historical droughts that 

occurred in Victoria in 1967-1968, 1972-1973, 1982-1983, 1997-1998, 2003-2004 and 

2006 onwards. A comparative study between ADI and NADI was also conducted in 

defining historical droughts. It was found that the use of NLPCA technique in the 

NADI development captured more variance of the input data than the ADI. This 

implies that the fluctuations in hydro-meteorological variables were better represented 

by NADI than the ADI. It also implies that the variables used in the NADI have 

nonlinear relationship between them that was also considered in NLPCA. Although the 

NADI was developed and applied for the Yarra River catchment, it is a generic DI that 

can be applied to other catchments. 
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7.1.5. Development of Drought Forecasting Models 

The NADI has proven to be the best DI in this study for defining drought 

conditions in the Yarra River catchment (Section 7.1.4). Therefore, the time series of 

NADI was used to develop the drought forecasting model in this research project to 

forecast the NADI values as the future drought conditions. To develop the drought 

forecasting model, the ANN modeling technique was used, as it was found to be the 

best suitable drought forecasting modeling technique (Section 7.1.3). Several drought 

forecasting models were developed with different combinations of the potential input 

variables using two types of ANN architectures namely Recursive Multi-Step Neural 

Network (RMSNN) and Direct Multi-Step Neural Network (DMSNN). The 

comparative performance evaluation of the developed models was then conducted to 

select the best drought forecasting models in both categories (i.e. RMSNN and 

DMSNN). The results showed that the best developed RMSNN and DMSNN drought 

forecasting models were capable of forecasting drought conditions reasonably well up 

to 6 months ahead forecasts, and the forecasts were statistically significant at 1% level. 

It was also found that both models show the same performance for 1-month lead time 

forecasts. However, the RMSNN model gave slightly better forecasts than the DMSNN 

model for lead times of 2 to 3 months, and the DMSNN model gave slightly better 

forecasts than the RMSNN model for forecast lead times of 4 to 6 months. Poor 

forecasts were observed beyond the forecast lead time of 6 months. 

7.2. Limitations of the Study and Recommendations for 

Further Research 

Based on the findings of this research project, several limitations of the present 

study were identified. In some cases, recommendations are suggested for future studies 

to alleviate these limitations. They are discussed below. 

As was discussed in Section 7.1.1, the soil moisture data was not available as 

direct field measured data in this study, and therefore, a simple two-layer water budget 

model of Palmer (1965) was adapted to estimate the soil moisture content in the 

catchment. In this water budget model, several assumptions were made as discussed in 



Chapter 7: Summary and Conclusions, and Recommendations 

 Page 7-7

Section 3.5.4. They are: (1) evapotranspiration takes place at the potential rate from the 

surface layer until all available moisture in the layer is removed, and only then the 

moisture can be removed from the underlying layer of soil; (2) there is no recharge to 

the underlying layer until the surface layer is brought to field capacity, and the 

available water holding capacity of the soil in the underlying layer depends on the 

depth of the effective root zone and the soil characteristics in the area under study; and 

(3) the maximum water holding capacity in the surface layer and underlying layer 

throughout the Yarra River catchment was used as 670 mm (water) / 1000 mm (soil) 

under saturated conditions. The water budget model that was considered to model 

surface and ground water interaction is sufficient for this study. However, the surface 

and groundwater interaction system may not be a simple case, and therefore the 

application of a more complex water budget model which considers all necessary 

attributes of surface and groundwater interaction system may improve the quality of 

soil moisture data. 

It should be noted that the NADI need to be developed for different catchments 

as hydro-meteorological variables varies from one catchment to other, and to analyze 

droughts for different catchments a comparative study using NADI with other drought 

indices (DIs) should be done before adopting the NADI approach of drought 

assessment. 

In developing the drought forecasting models, the back propagation (BP) 

training algorithm was used to calibrate the models. The use of other training 

algorithms was not attempted in this study. However, the BP may sometime trap in 

local minima during model calibration (Siddique and Tokhi, 2001), and therefore the 

investigation of other available training algorithms such as Genetic Algorithm (GA) 

and Bayesian Markov Chain Monte Carlo (MCMC) simulation are recommended to 

test the robustness of parameters and the models. 

Most of the forecasting models are complex by nature and involve many 

parameters and variables that cannot be determined precisely, and therefore forecasting 

always involves uncertainty. However, uncertainty analysis for any of the developed 

drought forecasting model was not attempted in this study. It is therefore recommended 

that an uncertainty analysis is conducted in the future for DI forecast. 
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Overview; Zero Mean; Nonunit 
Standard Deviation; 

 

 

A1. Overview 

The NADI is computed from the standardized transformed hydro-

meteorological data as was seen in Equation (5.10). The standardized data were 

considered for each of the 12 months separately, and therefore these standardized data 

for each month have a zero mean and a unit variance. The NADI similarly possesses a 

mean of zero, but generally has a nonunit standard deviation. These properties are 

described below. 

A2. Zero Mean 

Each column j of matrix Q (containing the transformed variables) is a column 

vector qj of the standardized data of the jth transformed hydro-meteorological variable. 

The sum of the column vector is zero over all n observations for a particular month as 

the NADI was computed for each of 12 months separately (Section 5.3): 

1

0ij
i

q
=

=∑
n

         (A.1) 

The computation of a Principal Component (PC) for time i is the multiplication 

between a row of Q and the eigenvectors related to the first PC (PC1) (Equation (5.9)). 

Consider the calculation of the first two elements for PC1 (i.e., calculation of the PC 

values of a particular month of the first two years) (indicated as Y1): 
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11 12 13 14 1511

31
21 21 22 23 2 25

41

51

    
 

    

e
e

q q q q qY
e

Y q q q q q
e
e

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤⎡ ⎤ ⎢ ⎥= ⎢⎢ ⎥ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

      (A.2) 

  

where, Y11 and Y21 are the PC1 values for the particular month for years 1 and 2 

respectively, qij are the transformed hydro-meteorological variables; i = 1, 2 

representing years 1 and 2 respectively, and j = 1 to 5 representing 5 individual 

variables, ej1 are the eigenvectors related to the PC1.  

11 11 11 12 21 13 31 14 41 15 51Y q e q e q e q e q e= + + + +

Y q e q e q e q e q e= + + + +

( )

     (A.3) 

21 21 11 22 21 23 31 24 41 25 51      (A.4) 

Sum the Equations (A.3) and (A.4): 

( ) ( )
)

5n n

ijq

n

n

( ) (
11 21 11 11 21 21 12 22 31 13 23

41 14 24 51 15 25                                    

Y Y e q q e q q e q q

e q q e q q

+ = + + + + +

+ + + +
    (A.5) 

By induction, extend the pattern to include all n elements of Y1: 

1 1
1 1 1

i j
i j i

Y e
= = =

=∑ ∑ ∑         (A.6) 

The  term is given in Equation (A.1) as zero. Therefore 
1

ij
i

q
=
∑

1
1

0i
i

Y
=

=∑          (A.7) 
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As was mentioned in Section 5.3.2, the NADI values calculated for a particular 

month using Equation (A.8). 

1i
iNADI Y

σ
=         (A.8) 

where, NADIi is the NADI value for a particular month in year i, Yi1 is the PC1 

during year i for that month and σ is the standard deviation of Yi1 over all years for the 

same month. 

Therefore, the mean of the NADI (i.e., iNADI ) for a particular month (i.e., 

mean over all n years) is 

1
1

1
i

i
i

n

y
NADI

n
σ ==
∑

        (A.9)  

The numerator was given by Equation (A.7) as zero. Therefore the mean of the 

NADI for a particular month is zero: 

0iNADI =          (A.10) 

A3. Nonunit Standard Deviation 

Consider the NADI sample standard deviation for a particular month,σ : 

( )2

1

1

i i
i

NADI NADI

n
σ =

−
=

−

∑
n

       (A.11) 

Equation (A.10) states 0iNADI = . 
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For σ  to be 1, 

2

1

1i
i

NADI n
=

n

= −∑  

This is possible, but unlikely. Therefore, σ  is generally not 1. 
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