

TOWARDS EFFICIENT COLLABORATION FOR E-

SERVICE TRANSACTION MANAGEMENT:

Semantics, Security and Reliability

By

Jiangang Ma

A Thesis Submitted to School of Engineering and Science

in Fulfillment of the Requirements for the degree of

DOCTOR OF PHILOSOPHY

Supervisor: Professor Yanchun Zhang

Australia

2010

 ii

© Copyright 2010

By

Jiangang Ma

All Rights Reserved

 iii

DECLARATION

I, Jiangang Ma, declare that the PhD thesis entitled Towards Efficient Collaboration for

e-Service Transaction Management: Semantics, Security and Reliability is no more than

100,000 words in length including quotes and exclusive of tables, figures, appendices,

bibliography, references and footnotes. This thesis contains no material that has been

submitted previously, in whole or in part, for the award of any other academic degree or

diploma. Except where otherwise indicated, this thesis is my own work.

 Signature Date

 iv

CONTENTS

DECLARATION.. iii

CONTENTS ... iv

LIST OF TABLES.. ix

LIST OF FIGURES ... x

ACKNOWLEDGMENT ... xii

ABSTRACT ... xiii

1. Chapter 1

 Introduction.. 1

1.1 Motivation and Research Problems ... 3

1.1.1 Discovering Web Services Based on Semantics.................................... 5

1.1.2 Securely Accessing Web Services ... 7

1.1.3 Reliable Collaboration in Distributed Transaction Management.......... 8

1.2 Proposed Solutions... 9

1.2.1 Collaboration through Web Services Discovery Based on Latent

Semantics Analysis .. 9

1.2.2 A Layered Access Control Architecture Based on Process View........ 10

1.2.3 Reliable Collaboration Based on Relaxed Atomicity Sphere Model... 11

1.3 Thesis Outline .. 12

2. Chapter 2

 State of the Art ... 15

2.1 Background .. 16

2.1.1 Collaboration in Distributed Environment... 16

2.1.2 Business Collaboration Approaches .. 20

2.1.3 Business Process .. 25

2.1.4 Workflows.. 27

2.1.5 Transaction Management ... 30

 v

2.2 Services-Oriented Architecture (SOA) .. 31

2.2.1 Simple Object Access Protocol (SOAP) ... 31

2.2.2 Web Service Description Language (WSDL)...................................... 32

2.2.3 Universal Description, Discovery and Integration (UDDI) 34

2.2.4 Business Process Execution Language for Web Services (BPEL4WS)

 ……………………………………………………………….35

2.2.5 Ontology... 35

2.3 e-Service Transaction Management Through Workflows 36

2.3.1 eFlow 36

2.4 e-Service Collaboration Transaction Management Through Web Services

Composition ... 37

2.4.1 Quality-Driven Web Services Composition Transaction..................... 37

2.4.2 Ontology-Driven Web Services Composition Transaction.................. 38

2.4.3 Rule-based Web Service Composition Transaction............................. 39

2.5 Research Problems and Challenges ... 40

2.6 Summary .. 41

3. Chapter 3

 Basic Models for e-Service Transaction Management ... 43

3.1 Introduction .. 43

3.2 Introduction to Modeling for Distributed Collaboration.................................. 44

3.3 Basic Requirements for Distributed Collaboration .. 45

3.3.1 Security Requirements ... 46

3.3.2 Reliability Requirements.. 47

3.3.3 Transactional Requirements... 50

3.4 Role Based Access Control.. 51

3.5 A Distributed Workflow Model ... 52

3.5.1 Basic Task Models ... 53

3.5.2 Data Flow Model ... 56

 vi

3.5.3 Control Flow Model... 58

3.5.4 Transactional Web Services Model ... 59

3.5.5 A Workflow Model .. 60

3.6 Summary .. 61

4. Chapter 4

 Collaboration Through Web services Discovery and Composition Based on

Semantics .. 63

4.1 Introduction .. 65

4.2 Web Service Discovery Approaches... 67

4.2.1 Keyword-Based Web services Discovery.. 71

4.3 DC-SVD: Divide and Conquer Semantic Discovery Approach 75

4.3.1 Overview of DC-SVD Approach ... 77

4.3.2 Decomposing Search Result Collection... 78

4.3.3 Matching Web services in Latent Semantic Space 84

4.3.4 Experiments Evaluation .. 89

4.3.5 Related Work ... 94

4.4 Efficiently Selecting Web services Using A Clustering Semantic Approach.. 96

4.4.1 Probabilistic Latent Semantic Analysis (PLSA).................................. 97

4.4.2 Eliminating Irrelevant Services from Service Collection 100

4.4.3 Web services Discovering based on PLSA.. 105

4.4.4 PSMA -- Probabilistic Semantic Matching Algorithm 109

4.4.5 Experimental Evaluation.. 113

4.4.6 Related work .. 120

4.5 Web service Composition Based On Ontology ... 121

4.5.1 Web service Representation... 124

4.5.2 Ontology Design .. 126

4.5.3 Service Selection.. 130

4.5.4 Web service Composition Algorithm .. 131

 vii

4.5.5 Related Work ... 134

4.6 Summary .. 135

5. Chapter 5

 Secure Collaboration in Scientific Workflows .. 137

5.1 Introduction .. 138

5.2 Security Requirements of Cross-Organizational Collaboration..................... 142

5.3 Deriving Consistency View Based On Workflow Model.............................. 144

5.3.1 Consistency Views ... 145

5.4 A Layered Access Control Model For Secure Collaboration 148

5.4.1 Secure Collaborative System ... 148

5.4.2 A Two Layer Security Architecture... 150

5.4.3 Security Policy ... 154

5.5 Related Work ... 155

5.6 Summary .. 156

6. Chapter 6

 Ensuring the Reliable Collaboration in Distributed Environment 157

6.1 Introduction .. 158

6.2 Transaction Models.. 161

6.2.1 Transaction and Transaction Properties ... 161

6.2.2 Advantages of Transaction... 162

6.2.3 Transaction for Collaboration ... 163

6.2.4 Atomicity Sphere ... 164

6.3 Extended Atomicity Sphere ... 165

6.3.1 Maintaining Data Consistency ... 166

6.3.2 Maintaining Process Consistency .. 170

6.4 Recovery Approach.. 172

6.5 Related Work ... 173

 viii

6.6 Summary .. 174

7. Chapter 7

 A Framework for Supporting e-Services Transaction and Case Study 175

7.1 System Architecture ... 175

7.2 User Application Layer (UAL) .. 176

7.3 Collaborative Process Model Layer ... 177

7.4 Evaluation and Case Study... 179

7.5 Summary .. 181

8. Chapter 8

 Conclusion and Future Work ... 183

8.1 Contributions and Summary of This Thesis .. 183

8.2 Possible Future Research Work ... 185

9. Chapter 9 Bibliography.. 187

 ix

LIST OF TABLES

Table 4.1: Experiment datasets.. 90

Table 4.2: An example of service transaction matrix .. 104

Table 4.3: Aspects and their service .. 117

Table 4.4: Examples of the most likely words for 4 hidden concept 119

Table 4.5: Two services QoS parameters .. 130

 x

LIST OF FIGURES

2.1 Traditional business approach ... 17

2.2 Business collaboration ... 19

2.3 Business collaborative strategy.. 20

2.4 Collaborative patterns .. 22

2.5 Form virtual organization .. 24

2.6 A scenario of distributed collaboration.. 25

2.7 The specification of web service ... 33

2.8 An example of WSDL file for cargoshipping web service.................................. 34

3.1 Control dependency ... 59

4.1 Service discovery and composition ... 65

4.2 Web service discovery... 66

4.3 Approaches of Web service discovery .. 69

4.4 Decomposing search results .. 78

4.5 An example of matrix .. 83

4.6 Precision and recall.. 92

4.7 Comparisons of DC-SVD with keyword... 93

4.8 Performance in different size of SVD ... 94

4.9 Outline of the matching ... 99

4.10 An example of data processing.. 116

4.11 Accuracy of CPLSA and keyword for four categories 118

4.12 Precision and recall of PLSA and keyword... 119

4.13 Ontology0based system architecture ... 123

4.14 Ontology for Web services .. 125

4.15 Cargoshipping ontology... 128

5.1 Scenario of lymphoma DNA classification ... 140

5.2 An example of deriving views... 147

5.3 Model of a layered access control ... 152

6.1 Run model and composite entity ... 168

6.2 Example of process consistency .. 171

7.1 Structure of reliable collaboration ... 178

 xi

7.2 Scenario of earthquake sciency research adapted from 180

7.3 Example of atomicity sphere application .. 180

 xii

ACKNOWLEDGMENT

I would like to thank many people who have contributed to the successful

completion of this thesis.

First, I would like to express my sincere gratitude and thanks to my principal

supervisor, Professor Yanchun Zhang, both in my academic research and in other

aspects of life during my PhD research. I have learned much how to do research from

him. Our regular discussions and meetings have immensely contributed my research.

This research work would have not been completed without his valuable guidance,

encouragement and suggestions. My thanks also go to my co-supervisor, Dr. Fuchun

Huang, for his valuable comment, discussion, and assistance throughout my research.

Second, I wish to thank postgraduate officers, Ms. Natalie Gloster, Ms. Lesley Birch

and Ms. Elizabeth Smith for their organizing all academic research activities for my PhD

research. I highly appreciate their excellent work for assisting PhD students. My thanks

also go to the School of Engineering and Science at Victoria University for providing me

with an excellent research environment.

 Furthermore, I would like to thank all the staff members and my classmates at the

School of Engineering and Science. In particular, my thanks go to A/Prof. Xu Yi,

A/Prof. Hao Shi, A/Prof. Yuan Miao, Ms. Anne Venables, Dr Alasdair McAndrew, Dr

Gitesh Raikundalia and Prof. Pietro Cerone, for their encouragement, suggestions and

assistance.

Finally, I would like to thank my wife Yan for her loving encouragement, patience

and great support throughout my PhD research.

 xiii

ABSTRACT

With advances in Web technologies, business and scientific communities are

increasingly depending on collaboration to support a variety of business domains, such

as enterprise production management and e-business integration, and to assist scientists

in their researches. These business and scientific explorative activities are typically

carried out in multi-organizations, run over long periods of time and involved in

different business processes and huge amounts of data. In these situations, data resources

(e.g. business databases and medical testing data), individual computational tasks (e.g.

gene comparison) and user-created workflows (e.g. experimental steps) are likely to be

distributed over various locations, connected over the Internet. In addition, these

distributed resources can be further wrapped as Web services, which are published and

deployed on the Web, so that other business partners are able to share these valuable

computational resources for facilitating their business and scientific activities. These

collaborations in distributed environment allow business partners to transform a

complicated business or scientific problem into a series of simpler, and more easily

handled ones.

There are a number of unique challenges that remain unaddressed in a collaborative

Web services-based transaction context. The first challenge is the lack of a set of

semantic descriptions for Web services. As Web services are usually created by different

providers that employ different phrases and models for presenting and describing

services’ characteristics and capabilities, it is difficult to correctly understand the

relevant semantic information hidden in the service descriptions for effective discovery

and composition of Web services.

 xiv

 The second challenge is security, which is currently ignored in most of Web

services-based transaction systems. This is particularly important in a Web services

context because the messages transmitted over the Web could be accessed and altered by

impostors. For security reasons, it is important that confidential information like private

business processes and sensitive data (e.g. patients’ private data in medical research)

should not be visible or released to unauthorized users.

Another challenge to overcome in this collaborative environment is that efficient fault

tolerant mechanisms are needed for ensuring reliable execution of collaborative systems.

A basic requirement for reliable collaboration in distributed experiments is that the

business processes or experiments should be allowed to proceed without violating

business process specifications and data consistencies even when the failures occur for

some reasons. This requirement is particularly applicable to distributed transactions

because the collaboration may consist of hundreds of separate processes or computing

steps and may involve lots of data objects whilst the computing steps may fail. In such

cases, giving up the overall collaboration would be too expensive.

In this thesis, we address the challenges mentioned earlier by presenting an access

control framework and models for supporting semantic, secure and reliable

collaboration. The proposed approaches depend on workflow technologies by integrating

control flows and data flows into a workflow model, and they employ a relaxed

transaction concept for fault tolerance, in order to maintain the processes consistencies,

as well as, data consistencies even in presence of failures. To achieve these objectives,

we first locate relevant Web services by a semantic approach. The key idea of our

 xv

approach is to indirectly associate the intention of users to the advertisements in Web

services by applying Probabilistic Latent Semantics Analysis (PLSA). Then, we model

the internal activities within an institution by employing workflow technology whilst the

individual workflow models of participating institutions can be mapped to process

views, which are further described by Web services. Based on the process view model, a

two layered access control architecture is proposed to protect computing resources.

Finally, the atomicity concept is relaxed by integrating transactions and exception

handling models in order to ensure the reliable collaborations on the Web.

The main contributions of this thesis are threefold. First, we proposed a novel

approach to find relevant services through the combination of keyword technique and

the semantics extracted from the services’ descriptions by using a probabilistic semantic

approach in order to handle poor scalability and lack of semantics. Second, a novel two

layered access control model based on the general principles of the order of security

priority in an organization is proposed. With the model, various roles are associated with

views, so that right users can only see necessary parts of workflows exposed to them.

Third, the atomicity sphere model is relaxed by considering two levels of atomicity

abstraction for supporting reliable collaboration at the level of process, as well as, at the

level of data to maintain the process consistency and data consistency in case of failures.

 xvi

PUBLICATIONS BASED ON THIS THESIS

Refereed Journal Papers

[1] Jiangang Ma, Jinli Cao and Yanchun Zhang. Efficiently Supporting Secure and

Reliable Collaboration in Scientific Workflows. In Journal of Computer and System

Sciences (JCSS), Volume 76, Issue 6, September 2010, Pages 475-489, 2010.

Refereed International Conference Papers

[2] Jiangang Ma, Yanchun Zhang and Jing He. Web Services Discovery based on Latent

Semantic Approach. In the proceedings of The IEEE International conference on web

services (ICWS2008), September 23-26, China, 2008.

[3] Jiangang Ma and Yanchun Zhang. Efficiently Finding Web Services Using a

Clustering Semantic Approach. In the proceedings of the 2008 International Workshop

on Context Enabled Source and Service Selection Integration and Adaptation: organized

with the 17th International World Wide Web Conference (WWW 2008), CSSSIA 2008,

Beijing, China, April 22, 2008.

[4] Yanchun Zhang and Jiangang Ma. Discovering Web Services based on Probabilistic

Latent Factor Model. In the proceedings of the 9th Asia-Pacific Web Conference and

the 8th International Conference on Web-Age Information Management, China, June16-

18, 2007.

[5] Jiangang Ma, Jinlin Cao and Yanchun Zhang. A Probabilistic Semantic Approach for

Discovering Web Services. In the proceedings of 16th International World Wide Web

Conference (WWW 2007) Banff, Canada, May 8 -12, 2007.

 xvii

[6] Jiangang Ma, Yanchun Zhang and Minglu Li. OMWSC-An Ontology-Based Model

for Web Services Composition. In the Proceedings of Fifth International Conference on

Quality Software (QSIC 2005). Australia, 2005.

[7] Guandong Xu, Yanchun Zhang, Jiangang Ma and Xiaofang Zhou. Discovering User

Access Pattern Based On Probabilistic Latest Factor Model. In the Proceedings of the

Sixteenth Australasian Database Conference, Australia, 2005.

 1

1. Chapter 1

Introduction

Fierce competition and quickly changing markets in today’s global economy demand

business enterprises to provide high-quality products or services, with short life cycles in

order to meet increasing expectations of customers. This implies that enterprises need to

possess a broad range of knowledge, techniques and skills, ranging from developing

capabilities at the logistics layer and the transaction layer [46, 121] to provide

competitive products and services. However, it is difficult for a single enterprise, in

particular, for small and medium-sized enterprises (SME), to have such comprehensive

skills and capabilities either for suffering high cost or for infeasibility. This, together

with the advances in Information and Communication Technologies (ICT), particularly

with Service-Oriented Architecture (SOA), has motivated the evolution of collaborative

techniques to manage it.

Business collaborative activity is a dynamic process in which a set of independent

partners (organizations, institutions, or specialized individuals) work together to form a

temporary business alliance, called a virtual organization or virtual enterprise [58, 110],

where each member of business alliance contributes parts to the overall virtual enterprise

in order to exploit an apparent market opportunity. Currently, business enterprises and

scientific communities are increasingly depending on collaborations to support a variety

of business and scientific activities, such as enterprise production management, e-

 2

business integration and scientific research experiments. In particular, small and

medium-sized enterprises (SMEs) represent the major parts of the collaborations. For

example, SMEs comprise 99% of all companies in the European Union [110]. As

demonstrated by a recent survey [131] from AT&T, about 75% of firms in a worldwide

expect the number of collaborative relationships with third parties overseas to grow.

Effectively collaborating with business partners in a distributed environment poses a

number of significant challenges. First, the collaboration needs to take into consideration

semantics that has an impact on finding proper business partners. These business

partners often integrate existing applications, including data, business logic and other

resources in terms of Web services, which are published and deployed on the Web, so

that other trading partners are able to discover and share these valuable computational

resources for facilitating their collaborations. As Web services are usually created by

different providers that employ different phrases and terms for presenting and describing

services’ characteristics and capabilities, it is difficult for trading partners to correctly

understand the relevant semantic information hidden in the service descriptions for

effective discovery and composition of Web services [76, 123].

Second, security has also impact on the effective collaboration among different trading

partners. In Web-based collaborative systems, the messages transmitted over the Web

could be accessed and altered by impostors. For security reasons, it is important that

confidential information like private business processes and sensitive data (e.g. patients’

private data in medical research) should not be visible or released to unauthorized users.

Finally, reliability is another challenge to be overcome in a distributed collaborative

environment. A basic requirement for reliable collaboration in distributed experiments is

 3

that the business processes or scientific research experiments should be allowed to

proceed without violating business process specifications and data consistencies even

when the failures occur for some reasons. This requirement is particularly applicable to

distributed transactions because the collaboration may consist of hundreds of separate

processes or computing steps and may involve lots of data objects whilst the computing

steps may fail. In such cases, giving up the overall collaboration would be too expensive.

At the same time, Service-Oriented Architecture (SOA) has emerged as an effective

means to support cooperating applications that seamlessly join together heterogeneous

software modules from diverse organizations in the form of Web services. Our research

is motivated by the need to facilitate the effective collaboration in a semantic, reliable

and secure manner.

This chapter is organized as follows. In Section 1.1, we outline the research problems

that will be tackled in this thesis. In Section 1.2, we summarize proposed solutions and

we present the structure of this thesis in Section 1.3.

1.1 Motivation and Research Problems

SOA is an emerging software engineering paradigm for developing distributed Internet

applications. In this paradigm, Web services are application components that are

supported by a set of emerging standards such as the Web Service Description Language

(WSDL) [132] for service description, the Universal Description, Discovery and

Integration (UDDI) [134] for service discovery, the Simple Object Access Protocol

(SOAP) [133] for service communication, and the Web Service Business Process

Execution Language (WS-BPEL) [135] for workflows. With SOA, business companies

 4

are able to collaborate with other counterparts for a given goal, by assembling these

application components with little effort to create business processes. These business

processes can be further improved via automated techniques such as Workflows in order

to enhance overall efficiency and effectiveness of business collaboration.

Typical examples in a distributed collaboration where semantics, reliability and security

can be of great importance are in the fields of e-business and e-research. Consider the

first case related to supply chain management and manufacturing processes that involve

a high level of complexity and many business trading partners with complex

interrelationships. For example, the completion of whole business transaction involves

selecting goods remotely, managing orders with an electronic cart, paying electronically

and tracking the shipment, and so on. Consequently, any failure during the collaboration

among trading partners may result in unreliability in the distributed software systems,

and may have a significant commercial impact. For example, a customer may have paid

the bill whereas the supplier fails to deliver the ordered products.

The second example is concerned with scientific applications in bioinformatics like

DNA analysis. These scientific explorative activities are increasingly the result of

collaborative efforts among scientists who make use of each other’s experimental

results. In these situations, data resources (e.g., DNA databases and medical testing

data), individual computational tasks (e.g., gene comparison) and scientist-created

workflows (e.g., experimental steps) are likely to be distributed over various locations,

connected over the Internet. In addition, these distributed resources can be further

wrapped as Web services, which are published and deployed on the Web, so that other

scientists are able to share these valuable computational resources for facilitating their

 5

scientific researches. As a result, these collaborations in a distributed environment allow

scientists to transform a complicated scientific research problem into a series of simpler,

and more easily handled steps.

Although current Web technologies have achieved a certain level in facilitating

applications mentioned above, there are a number of unique challenges that remain

unaddressed in distributed collaborations. These challenges include: (i) how to

effectively discover Web services based on semantics, (ii) how to securely access Web

services in a distributed context, and (iii) how to reliably collaborate trading partners in

the presence of failures in a distributed transaction context.

1.1.1 Discovering Web Services Based on Semantics

Web services discovery process mainly involves locating desired Web services either

published in a registry like UDDI or scattered in P2P systems, matching users’

requirements to a set of Web services and returning relevant ones to the consumers. One

of the current discovery approaches is based on keyword strategy. The keyword-based

discovery approach consists of two main steps. A service user first types keywords into a

Web service search engine to look for the corresponding services. The user then selects

the desired Web services returned.

Web service discovery has played an important role in the overall cycle of the business

collaborative process, including process design phase and process running phase [121,

11]. The process design is to formally model whole business activities by describing

different aspects among collaborative activities, such as data flows, control flows and

transaction dependencies among tasks making up a business process, and so on. After

process design phase is done, Web services must be discovered for the tasks deigned.

 6

Here Web service discovery refers to a process of locating the appropriate collaborative

participators (Web services and Web service providers). In Service-Oriented

Architecture, a set of Web services might be found for individual tasks in a local

repository or located across different organizations over the Internet. During the run-

time phase, the Web services discovered are invoked through enabling data flows and

control flows among tasks. When individual Web service completes its application

invocation on behalf of the tasks, the collaborative process proceeds to the next tasks

until the whole collaborative objective is realized. In this collaborative application,

service consumers and service providers need to agree on the descriptions on Web

services in terms of functional and non-functional properties. The functional properties

specify what Web services can do whilst non-functional properties mean the quality of

services, such as reliability, security and transaction.

Efficient discovering Web services is a challenging issue for several reasons. Firstly,

with the ever-increasing number of services published on the Internet, it is difficult for

service consumers to select the best ones to complete their tasks because a large number

of Web services offer similar functionalities. Secondly, keywords are insufficient in

expressing semantic concepts, which is partially due to the fact that keywords are often

described by natural language, being much richer in terms of diversity. As a result,

finding desired Web services is akin to looking for a needle in a haystack [43].

Existing discovering mechanisms like UDDI already enable much of the Web service

discovery process. However, they concentrate largely on syntactic approaches, such as

by using keyword-based search and category-based matching, which is inefficient and

 7

time-consuming. Therefore, there is a need to have effective approaches to semantically

discovering Web services for fascinating distributed collaborative applications.

1.1.2 Securely Accessing Web Services

The second challenge is security, which is currently ignored in most current

collaboration applications. The existing collaborative applications like workflow systems

are based on the assumptions that the collaboration among trading partners is conducted

within a dedicated infrastructure whilst the integration of different information and

securely accessing Web services are under control of a trusted centralized coordination

mechanism. On such an assumption, participants involving in a collaborative process

have a prior expectation of what applications will be accessed and how clients will

invoke Web services.

Nevertheless, modern collaborative applications are more complicated than traditional

applications because of heterogeneous domains of collaborative applications and highly

dynamic environments [95, 121]. Here heterogeneous application domains make it

difficult to enforce security collaborations because different participants belonging to

separate security domains may use various security mechanisms, such as different access

control policies and different authorization approaches. In addition, as Web resources

involving collaborations are increasingly exposed to end users in a dynamic

environment, they are more likely accessed and altered by impostors. Therefore, for

security reasons, there is a need that confidential information like private processes and

sensitive data (e.g. patients’ private data in medical research) should not be visible or

released to unauthorized users

 8

1.1.3 Reliable Collaboration in Distributed Transaction Management

A robust business application should be reliable. In other words, it should be able to

continue to complete its work, and capable of adapting itself to some failures. There are

a variety of sources that are responsible for failures. A failure may be due to hardware

reasons, such as computers crash or Internet communication interruption, or it may come

from software reasons, for instance, an incorrect commuting outcome caused by

executing a task in a workflow.

Reliable business collaboration in a Web service context is even more complex. First, it

requires loosely coupled connections between different distributed systems so that

business partners involving a collaboration can cooperate more freely across the Internet.

Second, the collaboration is established in a highly dynamic fashion and on-demand

basis. For example, new participants (e.g., new services) may join the collaboration

whilst existing services may be removed at any time. This requires efficient adaptive

collaboration techniques in order to ensure reliable execution of business processes.

Here, a reliable distributed collaboration system refers to one that can continue to

process users’ requests even when some errors occur. In other words, even if

components of distributed transaction management system fail, a reliable distribute

transaction system should be able to continue executing users’ requests without violating

process consistency and data consistency.

It is a challenging work to build a reliable and secure collaboration across independent

organizational boundaries and their systems. The challenge is how to link the elements

of collaborative business processes together into a cohesive whole as well as how to

maintain the consistency of the collaboration as a whole in the face of failures.

 9

1.2 Proposed Solutions

In this thesis, we address the challenges mentioned earlier by presenting a transaction

framework and models for supporting semantic discovery of Web services and

maintaining secure and reliable collaborations. The proposed process-oriented

infrastructure of collaboration for e-service transaction management will be referred to

as acronym CSTM (towards efficient collaboration for e-service transaction

management: semantics, security and reliability) in the remainder of this thesis. The

proposed approaches depend on workflow technologies by integrating control flows and

data flows models, and they employ a relaxed transaction concept for fault tolerance, in

order to maintain the process consistencies, as well as, data consistencies even in

presence of failures.

1.2.1 Collaboration through Web Services Discovery Based on Latent

Semantics Analysis

To address the first challenge, we propose a novel approach for discovering and

matching Web services for distributed collaboration [76, 77, 122]. The proposed

semantics-based approach is based on our observation of uncertainty on the usage of

Web services in the Web environment. This uncertainty is reflected in two aspects. On

the client sides, a service user may not have a specific goal in his/her mind while he/she

browses Web service categories on the Web. For this reason, the query the user selects

may not fully represent his/her real intention. Second, it is difficult for users to choose

appropriate words to indicate semantic concepts because of the dictionary problem [38].

In our approach, the key idea is to indirectly associate the intention of users to the

 10

advertisements in Web services by applying latent semantics analysis. As a result, Web

services can be matched against a query at the concept level. The salient features of our

approach are:

• Complying with currently dominating industrial techniques for Web services

discovery. At present, the dominating industrial techniques for Web services

discovery and description are to use UDDI registry and WSDL description. Our

method is compatible with the existing standards through combining the keyword

technique and the semantics extracted from the service WSDL descriptions, which is

different from traditional keyword-based technique for Web service discovery.

• Supporting scalability for Web service discovery. We propose a divide and conquer

semantic discovery approach in order to transform a complex problem into a series

of simpler ones, which can be handled more easily. The objective is to handle the

poor scalability for Web service discovery in the Web environment.

1.2.2 A Layered Access Control Architecture Based on Process View

We propose a layered access control architecture to securely access Web services [75].

The proposed layered security architecture is based on the general principles of the order

of securing priority in an organization. Accordingly, the higher securing requirements in

an organization denote the trust objectives of the organization and specify the security of

the organization’s external interface to its environment. Based on this general principle,

this security requirement should be put at the first level. On the other hand, the security

requirements for the components within a system can be put at the second level. Such

security requirements focus on the securing integrity of the components, indicating that

 11

resources such as data and file should not be modified by unauthorized executing

entities. The basic features of our approach are:

• Balancing security and information choice for users. We use process views as the

abstraction of the specifications for original business processes, which can be

achieved by defining parts of the specifications. These parts of specifications are only

visible and accessible to authorized users. The objective of our approach is to

minimize what collaborative partners need to know during their collaboration with

each other.

• Associating various roles with process views. We extend the Role-Based Access

Control (RBAC) [102] model to securely access Web services. Based on the process

view model, various roles can be associated with views, so that users can only see

necessary parts of processes they are entitled to see.

1.2.3 Reliable Collaboration Based on Relaxed Atomicity Sphere Model

We propose a transaction approach [75] in order to support reliable collaboration in a

distributed context. The main objective of the approach is to reduce the cost of

recovering processes in case of failures, and ensure data consistency at various levels of

granularity. For that purpose, the atomicity sphere concept is relaxed by integrating

transactions and exception handling models so that data consistency as well as process

consistency will be maintained. The features of the proposed approach are:

• Maintaining data consistency. We apply the notion of atomicity concept to a single

task level, ensuring the consistency of data in the case of failures. We model the

 12

execution of a task as a run. Based on the run model, data flows are manipulated in

the right way in the execution of a business process to ensure data consistency.

• Maintaining process consistency. We extend the notion of atomicity sphere by

combining atomicity sphere with exception handling approach, aiming to maintain

the consistency of computing processes. During the design phase, a collaborative

application system is constructed by creating spheres properly. For example, a set of

spheres may form a hierarchy structure where the outermost sphere represents a

transaction whilst other spheres below the root indicate sub-transactions.

Furthermore, we combine a backward error recovery and forward error recovery

methods in order to ensure reliable collaboration.

1.3 Thesis Outline

This dissertation is organized in three parts. In the first part, we deal with semantics

introduced in Web services discovery for collaborative processes. In the second part, we

discuss security issues by introducing an access control framework and process view

model. Finally, we focus on reliability by presenting a relaxed transaction model.

The underlying research issues constitute grand challenges in service-oriented

computing, and need the integration of concepts and techniques from various disciplines,

including SOA, business process management, workflows, database transaction and

security.

Chapter 2 introduces research background related to reliable collaboration in a

distributed environment, including basic technologies, ranging from service-oriented

architecture (SOA), business process, and workflows to transaction management.

 13

Furthermore, e-service transaction management of collaboration through Web services

composition is reviewed and related frameworks are also discussed in this chapter.

Chapter 3 describes basic security and reliability requirements for distributed

collaborations. In this chapter, we define basic models used for distributed

collaborations. The basic models include task models, a Web service model and a

workflow model.

Chapter 4 deals with semantic Web services discovery. The proposed novel discovery

approach combines keywords techniques with the semantics extracted from the services’

descriptions by employing a divide and conquer semantic discovery approach, in order

to handle poor scalability and lack of semantics. The key idea of our approach is to

indirectly associate the intention of users to the advertisements in Web services by

applying Probabilistic Latent Semantics Analysis (PLSA). The chapter also provides the

experimental results.

Chapter 5 discusses the security issue. In this chapter, we present an approach to support

securely access Web services. Our approach is based on the process views, which place

emphasis on information hiding, minimizing what trading partners need to know during

their collaboration with each other.

Chapter 6 presents the design of enabling transactional support for failures handling. To

this end, the atomicity sphere concept is extended by considering two levels of atomicity

abstraction for supporting reliable collaboration.

Chapter 7 reports a framework to exemplify the usage of the approaches presented in

this thesis for supporting semantic, reliable and secure collaborations.

Chapter 8 summarizes the contributions of the thesis and discusses future research

 14

work.

 15

2. Chapter 2

State of the Art

The need for the coordination of trading partners and the importance of transaction

management in a distributed environment has been evident for long time. As traditional

business approaches are mainly based on central control mechanisms by which trading

partners are working together with closely coupled, it is quite difficult to facilitate the

interoperability among trading partners and may have a significant impact on providing

competitive products and services. As we discussed in the previous Chapter, effective

collaborative approaches can cope with those issues, but they also pose a number of

significant challenges such as semantics, security and reliability. Fortunately, service-

oriented technologies are deemed as an effective means to support cooperating

applications and have significant impact on expanding service-based economy [96, 123].

As demonstrated by a recent survey [108], about 75% of economic output in

industrialized countries comes from the service-based economy.

In this chapter, we examine the background knowledge, introduce literature reviews and

describe the evolutions from doing business via traditional approaches to doing business

via modern approaches, which are related to semantics, security and reliability in

distributed collaborations. The literature review presented here is more than just a survey

of the literature of semantic, secure and reliable enabled e-service transaction

management. As in the proposed thesis, it will reveal the key gaps in the current theory

 16

and practice of collaborations in distributed contexts. It does this by first presenting

background knowledge on business collaborations and describing basic terminologies,

concepts and techniques, such as web services, business process and workflows, and so

on. We then give brief overview of some research work relevant to web service

transaction management frameworks and address their limitations.

This chapter is organized as follows: Section 2.1 introduces some background

knowledge, concepts and terminologies used in this thesis. Section 2.2 provides a survey

on Services-Oriented Architecture (SOA). Section 2.3 reviews some e-service

transaction management prototypes. In Section 2.4, we discuss e-service collaborative

transaction management through Web services compositions. Research problems in this

thesis are provided in Section 2.5. Finally, a summary is reported in Section 2.6.

2.1 Background

This section introduces some background knowledge, concept and terminologies

relevant to the research field in a semantic, reliable and secure collaboration.

2.1.1 Collaboration in Distributed Environment

In this section, we first introduce a simple car manufacturing scenario that will be used

to illustrate the traditional approach to do business and its limitation, and then discuss

business collaboration and its characteristics.

Doing Business via Traditional Approaches

Figure 2.1 illustrates a simple scenario of car manufacturing business. The starting point

is a demand for car from customers. This demand, in the form of an order, will be placed

 17

to an automobile dealer who further sends the order to an auto manufacturer through

some kinds of methods. After receiving the order for car, the vehicle manufacturer

commences in ordering the parts by contacting the parts suppliers, who in turn order raw

materials in order to create the parts. Meanwhile, the suppliers may calculate the price of

the ordered parts and the fee for shipping the parts to the manufacturer, and send an

invoice to request payment. Once receiving the all the parts from the suppliers, the

manufacturer begins to produce the car and send it the dealer. Normally, this business

activity is a long transaction process that may last for weeks or months.

Figure 2.1: Traditional business approach

From this example, we can lead to several observations. First, whole business activity is

a complex network that involves different actors related to a business transaction, such

as manufacturers, suppliers, banks, transportation, warehouses and customers, and so on.

Second, this business activity involving various actors can be further categorized by two

layers: transaction layer and logistics layer [46]. Here transaction layer refers to the

setting of the structure for actual business transaction, or more generally, denoting the

exchange of goods, services or money. Logistics layer refers to general transportation

 18

services like road transport, distribution and shipping, etc. Finally, the objective of a

business is to be cost-effective from transaction layer to logistics layer.

We can further summarize the basic characteristics of traditional business approaches

based on the car manufacturing scenario:

• Tightly coupling. Traditional business approaches emphases on intimated

relationships among business partners. For example, actors in the scenario above

mainly focus on direct relationship with their partners rather than have the end-to-end

management of processes running across many different organizations. Furthermore,

business information is shared with direct business partners by using traditional

business approaches [46].

• Centrally controlling. Traditional business approaches are mainly based on a central

decision making control mechanism. As mentioned above, in a traditional business

activity, a business is viewed as a sequential chain of events (a value chain) by which

business actors are working together with closely coupled. In such an architecture,

the coordination among partners is adopted by a hierarchical mechanism by which a

single top level activity defines the overall business goal and regulates the detailed

transaction steps [95, 64].

Doing Business via Collaborative Approaches

As traditional business approaches show some disadvantages such as lack of flexibility

and inability to rapidly meet a specific objective, and associated high costs, modern

enterprises are seeking relatively effective collaborative approaches. Figure 2.2 shows an

example [35].

 19

In this scenario, seller company (SC) is deemed as a product or service provider whilst

buyer company (BC) as a product requestor. To begin with, SC looks for collaborative

specification and using scenarios in a registry (step 1). After familiarizing with the use-

cases and related regulations, SC will build its own business applications that comply

with the specification by using different software solutions such as using Web services

to wrap existing applications (step 2). After that, SC will describe the functionality of its

applications in terms of business profile, and then publish it to a registry (step 3). If BC

intends to do business with SC, it will look for the functionality specification supported

by SC in the registry (step 4). Next, the two companies will negotiate each other to reach

a collaborative agreement on different aspects of a business like documents changing

and security requirement, etc (step 5). At this point, BC sends a request to SC (step 6).

Finally, the two companies are already to do business according to the reached

collaboration agreement.

Figure 2.2: Business collaboration [35]

The detailed collaborative strategy and collaborative patterns will be discussed in the

following section.

 20

2.1.2 Business Collaboration Approaches

In the previous section, we have described the interaction of two business companies

doing a business by using ebXML. In this section, we introduce some of basic

collaborative approaches and patterns in a distributed context whilst some detailed

mathematics models related to collaborations will be discussed throughout the remaining

chapters.

.

Figure 2.3: Business collaborative strategy

Collaborative Strategy

Based on SOA, modern enterprises do business by adopting collaborative approaches,

which normally span a large spectrum of different trading partners’ boundaries. In

addition, the collaborative relationships among trading partners are built based on a

multiple levels’ strategy, from a high-level strategic level through the concept level to

 21

the concrete operational level [123]. Figure 2.3 shows the general idea of doing business

by using a collaborative approach.

• The strategic level deals with high-level decisions that involve different trading

partners. This often includes general decisions regarding achieving a particular,

potential common business objective, such as if two trading partners agree to design

a software application together. As a result, a virtual organization will be formed

according to the strategic decision made. Also at this level, each partner within the

virtual organization expects to complete a task, for instance, one partner providing

loans service and the other for insurance, and so on.

• The concept level describes business processes according to a value chain model.

These concepts are generally well-defined coarse processes so that multiple scenarios

are enabled to reflect the flexibility of a collaboration.

• The operational level focuses on the technical aspects of a collaboration to realize the

scenario of a collaboration. At this level, each partner may develop its own

applications, integrate existing applications as services and further wrap them as Web

services. Furthermore, with Web services, the well-defined coarse processes can be

realized through discovering and composing Web services to enable control flows

and data flows among the partners.

Collaborative Patterns

The collaborative strategy above describes general cooperating ideas of doing business.

Based on the basic principle, the concrete interaction of trading partners in a

 22

collaboration can be categorized into three patterns: chained pattern, nested pattern and

synchronized pattern [56], shown in Figure 2.4.

In a chained collaborative pattern (Figure 2.4 (a)), a business process triggers a

collaboration by invoking a task in another business process. During the collaboration

after the process triggering, the two collaborative processes have an independent

relationship, that is, triggering process can independently continue to proceed or

terminate without being subject to the triggered process. In a nested collaborative pattern

(Figure 2.4 (b)), on the other hand, a task in business process triggers a collaboration by

invoking a task in another business process. However, the triggering process has to wait

until the completion of the triggered process. Finally, in a synchronized collaborative

pattern (Figure 2.4 (c)), the two collaborative processes have a dependent relationship.

At a collaborative point, two processes execute in parallel through exchanging

synchronizing information and they can proceed to work after the completion of both

processes.

Figure 2.4: Collaborative patterns [56]

 23

Forming Virtual Organization

Due to the increasing pressure of competition and market changing, business enterprises

employ collaborative approaches to seek new business opportunities. This means that it

may not effective for a single business enterprise to perform all of business activities

alone. For example, it may be cheaper for an enterprise to select new business partners to

do parts of its work because these partners may have highly specific expertise related to

the work, so that acquiring another partner to do the job could lower business costs.

What is more, business enterprises may change their business processes to further

improve work efficiency by merging their processes with a partner’s ones to run in a

competitive manner. As a result, this outsourced running manner and the process

changing results in forming a virtual organization. We summarize the above process of

forming a virtual organization as follow [95], shown in Figure 2.5:

• Starting from an agreement on collaborations

• Reducing some repeating work units

• Developing independent work unit based on common objective

• Integrating relationship between suppliers and customers

• Forming virtual organization via repeating some above steps

 24

Figure 2.5: Form virtual organization [95]

Based on the description above, we can further summarize the basic characteristics of do

business via a collaborative business approaches. The main objectives of such

collaboration are to share resources, improve a business enterprise’s working efficiency

and provide better products or services. Furthermore, effective process collaboration

provides business companies with more flexible means for the choice of the services

offered by other independent service providers. For example, a business company is able

to focus on its own important work, outsourcing some routine work to other partners in

order to reduce the costs of production.

Figure 2.6 shows an example of car manufacturing business via a collaborative

approach. This scenario involves four business partners: a manufacturer, two component

suppliers and a shipper. Both supplier 1 and supplier 2 are supposed to provide car

engines or components to the car manufacturer. With collaboration techniques, the car

manufacturer may produce qualified cars whilst the cost of production may be reduced

 25

by selecting more appropriate business partners. For example, if the quotes offered from

supplier 1 are over the expected budget, the manufacturer may select supplier 2.

Figure 2.1: A scenario of distributed collaboration

In the following section, we will present some terminologies relevant to the business

collaborations introduced in the above scenario.

2.1.3 Business Process

A business process in an enterprise refers to a set of tasks that describe how its products

and services are designed, manufactured and marketed. These basic tasks consisting of a

business process are performed collaboratively to realize a business objective, such as

achieving a particular profit of production. Depending on the specific applications, a

business process can belong to an intra-enterprise, but can also span over different

organizations (inter-enterprise). For example, in the PC maker scenario of supply-chain

management, the task of ordering motherboards might be conducted by a motherboard

provider at a place A; the task of loaning process for CPU purchase may be carried out

 26

by a CPU supplier at place B; and the claiming management process may be

implemented by an insurance company at place C. Finally, these tasks in a business

process could also be sub-processes that may be realized by combing various Web

services, which correspond to a business transaction.

Business Process Design Approaches

Two basic strategies have been used to design business processes: the top-down

approach and the bottom-up approach. The top-down process design approach refers to

the procedure of analyzing requirements, and decomposing a business process into sub-

processes or tasks, which can be easily handled and realized with individual Web

services. More specifically, the top-down approach starts with a requirements analysis,

which specifies what a business company expects to achieve with respect to the

objectives of the company, such as whole performance of business process, reliability of

business activities and security, and so on. After the decomposition of a business

process, the dependency among tasks needs to be examined and determined. This

includes the description of each task in the business process, such as functional features

(e.g., input and output) and non-functional features (e.g., reliability, transaction), and the

relationships between tasks in the process, including control flows and data flow among

the tasks. Top-down design is a suitable approach when a business process is being

designed from scratch.

Commonly, however, a number of processes or Web services may already exist. In this

case, the design task involves integrating the existing services into one business process.

The bottom-up approach is suitable for this type of situation. The starting point of

 27

bottom-up design is the individual services, and final result of this approach would be a

global process model. The advantage of this approach is to reduce the cost of developing

business processes because of the reuse of existing resources. The downside is the lack

of an integrated view of the entire system. Therefore, in real application in developing

business processes, the two approaches may need to be applied to complement one

another.

Web Service Discovery and Business Process

Before the execution of a business process, a set of Web services needs to be located to

fulfill the tasks included in the business process. In this case, the assignment of tasks to

appropriate services is referred to Web service discovery. In this situation, how to

effectively select appropriate Web services for tasks is considerably challenging issue in

distributed context because there may exist a number of solutions.

2.1.4 Workflows

Workflows refer to the automation of business processes, in whole or part. The

Workflow Management Coalition(WfMC) [136] defines workflow as “the automation of

a business process, in whole or part, during which documents, information or tasks are

passed from one participant to another for action, according to a set of procedural rules”

[136]. In the following, we introduce some basic concepts about workflow.

Tasks and Collaboration

A workflow consists of a set of tasks. Each task can be a primitive task or a complex

one. A primitive task represents a basic business activity unit that cannot be decomposed

 28

into simpler tasks whilst, a complex task include a subset of tasks and the ordering

relationships of their execution. The execution of a task in workflows is performed by an

agent. Depending on the specific processes and applications, an agent can be a human, a

program, a physical device or a Web service. If a task is assigned to people, the

assignment of people to tasks in a business process is often performed via roles.

The tasks in a workflow need to coordinate each other for achieving a business

objective. More precisely, the coordination of tasks involves how to schedule tasks

available, that is, which tasks to select, what order of task to follow and what data

dependency among task to regulate. This relationship among the tasks in the course of

coordination is called workflow patterns, and can be further described via control flows

and data flows. For example, in a sequence invocation of tasks, some tasks have to be

scheduled one after the completion of the other. In service-oriented environment, a

complex and long-running business process is generally performed in a highly

distributed and heterogeneous environment. With workflow technology, the enterprise

business activities can be structured as a set of tasks that are executed in a specified

partial order.

Workflow Description and Workflow Enactment

Generally, a workflow includes two basic components: workflow description and

workflow enactment. A Workflow description, also called workflow schema, formally

models a business process and the relationships between tasks in the process, which

include basic tasks, control flows and data flows. This basic workflow description may

be based on a graph theory, where a node denotes a task and the directed links between

 29

tasks reflect their dependency. A task could be corresponding different business

activities such as transaction and sub-process. Control flows denote the potential

execution sequence of various tasks. For example, a directed edge pointing from A to B,

called control connectors, regulates the flow of control from task A to task B, which

means that task B can only start after task A has completed. On the other hand, data

flows reflect real execution sequence of various tasks. Based on specific business rules,

real data determines which path (consisting of real execution sequence of tasks) should

take. These control and data flows are normally called business logic, which is necessary

to realize the desired processes.

Workflow Management System

A workflow management system (WfMS) provides an effective environment to support

for both defining workflow and run, schedule and monitor its execution. Formally, a

WfMS is a software system that completely defines, manages and executes workflow

through the execution of workflow whose order of execution is driven by a computer

representation of the workflow logic [136].

First, for the definition of workflows, tasks and the relationships among tasks in the

workflows need to be modeled as related processes through using a modeling approach,

such as metamodel [65]. The metamodel provides build-time functions and constructing

units by which a business process is able to be translated from the real world into a

formal, computer processable process metadata. What is more, workflow definition

language, such as Web Services Flow Language (WSFL)[125] (e.g., BPEL4WS[135]) ,

scripting language like MQSeries Workflow, and together with some editors, can further

 30

assist designers to model workflow processes. Second, for running and scheduling

workflows, a workflow engine (a software service) will take as input the description of

the workflow description, interpret the process definition, and control and manage the

process instances.

2.1.5 Transaction Management

e-service transaction management is a comprehensive logical architecture that uses e-

services to develop, deploy, discover, compose, and manage computing resources.

Normally, the transaction management involves complex business processes that may

include several transactions. The transactions often involve various activities that may

invoke and span in multiple e-services such as payment processing, shipping,

coordinating and managing marketing strategies, and so on. Over the years,

organizations have been seeking closer collaboration, application reusability and cost

cutting in the face of tougher competition. Therefore, an effective and efficient e-service

transaction management has become a critical factor for the organizations’’ business

success.

Basically, the existing approaches, standards and transaction protocols are needed to

consider more complex transactions, such as in the scenarios of reliable distributed

collaboration and dynamic composition of e-services. First, the existing approaches lack

semantic support for description, discovery and composition of Web services. Second,

traditional database transactions demand to satisfy strict ACID properties (atomic,

consistent, isolated, durable) [40], and extended transaction models must also comply

 31

with the weaker specifications of the ACID properties. However, to e-services

transaction management, the strict ACID properties may not be desirable.

Then, traditional transactions are effective in a homogenous and centralized database. In

this case, the data in traditional transactions is raw (no meaning) and known (with fixed

value). Nevertheless, in a distributed transaction management of service-oriented

structure, Web services have long running behaviors [73], which may not be precisely

known when they are invoked. In addition, traditional transaction models and analyses

fail to include the performance aspects of e-services transactions (e.g. QoS, scalability,

etc.)[5, 23, 74], nor do they consider composite business transactions. Imagining

ordering goods on the Internet as an example, it needs long running business activities

such as checking price, sending order and shipping package, and so on.

Therefore, to achieve the objectives of these complex business transactions, an efficient

transaction management should understand the different services’ syntactic and semantic

descriptions, have efficient approaches and models for coordinating business

interactions, and have proper frameworks for managing computing resources that may

span different administrative domains.

2.2 Services-Oriented Architecture (SOA)

In this section, we will introduce the essential protocols and components that are related

to constructing the CSTM framework.

2.2.1 Simple Object Access Protocol (SOAP)

 32

Simple Object Access Protocol (SOAP) is a XML based protocol that can be used to

exchange structured information in a decentralized, distributed environment [133].

SOAP provides an XML format for sending messages, which is independent of

programming language and computer platforms. In particular, SOAP works on existing

network transport protocols, such as HTTP, SMTP, FTP, etc, rather than defining a new

transport protocol. The transporting elements in SOAP are a SOAP message, which is an

XML document with the body element and header element. The body element includes

the transmitted documents whilst a header element can contain optional routing and

security information. Both the header and body elements are themselves XML nodes. In

addition to the basic message structure, the SOAP specification also defines a model that

dictates who should process messages and how recipients should process SOAP

messages. For business collaborative applications in distributed environment, SOAP can

be used as the common communication protocol for constructing the CSTM framework.

2.2.2 Web Service Description Language (WSDL)

Web Service Description Language (WSDL) is an XML format for describing network

services as a set of endpoints operating on messages containing either document-oriented

or procedural-oriented information [132]. With WSDL, a Web service can be described

as a collection of network endpoints. The description consists of two main parts: the

abstract definition of interfaces and the concrete implementations of network. In the

abstract definition, interfaces and a set of operations are defined by portType element

and operation element respectively. Besides, each operation may contain input/output

messages that are defined by message element.

 33

Figure 2.7: The specification of web service

On the other hand, the concrete implementations specify how the abstract interfaces are

mapped to the specific bindings, which may include particular binding protocols like

SOAP and network address. Similarly, a set of elements such as service, port and

binding are used to define these deployment details. For business collaborative

applications in distributed environment, WSDL can be considered as the common

language that defines service interfaces.

The key advantages of this mechanism adopted in Web services lie in the separating the

interface definition from the network implementation and making it possible to multiple

deployments on the identical interface. Moreover, it would facilitate the reuse of the

software in the Web service community. Figure 2.7 shows the specification of Web

services and Figure 2.8 shows an example of WSDL file for a CargoShipping service.

 34

Figure 2.8: An example of WSDL file for cargoshipping web service

2.2.3 Universal Description, Discovery and Integration (UDDI)

Universal Description, Discovery and Integration (UDDI) [134] is a service discovery

specification that is proposed by an industry consortium led by IBM, Microsoft. With the

UDDI, Web services are registered and described as core type of information: white

pages with their contacting details, yellow pages containing their classification

information based on standard taxonomies and green pages providing the specification

of interface for Web services. The UDDI is also a platform-independent, open

framework for describing services, discovering businesses, and integrating business

services. It proposes a unified and systematic way to publish and discover Web services.

At present, UDDI has become one of the dominating industrial techniques for Web

services discovery. UDDI also allows syntactically search and category-based match

Web services. In addition, a service requester can use the Inquiry API provided in UDDI

for retrieving services via submitting instructions like find_service(). For business

 35

collaborative applications in distributed environment, UDDI can be considered as a

service broker.

2.2.4 Business Process Execution Language for Web Services (BPEL4WS)

At present, BPEL4WS [135] is an industrial standard for describing Web services. In

particular, it can serve not only as a platform for modeling an abstract process but as the

implementation language for executable processes. In an abstract process, BPEL4WS

describes a business protocol, specifying roles between different parties and their

relationship without considering internal behaviors for parties. On the other hand, in an

executable process, BPEL4WS specifies an execution order among a set of activities

constituting the process. Currently, BPEL4WS engine is one of the main execution

environments, which provides a full package of Web service processes, including

development, deployment and execution.

2.2.5 Ontology

Ontology refers to a formal specification of a conceptualization. Based on a theory on

existence, such a technique organizes a domain knowledge into the categories by virtue

of objects’ components and their semantic connectives, aiming at capturing the

information on the structure and semantics of a domain. In other words, an ontology

describes concepts and relations between domain concepts.

Ontology defines basic concepts and terminologies that are agreed by all participants in a

community. In particular, service ontology specifies a domain like healthcare, a set of

synonyms, which is used mainly to facilitate flexible search for the domain. In addition,

 36

an ontology also describes service classes, which are used to define the property of the

services. Because of its properties, ontology is used to discover Web services.

2.3 e-Service Transaction Management through Workflows

The approach of workflow-based composition is first achieved by definition of an

abstract process of service model that includes a set of tasks and their data dependency,

and then in runtime, each task is used to search the real atomic Web service to fulfill the

task. Normally, a business process is a set of one or more interconnected activities to

realize a business objective while a workflow is an automation of business process

during which information or tasks are passed from one participant to another, according

to a set of predefined rules. Thus, we can model workflow using a graph in which its

nodes represent activities or tasks and its edges represent control and data flows.

2.3.1 eFlow

eFlow [22] is a workflow-based services composition platform that supports the

specification, deployment and management of composite e-Services. In the eFlow, a

composite service is modeled by a graph, which defines overall flow of services

execution and data exchange among the services. In the graph of a composite model, a

service node represents the invocation of an atomic service or a composite service while

arcs in the graph denote the dependency among the nodes. In order to dynamically create

process definitions for composite services, a customer can specify the services he/she

needs by accessing a module called generic service node. Once the customer submits a

 37

form, a new instance of the process is started. When a service node is invoked, a search

recipe is executed to select a reference to a specific service.

However, most approaches of these process-based workflows are static and predefined.

In other words, an abstract process model should be created before the composition

planning starts. Obviously, this feature reflects that this kind of workflow method lacks

flexibility and is not user-friendly. The main problems include:

• these kinds of workflow-based approaches have been mainly defined by users

manually

• the degree of automation of producing composite service is low

• there is shortage of semantics

2.4 e-Service Collaboration Transaction Management through Web

Services Composition

To tackle the problems mentioned above, semantic Web and AI technologies point the

way to the future. Recently, academic researchers of the Web have been making

unrelenting efforts towards automatic, semantic Web enabled e-services transaction

management. The basic ideas and methods are to annotate Web services with semantic

information, develop different mathematical models and apply various automatic

algorithms. Some examples are summarized as following.

2.4.1 Quality-Driven Web Services Composition Transaction

Basically, the performance and properties of a Web service can be represented or

evaluated by the Quality of Service (QoS) that includes Execution Price, Execution

 38

Duration, Reliability, Availability and Reputation. As multiple Web Services may

provide similar functionalities with different properties (e.g. different price), the QoS is

used to be a standard for selecting proper candidate services and producing an

optimizing plan for a composite service. An interesting approach that describes the

composition process of e-workflows is put forward in [23]. The approach relies on the

use of ontology to describe workflow tasks and Web services interfaces. In [23], service

composition consists of two steps. First, a client creates a service template (ST) to

indicate his/her intention, and then the ST will be employed later to find appropriate

Web services. Second, the ST is sent to a discovery module that returns a set of service

objects (SO). Consequently, the task of service composition can be completed by

matching ST with SO in terms of syntactic similarity, operational similarity, and

semantic similarity.

2.4.2 Ontology-Driven Web Services Composition Transaction

One of the methods to empower Web services with semantics is to use ontology.

Ontology is a kind of knowledge representation describing a conceptualization of some

domain. As ontology specifies a vocabulary that includes the key terms, services’

semantic interconnections, and some rules of inference, it is now used to compose and

manage Web services. One of the examples of using ontology can be found in [22]. In

[22], Web services are first semantically described through an ontology-driven Web

services composition platform, and then a composite service is generated. In addition, by

using Web services ontological descriptions and relationships to other services, possible

automatic compositions are obtained through checking semantic similarities between

 39

interfaces of individual services. After that, these compositions are ranked and an

optimum composition is selected.

Another example of composing e-services is to combine states with atomic process of

Ontology Web Language for Services (OWL-S) [137]. In OWL-S, a state is viewed as a

database instance, and an atomic process is similar to one of OWL-S. In fact, this

approach regards service composition problem as mediator synthesis problem, that is,

the approach results in building a mediator service that simulates the behavior of an

objective Web service. Finally, other related works on automatic compositor of OWL-S

services can be found in [39].

2.4.3 Rule-based Web Service Composition Transaction

A rule-based approach to compose Web services is applied in SWORD [94]. The

SWORD is a toolset that allows service developers to quickly compose basic Web

services to realize new composite Web services. In SWORD, a service is firstly

represented by a rule that expresses that given certain inputs, the service is capable of

producing particular outputs. A rule-based expert system is then used to automatically

determine whether a desired composite service can be realized using existing services. If

so, this derivation is used to construct a plan by which SWORD will instantiate the

composite service when the plan is executed. In particular, SWORD does not deploy the

emerging service-description standards such as WSDL and DAML-S, instead, it uses an

Entity-Relation(ER) model to specify the inputs and the outputs of Web services.

Therefore, the ER model provides a basis on which reasoning can be carried out on the

entity and attribute information.

 40

While being promising in their theories and applications, no single approach can provide

a solution that efficiently and successfully supports all business transaction process. For

example, an expert system is needed in [94] to realize e-services transaction

management, but such an expert system is not always available and not always practical

in service-oriented computing.

2.5 Research Problems and Challenges

Due to its complexity, the problems of the semantics and the reliable collaboration in

Web-based context have attracted much attention in service-oriented computing. The

complexity can be mainly summarized as following:

• As Web services are usually created by different providers that employ different

phrases and models for presenting and describing services’ characteristics and

capabilities, it is difficult for service consumers to correctly understand the relevant

semantic information hidden behind the Web service descriptions.

• As the number of available Web services on the Web is ever increased, it is very

difficult or beyond the human capability to discover and compose Web services

manually.

• As the Web services can be created and updated dynamically, it is very difficult for

the e-service transaction systems to handle the exception raised at the execution of

business processes and make a correct decision on the fly.

• Traditional transaction models are mainly based on the database transaction models

such as ACID properties, which require that a transaction can not share its data with

other concurrently running transactions until it is completed. However this strict

 41

atomicity and isolation policy is inappropriate for enabled e-service transactions

management in a service-oriented application.

In this thesis, we address the challenges mentioned earlier by presenting an access

control framework and models for supporting semantic, reliable and secure

collaboration. The proposed approaches depend on workflow technologies by integrating

control flows and data flows models, and they employ a relaxed transaction concept for

fault tolerance, in order to maintain the process consistencies, as well as, data

consistencies even in presence of failures.

To achieve these objectives, we first locate relevant Web services by semantic approach.

The key idea of our approach is to indirectly associate the intention of users to the

advertisements in Web services by applying Probabilistic Latent Semantics Analysis

(PLSA). Then, we model the internal activities within an institution by employing

workflow technology whilst the individual workflow models of participating institutions

can be mapped to views, which are further described by Web services. Based on the

view model, a two layered access control architecture is proposed to protect computing

resources. Finally, the atomicity concept is relaxed by integrating transactions and

exception handling models in order to ensure the reliable collaboration on the Web.

2.6 Summary

In this chapter, we have examined the traditional approaches to doing business,

introduced new collaborative approaches and discussed related research issues.

Traditional business approaches are mainly based on a central decision making control

mechanism by which trading partners are working together with closely coupled. As a

 42

result, these enterprises lack the flexible ability to meet a specific business objective and

respond the market change rapidly because it is difficult for them to provide relatively

complex, add-value and quickly delivered products and services to markets. The new

approaches are based on process-oriented collaborative strategy [121, 95, 64]. The key

idea is that the collaboration among trading partners is based on sharing business logic

of whole collaborative process. Under this strategy, each partner can focus on its core

businesses, flexibly select trading partners and join the collaborative process according

to the common objective.

Some questions often raised are the semantics, security and reliability in a distributed

collaboration. These issues require the use of analysis and model, a hybrid semantics

extracting approach and transaction-based approach, which can solve effective

collaboration among trading partners in a distributed environment. For a detailed

discuss, see the following chapters. In the next chapter we will first present basic models

for semantic, secure and reliable transaction management applied to this thesis.

.

 43

3. Chapter 3

Basic Models for e-Service Transaction

Management

3.1 Introduction

In the previous Chapter, we introduce a scenario of doing business by using new

collaborative approaches, which involves different actors, such as manufacturers,

suppliers, banks, transportation, warehouses and customers, and so on. In a distributed

environment, the collaboration among these trading actors may show the complex

behaviors in the setting of the structure for doing actual business transaction and the

exchange of goods, services or money. Once this initial observation is done, how do we

derive some essential features from these complex collaborative phenomena, so that

various aspects of effective collaboration like semantics, security and reliability can be

examined?

The process used to address this issue is known as models. This is typically done by

identifying main actors in a collaborative system, describing the interactions among

them and analyzing the main characteristics and behaviors they show in collaboration.

In this Chapter, we will discuss main elements in a distributed collaboration and analyse

the relationship among the elements. We start with introducing basic requirements in a

 44

distributed environment, including security requirements, reliability requirements and

semantics requirements. We then present some basic terminologies used in security

model and transaction model. Finally, we describe a workflow model

This chapter is organized as follows. In Section 3.2 we first present basic modelling

concept. In Section 3.3, we identify the basic requirements about security, reliability and

transaction in a distributed application. Section 3.4 gives a role based access control

model and a distributed workflow model is discussed in Section 3.5. Finally, Section 3.5

reports the summary of this chapter.

3.2 Introduction to Modeling for Distributed

 Collaboration

Business collaborative applications often involve long-running computations, loosely

coupled systems and components, which are linked together to form a cohesive whole.

In particular, the process-based collaboration with Web services is emerging as a

promising approach to automate business process across organizational boundaries. With

this approach, individual Web services are federated into a cohesive whole whose

business logic is expressed as a process model. Furthermore, workflow management

systems (WFMSs) can be employed to automate business process by choreographing its

component services.

However, business collaboration across independent organizational boundaries and their

systems is complex for several reasons. First, Web environments are highly dynamic. A

partner joining collaboration with Web services may leave or join the collaboration

again at any time. Second, organizations are changing constantly by restructuring their

business process or forming a virtual organization alliance for introducing new products

 45

or seeking new business opportunities, in order to survive in the increasing competitive

pressure of the globalization of economies.

Thus, there is a need for requirement analysis, models and abstraction in order to help us

understand what attributes of the key components involved in a distributed collaboration

system. In this chapter, we describe basic security, reliability and transaction

requirements and models that are used in this thesis.

The aim of developing models is to provide a basic framework in which the various

aspects of a distributed collaboration such as structure, reliability and fault tolerance can

be examined. A model is an abstract description of the important features of a system

under study. The feature description often includes the attributes of the system under

study and a set of rules, which are used to demonstrate how these attributes interact with

one another. Instead of listing all characteristics related to a system in a model, an

effective model should consider only the essential attributes in order to help designers to

understand the systems’ behaviors, ignoring some minor aspect of the system.

3.3 Basic Requirements for Distributed

 Collaboration

In this section, we consider basic requirements for distributed collaboration. The design

of a distributed collaborative application, particularly in a loosely coupled collaborative

environment, should not only take into account functional requirements needed for the

distributed applications, many non-functional yet important aspects, such as security and

reliability, scalability and service quality, etc, are also needed to be handled properly.

Based on the fundamental properties and requirements, we are able to present models to

make generalizations concerning what is possible or what is impossible.

 46

Normally, requirements are an informal description of what a collaborative system is

supposed to achieve. The description is really indicating what a system can do with it,

rather than how the system exactly do with it.

3.3.1 Security Requirements

Compared to traditional collaborative applications, modern distributed collaboration

applications put forward new security requirements. These requirements include:

decentralized security management, capability-based access control and multiple domain

access control interaction.

Decentralized Security Management. Distributed business applications often involve

coordinating the flow of processes and information across several domains and linking

their support and information systems together into a cohesive whole. In this case, each

participant joining a collaborative application may have domain-specific security

policies and requirements that are confidential. Thus, each domain should have full

autonomy of specification, management and enforcement of its security policies. This is

contrast to the situation in traditional collaboration applications, where a trusted

centralized coordination strategy is needed to manage collaborative applications

execution. Moreover, in decentralized security management, there is no existent any

prior knowledge about the security policies governing the collaborative partners because

the collaborations are built dynamically. As a result, in some unpredicted execution

environments, and business partners are not expected to reveal their security policies to

other business partners.

 47

Capability-Based Access Control. As business integrations in distributed context take

place in a loosely coupling manner, they can interoperate more freely across the Internet.

In addition, the collaboration in distributed context is established in a highly dynamic

fashion and on-demand basis, and interacting users and Web service providers may even

know little about each other. In this situation, access control methods based on the

identity of each user is unsuitable for dynamic distributed collaboration. For example,

accessing scalability based on the identity control will be decreased when the number of

users and services increase, especially when the population of users and services is

highly dynamic. Therefore, capability-based access control, rather than a partner’s

identity, is of importance [60].

3.3.2 Reliability Requirements

The importance of service-oriented computing for collaboration in business applications

and software engineering continues to grow. The growth however, is impeded by the

increasing complexity of distributed applications and the lack of reliability and

flexibility of applications that use Web services. Here, reliability refers to the continuity

of the service delivered by a system. In other words, a system could successfully

complete its tasks in the face of failures.

A challenge to overcome in this collaborative environment is that efficient fault tolerant

mechanisms are needed for ensuring reliable execution of business processes. For

example, a basic requirement for reliable collaboration in distributed scientific

experiments is that the experiments should be allowed to proceed without violating

process specifications and data consistencies even when the failures occur for varying

 48

reasons [4, 45, 41]. This requirement is particularly applicable to scientific workflows

because the experiment may consist of hundreds of separate computing steps and

involve lots of data objects, whilst the computing steps may fail. In such cases, giving up

the overall experiment would be too expensive [4, 29].

In a distributed system, both collaborative processes and communication connections

may fail. In this case, real business collaborative behaviors may depart from the

behaviours regulated in a specification, which is considered to be correct or desirable

behaviours. One key requirement for a distributed collaboration system is to ensure that

the outcome reached by each partner in the collaboration maintains consistency, and

keep consistency for the collaboration as a whole during the long running business

process in the presence of failures. More precisely, the following basic reliable

requirements should be met:

• Hybrid Fault Tolerance Mechanism. Fault tolerant approaches have been

employed to ensure reliable execution of distributed applications. The objective of

fault tolerance is to prevent the faults from leading to system failure so that the

system is able complete its tasks assigned. There is a long history of efforts to make

distributed applications reliable. The two fundamental approaches for constructing a

reliable system are fault tolerance and a transaction based approach. Fault tolerance

refers to a system design approach which recognizes that faults will occur; and it tries

to build mechanisms into the system so that the faults can be detected and removed,

or compensated for before they can result in a system failure [45, 107]. One of the

basic techniques in implementing fault tolerance is to utilize error recovery. The goal

of error recovery is to transform the current erroneous system state into a well-

 49

defined and error-free state, from which normal system operation can continue.

Specifically, there exist two basic ways to deal with the recovery: forward error

recovery and backward error recovery.

• Minimum of Failure Handling Cost. A complex business collaborative application

may integrate many different processes across organizations and link their support

and information systems together into a cohesive whole. This requirement is

particularly applicable to scientific workflows because the experiment may consist of

hundreds of separate computing steps and involve lots of data objects, whilst the

computing steps may fail. In the traditional approaches to dealing with failures, long-

running computing steps can be structured to form a so-called a global transaction. If

any of the computing steps fails, the whole application will be aborted and all effects

of implemented components constituting the application will be undone. This would

be too expensive. Thus, one of basic requirements is the lower cost of error recovery

in distributed collaboration.

The proposed approaches are based on the combination of atomicity sphere and

exception handling. The concept of sphere was originally used to refer to the sphere of

control in the traditional database [40, 28]. A sphere of control logically defines the

boundaries around a collection of operations performed on resources. As a unit of work

composing of set of operations, a sphere is atomic if all its composed operations are

committed or aborted unilaterally. This property can be used to create a fault-handling

mechanism for reducing the cost of recovering processes in case of the failures, and for

ensuring data consistency at various levels of granularity. For example, when a sphere

included in a process is found to be in error, recovery can be made by undoing or

 50

compensating for the parts of tasks included in the sphere, rather than undoing the whole

process.

3.3.3 Transactional Requirements

To support the reliable collaborations in a distributed environment, effective transaction

mechanisms should satisfy different transaction requirements needed in different

contexts. These transaction requirements are mainly reflected in the collaborating

participants in various application scenarios. For example, orchestrating a computational

step A and a computational step B may be considered to be reasonable, but combining

the step A or step C without step B might be not acceptable.

A transaction in a distributed environment is characterized by some distributed features:

long-running, heterogeneous, and loosely coupled [73, 107]. Firstly, long-running

computational tasks can be executed over a long period of time duration, so that it is

impractical to lock all data used in a computing process for extended period of time.

Next, heterogeneous features may involve multiple participants from various

organisations whose scientific computing processes may run independently. These

organisations may have different transaction models developed, managed, and run

independently. In addition, loosely coupling indicates that the collaborating relationships

between partners are established in a highly dynamic fashion and in an on-demand basis.

From these characteristics, it is clear that the overall transactional behaviours associated

with a transaction depend on the transactional capabilities and behaviours of individual

computing processes. Therefore, an effective transaction model, suitable for a distributed

environment, should support different transactional semantics in the same model [45].

 51

To sustain such transactional semantics, we integrate transaction properties into the task

model and the Web service model by extending the approaches proposed in [45, 5, 81,

107]. The main transactional properties include retriable, compensatable and pivot

properties.

• Retriable Property: This property indicates that an entity (e.g., a task) with this

property is allowed to repeat itself for completing its work successfully after a finite

number of tries.

• Compensatable Property: This property implies that an entity with this property is

allowed to undo the effect. In addition, the result produced by the entity could be

rolled back with transaction.

• Pivot Property: This property regulates that an entity with this property cannot

repeat itself or to undo the job because the cost of these behaviours may be expensive.

3.4 Role Based Access Control

As described in the previous section, a distributed collaboration consists of different

actors like manufacturer, suppliers and customers, etc. In this section, we will first

present some terms involved in the design of a secure systems, and then present a role-

based access control model.

• An object is a protected entity such as data, files or a method in a Web service. An

object is often subject to a domain, and is intended to be accessed by different users

(subjects). Normally, an object may have a set of rules to evaluate whether or not this

access is allowed.

 52

• A subject is an active entity that intends to access an object by performing an

operation on the object. A subject may be a user, a program or a process.

• Access rights refer to if a subject is allowed to access an object. If the access is

permitted, this subject is called an authorized subject.

• A role represents an abstract job function.

A traditional approach to denote access rights is to use an access matrix, where the

elements in the matrix denote whether a subject is permitted to perform an operation on

an object. Another access control policy that is used to collectively determine whether a

subject is allowed access to an object is the role-based access control [2]. We summarise

this policy as follow:

 U: users; R: roles; P permissions

RUUA ×⊆ : user assignment;

PRPA ×⊆ : permission assignment;

PR 2→ : map role r to a set of permissions

Permission () ()[]{ }PArprrPpr ii ∈≤∃∈− ,|)(

3.5 A Distributed Workflow Model

In this section, we present basic models based on the fundamental requirements and

properties described in the previous section. Theses basic models will provide a design

basis on which more complex business processes and collaborative contexts could be

built. In addition, this model allows one to concentrate on the reliable collaboration. In

 53

the following, we start with briefly introducing a number of terms, and then present the

detailed descriptions of terms.

• A process consists of a collection of tasks that can be described by a graph theory.

• A task is an atomic work item, but can also be a composite task.

• A task can be implemented by different entities, such as humans, Web services, or a

program. Such entity is called an actor.

• A role refers to a job function, assigned to authorised persons.

3.5.1 Basic Task Models

Tasks are main components for a workflow and display a variety of characteristics. A

task first is the unit of activity within a workflow. A unit of activity could be an atomic

work item, with the implication that any further internal structure of the item cannot be

discerned, or is not of importance. On the other hand, a compound task could contain its

components. A task interacts with other task through context it exists in, such as

enabling control flows and data flows between tasks. Meanwhile, the availability of an

input incoming a task may trigger the execution of the task if the input satisfies certained

constraint conditions.

Second, if a task is started by a human, the task is called a manual task m
it . In a

distributed collaboration, there are a number of scenarios where business activities

involve human endeavor. For example, in the processing of an insurance claim, a client

first fills out an application form, followed by the form checking. A staff may then exam

the filled form to make sure its completeness. After that, the form may be verified and

approved by an auditor or through invoking other related processes.

 54

Instead of directly assigning a task to a human for implementing, a task is more often

assigned to role. A role describes an entity’s ability or function. For an actor

representing a human, a role reflects the actor’s skills to perform some job function

regulated in an organization, that is, it represents the access rights that could be assigned

the actor. However, if an actor refers to a program, machine or a Web service, a role

reflects this program’s computing capabilities. In distributed workflow-based

applications, a role often refers to a group of tasks. Thus, a human actor can only execute

the assigned task activities if it is given related role associated with that task.

According to the above description, we summarize the basic features of tasks as follows:

• Types of tasks. A task may be an atomic task or a composite task. An atomic task

cannot be further broken down into smaller ones while a composite task may contain

some other tasks or sub-processes.

• Execution of tasks. Tasks are performed by agents (e.g., humans, or computer

programs) involved in a process enactment by providing the tasks with designed input

data.

• States of tasks. The implementation of tasks can result in the changes of these tasks’

states. The main states for a task may include initial, completed, failed, aborted,

cancelled and terminated states. For example, a task enters into the terminated state

when the work performed has stopped and related exit conditions have not evaluated.

In the following paragraph, we first formulate the definition of a basic task.

Definition 3.1 (Basic task model) A task iT is a tuple),,,(,, φoutputinputi TTASnT = ,

where

. n is the name of the task iT ,

 55

. S = {initial, completed, failed, aborted, canceled, terminated } is the set of task iT ’

possible states,

. { }pivotretriableblecompensataA ,,= is the set of the transactional properties of the

task iT ,

. inputT and outputT are input and output types for the execution of the task iT

, and)(outputinput TT ×⊆φ is a transition relation on the inputT and

outputT .

◊

Based on Definition 3.1, we associate transaction properties with tasks to distinguish

different tasks in a computing process.

Task and Transaction

Definition 3.2 (Transactional Task) A task with transactional properties defined in the

Section 3.3.3 is called a transactional task. In this case, a task is implemented as a

transaction.

◊

A task t is compensable if its execution effect can be reversed by another task c
t . In this

situation, task c
t is called a compensating task whilst its associated task t is called a

compensable task. For example, a task that reserves hotel is compensable because the

room booked can be cancelled by its associated compensating task cancel.

 56

Definition 3.3 (Compensatable task c
iT) Let *T be the set of all tasks defined by a

process. A task *
TTi ∈ is compensatable if there exists a task *

TT
c

i ∈ such that c
iT can

undo the effect produced by iT , that is, task iT and c
iT form a pair ()c

ii TTp ,= , and p

satisfies the following properties:

 (1) Let (){ }∗∈∃= TTTTP
c

iiiT | be the set of tasks in ∗T , then Ti PT ∈∃ such

that () () nulloutputToutputT i
c

i =•⇒• ϕϕ ;

 (2) For each Ti PT ∈ , outputTToutputTTTT iii
c

iii •×=•××× +−+−)()(1111 φφ .

Thus, task c
iT is called the compensating task of iT .

◊

The property (1) and property (2), defined in Definition 3.3, indicate that the computing

work performed by compensatable task iT can be undone by its compensating task c
iT .

Accordingly, we can define other kinds of tasks such as retriable task rT and pivot

task pT .

However, in some situations, some tasks may be neither retriable nor compensable for

various reasons such as because of violating business policy or resulting in high cost.

Such tasks are often referred to as pivot tasks. For example, online shopping task for

auctioning a computer is such an example. Due to business policies, a delivered

computer is non-refundable and not retriable.

3.5.2 Data Flow Model

Different applications naturally have different kinds of dependability requirements.

 57

Basically, the connection between two tasks represents their dependencies, which imply

some constraints imposed on the occurrence of the two tasks. More precisely, such

dependencies can arise from data flows.

Data dependencies describe the dependencies of tasks, which regulate how data

produced by one task can be routed to multiple downstream tasks. This dependency can

also be represented as a graph, with nodes denoting tasks (computational steps or

processes) and edges representing the flow of data. Based on the description presented in

[65], each task ∈T T has associated input and output containers, denoted as

()Tin and ()Tout respectively. If the input container ()2Tin of task 2T receives (consumes)

the data that are produced from the output container ()1Tout of another task 1T , we say

that 2T depends on 1T , denoted as ()21,TTd . Formally, for a given workflow model W, let

set T denote the set of all tasks, then all data dependencies among two

tasks TT ∈1 and TT ∈2 can be represented as a connector map which has been adapted

from [65]:

 () ()()U
TTTT

TinToutTT

∈∈

×℘→×∆

21
,

21:

Where, ()1T℘ denotes the powerset of 1T and the following conditions should be

satisfied:

(1) () () ()()2121, TinToutTT ×℘∈∆ ,

(2) () 221, TTT ⇒≠∆ φ is reachable from 1T .

The condition (2) indicates that there exists a control connector ()21,TTk between two

tasks 1T and 2T . In what follows this paragraph, we consider control dependency.

 58

3.5.3 Control Flow Model

Control dependencies describe the partial order of execution of the tasks inside a

workflow. For example, in a sequence dependency of tasks, control linking from task A

to task B means that task B could be implemented after task A has been completed

successfully, denoted as ()cBAq ,,= , where c denotes transition condition. In this thesis,

we use a projection map to represent the dependencies between the tasks.

Let set T denote the set of all tasks within a workflow model W, and set Q consist of all

possible sequences of tasks associated with the model W, thus, a control link is a triple

() CTTQctt ××⊆∈,, 21 , where C denotes transition conditions, then

. the set of all control connectors pointing to task Tts ∈ can be denoted by

{ }()ss tqQqt =∈=)(|: 23 ππ> .

 For example, in Fig. 3.1(a), () CTTcTTq ××∈= ,, 211 and 212)(Tq =π .

. The set of all control connectors leaving to task Tts ∈ can be denoted by

{ }()ss tqQqt =∈=)(|: 13 ππ< .

Here π denotes the projection map between Cartesian products.

Based on the above description, we can represent the dependencies between the tasks in

terms of BNF syntax:

 DT 212121 ||||:: TTTTTT ⊕→= ,

where 21 TT → , 21 || TT and 21 TT ⊕ denote sequential, parallel and choice relationship

operators respectively.

 59

Definition 3.4 (Sequential relation ji TT →) Two tasks iT and jT are defined as the

sequence pattern ji TT → if and only if they satisfy the following conditions:

1) { }() { }()ji TqQqTqQq =∈==∈)(|)(| 2313 ππππ ,

2) φ=⇒≠∈∀ jiji TTjiTTT I:)(, for example, 21 TT ≠ .

◊

Figure 3.1: Control dependency

The condition (1) indicates that the outgoing edge of task iT is the ingoing edge of

task jT . The condition (2) expresses that the two tasks are distinct. The sequence

operator ji TT → indicates that task jT can only be started after task iT completes its

work. Accordingly, we can define other dependency between tasks such as parallel

relation 32 || TT and choice relation 32 TT ⊕ .

3.5.4 Transactional Web Services Model

According to Web Services Description Language (WSDL), a Web services can be

described as an abstract interface that consists of collections of operations. The

interaction of a Web service with its environment (or other services) takes place through

 60

the operations by receiving input message and likely responding with output message.

Based on the description of the interaction, we model a Web service by adopting a

states/transitions approach.

Definition 3.5 (Web service) A Web service WS is defined as a transition system with

the form of a tuple),,,,,(0 FsRSWS δΣ= , where Σ is a nonempty finite set of

elements including input elements and output elements; S is a nonempty finite set of

elements called states; R is the set of transition preconditions; Ss ∈0 is an initial state; δ is

a state transition partial function regulated by SPS →×Σ×:δ and F is a set of final

states given as a subset of SFS ⊆: .

◊

Definition 3.6 (Transactional Web service) A Web serviceWS is defined as a

transactional service if it satisfies the transactional requirements defined in Section 3.3.

◊

According to the transactional requirements defined in Section 3.3, we use similar

method introduced in Section 3.4 to distinguish between compensable, retriable and

pivot services.

3.5.5 A Workflow Model

A workflow model (or specification) defines its basic components and regulates how its

components interact with one another. More precisely, the main components of

consisting a workflow normally include tasks (or actors), data flows and control flows.

As mentioned before, a task represents a basic unit of work (step) that performs a

specific function within a workflow. For example, a task may merely implement a

 61

simple mathematics computation, but can also complete other complicated function such

as coordinating the execution of other processes. In addition, the control flows express

the potential sequence by which different tasks can be implemented whilst the data flows

describe the data dependency between tasks.

We define a workflow by using the flow model [72, 64, 65, 125], which describes the

connection between tasks, the executing order of tasks, the data exchanging between

tasks and the decision point. The flow models play a role in the collaboration between

partners in the context of Web services. For example, the tasks in a scientific workflow

can be implemented as operations of Web services. Thus, a Web service provider can

publish a scientific workflow (flow model) as a Web service that can be invoked by

other collaborative partners. In this case, the collaborative partners play the role of

service requestors. Formally, a flow model can be represented as a directed graph in

which nodes correspond to tasks and edges indicate possible control dependencies or

data dependencies between tasks. Let G be a graph, with a set of nodes V and with a set

of edges E; and V(G) and E(G) represent the set of all nodes and the set of all edges in G

respectively. Thus, a scientific workflow is a simple graph ()fEVG ,,= , where

()GVb∈ and ()GVe∈ denote the beginning node and the end node in G; the edges can

be expressed as VVE ×∈ , and f is a function mapping each node onto unique label.

3.6 Summary

In this chapter, we discussed many of the important aspects that can be employed in the

design of an e-service transaction management system. We started off by discussing

security, reliability and transaction requirements needed in an effective e-service

 62

collaborative context. Based on the requirements, we presented related models that allow

us to concern primarily with the important feature of a collaborative system under study.

The objective of the abstraction is to provide a basic framework through which the

various aspects of collaboration in a distributed context like semantics, security and

reliability can be examined.

Next, we examined the role-based access control model by which trading partners

coordinate the efforts of their collaboration based on the roles.

Finally, we described a distributed workflow model, including a data flows model and a

control flows model. In the following chapters, we will apply these models to create an

effective collaboration across the various organizations’ boundaries.

 63

4. Chapter 4

Collaboration through Web services Discovery

and Composition Based on Semantics

Web service technology is an important enabler of effective collaborations across

organization boundaries. Much of the current interest in business collaborations is

motivated by employing Web services to reduce transaction costs and to enhance the

efficient collaboration among trading partners [95, 121, 64]. In addition, promising

characteristics entailed by Web services, such as flexible connections with unknown

transaction partners, platform independence and easy composition of other Web

services, have also increased the interest in a distributed collaboration among trading

partners.

In the Chapter 3, we have described the design of basic models applied to distributed

collaborative transaction managements, including different actors such as manufacturer,

supplier and shipper, task models, process model and workflow model, and so on. In the

context of Web services, these actors are represented as Web services and the business

process models can also be realized with Web services. As the first step of realizing a

collaborative process, Web services needs to be discovered to complete an assigned task

in the process. Therefore, our discussion of effective collaborative transaction

management will include discovery of Web services.

 64

In addition, a distributed collaboration typically spans different organizations,

communicates with various trading partners, and coordinates the flow of processes and

information among organizations by linking their support and information systems

together into a cohesive whole. Thus, after discovering proper Web services, in this

chapter we will also discuss Web service composition.

The effective discovery and composition of Web services based on semantics typically

poses a significant challenge. This is because Web service infrastructure itself can not

fully understand the business context of an e-business collaborative application [121],

although the infrastructure provides a good foundation to build a flexible collaborative

business information system. For example, current Web service discovery approaches

are based on syntactic information required to access the Web services that are described

in WSDL. However, these approaches fail to contemplate the semantic concepts hidden

behind the words in a query and the descriptions in Web services, which motivates this

research. Specifically, in this chapter we will discuss the following questions:

• How to effective discover Web services based on semantics?

• How to compose Web services based on the semantics?

This chapter is organized as follows. In Section 4.2, we first summarise some Web

service discovery approaches. In Section 4.3, we present Web services discovery based

on Singular Value Decomposition (SVD). Section 4.4 employs a probabilistic semantic

approach to extract semantic concepts hidden in services descriptions. Section 4.5 deals

with Web service composition with ontology. Finally, we review related work in

Section 4.6 and present summary of this chapter in Section 4.7.

 65

4.1 Introduction

The distributed collaboration often needs to integrate different business applications.

This requires coordinating the flow of processes and information among organizations

and linking their support and information systems together into a cohesive whole. In this

situation, the collaborative business logic can be specified in terms of a workflow in the

design time, thus the collaboration in distributed context can be modeled as an ordered

collection of tasks.

Figure 4.1: Service discovery and composition

As described in the previous chapter, each task represents a basic unit of work that

realizes parts of whole collaborations’ objective. These individual tasks can be deployed

on individual collaborative partners, each owning its own workflow engine. In service-

oriented architecture, a Web service is discovered and assigned to a task in order to

complete the task. On the other hand, during the runtime, a set of Web services might be

found for individual tasks in a local repository or located across organizations

 66

boundaries. When individual Web service completes its application invocation on behalf

of the tasks, the whole collaboration objective is realized. Thus reliability collaboration

in a distributed environment is a process of discovering and matching the appropriate

Web services, and composing them at running time. This process is illustrated in Figure

4.1.

Figure 4.2: Web service discovery

Web service discovery is one of key open issues in service-oriented computing. It

includes locating relevant services published on the Internet, matching the requirements

of consumers against the services returned, and recommending desired services to the

consumers. Efficient discovering Web services is a challenging issue for several reasons.

First, as Web services are starting to get deployed on the Web, a large number of Web

services would offer similar functionalities. As a result, it is difficult for service

consumers to select the desired ones to complete their tasks. Second, current discovery

mechanism like UDDI already enable much of the Web service discovery process,

however they concentrate largely on syntactic approaches such as by using keyword-

 67

based search and category-based matching, which is inefficient and time-consuming. In

this chapter, we describe a service discovery framework, where mathematical

approaches such as Probabilistic Latent Semantic Analysis approach (PLSA) are used to

extract the semantic concepts hidden in service descriptions.

4.2 Web Service Discovery Approaches

Web services have emerged as one of distributed computing technologies and sparked a

new round of researches. Web services are actually self-contained, self-describing and

modular applications. Because Web services adopt open standard interfaces and

protocols, they are increasingly used to integrate and build business applications on the

Internet. With Web services, business organizations can build their applications by

outsourcing some other services published on the Internet. As an ever-increasing number

of Web services published and deployed on the Internet, it is critical for service users to

discover desired services that match their requirements.

Web service discovery is the process of locating effective approaches to find, match and

access the Web services published in a local repository or located across the Internet. To

effectively discover and match Web services, it is a necessary to establish some kinds of

the correlations between a user and potential services available, which can be achieved

through two steps. On the client side, a service user can express his/her requirements

described in the form of nature language and then use a service search engine to interact

with a set of potential Web services. On the side of services providers, on the other hand,

they advertise services’ capabilities through some descriptions such as the Web services’

names, the operations’ descriptions and the operations’ names described by WSDL. In

 68

this situation, they also assume that clients would agree on the words used to describe

the Web services. However, the problem of how to deal with the agreement and how to

associate the users’ requirements to the advertisements of Web services would have a

critical impact on discovering Web services. Therefore, locating desired services might

be difficult.

Web service discovery has been widely used in business collaboration and integration. In

a distributed collaboration environment, whole business objectives can be realized by

firstly locating basic Web services deployed on the Web. These services discovered are

then integrated into new composite services that can provide more sophisticated

functionality and create add-on values. For example, a travel booking composite service

can provide a high-level travel transaction management service that uses individual car

rental, hotel reservation and payment Web services as components. It is also likely that

the interaction and collaboration among Web services that make up the composite Web

service is regulated via a business process model. Thus the dependency between tasks in

the process model can be further described by control flows and data flows. In this

situation, it is necessary to discover appropriated Web services and assign them to a task

in order to complete the task.

In addition, participants who request Web services through the Web in distributed

collaboration need to apply appropriated approaches to access provided Web services

that meet their requirements. Therefore, efficient collaboration in distributed context is

achieved by automatic Web services discovery and binding Web services in order to

satisfy their requirements.

 69

Current Discovery Approaches

A commonly used approach on discovering and matching Web services is to directly

associate a user’s requirements to the advertisements of Web services (solid line 1

shown in Fig. 4.3). For example, a user types keywords in a Web service search engine

[126, 127, 128, 129] to look for the desired Web services. If the typed words are

included in or identical to the descriptions of some services, the return services might be

relevant to his/her need. Nevertheless, this approach based on the term frequency

analysis is insufficient in the majority of cases. For one thing, syntactical different words

may have similar semantics (synonyms), which results in low recall. For another,

semantically different concepts could possess the identical representation (homonyms),

thus leading to low precision. In short, this discovery mechanism fails to contemplate the

semantic concepts hidden behind the words in a query and the descriptions in Web

services.

Figure 4.3: Approaches of Web service discovery

An alternative to the keywords-based approach is to indirectly associate a user’s

requirements to the advertisements of Web services (dashed lines 2, 3, 4 shown in Fig.

4.3). This relies on finding common semantic concepts between the terms in a query and

 70

services’ advertisements. Then the similarity between a query and services can be

compared at concept level. More recently, ontology-based approaches [92, 105] have

been seeking to use ontology to annotate the elements in Web services. Such techniques,

based on a theory on existence, organize domain knowledge into the categories by virtue

of objects’ components and their semantic connectives so that the suggested approaches

aim to not only capture the information on the structure and semantics of a domain, but

facilitate software agents to make inference at concept level.

Main Problems of Current Discovery Approaches

• Lacking Semantics Support. Existing discovering approaches and standards such as

UDDI can be used to enable the discovery process of Web services. However they

concentrate mainly on syntactic service descriptions. In addition, the success of such

approaches is based on the fundamental assumptions that the words used to describe

Web services are predefined and known for both service requesters and service

providers. For example, when service requesters want to locate a Web service, they

express search requirements described in the form of nature language. In this

situation, the service requesters can be assumed to know the service’s semantics, that

is, what kind of service they need. On the side of service providers, on the other hand,

it is assumed that service requesters would agree on the words used to describe the

Web services capabilities through some descriptions such as the input and output

names, the operations’ description. However, the assumption is impractical in reality

because different customers may use different ways (for instance, using different

words) to express their requests and also because different services providers may use

 71

different phrases to describe their services capabilities. It is thus clearly that the

problem of how to deal with the agreement and how to associate the users’

requirements to the advertisements of Web services would have a critical impact on

discovering Web services. Therefore, locating desired services based on semantics

might be difficult.

• Poor scalability. Current centrally maintained repositories like UDDI are poor at

supporting scalability in the Web context. In the situation where keywords are used to

find services, the excessive number of the services returned has made it difficult for

users to browse, to look at and to choose the interesting services.

In this chapter, we present the design and implementation of a Web services discovery

framework to effectively discover Web services. We argue that efficiently locating Web

services needs to consider the issues of semantic concepts and scalability.

The salient features of our approaches are:

• Complying with the current dominating mechanisms of discovering and describing

Web services. We use keywords to first retrieve Web services, and then extract

semantic concepts from the natural language descriptions in WSDL and UDDI, which

are currently dominating mechanism of discovering Web services. This is different

from keyword-based discovery approach.

• Supporting scalability for discovering and selecting Web services. We propose to use

the divide and conquer methodology to handle the poor scalability in the Web

environment and the issue of lacking semantics.

4.2.1 Keyword-Based Web services Discovery

 72

Keyword-based approaches are widely used in traditional information retrieval systems.

An information requester submits the system with a query that consists of a number of

keywords in order to retrieve the desired documents. The retrieval system returns stored

documents in answer to the information requester based on the similarity between the

query and the stored documents. Here similarity means that the documents contain

particular keywords from the requester’s query or those documents prove similar enough

to the corresponding the query, and those documents are returned to the information

requester.

Currently, keywords-based mechanism is one of the techniques for Web services

discovery and matching [34, 37, 43, 59]. As described in the previous section, service

discovery is performed by comparing a query with the descriptions of services to figure

out which provided services are relevant to a specific request. This comparison is also

referred to as matching. As its core functionality, a discovery framework must specify

how the matching of capability descriptions is carried out.

Keyword-based discovery approach is based on two observations: term frequency (TF)

and inverse document frequency (IDF).

• Term frequency (TF). TF refers to counting number of occurrences of each term in a

document. For example, if a term “computer” occurs with high frequency in an

particular document, it indicates that the corresponding document are high related to

computer subject, In this case, term “computer” will be assigned to be a high

frequency weight

 73

• Inverse document frequency (IDF). Inverse document frequency measures how often

the terms occurs in all documents, and its inverse value indicates the relative rarity of

a term. It is defined as:

 ,log

=

t
t

n

N
IDF

Where N is the number of documents in the collection, and tn is the number of

documents in which term t appears. The logarithm function is used to limit the range of

data.

Formally, for a given a set of documents, we can measure their similarity by applying

the term frequency and inverse document frequency (TF-IDF) mechanism.

Let { }ndddD ,...,, 21= be a set of documents. For each term jt , let ijn denote the

number of occurrences of term jt in the document id . Also let jn be the number of

documents that contain term jt at least once. Thus the TF-IDF weight of the term jt in

the document vector id is given by

dtdtdt IDFTFw ,,, ×=

Where dtTF , indicates how many times term t occurs in the documents d:

i

ij
dt

d

n
TF =,

dtIDF ,

is inverse document frequency:

=

n

n
IDF

j
dt log,

Based on the representation of term weight above, information retrieval can be

completed by computing the similarity between two documents 1d and 2d :

 74

∑∑

∑

•

•

=

t
dt

t
dt

t
dtdt

ww

ww

ddsim
2

2,
2

1,

2,1,

21),(

Current UDDI Supporting Keyword-Based Approach

At present, UDDI standard and most of discovery approaches support keyword-based

discovery mechanism. The core of the UDDI architecture is a central business registry

that servers as a directory service. In a UDDI registry, Web services are registered and

described as three main type of information:

• white pages containing addresses and contacting details for an organization,

• yellow pages containing classification information based on standard taxonomies

and,

• green pages providing the technique information about the interface of Web services.

This main type of information allows users and enterprises to discover and share

information with regard to the Web services and other electronic and non-electronic

services that are registered in a registry. A UDDI registry service is a Web service that

manages information about service providers, service implementations, and service

metadata.

The UDDI also allows syntactically search and category-based match Web services. In

addition, a service requester can use the Inquiry API provided in UDDI for retrieving

services via submitting instructions like find_service (). For example, a service requester

submits the UDDI a query that includes keywords. The query is matched against the

service description stored in the UDDI registry. The matched Web services are then

returned as a candidate answer set and the service requester then browsers them in order

 75

to find which one of them really suits theirs needs. Unfortunately, UDDI registry does

not support semantic descriptions and semantic searching on functionality. Searches, as a

result, can only be based on keywords, such as a service’s name, provider, location, or

business category.

4.3 DC-SVD: Divide and Conquer Semantic Discovery Approach

In this section, we first introduce the basic matching problems in Web service discovery.

We then discuss the semantic matching approach based on Singular Value

Decomposition (SVD), matching algorithms, followed by the preliminary experimental

evaluation.

Currently, Web services discovery depends on the WSDL for describing Web service.

With WSDL, a Web service can be described as an abstract interface in natural

language. This syntactically-based description such as a service name, method names

and some descriptions included in a service implicitly indicates information about the

service’s corresponding functionality and domain. Based on the standard description of

Web services, various methods can be used to find services on the Web, such as using

Web search engines [128, 126], service portals and UDDI, etc.

Research Issues

We argue that efficiently locating Web services needs to consider the issues of semantic

concepts and scalability. Existing discovery approaches heavily rely on the keyword-

based finding mechanism. Unfortunately, keywords are insufficient in expressing

semantic concepts, which is partially due to the fact that keywords are often described by

natural language, being much richer in terms of diversity. For example, syntactically

 76

different words may have similar semantics (synonyms) which results in low recall. In

addition, semantically different concepts could possess identical representation

(homonyms), leading to low precision. As a result, the retrieved services might be totally

irrelevant to the need of services’ consumers. One possible solution to this problem is to

describe services capabilities by using the Semantic Web. For example, some research

uses ontology to annotate the elements in Web services for finding common semantic

concepts between the query and services’ advertisements.

Scalability is another issue needed to be addressed. Current centrally maintained

repositories like UDDI are poor at supporting scalability in the Web context. In the

situation where keywords are used to find services, the excessive number of the services

returned has made it difficult for users to browse, to look at and to choose the interesting

services. One way to deal with this issue is to compress data for reducing the number of

services returned to service requesters. However, conventional techniques such as

Singular Value Decomposition (SVD) [13] may not be suitable for dealing with a large-

scale data collection due to the high cost of computing and storing of SVD.

We address these two problems by presenting a novel two-phase approach for efficiently

finding Web services. Given a query, in the phase one, the proposed approach first

retrieves a set of samples of Web services from a services database to form an initial

dataset. The dataset is then divided into a set of smaller clusters by using the Divide and

Conquer approach [55], aiming to reduce the number of services returned. This phase

focuses on analyzing the syntactical correlations between the query and service

descriptions. After finding the right cluster that is relevant to the query, in the phase two,

the SVD technique is applied to the cluster to capture the semantic concepts hidden

 77

behind the words in a query, and the advertisements in services, so that services

matching against the query is expected to be carried out at an advanced concept level.

We call our approach DC-SVD. Broadly speaking, our method combines keyword-based

syntactical analysis with semantic concepts extracted from service WSDL files.

Our key contributions are as follows:

• We proposed a novel approach to find relevant services through the combination of

clustering technique and Singular Values Decomposition to handle poor scalability

and lack of semantics.

• We described the preliminary experiments over the real service collections to

evaluate the effectiveness of our approach, and results show improvements over

precision.

4.3.1 Overview of DC-SVD Approach

Our Divide and Conquer semantic approach (DC-SVD) is dependent on the combination

of the keyword technique and the semantics extracted from the service descriptions. The

objectives of DC-SVD are to handle the poor scalability in the Web environment and the

issue of lacking semantics. To realize these goals, a large service collection is first

partitioned into a set of smaller clusters by using a modified clustering algorithm. After

finding the right cluster related to a query, the SVD technique is applied to the cluster so

that service matching against the query can be carried out at the concept level. Figure 4.4

shows DC-SVD discovery approach.

 78

Figure 4.4: Decomposing search results

The DC-SVD approach is based on the assumption that the efficiency of finding services

can be improved if relevant service cluster can be located before the extracting semantics

algorithm is implemented. To begin with, given a query, the proposed approach retrieves

a set of samples of Web services from a source of Web services to form an initial data

set. Instead of directly applying the SVD to this large initial data set, we partition it into

a set of smaller clusters by using a clustering algorithm, aiming to reduce the number of

services retrieved. This phase focuses on analyzing the syntactical correlation between

the query and service descriptions. As a next step, we filter out those Web services

whose contents are not compatible with a user’s query via finding relevant cluster.

Finally, SVD technique is applied to the right cluster to capture semantic concepts

hidden behind the words in a query and the advertisements in services, so that services

matching against the query is expected to be carried out at an advanced concept level.

4.3.2 Decomposing Search Result Collection

 79

This section considers the divide and conquer semantic approach for efficiently finding

Web services. As we noted earlier, the initial data set of services retrieved may be huge,

so we first use a modified k-means algorithm to partition the dataset into a set of

clusters. After finding the right cluster related to the query, SVD is used to capture

semantic concepts hidden behind the words in a query and the advertisements in

services.

As the first stage of efficiently finding Web services, we decompose a large dataset of

the services into smaller groups. Given a query, the size of the data set of services

returned may be very large, therefore the computational cost of directly applying SVD to

the dataset may be expensive. A possible solution to dealing with this issue is to reduce

the size of the large dataset to a reasonable magnitude. In this project, we utilize the

Divide and Conquer approach to handle such complex information decomposition.

The Divide and Conquer approach is a methodology that transforms a complex problem

into a series of simpler ones, which can be handled more easily. The approach has been

often used in computer science, as in database design and in software engineering, etc. In

our case, we use it to partition an initial query-related document collection. In the

beginning of decomposition processing, the size of the data collection is assumed to be

big. When the decomposition processing is completed, the original dataset is divided

into different groups, so SVD can be applied to specific cluster to capture semantic

concept. In the following definition, we first formulate the problem of decomposing

search result collection.

Definition 4.1 Given w documents },...,,{ 21 wsssS = returned with respect to a query,

partition S into k groups, },...,{ 21 kcccC = .

 80

◊

Basically, several methods can be used to split a large data set based on the above

definition. In this thesis, we use a Bisecting k-means, a simple variance of k-means

algorithm, to reduce the size of a data set. Before introducing the Bisecting k-means

partitioning algorithm, we first briefly outline the principle of k-means.

The k-means algorithm partitions a data set A into k clusters jc , each cluster jc

including its centre denoted as:

 ∑
∈

=

ji ca

i
j

j a
c

cm
1

 (4.1)

Where jc is the number of data points in cluster jc

Based on the Euclidean distance measure, the distance between a data point ia and a

cluster centre jcm can be represented as:

2

,

1

,
2

)(),(dj

n

d

dijiji cmacmacmadis −=−= ∑
=

 (4.2)

, and the following objective function is used to represent quality of a cluster:

2

1

),(j

ca

i

k

j

cmadisO

ji

∑∑
∈=

=
 (4.3)

K-means algorithm continues until the objective function reaches minimum.

Compared with the basic k-means algorithm, the Bisecting k-means algorithm shows

some advantages [101]. Firstly, it can produce consistent clusters with relatively uniform

sizes. In this case, every sub-cluster may include a similar number of documents.

Secondly, the computation on partitioning a data set is simplified. With the Bisecting k-

 81

means algorithm, for a new data point, the bisecting algorithm only needs to compute the

distance between the point and two clusters’ centroids. Obviously, it is in contrast to

basic k-mean algorithm where it is necessary to compute the distance between a point

and every cluster centroid.

The Bisecting k-means algorithm starts with dividing a single cluster of the whole data

set into two sub clusters with k-means algorithm. After that, the partitioning processing

continues until the desired number of clusters is acquired. The details of the variant k-

means clustering algorithm are described as follows.

Algorithm 1: DataDecomposition

 1: DataDecomposition (S, T, K) {

 2: input: data_corpus(S);T: number_of_trial bisectionr

 3: K: number of clusters

 4: output: a set of clusters MC;

 5: MC φ←

 6: Select a cluster c to split (initially, c is S)

 7: Divide selected cluster into two clusters using 2-means

 8: Repeat step 7 T times, take dividing with the best similarity

 9: Repeat steps 6, 7 and 8 until k clusters are found

 10: End

Evaluating Quality of Cluster

After partitioning a large data collection into a set of smaller clusters, we use commonly

used entropy and purity to evaluate a cluster’s quality. Suppose m classes represent

 82

partitioned services (service categories) and k clusters produced by our clustering

algorithm, then the following definitions apply [82]:

For a cluster jc , its entropy is defined as:

•−= ∑

=
j

i
j

m

i
j

i
j

j
n

n

n

n
cE

1

log)((4.4)

Where jj cn = , representing the size of cluster jc , and i
jn indicates the number of

services in cluster jc that belongs to class i.

 Entropy expresses a cluster’s consistence. If the members of a cluster come from

different classes, the value of the entropy is high.

The purity of a cluster jc is defined as:

 }{max
1

)(

1

i
j

k

j

i
j

j n
n

cP ∑
=

= (4.5)

 Where i varies over all classes

 Alternatively, one can build a centroid for each cluster through taking the average of

all documents in that cluster:

 ∑
∈

=

iCj

j
i

i d
C

C
1

 (4.6)

Constructing Service Matrix

Based on the approach introduced in the previous section, we can find the right cluster

related to a query. After finding relevant cluster, SVD is applied to the cluster to capture

semantic concept hidden behind the service documents.

 83

Figure 4.5: An example of matrix

Formally, we exploit the Vector Space Model (VSM) to describe each document in the

cluster. In VSM, each document is described by bag of words or terms, which means

that the frequency of the words in a document is considered while the positional

relationship between terms is ignored. In addition, all terms in a data collection form a

vocabulary, which spans a high dimensional vector space in which documents are

represented as a set of points. According to VSM, each document can be represented as a

vector:

>=< iviii wwwa ,,2,1 ,...,,
v

Where v is the size of the vocabulary

The key advantages of VSM adopted in Web services lie in the flexibility to the

selection of vectors dimensions and weights. For example, the values of entries jiw , in

the document vector ia
v

 can be determined through different schemes such as with

counting the time of co-occurrence of a word appearing in a document.

 84

In this thesis, the commonly used term-frequency and inverse-document-frequency (TF-

IDF) [97] is used to denote the entries jiw , in the document vector ia
v

. More precisely,

the weight ijw is defined as the TF-IDF weight of the word j in documents i as

following:

),log(

i
ij

n

n
fw

ij
•=

 (4.7)

Where
i

ij
ij

a

n
f = denotes word frequency, that is, the number of times word j appears

in service i, and in is the number of services that contain word j.

Thus, the similarity between two documents can be compared by computing the cosine

of the angle between the two vectors 1d and 2d :

∑∑

∑

==

==
k

i

i

k

i

i

k

i

ii

dd

dd

ddSim

1

2
,2

1

2
,1

1

,2,1

21

*

*

),((4.8)

Where >=<>=< kk ddddanddddd ,22,21,22,12,11,11 ,...,,,...,,

With the above description, the documents in a cluster can be represented as a matrix:

m
i

nm
n RawithRaaaA ∈∈= ×],...,,[21

4.3.3 Matching Web services in Latent Semantic Space

In this section we describe how to find similar Web services in a semantic space. We

first introduce the basic principle of SVD, and then present a Latent Semantic Indexing

(LSI) approach to find similar services in semantic space.

 85

Singular Value Decomposition (SVD)

The Singular Value Decomposition (SVD) is a linear algebra technique that deals with

the transformations and the decomposition of a matrix. With the approach of orthogonal

transformations used by SVD, a matrix can be decomposed into the products of three

sub-matrices in which the information contained the original matrix is rearranged. This

decomposition technique is commonly utilized for producing a low-rank approximation

matrix to the initial matrix, and for indexing semantics in traditional Information

Retrieval (IR).

Formally, given a word-document matrix nmRA ×∈ , decomposition of matrix A can be

represented as:

 TVUA Σ= (4.9)

Where andRVRU nnmm ,, ×× ∈∈

),...,,(21 wdiag σσσ=∑ (4.10)

In formula 4.9, sub-matrix U is an mm × orthogonal identity matrix, that is, m
T

IUU = ,

and sub-matrix V is an nn × orthogonal identity matrix with n
T

IVV = . In a similar

way, matrix ∑ is a nm × diagonal matrix whose values are called singular values. The

matrix ∑ also indicates some interesting features. First, all off-diagonal entries in ∑ are

zeros. Next, singular values along the main diagonal are sorted in decreasing order

numerically. Furthermore, the number of the nonzero values in the diagonal in ∑

represents the rank of matrix A. All these characteristics can be used to discover the

latent semantics hidden in a data collection.

 86

Finding Similar Services in Latent Semantic Space

Efficiently finding similar services in a semantic space involves several steps:

approximating original matrix A, representing documents and query in dimension-

reduced semantic space and matching services with respect to a query.

 At first, the technique of SVD decomposition can be utilized to produce a low-rank

approximated matrix to the initial matrix. The approximation relies on reducing the

dimension of the initial matrix so that the main information in the initial matrix is kept

while minor information is removed. It is believed that the semantic concept

corresponding main data in a dataset is merged within the minor data called noise. With

SVD, the latent semantic concept can be discovered by omitting all smaller singular

values, corresponding noise data in the dataset.

Specifically, according to the equation 4.9, a proper parameter k can be chosen to

construct an approximated matrix kA with rank k as:

)(ArankkVUA T
kkkk ≤∑= (4.11)

Where >=< kk uuuU ,...,, 21 , ><−∑ kk diag σσσ ,...,, 21 and

 >=< kk vvvV ,...,, 21

The theorem [36] of SVD ensures that matrix kA is the best rank-k approximation of A

with respect to Frobenius norm.

Before representing query and documents in latent semantic space, we summarize some

important properties of SVD:

 87

• The rows of matrix U correspond to the rows of A, and the columns of matrix V

correspond to the columns of A.

In k-dimensional semantic space, the coordinates of terms can be represented by the

rows of kkU ∑ .

• Similarly, the coordinates of documents can be represented by the columns

of T
kk V∑ .

As we know, the matrix T
kk AA includes all term by term dot products and can be further

expressed as:

T

kkkk
T
kkk

T
kk UUUUAA)(2 ∑∑=∑= (4.12)

This equation indicates that the dot products of the two elements i and j of T
kk AA can be

obtained by taking the dot product between the row i and j of kkU ∑ . Similarly, matrix

k
T
k AA contains the dot products among documents. Thus, we have the properties of SVD

mentioned before.

Next, the query and the documents can be represented as vectors in dimension-reduced

semantic space. Based on the properties of SVD, the coordinates of a query q in k-

dimensional space are defined as [12, 27]:

 1' −∑= kk
T

Uqq (4.13)

In the similar way, each document can be represented as:

>=< kki vvvd σσσ ,...,, 2211

 88

With the help of the representation in semantic space, the semantic concepts of a word

can be deduced from its correlations with other words. In addition, the service

documents sharing the similar correlations tend to be semantically similar.

Finally, the query vector can be compared to all document vectors, which produce a

ranking vector as:

 >∑><∑=< − T
kkkk

T
VUqr

1 (4.14)

To measure the similarity between the query and documents, the commonly used

similarity measurement such as the cosine scheme can be used to recommend the

relevant service documents to a user if the score based on the similarity exceeds a

predefined threshold.

Summary of DC-SVD Approach

The DC-SVD semantic matching approach uses a dynamic algorithm that partitions a

large service collection into smaller pieces. It includes the two main phases:

decomposing service collection and semantic matching services. A service collection is

first decomposed into a set of smaller clusters. Note that at this stage, no semantic

similarity is involved because our main objectives are to reduce the initial size of service

collection and also to diminish the cost of computing a large data set. Once the service

collection is divided into a set of smaller services groups, SVD is applied to the right

cluster for capturing semantic concepts. If the service results returned are not compatible

with a user’s query, the second best cluster will be chosen and the computing proceeds

to the next iteration. The semantic matching process continues until the matched results

are compatible with user’s request.

 89

The pseudo code for DC-SVD algorithm is given as following:

Algorithm 2: SummaryOfAlgorithm

 1: Retrieving initial service collection

 2: Partitioning the collection into a set of clusters

 3: Finding relevant cluster

 4: Applying SVD to the cluster

 5: Semantic Matching service against query

 6: if the results match the query then goto step 10

 7: else choosing next cluster

 8: goto step 4

 9: end if

 10: end

4.3.4 Experiments Evaluation

We now present our preliminary experiments to show the effectiveness of the DC-SVD

approach. We first describe two experimental datasets and the evaluation metric, and

then present the experimental results.

 Experimental Datasets

We implemented experiments over the two real data sets. The first one is the collection

of Web services that can be downloaded from the Web site [138]. The collection

 90

includes 424 Web service descriptions covering the 25 categorises such as Zip code

finder and weather information, etc. The reason that we select the service collection in

our experiments is that the Web services in the collection are gathered from real-world

service sites like SALCentral and XMethods. In addition, the Web services are

artificially classified into different categories so that the services provide a basis on

which testing and comparison can be made on a variety of situations.

As the extensive datasets of real services are not available and as the number of services

in some service collections is very limited, the second data set we use is

MED data set [139] with 1033 documents companied by 5831 terms. The data set is

used to evaluate whether DC-SVD approach can improve the scalability of efficiently

discovering Web services. The two datasets are shown in the Table 4.1.

Table 4.1: Experiment datasets

 Documents Terms

Dataset 1 240 735

Dataset 2 (MED) 1033 5831

Data Processing

The data processing mainly consists of transforming raw Web service information into

appropriate the format of data suitable for the model learning, which involves several

steps. We first extract the text information from the Web services provided in the first

data set. As the text information in a service such as its description and its operations’

names are likely concatenated by a sequence of strings where individual word starts by

uppercase letter, for instance, getCityWeather, the names and description should be

 91

separated so that each token conveys some meaning. Secondly, after extracting the

keywords, each Web service document is represented as a vector in which the values of

its entries are set by the TF-IDF scheme. Other methods of data processing include the

word stemming and the stopwords removing. The former intends to remove common

term suffixes while the latter eliminates very frequently used words.

Evaluation Metric

In order to evaluate the effectiveness of the proposed approach, we use the widely

adopted standards in IR: precision, recall and accuracy to measure overall performance.

Given a query q, let C be the total number of services retrieved, A be the total number of

relevant services in the service collection and B be the number of relevant services

retrieved. The recall of our approach is defined as

 Recall
A

B
= (4.15)

The precision of the approach is defined as

 Precision
C

B
= (4.16)

We also define the retrieval accuracy as follows:

 Accuracy
jCategoryinserviceofnumber

jserivcesidentifiedofnumber

= (4.17)

Experimental Results

We now turn to the evaluation of the experimental results. Given a query, a large set of

the services returned is first divided into a set of clusters by using a variant k-means

algorithm. On the next step, SVD is applied to the relevant clusters via computing the

similarity between a query and the centroid of each cluster.

 92

The first experiment was implemented over the dataset 2 to deal with the scalability.

Given a query, we retrieve an original data set returned from the MED, and the initial

dataset is then divided into k different groups. Intuitively, the choice of value k in such

division is correlated to the prior knowledge on a training data set, such as the

knowledge on the number of the categories in the dataset. In our experiment, we set k to

be 10, 20, and 30. After locating related cluster, SVD is applied to the cluster. The

results for precision and recall are displayed in Figure 4.6.

Figure 4.6: Precision and recall

From the Figure 4.6, we can see that the different sizes of dataset have some effect on

the performance of service retrieval. As shown in Figure 4.6, the performance of MED

10 outperforms MED 30. The reason for this is that in the MED 30 situation, the

increase of the number of clusters would lead to small cluster size, which is insufficient

in representing the correlations among different terms.

 93

Figure 4.7: Comparisons of DC-SVD with keyword

To see how effective DC-SVD approach using Divide and Conquer strategy described in

the previous section is, we compared the performance of DC-SVD approach with that of

the keyword-based approach. In this experiment, the experimental parameter is first

fixed, e.g., setting the number of clusters to be 10. The comparison was made on the top

n=10 results retuned by each method. During the experiment, we run 10 times at each

situation. The results of the comparison on the accuracy are shown in the Figure 4.7. As

can be seen from this figure, the performance of keyword-based technique only based on

the text description in Web services is poor. However, the accuracy of service retrieval is

improved when DC-SVD approach is introduced.

 94

Figure 4.8: Performance in different size of SVD

Another experiment was performed to evaluate the performance of the services matching

in the latent semantic space with different dimensions. In this case, the size of a dataset

is varied from 10% to 30% of the dataset to observe the performance. Figure 4.8 shows

the experimental results.

The results show that the dimension of a semantic space has impact on the precision of

service matching. This is because the rank in SVD represents the number of semantic

concept classes in a dataset. Therefore, lower values below the optimizing rank would

cause information loss, leading to decreasing the service retrieval accuracy. On the other

hand, higher values over the rank would result in too much noise in computation.

4.3.5 Related Work

In this section we briefly discuss some of the research work related to locating Web

services. Although Web services adopt standard interfaces and protocols, it is difficult to

enumerate various approaches for Web service discovery because the notion of service

 95

discovery can be explained in different ways. In this thesis, we generally identify the

discovering approaches as two categories: source-based discovery approach and

capability-based matching approach. In the first category, there are three major

approaches [2, 37] for discovering Web services based on the source of services: UDDI,

Service Portals and Web search engines. These approaches normally provide users with

some basic functions such as by using keyword-based search and category-based

browsing Web services. The second category emphasizes on service capability matching

at the level of syntactical analysis by directly using keywords as well as at the level of

semantic matching by indirectly employing Ontology and by using Information

Retrieval (IR) techniques [76].

One of IR techniques is latent semantic indexing (LSI), which uses the Singular Value

Decomposition (SVD) to deal with the transformations and decomposition of matrices.

SVD has been widely used in the compression of data and traditional information

retrieval [33]. However, the main drawback is the high cost in computing and storing of

the SVD, particularly for large-scale datasets [13, 14].

More recently, LSI is used for discovering Web services [104]. Sajjanhar [106] designs

an algorithm for Web service matching based on SVD. Paliwal [91] presents an

approach for service discovery, which combines ontology linking with LSI. Based on the

features extracted from the selected WSDL files, the approach first gets a training set by

using LSI and then expands the query by using Ontology.

Dong [34] puts forward a valuable similarity search approach to find Web services based

on the keyword strategy. The search consists of two main steps. A service user first types

keywords into a service search engine to look for the corresponding services. The

 96

approach then extracts semantic concepts based on the initial services returned. With the

help of the co-occurrence of the terms appearing in service inputs and outputs, names of

operation and description in services, the similarity search approach employs the

agglomerative clustering algorithm to cluster these terms into different concept groups.

As a result, the similarities of Web services can be compared at the concept level. Other

similar methods also intend to learn semantic concepts from the natural language

descriptions provided in Web services [9]. For example, Balke [9] proposes a

personalized approach to select Web services. The method is based on a keyword search,

and expands user query with the user profile for the purpose of enhancing the catalogue

concept in UDDI.

Our DC-SVD approach has similarities to approaches [106, 92, 9] in that we also use

keywords to first retrieve Web services, and extract semantic concepts from the natural

language descriptions in the Web services. However, our work differs from these works

in several ways. Firstly, we extend our previous approaches [74] by utilizing the Divide

and Conquer approach to handle the issue of scalability by partitioning a large service

collection into a set of smaller groups. Secondly, SVD is applied to the specific service

cluster related to a query, aiming to match services at the concept level. Furthermore, the

preliminary experiments were implemented over the real service collection.

4.4 Efficiently Selecting Web services Using a Clustering Semantic

Approach

In this section, we propose a clustering semantic approach to select Web services. Our

clustering semantic approach is dependent on combination of the keyword technique and

the semantics extracted from the services’ descriptions by using, Probabilistic Latent

 97

Semantic Analysis approach (PLSA). The objectives of the proposed approach are to

diminish the cost of computing a large dataset and to match services at the semantic

concept level.

4.4.1 Probabilistic Latent Semantic Analysis (PLSA)

In this section, we first investigate main specifications of WSDL and then briefly

introduce our probabilistic latent factor discovering approach.

Services Description and Specification

Since the WSDL and UDDI are currently the dominating mechanism for Web services

description and discovery, we focus on discovering and matching Web service in this

context, rather than using ontology to annotate elements in Web services.

Normally, a Web service can be described by WSDL as a collection of network

endpoints. The description consists of two main parts: the abstract definition of

interfaces and the concrete implementations of network. In the abstract definition,

interfaces and a set of operations are defined by portType element and operation element

respectively. Besides, each operation may contain input/output messages that are defined

by message element. On the other hand, the concrete implementations specify how the

abstract interfaces are mapped to the specific bindings, which may include particular

binding protocols like SOAP and network address. Similarly, a set of elements such as

service, port and binding are used to define these deployment details.

The key advantages of this mechanism adopted in Web services lie in the separating the

interface definition from the network implementation and making it possible to multiple

 98

deployments on the identical interface. Moreover, it would facilitate the reuse of the

software in the Web service community.

Overview of CPLSA Approach

Our clustering semantic approach is dependent on combination of the keyword technique

and the semantics extracted from the services’ descriptions. Given a query, we first filter

out those Web services whose contents are not compatible with a user’s query via a

clustering algorithm to acquire an initial working dataset. As a next step, Probabilistic

Latent Semantic Analysis approach (PLSA) [50, 51, 52]] is applied to the working

dataset, which is further clustered into a finite number of semantically related groups. In

this phase, we use a Probabilistic Latent Semantic Analysis approach (PLSA) to capture

semantic concepts hidden behind the words in a query and the advertisements in

services, so that services matching is expected to be implemented at an advanced

concept level. We call our approach CPLSA. Broadly speaking, our method combines

syntactic analysis with a clustering semantic approach which is based on the current

dominating mechanisms of discovering and describing Web services with UDDI and

WSDL.

The objectives of CPLSA are to diminish the cost of computing a large dataset and to

match services at the semantic concept level. To realize these goals, we first eliminate

irrelevant Web services with respect to a query by using a modified clustering algorithm.

After acquiring an initial service dataset, we use Probabilistic Latent Semantic Analysis

to find a common semantic concept between Web services and query so that service

matching against the query can be carried out at the concept level.

 99

The CPLSA approach is based on the assumption that the efficiency of finding services

can be improved if irrelevant data can be eliminated before the extracting semantics

algorithm is implemented. In this thesis, the analysis of the proposed approach focuses

on the scenario of discovering public Web services on the Web environment, which

consists of following main procedures. Given a query, the proposed approach first

retrieves a set of samples of Web services from a source of Web services. As the

samples returned may include irreverent services with respect to the query, we then filter

out those Web services whose contents are not compatible to a user’s query via using a

clustering algorithm to obtain an initial working dataset. Next Probabilistic Latent

Semantic Analysis approach (PLSA) is applied to the working dataset, which is further

clustered into a finite number of semantically related groups. This phase focuses on

capturing semantic concepts hidden behind the advertisements in services. Finally, the

semantic similarity of a query and Web services is measured within the related semantic

cluster. Figure 4.19 illustrates the outline of the proposed clustering semantic

probabilistic approach.

Figure 4.9: Outline of the matching

 100

4.4.2 Eliminating Irrelevant Services from Service Collection

In this section we propose our clustering probabilistic semantic approach (CPLSA) for

efficiently finding Web services. As we noted earlier, the samples returned may include

irreverent services with respect to a query, so we first filter out those Web services

whose contents are not compatible to a user’s query to form a working dataset. Then we

apply PLSA to the working dataset for further clustering the dataset into a finite number

of semantically related groups.

We first retrieve a set of samples of Web services from a source Web services. Given a

query q, a source of services would return a set of services based on some kind of

similarity. To calculate the similarity, we use the Vector Space Model (VSM) to

represent Web services as points in syntactic space. Based on VSM, we can measure the

similarity between a query q and a service s in the samples by computing the cosine of

the angle between query vector q and service vector s as:

22
),(

sq

sq
sqSim

•

•
= (4.18)

Using the above similarity computation, we can acquire an initial set of samples of

services through selecting a predefined threshold.

Considering the possibility that the initial set of services may contain the services whose

contents are not compatible with a user’s query, we eliminate them accordingly from the

sample set to improve the efficiency of service discovery, and also to reduce the cost of

computation. Intuitively, these irrelevant data may have some negative impact on

efficiently finding Web services; for one thing, the data may diminish the accuracy of

the learning algorithms; for the other, they would increase the computational load.

 101

Therefore, as the first step towards efficiently locating Web services, these irrelevant

services should be eliminated before the clustering semantic algorithm is implemented.

Sseveral ways can be used to remove unrelated data from a dataset. One of the possible

solutions is based on the feature selection, as indicated in [82]. This approach first sets a

numerical threshold, and then computes the number of times a data object appears in a

collection. If the number of times an object appearing in a collection is less than the

predetermined threshold, the object is regarded as unrelated data and should be removed.

We use a different approach to eliminate the unrelated services from the dataset. The

method consists of two main steps. Given a query, the initial sample set of services

retrieved is first divided into different groups by using a clustering algorithm, each group

gathering related services and including a cluster centre. On the next step, the distance

between a data object and each centre of each cluster is computed. If the distance

between a data object and every cluster’s centre is higher than a predefined threshold u,

the object is regarded to be irrelevant to query, and should be eliminated. We first

formulate the problem of irrelevant service elimination as follows.

Definition 4.2. Given w returned services },...,,{ 21 wsssS = with respect to a query,

cluster S to k groups },...,{ 21 kcccC = and remove service is such that

()kjwkcs ji ...,,2,1,, ∈<≥− ε (4.19)

 Where ε is a predefined threshold and jc is the centre of a cluster.

◊

 102

 Specifically, a k-means algorithm is used to clean the initial sample set of services

retrieved. With k-means algorithm, a service set S is divided into k clusters jc , each

including a centre denoted as:

∑
∈

=

ji
ca

i
j

j a
c

cm
1

 (4.20)

Where jc is the number of data points in cluster jc

Based on the Euclidean distance measure, the distance between a data point ia and a

cluster centre jcm can be represented as:

2
,

1

,
2

)(),(dj

n

d

dijiji cmacmacmadis −=−= ∑
=

 (4.21)

, and the following objective function is used to represent quality of a cluster:

2

1

),(j

ca

i

k

j

cmadisO

ji

∑∑
∈=

= (4.22)

K-means algorithm continues until the objective function reaches minimum.

 103

The algorithm of services elimination based on k-means is shown as follow:

Algorithm 3: EliminatingIrrelevantService

 1. ServiceElimination (S, k, µ) {

 2. input: services_corpus(S); k: number_of_cluster

 3. thresholdsimilarity _:µ

 4. output: a set of clean services MC;

 5. MC φ←

 6. Assigning initial values to means kcmcmcm ,...,, 21

 7. begin

 8. for service s S∈ do

 9. Finding s cluster centre icm , assign s into the cluster

 10. Computer new centre

 11. end for

 12. /* service elimination */

 13. for each cluster ic },...,,{ 21 kcccC =∈ do

 14. for each service ics ∈ do

 15. if distance µ≤•),(centercs i then do

 16. sMCMC ∪=

 17. end if

 18. end for

 19. end for

 20. return MC

 21. end

Constructing Service Transaction Matrix

As described in the previous section, an initial working dataset is obtained by

eliminating irrelevant services from the sample set of services retrieved with a k-means

 104

algorithm. In this section, we further consider the relationship amongst services and

construct a service matrix to be used as the input for our cluster-based algorithm

introduced in the next section.

In traditional distributed databases, the relationship between the words in a dataset and

service documents can be represented as a transaction matrix, where each column

corresponds to a Web service document; each row represents a word (transaction).

Meanwhile, the entries in the transaction matrix represent the frequency of occurrence of

a word appearing in a service document. A service transaction matrix is shown in Table

4.2.

Table 4.2: An example of service transaction matrix

 Service 1 Services 2 Service 3 Service 4

Transaction 1 2 4 1 5

Transaction 2 0 1 2 2

Transaction 3 2 0 0 2

Transaction 4 3 2 2 1

To construct such a matrix, we exploit the Vector Space Model (VSM) to describe each

service document in the working dataset. In VSM, each document is described by bag of

words or terms, which means the frequency of the words in a document is considered

while the positional relationship between terms is ignored. In addition, all terms in a data

collection form a vocabulary, which spans a high dimensional feature space in which

documents are represented as a set of points. According to VSM, each document can be

represented a vector as

 105

),...,,(,,2,1 iviii wwwa =
v

Where v is the size of the vocabulary

The values of entries jiw , in the document vector ia
v

 can be determined through different

schemes such as with counting the time of co-occurrence of a word appearing in a

document.

In our case, the term-frequency and inverse-document-frequency (TF-IDF) are used to

denote the entries jiw , in a document vector ia
v

. The weight ijw is defined as the TF-IDF

weight of the word j in documents i , denoted by formula 4.7.

Using formula 4.8, we can denote the similarity between two documents by computing

the cosine of the angle between the two document vectors.

Based on the above description, the service documents in the working dataset can be

represented as a matrix:

m
i

nm
n RawithRaaaA ∈∈= ×],...,,[21

In the above descriptions of service elimination and service matrix construction, the

focus is put on analyzing the syntactical correlation between the query and services at a

basic level, aiming to improve the performance of service discovery. In the following

sections, we shift our attention to the analysis of semantic concept.

4.4.3 Web services Discovering based on PLSA

Our probabilistic approach is based on the PLSA model that is called aspect model [52].

PLSA utilizes the Bayesian Network to model an observed event of two random objects

with a set of probabilistic distributions. In the text context, an observed event

 106

corresponds to occurrence of a word w occurring a document d. The model indirectly

associates keywords to their corresponding documents through introducing an

intermediate layer called the hidden factor variable },...,,{ 21 kzzzZ = with each

observation of a word w in a document d. In our context, each observation corresponds

to a service user accessing to services by submitting a query for locating desired Web

services. Thus, the generative probabilistic model is expected to infer the common

semantic concepts between a query and services. PLSA model works like this:

• Select a document id from a corpus of documents with probability)(idP

• Select a latent factor fz with probability)(if dzP

• Generate a word jw distribution with probability)(fj zwP

Based on the assumption that a document and a word are conditionally independent when

the latent concept is given, the joint probability of an observed pair (), ji wd obtained

from the probabilistic model is shown as following:

),|()(),(ijiji dwPdPwdP = (4.23)

 Where

),|()|()|(

1

∑
=

=
K

f

fjifij zwPdzPdwP (4.24)

Now we face the task on fitting the model from a set of training data. The basic principle

is to maximize probability)|(parametersdatatrainingP − by finding a set of parameters. To

simplify the computing procedure, an iterating approach is adopted. First of all, initial

estimation can be used to update the model, and then the updated model presents a new

 107

estimation on the previous iteration. In our context, an objective function based on the

whole data collection is:

 ∏ ∏
= =

N

j

M

i

dwm

ji
jidwP

1 1

),(
)|((4.25)

Thus, a log likelihood function of an observation is defined as following:

 ∑ ∑
= =

•=
N

j

M

i

jiji dwPdwm

1 1

)|(log),(l (4.26)

Where),(ji dwm denotes the frequency of a word iw occurring in a document jd .

 PLSA uses the Expectation-Maximization (EM) [51] algorithm to learn the model. The

whole learning process starts with randomly assigning initial values to the

parameters)(fzP ,)|(fi zdP and)|(fj zwP , then is followed by alternative two steps: E-

step and M-step. In E-step, based on the current estimation of the parameters, the

posterior probabilities for latent variables are computed for all observed pairs (), ji wd In

M-step, the parameters are updated based on the probabilities computed in the previous

E-step.

• This learning process can be summarized as following:

• Parameter)(fzP ,)|(fi zdP and)|(fj zwP are randomly assigned an initial value

• In E-step, the posterior probability over the latent variable conditioned on the

occurrence of jw occurring in id is computed as:

∑

∈

=

Zz

iii

i

zwPzdPzP

zwPzdPzP
wdzP

)|()|()(

)|()|()(
),|((4.27)

 108

• And in M-step, according to the previous values, the parameters are updated for the

conditional likelihoods of the observation:

 ∑ ∑

∑

∈ ∈

∈
=

Ww Dd

ijij

Ww

ii

i j

i

wdmwdzP

wdmwdzP

zdP
),(),|(

),(),|(

)|((4.28)

 ∑ ∑

∑

∈ ∈

∈
=

Ww Dd

ijij

Dd

jj

i j

j

wdmwdzP

wdmwdzP

zwP
),(),|(

),(),|(

)|(
 (4.29)

 ∑ ∑

∑ ∑

∈ ∈

∈ ∈
=

Dd Ww

ij

Dd Ww

ijij

j i

j i

wdm

wdmwdzP

zP
),(

),(),|(

)((4.30)

PLSA was originally used in text context for information retrieval and now has been

used in Web data mining. In this thesis, we utilize PLSA for discovering and matching

Web services.

The overall process of discovering Web services includes information collecting, data

processing, data representation and similarity matching.

The information collecting: The main consideration on the information source in our

discovering approach is based on the current specification of WSDL description and

UDDI discovery mechanism. As each Web service has its associated WSDL file

describing its functions, we firstly extract the overall service interface information such

as name and textual description in the WSDL file. This kind of information will be used

to decide whether a Web service’s category is relevant to a user’s query.

 109

For this purpose, the commonly used approaches for the words processing are applied.

As descriptions and names are likely concatenated by a sequence of strings where

individual word starts by uppercase letter, for instance, getCityWeather, the names and

descriptions are separated so that each token conveys some meaning. Other methods of

data processing include the word stemming and the stopwords removing. The former

intends to remove common term suffixes while the latter eliminates very frequently used

words.

4.4.4 PSMA -- Probabilistic Semantic Matching Algorithm

Our discovering approach is first to cluster services to a group of learnt latent variables,

then the similarity of a query in respect to the services in its relevant group can be

computed in a smaller size of collection of Web services.

The learnt latent variables can be used to characterize Web services. From formula 4.24

introduced in the previous section, one can obtain some interesting interpretations. First,

the right-hand side of the formula indicates a matrix decomposition, that is, the aspect

model expresses dimensionality reduction by mapping a high dimensional term

document matrix into a lower dimensional one(k dimension) in a latent semantic space.

Second,)|(if dzP implies the association of the service id and its hidden factors fz

. For example, for a latent factor such as xz , if the probability)|(ix dzP is very high, the

concept implied in the hidden factor xz is regarded as to be highly correlated to the

service id . So, based on a group of hidden variables, we can compute)|(if dzP over

each hidden factor fz , },...,2,1{ kf ∈ . With the k computing values, we can find a

 110

maximum value)|(max if dZP , which can be used as the class label for this service. What

is more, in a dimension-reduced semantic space, each dimension represents a semantic

concept and the services with similar semantic concepts are projected to be close each

other. Based on the discussion, we employ the following formula to infer the relationship

between a Web service and hidden factors.

 ∑
∈

==

Zz

fnew

new

new

new
new

f

zdP

zPzdP

dP

zPzdP
dzP

)|(

)()|(

)(

)()|(
)|((4.31)

An algorithm of the category matching is shown as following:

Algorithm 4: Categorizing Services

 1. CategorizingServices (SM, K) {

 2. Input: services matrix SM ={ nsmsmsm ,...,, 21 }

 3. k: the number of latent factors

 4. µ : threshold

 5. Output: k service communities: SC = { kscscsc ,...,, 21 }

 6. φ←fsc , SCsc f ∈

 7. begin

 8. for each service ism in SM do

 9. for each hidden variable jhv ,j = 1,…,k do

10.][jhs ji = calculate_P(jhv | ism)

11. end for

 12. ←f find_max(probability_][jhs ji)

 13. fsc = fsc .append(ism)

 14. end for each service ics ∈ do

 15. return SC if distance µ≤•),(centercs i then do

 16. end

 111

The learned latent variables can be used to cluster Web services. As already mentioned,

a Web service can be described as a multinomial probability distribution)|(dzP f over

the latent variables kf zzzZz ,...,, 21=∈ . This representation of a service with these

factors reflects the likelihood that the service belongs to certain concept groups. If a

probability distribution over a specific factor fz when given a Web service id is high,

the Web service id can be clustered to the aspect fz . This fact indicates that the PLSA

model can function as a soft clustering approach that maps the observed object

corresponding to natural concepts. In other words, if the objective of a service user,

represented by a query, is closely associated to some Web services, the query and the

services are expected to be mapped to some given factors with higher probability,

compared to others with lower probability. In order to locate memberships that are

associated with the latent factors, we can compute mixing coefficients:

Thus, for each hidden factor, we can compute)|(if dzP and get a maximised value for a

specific Web service id :)(max idZ that can be used as the class label for this service. In

this way, all Web service documents are clustered to different categories in which all

Web services indicate similar types.

 The key to our approach is to cluster the services into a group of learned latent

variables, which can be achieved by computing probability)|var(serviceiablelatentP − for each

latent variable using formula 4.31. The rationale for this is that in the dimension-reduced

semantic space, each Web service can be represented as a mixture of latent variables and

the services with similar semantic concepts are projected to be close to each other. With

 112

the maximum value of the computation used for the class label for a service, we can

categorize services into their corresponding group.

 The outline of clustering services based-on PLSA is shown as following:

 Input: service matrix

 Output: k service communities

 Step1: choosing a service, compute probabilistic

 with respect to each hidden variable using formula (4.31)

 Step2: find the maximum value of the probability for the Service

 Step3: put the service to its corresponding to group and select next service

 As a query may be outside the model, we use Expectation Maximization [52] algorithm

to fold the query in the model. Finally, we use the following formula for computing the

similarity.

∑∑

∑

∈∈

∈
=

Zz

if

Zz

f

Zz

iff

iPLSA

ff

f

dzPqzP

dzPqzP

qdsim
22)|()|(

)|()|(

),((4.32)

 113

Algorithm 5: SimilarityMatching

 1. SimilarityMatching (SM, q, sµ) {

 2. Input: services matrix(SM); q: query; thresholdsimilaritys _:µ

 3. Output: Matched Services, MC;

 4. MC φ←

 5. Begin

 6. SC ← CategorizingServices(SM, K)

 7. /* add new query to model */

 8. P (z | q) ()__ queryinfold←

 9. ←msc find_ matched_ category for query

 10. for each service ism in MatchedCategory msc do

 11. QoSsmScalculateQoSsmS
ii ___ =

 12. /*compute similarity using formula (10)*/

 13.),(__ qsmsimcalculatesm iPLSAscorei =

 14. FinalScoresmi _ = scoreismQoSsmS
i _+
−

 15. if FinalScoresmi _ > sµ then do

 16. MC ← MC.append (ism)

 17. end if

 18. end for

 19. return MC

 20. End

4.4.5 Experimental Evaluation

 114

In this section we present our preliminary experiments to evaluate the effectiveness of

our clustering semantic approach CPLSA. We first describe the experimental dataset,

data processing and the evaluation metric, and then present the experimental results.

Experimental Dataset

Our preliminary experiments were implemented over the real dataset of Web services

whose WSDL files can be accessed via [138]. The collection of services includes 424

Web service descriptions covering the 25 categorises such as Zip code finder and

weather information, etc. We selected the dataset of Web services for several reasons.

Firstly, up to now, there are no extensive datasets of real services available. Secondly,

the Web services in the collection are gathered from real-world service sites like

SALCentral and XMethods [128], and artificially classified into different categories so

that these Web services provide a basis on which testing and comparison can be

implemented based on a variety of situations.

For the experimental comparison, we particularly choose four categories: Business,

Communications, Converter and Money.

Data Processing

The goal of the data processing is to transform raw Web service information into an

appropriate data format suitable for model learning. We extracted keywords from service

description, names of operation, etc., and applied commonly used approaches for word

processing. One of methods for data processing included word stemming and stopwords

removing. The former removes common term suffix while the latter eliminates very

frequently used words. In our experiment, we used the Porter stemmer to parse the 320

 115

Web services documents. All these processes were expected to improve the

performance of matching Web services. An example of service is shown as following:

 Converts between different currencies in the Euro zone

 and the Euro.

After extracting the keywords, we obtain a service collection consisting of 320 services

which are divided into two data sets: training data and test data.

Performance Measure

In order to evaluate the effectiveness of the proposed approach, we use the standard

accuracy, precision and recall to measure overall performance. After training the model

with PLSA, a set of hidden semantic variables, each of which indicates a service

category is given. With the learned hidden semantic features, a query’s or a new

service’s related category by computing the probability using formula 4.31 was

determined. To evaluate the performance of the clustering algorithm, the accuracy is

defined by using formula 4.17; and the recall and precision can be defined by using

formula 4.15 and formula 4.16.

 116

Figure 4.2: An example of data processing

Experimental Results

 In this experiment, we evaluated the performance using our semantic matching service

approach (CPLSA). We first trained the probabilistic semantic model through setting the

different numbers of latent semantic variables ranging from 2 to 20, in order to observe

the performance of the retrieval. As data used in this work is artificially classified into

different categories, the results were observed in various service categories. In particular,

we calculate and compare the recall and precision by selecting four hidden semantic

variables, which represent four service categories: Business, Communications,

Converter and Money.

In addition, CPLSA performance was investigated by comparing our probabilistic

semantic approach with a keyword approach.

The first experiment was implemented over the dataset to observe the performance of

probability model learning. Table 4.3 lists the 10 extracted latent aspects and their

 117

corresponding categories. An example of the likely words for four hidden semantic

concept is shown in Table 4.4.

Table 4.1: Aspects and their service

Aspect Service categories

1 Business

2 Web

3 News

4 Money

5 Developers

6 Finder

7 Converter

8 Games

9 Mathematics

10 Country

To see how effective our clustering semantic approach described in the previous section

is, we compared the performance of the CPLSA approach with the keyword-based

approach. In this experiment, we first fixed the parameter for the experiment, e.g.,

setting clusters’ number to 4. The comparison was made on the top n=10 results retuned

by each method, and the experiments were repeated 10 times. The result of the

comparison on the accuracy is shown in the Figure 4.11. As can be seen from this figure,

the performance of keyword-based technique only based on the text description in Web

 118

services is poor. However, the accuracy of service retrieval is improved when CPLSA

approach is introduced.

Figure 3: Accuracy of CPLSA and keyword for four categories

The next experiment implemented was to inspect the recall and precision by comparing

CPLSA and keyword-based approach. The results are illustrated in Figure 4.12. From

the Figure 4.12, we can see that CPLSA performed better than keyword-based approach

in the selected four categories. For example, for the query containing “conversion”,

keyword-based approach may retrieve only those service that include the word

conversion, but PLSA-based approach can get services including words “conversion”

and “translation”.

 119

Figure 4.4: Precision and recall of PLSA and keyword

Table 4.4: Examples of the most likely words for 4 hidden concepts

 P(word | aspect) Most likely words

Aspect 1 0.0835

0.0683

0.0612

0.0607

Information

Address

Telephone

Service

Aspect 2 0.1368

0.0879

0.0684

0.0586

Translate

Convert

State

English

Aspect 3 0.1093

0.1054

0.0828

0.0753

Address

Zip

Place

Name

Aspect 4 0.2052

0.1758

0.0892

0.0803

Service

Web

Fax

Address

 120

4.4.6 Related work

In this section we briefly discuss some of the research work. Clustering approaches are

used for discovering Web services [34, 3]. Dong [34] puts forward a clustering approach

to search Web services where the search consisted of two main stages. A service user

first types keywords into a service search engine, looking for the corresponding services.

Then, based on the initial Web services returned, the approach extracts semantic

concepts from the natural language descriptions provided in the Web services. In

particular, with the help of the co-occurrence of the terms appearing in the inputs and

outputs, in the names of the operations and in the descriptions of Web services, the

similarity search approach employs the agglomerative clustering algorithm for clustering

these terms to the meaningful concepts. Through combination of the original keywords

and the concepts extracted from the descriptions in the services, the similarity of two

Web services can be compared at the concept level so that the proposed approach

improves the precision and recall.

Abramowicz [3] proposes an architecture for Web services filtering and clustering. The

service filtering is based on the profiles representing users and application information,

which are further described through Web Ontology Language for Services (OWL-S). In

order to improve the effectiveness of the filtering process, a clustering analysis is applied

to the filtering process by comparing services with related the clusters. The objectives of

the proposed matchmaking process are to save execution time, and to improve the

refinement of the stored data. Another similar approach [88] concentrates on Web

service discovery with OWL-S and clustering technology, which consists of three main

steps. The OWL-S is first combined with WSDL to represent service semantics before a

 121

clustering algorithm is used to group the collections of heterogeneous services together.

Finally, a user query is matched against the clusters, in order to return the suitable

services.

Other approach focuses on service discovery based on a directory where Web services

are clustered into the predefined hierarchical business categories. In this situation, the

performance of reasonable service discovery relies on both service providers and service

requesters having prior knowledge on the service organization schemes.

Our approach CPLSA has similarities to approaches [34, 3, 88] in that keywords are

used to first retrieve Web services, and extract semantic concepts from the natural

language descriptions in the Web services. However, our work differs from these works

in several ways. Firstly, we eliminate irrelevant service via exploiting a clustering

algorithm to diminish the size of services returned; this approach shows some potential

applications like over mobile uses. Secondly, based on the characteristics of Web

services with a very limited amount of information, we regard the extraction of semantic

concepts from service description as a problem of dealing with missing data. Therefore,

we utilize Probabilistic Latent Semantic Analysis (PLSA) [50, 51], a machine learning

method, to capture the semantic concept hidden behind the words in a query and the

advertisements in services.

4.5 Web service Composition Based on Ontology

In this section, we study the issue of composing Web services with combination of

Ontology, Web services and agent technology. We present a goal-driven and ontology-

based architecture in which (1) user’s goal is decomposed to subgoals; (2) the

 122

information in the goal and Web services are annotated with domain specific ontology;

(3) AI technology and theory of reasoning about action are used to compose Web

services. We also present a composing algorithm to show an application.

An overview of Ontology-Based System Architecture

In our Ontology-Based Model for Web services Composition (OMWSC), we incorporate

ontology, Web services and agent technologies. Ontology is a kind of approach for

knowledge representation, which is used to describe the information in the goal and

annotate Web services. An agent is a software component and works as information

broker. It takes instruction from user’s goal and performs some tasks on the behalf of the

owner of the goal.

The OMWSC architecture shown in Figure 4.13 consists of four modules. The first

module Goal captures user’s objectives. A user’s goals usually express a user’s intention

that s/he expects to get the results from the system. The second module consists of a

group of agents. If an agent is assigned a goal, it will analyze information in the goal and

perform tasks on the behalf of owner of the goal. For example, an agent, according to

the intention and objectives of user or other components, may look for corresponding

service in service databases. The next module is a service database (SD) that stores Web

services. And these services are annotated with OWL-S ontology and provide a solution

for implementing a task. The fourth module is a composition component. For the

automated generation of the composed Web services, The OMWSC uses the AI planning

approach. This approach is based on Theory of reasoning about action to produce a plan

of composing services.

 123

Figure 4.5: Ontology0based system architecture

Goal

A goal expresses user’s desires. For instance, Peter wants to rent a car. In order to

effectively realize a goal, the goal is usually decomposed to some subgoals because such

smaller goals require fewer service resources and less power agents and it is also easy to

implement them. In a practical application, this decomposition of goal can be expressed

and organized as an AND-OR graph. In the graph, AND means that realizing all

subgoals of a goal is a condition for realizing the goal. On the other hand, OR indicates

that realizing one of subgoals is a condition for realizing the goal.

The information in goal represents functionalities and non-functionalities that a

particular application domain offers. For achieving a goal, an agent needs to make use of

this kind of information to link the goal to the corresponding service resources. For this

purpose, the information in the goal is needed to be described semantically. In this

 124

model, we use ontology to describe information and Web services. The information in

goal is semantically described by the following elements and properties:

• Ability refers to the functionality provided by the information in goal

• Non-functional property refers to the quality of service, location, title , etc

• Precondition refers to permission for a goal to achieve the goal

• Postcondition refers to some state and condition to be satisfied to achieve the goal

4.5.1 Web service Representation

We use OWL-S to describe Web services. The upper level Ontology at the top in the

Figure 4.14 includes the three modules: (1) a serviceProfile that provides functional

attributes and a specification of functionalities for a service (input/output, effect and

parameter name, for example). An agent can make use of this information to discover a

service; (2) a serviceModel that represents a service’s internal structure. A service’s

behaviors can be described in terms of its process model. Further, the instance of the

model can be used for invoking, matching and composing services; (3) a serviceGround

that handles the issues of accessing Web services such as accessing protocol and

message formats etc.

Our domain ontology derives from the upper ontology, therefore it inherits features,

classes from the upper level ontology. As the concepts from a particular domain and

relations among them are precisely specified, it enables reasoning on service matching

and service composition. In particular, we assume that service users and service

providers have shared common understanding by using ontology so that it facilitates the

exchange of knowledge. In our model, we identify following service properties:

 125

• Input refers to requirements needed to get expected result, also refers to concept

denoted by ontology

• Output refers to possible result and concept denoted by ontology

• Precondition refers to condition for invoking a service

• Effect refers to impact resulting from executing a service

• Service type refers to taxonomy of service

Figure 4.6: Ontology for Web services

In this section, we’ll present a scenario that shows an example of Web service

application and then briefly discuss ontology design’s approach.

As a working example, we create a virtual shipping company CargoShip like a travel

agency. It provides clients with shipping services: sending client’s cargos from one place

to another one. In reality, shipping services may occur locally, for example, using truck

or train to send cargo from Brisbane to Melbourne or may occur internationally, sending

cargo by sea or by air from Australia to Singapore. When a client makes a query to

CargoShip for transferring his or her cargo, the CargoShip accepts the client’s

 126

requirements, processes the related information and sends the cargo to the destination for

the client if everything is ok. But CargoShip does not own its truck, train, and shipping

facilities; therefore it has to outsource other Web services such as LandShip, SeaShip,

Payment and Delivery, etc. First, we introduce ontology design.

4.5.2 Ontology Design

We construct a framework by creating an ontology model for the scenario so that agent

is able to reason.

Design Method of Cargoship Ontology

A domain ontology usually includes related classes, properties, relations between entities

and inference rules, etc. In order to develop ontology, one can define the ontology of a

particular application field or reuse existing ontologies. Currently, there are different

kinds of methods of developing ontology. One is to borrow the idea from developing

class used in Object-Oriented technology. In developing classes in Object-Oriented

technology, the nouns can be used to identify the classes in an application field; the

descriptive words can be used to identify the class’s attributes; in addition the verbs can

be used to represent class’s behaviors or operations. In defining ontology of a domain,

one concerns more about classes’ structure and relations between the classes. Although

there are different methodologies in developing ontology, following objectives are

consensus: (1) in the end, the instances of ontology of a domain forms a knowledge base

where other services and agents can know something; (2) ontology represents the

practical application of a domain.

Cargoship Ontology

 127

Cargoship ontology denotes our application domain’s concepts and their relations in a

machine-understandable way. These concepts are used to describe different types of

services in the application.

Figure 15 shows an ontology model of cargo shipping. Every rectangle in the Figure

denotes a class. The Cargoship is a top class that contains a set of properties and

subclasses. Customer, Location, Weight, Price, and Constraints represent Cargoship’s

properties while Action, ByLand, BySea and ByAir are subclasses that derive from class

Cargoship. These subclasses can also have their own properties and operations. For

example, class BySea may have its information about seaport’s URL. Cargoship’s

properties not only express class’s common attributes such as customer, but also denote

relations between the concepts:

• Customer, Location, Weight, and Price: they describe common properties of class

Cargoship. These properties’ instances can be used to denote concrete service

information about Cargoship. For instance, a customer, peter, may have Australia

citizenship or a concrete price may be paid with US dollars, etc.

• Constraint: this property is used to describe constraints and relationships between the

concepts. It has three subclasses: ObjectCon, SubjetCon and ActionCon. ObjectCon

denotes the Objective constraints for a Web service such as QoS used for selecting a

service. SubjectCon denotes the subjective constraints for a Web service. For

example, a constraint may denote client’s specific interest or client’s location.

ActionCon describes constraints and relations between operations. For example,

Operation getPayment() must be executed before operation delivery () is executed.

 128

With these relations, an agent is able to reason, for example, if executing action Payment

() is successful, the agent could take action Delivery ().

Context information plays an important role in selecting a service. These constraints are

defined as Subjective constraints. Therefore, in our application, the process of selecting

services involves two steps:

• Step 1: calculate service’s objective constraint.

• Step 2: match service’s subjective constraint.

Figure 4.7: Cargoshipping ontology

Definition 4.3. A Web service’s Quality of Service (QoS) is defined as the service’s

Objective constraint.

◊

For example, Let },...,,{ 21 nwswswsWS = be a set of Web services and

},...,,{ 21 nocococOC = be a set of Web services Objective constraints. Where

ioc denotes Web services iws ’s QoS such as response time, cost, reliability, security and

 129

availability, etc. According to these constraints, an agent can roughly determine whether

a service meets its needs.

In our case, we only consider three QoS parameters: response time, service availability

and service reliability:

Response time (RT): the amount of time required to send a request and get the result of

the service.

Service availability (SA): the probability that the service is available.

Service reliability (SR): the probability that a request is correctly responded.

According to these QoS parameters, we can use following formula to find a suitable

service:

)1(*** 321
t

QoS
M

RT
wSRwSAwS −++= (4.33)

1321 =++ www (4.34)

Where

SA : Service availability

SR : Service reliability

RT : Response time

tM : Maximum response time

321 ,, www : Weights. Their values reflect the importance or priority for corresponding

parameter. For example, if response time is more important than service availability and

service reliability, it has a greater value. According to formula (4.33), an agent can

roughly determine whether a service meets its needs and then it checks a service’s

subjective constraints.

 130

Definition 4.4. User’s current situation (user’s interests, user’s location, etc, for

example) is defined as a Web service’s Subjective constraints.

 ◊

Table 4.2: Two services QoS parameters

WS SA/w1 SR/w2 RT/w3 QoSS

ws1 0.72/0.25 0.95/0.25 0.615/0.5 0.61

ws2 0.9/0.25 0.85/0.25 0.427/0.5 0.724

4.5.3 Service Selection

Service selection should comply with the standard of service’s QoS. We define QoS as

Objective constraint for selecting a service because the service provider stipulates the

constraint. We also believe that a client’s interests and context information play an

important role in selecting a service. These constraints are defined as Subjective

constraints. Therefore, in our application, the process of selecting services involves two

steps:

• Step 1: calculate service’s objective constraint.

• Step 2: match service’s subjective constraint.

Definition 4.5. A Web service’s Quality of Service (QoS) is defined as the service’s

Objective constraint.

◊

 131

For example, Let },...,,{ 21 nwswswsWS = be a set of Web services and

},...,{ 21 nscscscSC = be a set of the Web services Subjective constraints. Where

isc denotes a user’s interest for Web service iws or user’s context characteristics such as

location information.

Thus, a selected service must satisfy its objective constraints and subjective constraints.

Example 1. In this example, we assume that two services, 1ws and 2ws , have similar

functionalities. In addition, 1ws and 2ws ’s QoS parameters are showed in Table 4.5. For

ease of explanation, let weights 1w =0.25, 2w =0.25, 3w =0.5 and maximum response time

tM =1. According to Formula 4.33, for 1ws , we have QoSS = 0.61; for 2ws , QoSS =0.72.

Therefore, an agent roughly selects service 2ws because it has a greater value of QoSS .

4.5.4 Web service Composition Algorithm

The goal of composing service algorithm is to produce a plan of executing actions based

on user’s goal and a set of services available. This can be done in following steps.

First of all, user’s goal and a set of Web services are available to the system. In our

application, user’s requirement is expressed as the goal of the composed Web service

and a component service is described as an action or program [1, 84, 85]. According to

the theory of the situation calculus [103], each action has its preconditions and possible

effects resulting from executing the action. The second step will find a group of matched

services for a goal. For each goal, agent will search for appropriate services in database

for matching. If the goal’s precondition is compatible to the precondition provided in a

service, and the goal’s other properties satisfy corresponding properties in the service,

 132

the match is successful. At the next step, the agent will select a matched service that

satisfies its standard of quality of services.

For simplicity, we make following assumptions:

• We consider a limited set of component services and also assume that these limited

services are available.

• A component service will provide a single functionality and the number of services

that may provide similar functionality is also limited.

 133

Algorithm 6: Compositing Services

 1. ServiceComposition (Goal, WS)

 2. input: a set of goals;Goal = {
nggg ,...,, 21
};a set of services;Service= { msss ,...,, 21 }

 3. output: plan, a sequence of actions

 4. begin

 5. /*match goal with services */

 6. for each g in Goal do

 7. for each s in Service do

 8. if match_precondition(g, s) ∧ match_postcondition(g, s) ∧

 9. match_postcondition(g, s) ∧ match_ability(g, s) ∧

10. match_precondition(g, s) then

11. GoalMatchedService.append(s)

12. end if

13. end for

14. /* select service for goal g */

15. if GalMatchedService.number !=0 then

16. for each service in GolmatchedServic do

 17.
iQoS = calculate_QoS (service)

 18. serviceQoS.append (
iQoS)

19. end for

 20. servicSelected = getService(Max(serviceQoS))

 21. plan= plan.append(servicSelected)

 22. end if

 23. Goal = Goal.remove(g)

 24. until Goal = φ

 25. end for

 26. return plan

 27. end

 134

4.5.5 Related Work

Web services composition has been one of hot research topics these days. There are a

number of works related to it. Some recent researches deal with composition of Web

services with automatic program synthesis and others use software agents to compose

Web services through auctions and delegation. There are also works that are based on AI

planning, reasoning about actions in AI [84, 85] and using ConGolog to compose Web

services. All these will be dealt with in turn as follows.

[86] addressed the composition of Web services by applying the software synthesis’s

methods. The method is based on the idea that a Web service can be represented as a

software component and Web services composition is similar to software synthesis

through using the software component’s pre-/post-condition and reasoning methods. If

there is a service’s specification in the repository of Web services that matches the

requirements, the service is selected. Finally, a Structural Synthesis Program (SSP) is

used to build a new composite service. In short, the SSP-based synthesizer makes a plan

of executing these single services. However, this approach relies heavily on SSP that is

often not available in the contexts we use.

[87] has focused on a software agent-based approach that supports Web services

composition. In [87], there are two types of agents: user-agent and provider-agent. User-

agents act on behalf of users and provider-agents act on behalf of Web service providers.

Selection of a component service is based on two criteria: execution cost and location of

computing hosts. The process of the composition of Web services can be divided into

two phases: firstly searching for provider-agent and secondly selecting a provider-agent.

It also presents an algorithm whose purpose is to produce a short list of provider-agents.

What’s more, user-agent can delegate a part of compositing work to a third party- a

 135

delegate agent so that composition of services could be executed concurrently.

Nevertheless, this approach, selecting a component service based on its domain, is

inappropriate in our context because we must consider a service’s QoS.

Turning now to works that are based on planning and reasoning about actions in AI. [85]

addressed the issue of automated Web services composition and used ConGolog [26] as

a natural formalism for this problem. In [86], the process of composing Web services is

regarded as producing a plan of actions and executing a service is regarded as executing

an action. Every action is a program that has input and output parameters and these

parameters act as precondition and effects in reasoning about actions.

4.6 Summary

Web services discovery and composition are playing an important role over the Internet

applications. It is a challenging work to effectively find the desired Web services that

conceptually match a user’s needs. In this chapter, we first studied two main problems

related to the keyword-based search approach: poor scalability and lacking semantics.

To overcome the problems, we used Divide and Conquer semantic approach (DC-SVD)

to handle the issues of poor scalability and lacking of semantics. A large service

collection is first partitioned into a set of smaller clusters by using a modified k-means

clustering algorithm. After finding the right cluster that is relevant to a query, the SVD

technique is applied to the cluster so that service matching against the query can be

carried out at the concept level.

 136

 We also performed several experiments over the real datasets to evaluate the

effectiveness of the proposed approach. The results show that our approaches improve

over precision.

In this chapter, we also studied the issue of Web services composition with combination

of Web service, Ontology and agent. Using the theory of reasoning about action, we

represented a Web service as an action that has precondition and the effects resulting

from executing the action so that we are able to compose Web services with agent

technology. In addition, we presented a novel notion that a selected service must satisfy

its objective constraints and subjective constraints. Finally, these notion and approaches

introduced in this chapter can be used to compose Web services.

 137

5. Chapter 5

Secure Collaboration in Scientific Workflows

In the Chapter 2, we introduced a scenario of doing business through a collaborative

approach, which can provide a wealth of additional opportunities with trading partners

such as reducing cost of transaction, adding value to their products and services and

enhancing market access, and so on. At the same time, the information exchange among

collaborative partners in a distributed context can give rise to some potential security

problems to be aware of.

Confidentiality in a business collaboration among trading partners can become an issue.

As discussed in the previous chapter, one of a virtual organization’s objectives is to

share valuable information and resources among the trading partners within the

organization. More precisely, this information sharing means that one participant’s

confidential information like its business process, private data and technique strength

might be provided to its competing business partners, which may potentially weaken the

participant’s competing power. For this reason, each partner in a virtual organization

may have its own security mechanisms to protect its valuable resources. However, these

protecting mechanisms may impede the effective collaborations among trading partners.

 138

Therefore, it is important to effectively manage the collaborative conflict as well as to

maintain the confidentiality of each trading partner.

In this chapter, we present an approach to support secure collaboration. Our approach is

based on the concept views, which place emphasis on information hiding, minimizing

what partners need to know during their collaboration with each other. We also propose

a novel two layered access control model based on the general principles of the order of

security priority in an organization. With the access model and process views, various

roles can also be associated with views, so that users can only see necessary parts of

workflows that they are entitled to see.

This chapter is organized as follows. Section 5.1 presents introduction and Section 5.2

introduces security requirements of cross-organizational collaboration. Section 5.3

derives a consistency view based on a workflow model. Section 5.4 gives a two layer

access control model for secure collaboration. Section 5.5 discusses related work, and

Section 5.6 summarizes the work introduced in this chapter.

5.1 Introduction

Over the past decade, workflow techniques have been successfully developed to

automate business processes, which support a variety of business domains, such as

enterprise production management and e-business integration. Additionally, workflow

techniques have been increasingly employed in scientific communities where, scientists

make discoveries by conducting complex sets of scientific computations and data

analyses. These scientific explorative activities in biology, chemistry engineering,

geosciences, medicine and physics [29, 54, 90, 115] are typically carried out at multiple

 139

sites, run over long periods of time and involve multidisciplinary processes and huge

amounts of data. For example, a typical biological experimental scenario may consist of

hundreds of computational steps; each step may be distributed over the Web by taking

input data from various databases and disseminating the results obtained from one step

to multiple downstream steps in a distributed environment. In such data-oriented

application systems, workflows are often referred to as scientific workflows. Scientific

workflows assist scientists in their research by orchestrating compute-intensive tasks,

analyzing large data sets, as well as, integrating distributed computing processes.

As an example of a scientific workflow, consider lymphoma DNA classification

research scenario as shown in Fig. 5.1(a), which has been adapted from [72]. The

objectives of this experiment are to select valid gene data from differing databases for

the use of scientists. During these experiments, DNA samples are first collected from the

Gene Collection Laboratory before being sent to the Data Validation Centre for data

processing. The processed DNA samples, matching anticipated lymphoma symptoms,

are considered as valid data and in turn are sent to the Lymphoma Research Lab for

further classification, based on specific gene characteristics. Otherwise, the results of the

classification are assumed to be negative, which may result in the process of DNA

classification analysis being rolled back for a new round of experiment.

 140

Figure 5.1: Scenario of lymphoma DNA classification

With advances in Web technologies, scientific research like the above DNA analysis is

increasingly the result of collaborative efforts among scientists who make use of each

other’s experimental results. In these situations, data resources (e.g., DNA databases and

medical testing data), individual computational tasks (e.g., gene comparison) and

scientist-created workflows (e.g., experimental steps) are likely to be distributed over

various locations, connected over the Internet. In addition, these distributed resources

can be further wrapped as Web services, which are published and deployed on the Web,

so that other scientists are able to share these valuable computational resources for

facilitating their scientific researches. These collaborations in a distributed environment

allow scientists to transform a complicated scientific research problem into a series of

simpler, and more easily handled steps. Examples of scientific workflow management

systems that have developed to support scientists for tackling complex scientific

computing problems, include work done by Taverna [90], Triana [109], Pegasus [31]

and Kepler [67].

 141

The second challenge is security, which is currently ignored in most scientific workflows

systems. This is particularly important in a Web services context because the messages

transmitted over the Web could be accessed and altered by imposters. For security

reasons, it is important that confidential information like private processes and sensitive

data (e.g. patients’ private data in medical research) should not be visible or released to

unauthorized users. Also selecting the relevant information for specific scientific

experiments can be problematic. Typically, scientific experiments are characterized by

their exploratory nature, that is, scientists conduct experiments in a trial-modification

manner, by which procedures of experiments may be often modified, whilst tasks may

need to be replaced with alternative ones. As a result, a lot of provenance information

about the creation of data objects, such as program version number, data resources and

related computing steps, could be produced, which can make it difficult for scientists to

browse, look at and choose the proper computing services for their experiments. It is

therefore desirable to provide an effective mechanism to enable authorized users to see

and to access the relevant part of a scientific workflow.

One such effective mechanism for balancing security and information choice for users is

the concept of a view. Views represent an abstraction of original workflow specifications

by defining parts of the specifications, which are only visible and accessible to

authorized users. Like the notion of the views in databases[40], a view in a business

process or scientific workflow places emphasis on information hiding, minimizing what

collaborative partners need to know during their collaboration with each other[7, 61, 62,

72, 115]. Various roles can also be associated with views, so that users can only see

necessary parts of workflows that they are entitled to see. Furthermore, only the relevant

 142

data products and provenance information need to be provided to users based on their

different requirements in cooperative scientific researches.

In this chapter, we address the challenges mentioned earlier by presenting an access

control framework and models for supporting reliable collaboration. The proposed

approaches depend on describing scientific workflows by integrating control flow and

data flow models, and they employ a relaxed transaction concept for fault tolerance, in

order to maintain the process consistencies, as well as, data consistencies even in the

presence of failures. To achieve these objectives, we first model the internal scientific

activities within an institution. Then, the individual workflow models of participating

institutions are mapped to views, which are further described by Web services. Based on

the view model, a two layered access control architecture is proposed to protect

computing resources. Finally, the atomicity concept is relaxed by integrating

transactions and exception handling models in order to ensure the reliable collaboration

on the Web.

5.2 Security Requirements of Cross-Organizational Collaboration

A business collaborative activity often operates in a highly dynamic and open distributed

environment as new participants may become available at any time, and existing partners

may be unavailable due to different reasons.

The security is obviously an important issue for any organization and for any serious

application of system. Within the scope of computer system or more precisely within the

scope of business transactions executing over the Internet, the security issue looms to be

even more critical because the messages transmitted over the Web could be altered by

 143

imposters; confidential information and valuable Web resources in an organization

might be accessed by unauthorized users, etc. In order to deal with these threats, the

basic strategies are based on the general principles: the classification and needs-to-know.

For example, approaches commonly used to handle the security issues include

authentication, authorization and encryption. This methodology can effectively establish

the identity of a participant, determine the accessing mode by which a client is allowed

to access and protect the information from being accessed by unauthorized users.

Nevertheless, the mechanisms of Web Service-based transactions put forward further

requirements for security. First, due to massive interconnection of heterogeneous Web

Services in the distributed environment, it is necessary to establish a mutual level of trust

(security) to before being able to interact with each other. Second, in Web Service-based

distributed applications where invokers are not known, access control decisions are

usually made based on the attributes of the entity requesting access to a particular

resource, rather than its identity, so it is impractical to request a user login name and

some other credentials. In addition, as Web Services are designed as one of computing

paradigm by which a service application may drill through the network-level (e.g. an

enterprise’s firewall), a client may access the confidential and valuable information

assets in an organization. As a result, securing the business interactions among the

business partners at the application-level is important.

In this chapter, we focus on the effective mechanism for balancing security and

information choice for users by employing the concept of views. Based on the view

model, the individual workflow models of participating institutions introduced in the

previous chapter are mapped to views, which are further described by Web services.

 144

Finally, a two layered access control architecture is proposed to protect computing

resources.

The main features of our framework are:

• Balancing security and information choice. We propose a view-based security model

for balancing security and information choice. Views represent an abstraction of the

original business process specifications by redefining parts of the specifications.

With the view-based security model, various roles are associated with views, so that

right users can only see necessary parts of workflows exposed to them.

• Layered security architecture. We propose a two layer security architecture, which is

based on the general principles of the order of securing priority in an organization.

According to the principle, the higher securing requirements in the organization

specify what needs to be done, which includes the trust objectives of the organization

and the security of the whole system’ external interface to the environment. On the

other hand, the security requirements within the components internal to a system can

be put at the second level.

5.3 Deriving Consistency View Based On Workflow Model

 Based on the basic models introduced in the previous section, in this section, we describe

reliable collaboration across organisations based on a view model. We start with deriving a

view based on the workflow-based model presented in Section 3.4.5, and then describing an

access control model. After introducing the notion of atomicity sphere, we focus on

maintaining data consistency and process consistency for reliable collaboration across

organisations.

 145

5.3.1 Consistency Views

This section considers deriving a consistency view from a computing workflow model.

We first summarize ordering reservation rules proposed in [61, 62, 72], and then derive a

consistency view by using a projection approach.

Views represent an abstraction of the original workflow specifications by redefining

parts of the specifications. Let a workflow specification be ()fEVG ,,= , where

nVVVV UUU ...21= is the set of nodes, then views deduced from the specification G can

be represented as ()vvvv fEVG ,,= . In vG , nodes v
V indicate the parts of nodes inV , that

is, m
v VVVV UUU ...21= , where nm ≤ and vf maps each node onto a new unique label.

 Views can be used to improve trust and security in collaboration among scientists in

distributed environment. This is because a view hides the internal private process within

an organization from other partners. Like the notion of the views in a database, a view

places emphasis on information hiding, minimizing what collaborative applications need

to know during coordinating with other computing processes. With views, the

information only necessary for process enactment of the collaboration can be made

available to both partners, in a fully controlled manner. For example, during design time,

a workflow designer can determine various views based on the roles of participants by

exposing the information that those participants only need to know, whilst concealing

the core information within an institution. As a result, different views of a workflow can

be presented to individual scientists or different organizations according to their specific

requirements.

 146

We now consider the consistency of the views. Intuitively, for a computing process, a

view derived from it should be coherent in both structure and semantics. Basically, the

following requirements should be satisfied:

• If a virtual task 1
vt precedes another virtual task 2

vt in a process view, then the actual

task 1
at contained by 1

vt also precedes 2
at contained by 2

vt in an actual process. That is,

a process-view preserves the original structure ordering relations of an actual process.

• If a virtual task 1
vt begins to run, then at least one of actual tasks contained by 1

vt has

started. This means that the behavior of a virtual task in a view is dependent on that of

actual tasks in workflow.

Formally, we let { }m
vvvV tttT ,...,, 21= be the set of all virtual tasks in the view, and let

{ }n
aaaA tttT ,...,, 21= be the set of all actual tasks in a workflow model. In some cases, a

virtual task may include actual tasks as well as other virtual tasks, thus we represent all

tasks contained by a virtual task)()(
h
v

j
a

i
nj

i
v ttt UU ∈= , where ihandmh ≠∈ , . As a virtual

task i
vt is determined by its contained actual task j

at , we say i
vt is dependent on j

at , denoted

as i
p

j
a tt → . In the following definition, we use symbol p to express the ordering relation

between two tasks.

Definition 5.1 Given two virtual tasks 1
vt and 2

vt , we say that 1
vt is before 2

vt , denoted

as 21
vv tt p , if and only if 21

v
y
av

x
a tttt ∈∃∈∀ such that yxtt y

a
x
a ≠,p .

◊

Next, we derive a consistency view by using a projection approach. In a relational

database, a projection operation is used to perform a vertical decomposition of the input

relations in such a way that each tuple in a table becomes part of the output, but only the

 147

attributes of related selections are preserved. Similarly, the proposed projection approach

can be used to derive views. The projection method will take as input a workflow-based

specification and produce as output a view. In particular, the specification of workflow-

based process is specified in a path expression. Thus, we first define a path expression.

Definition 5.2 (Path) Let V be the set of control connectors of a process model

P, Vvv n ∈..,.,1 , and let { }n
aaaA tttT ...,,, 21= be the set of all actual tasks. The sequence nvv ,...,1 is

called a path starting from the beginning task Aa Tt ∈1 to the ending task A
n
a Tt ∈ .

Definition 5.3 (Deriving consistency view). Given a process model ()nPPPP ,...,, 21= and a

path expression V, a view ()mPVPVPVPV ...,,, 21= is a division of P and the projection

operator)(PVπ will return a view mPVPVPVPV ∪∪∪= ...21 .

Fig. 5.2 shows an example of views where a back-end process consists of five tasks,

starting from 1
at to 5

at ; a path expression can be denoted as 4321 vvvv=µ ; and the process

model is 54321
aaaaa tttttP ××××= . Thus, virtual task 1

vt can be described as: () 21
2,1 aa ttP ×=π , and

virtual task 2
vt is shown as () 543

5,4,3 aaa tttP ××=π .

Figure 5.2: An example of deriving views

 148

5.4 A Layered Access Control Model for Secure Collaboration

In this section, we consider the security issue on accessing Web Services. We address

this problem by presenting a novel two layered model for securely accessing Web

Services. At the level one, the abstraction of security emphasizes on the individual tasks

by associating each task with security features through defining security attributes in the

definition of a task, so an entity such as a user or a Web Service implementing a task

must satisfy the security requirement. Second, at the level two, the abstraction of

security focuses on the individual Web Services. At this level, the invocation of each

Web Service operation is controlled by access control policies, which will verify what

credentials an entity or an invoker Web Service must posses in order to be able to invoke

the operation. Furthermore, we model behavior of different candidate Web Services by

using a finite transition system where the access control policies of different candidate

Web Services are treated as the precondition for the transition system.

5.4.1 Secure Collaborative System

In this section, we will introduce a domain concept and give a definition on secure

collaborative system.

In the previous chapter, we have described that an inter-enterprise collaboration adopts a

layered collaborative architecture, from high-level conceptual layer to concrete

technique operation layer. At the conceptual level, trading partners or entities create a

strategic collaboration relationship by forming a virtual organization according to a

value chain model. Based on the value chain, each partner within the virtual organization

 149

complete its own tasks through providing its specific services and products, such as

some partner providing loans service whilst the other with insurance, and so on. As a

result, a high-level business objective can be achieved by collaborating these partners

according to the reached high-level agreement. These business partners are often

referred to as domains.

Although the different domains in a virtual organization agree to a common business

agreement, share a common objective and are willing to burden some risks, they are still

allowed to implement the agreement individually with their own ways. For example,

each participant within a virtual organization may employ its business processes,

security mechanisms and corresponding roles as an independent entity. For this reason,

we present the definition of a domain shown as follow.

Definition 5.4 (Domain) A domains denotes an entity with specific capabilities to

complete some certain tasks. A domain consists of a set of processes, security policies

and corresponding roles. A domain D is described as a tuple RSPBPD ,,= , where

{ }nbpbpbpBP ,...,, 21= is a set of business processes; { }mspspspSP ,...,, 21= for

security policies; and { }krrrR ,...,, 21= for corresponding roles.

Based on the definition 5.4, we are able to define a secure collaborative system in a

distributed collaboration environment, adapted from [44].

Definition 5.5 (Secure Collaborative System). A secure collaborative system is a simple

graph G = (V, E), where V is a set of nodes, denoting domains and E is a set of edges,

denoting a binary relation access on E. V (G) and E (G) represent the set of all nodes and

the set of all edges in G respectively.

In addition, a binary relation is described as follow [44]:

 150

Definition 5.6 (Permitted Access) Permitted access is a binary relation F on i
n
i V1=U

where () jiandVvVuFvu ji ≠∈∈∈∀ ,,,,

Definition 5.7 (Restricted Access) Restricted access is a binary relation R on i
n
i V1=U

such that () jiandVvVuRvu ji ≠∈∈∈∀ ,,,,

5.4.2 A Two Layer Security Architecture

Our layered security architecture is based on the general principles of the order of

securing priority in an organization. According to the principle, the higher securing

requirements in the organization specify what needs to be done, which includes the trust

objectives of the organization and the security of the whole system’ external interface to

the environment. On the other hand, the security requirements within the components

internal to a system can be put at the second level.

Generally speaking, service-based business collaboration involves the interactions

among collaborating services, service access, and message handling. Therefore security

policy needs to cover on these three aspects accordingly:

• At message level, access rules are specified with a proper indexing schema, which

will be associated with service operations. Such access control model can support

read and write privileges. The model includes various access types, user’s right to

change XML structure and access rules for different users. Finally, this mechanism

can also support dynamic XML documents generation, which means that it is

unnecessary to re-label even if the XML document needs to be updated.

 151

• At service level, we will address the design issues of secure Web services. In role-

based access control, users are assigned roles, and roles are associated with

permissions or sets of operations. In the service oriented computing environments,

user’s access data or perform tasks via services invocations. Each service is

associated with a number of operations on data elements.

• At service collaboration level: individual service may have its own authorization

requirement. What is more, a coordinating service may need to exchange policy and

credential information as well as managing the operation details. To deal with these

issues, we consider solutions to realize reliable and secure collaboration, which

mainly includes:

• Efficient description of security policy for a Web service. This description includes

service security capability and security constraints. Security capability describes the

security features of a Web service such as name of the service requestor, a set of

credentials, or a set of particular parameters required to invoke the service or role

performed by the service requestor. On the other hand, security constraints refer to a

set of conditions that a Web service could impose on another Web service in order to

cooperate with it. Based on these descriptions, we develop a method to check the

security constraints of the individual Web service to determine whether they are

compatible to the specified security requirements.

Our layered security architecture is based on the general principles of the order of

securing priority in an organization. According to the principle, the higher securing

requirements in the organization specify what needs to be done, which includes the trust

objectives of the organization and the security of the whole system’ external interface to

 152

the environment. On the other hand, the security requirements within the components

internal to a system can be put at the second level. To efficiently handle the issue of

security in Web service transactional environment, we present a layered access control

model, which consists of various levels of information such as Level 1, Level 2, Level m,

where Level i is more sensitive or more restrictive than Level (i-1). In our layered

securing model for Web service transaction management, the security requirement of

what needs to be provided to perform a task within the business process will be captured

at the level 1, the highest level. Once passing the security requirement at the task level,

an entity must go to the next security level to be able to invoke concrete Web Service

resources. Based on this information, we are able to select Web Services that meet the

requirements of the security.

Figure 5.3: Model of a layered access control

We extend the Role-Based Access Control (RBAC) [102] to securely access Web

Services. Generally speaking, access control refers to a process by which valuable

information resource in an organization is not used in an unauthorized way. Pre-

requirements for the access control are to identify a potential user of resource. RBAC

goes further by introducing roles and permissions concept. A role describes a job

function being performed in an organization, that is, it represents the access rights that

could be assigned users. Permission, on the other hand, indicates whether the access

rights can be granted to protected objects or not. By using role hierarchies and

 153

constraints, a wide range of security policies can be expressed such as by using

Discretionary Access Control (DAC), Mandatory Access Control (MAC), etc. In this

thesis, roles and permissions are used for both Web services and workflow tasks so that

an entity with the roles related to a task can be authorized to execute the task.

 In order to implement a task, an entity or a user must be assigned at least one role. We

first give the following the definitions of role, which has been adapted from [102].

Definition 5.8 (Role) A role is job function performed in an organization and can be

described as a tuple r = (R, P, D), where R is the role name, P is a set of permission

related the role and D is domain associated to the role.

◊

Roles are normally arranged in the form of hierarchies, which reflects the information

about architecture, function and responsibility within an organization. From the

mathematics point of view, a role hierarchy refers to a partial order relationship

established among roles. A partial order is a reflexive, transitive, and antisymmetric

relation.

Definition 5.9 (Role Hierarchy) Given a set of roles }...,,,{ 21 nrrrR = , a role hierarchy ≤

is defined as the partial order relation between roles ir and jr >≤<= ,: R , if and only if

ij rr ≤ and Rrr ji ∈),(, where ir denotes a senior role while jr is a junior role.

◊

For example, if role 1r dominates 2r denoted as 12 rr ≤ , then Rrr ji ∈),(. Thus, a user

acquiring role 1r can acquire permissions assigned to role 2r by using the RBAC model

permission inheritance properties. Here, inheritance is reflexive because a role inherits

its own permissions, transitivity is a natural requirement in this context.

 154

5.4.3 Security Policy

This section discusses the security model for individual Web Services. Our access

control approach is implemented at two levels, task level and service level. The task

level ensures that the tasks within a business process can be carried out by only those

entities that are authorized. Once passing the access control at task level, Web Service

access control policy is applied so that the authorized entities or the transactions can

access Web Services. In order to securely access services, we introduce security policies

for services’ operations and model a Web Service as a finite transition system. In

particular, the security policies are represented as the preconditions for the transition

system. For this reason, the transition system can be fired when the preconditions are

evaluated as positive.

Usually, security policy represents an organization’s valuable information assets and

indicates how these assets are protected. It provides general principle that is used to

restrict access of resources in the organization. More precisely, the policy specifies what

the execution operations can be applied to perform on resource objects. In our case,

security policies specify service security capability and security constraints. Security

capability describes the security features of a Web Service such as name of the service

requestor, a set of credentials, or a set of particular parameters required to invoke the

service or role performed by the service requestor. Meanwhile, security constraints refer

to a set of conditions that a Web Service imposes on another Web Service in order to

cooperate with it. Based on these descriptions, we develop a method to check the

security constraints of the individual Web Service to determine whether they are

compatible to the specified security requirements.

 155

Definition 5.10 (Policy) A Web Service policy is defined as a set of

rules },...,,{ 21 mrrrR = . Each rule includes a set of condition },...,,{ 21 ncccC = and a set

of actions, },...,,{ 21 waaaA = . The condition is described in terms of

ncccC ∧∧∧← ...21 or ncccC ∨∨∨← ...21 . If a set of conditions are evaluated to be

true, the corresponding actions related to the conditions will be implemented.

◊

For example, the billing task in the shipping process can be implemented by invoking

the operations in the BilliingService if the invoker takes the role of a cashier and its

credential category is compatible with that of the BillingServcies.

Policy Billing {

))).()(((21 truecredentialviceBillingSercCashiercif ==∧=

 do BillingService()

 }

End

5.5 Related Work

To protect the privacy of business processes and to facilitate Business-to-Business (B2B)

interoperability, many researchers have focused on deriving process views from the

back-end business processes for the collaboration across organizations [61, 62, 70, 72].

For instance, Liu [61] proposed an order-preserving process-view approach to protect

B2B workflow interoperability, whereas Chiu [70] described an approach for the cross-

organizational interactions by combining private workflows and workflow views

together. Additionally, Shields [99] applied the workflow view approach to drive cross-

 156

organizational workflows interoperability in the Web services environment. On the other

hand, views have been also employed in scientific workflows for balancing security and

information choice to users. For example, Li [72] introduced flow views for scalable

scientific workflow process integration and for security whilst Biton [7] manages

provenance in scientific workflows by using views.

5.6 Summary

Security is particularly important in a Web services context because the messages

transmitted over the Web could be accessed and altered by imposters. For security

reasons, it is important that confidential information like private processes and sensitive

data (e.g. patients’ private data in medical research) should not be visible or released to

unauthorized users. Also selecting the relevant information for specific scientific

experiments can be problematic.

In this chapter, we present an approach to support securing access Web services after

they are located. Our approach is based on the concept views, which place emphasis on

information hiding, minimizing what partners need to know during their collaboration

with each other. Second, a novel two layered access control model based on the general

principles of the order of security priority in an organization is proposed. With the access

model and process views, various roles can also be associated with views, so that users

can only see necessary parts of workflows that they are entitled to see.

 157

6. Chapter 6

Ensuring the Reliable Collaboration in

Distributed Environment

Many of the advances in collaborations for e-service transactional management are

driven by advancing database theory. In Chapter 3 and Chapter 4, we considered the

transactional requirements in a distributed context and web services composition

respectively. In the current chapter, we focus in particular on reliable collaboration in a

Web service collaborative environment.

Like many e-commerce applications, the reliability, in almost every case, is essential to

collaborate and manage e-service transaction management effectively. Furthermore, the

importance of service-oriented computing for collaboration in business applications and

software engineering continues to grow. However, the growth is impeded by the

increasing complexity of distributed collaborative applications, and the lack of reliability

of applications that use web services [5, 119]. Here, reliability refers to the continuity of

the service delivered by a transaction management system. In other words, a system

could successfully complete its tasks in the instance of failure. As pervasive use of web

 158

services, we need to ensure reliability in developing business collaboration infrastructure

in services-oriented context.

To achieve the reliability, there are many aspects of reliable collaboration for

transactional management system that can be analyzed and understood effectively, with

the aid of database theory. It is exactly this type of assistance which reliable

collaboration for e-service transaction management systems is designed to depend. For

this reason, we will apply database theory to collaborative applications in a distributed

context. In particular, we will, in this chapter, extend traditional transaction theory with

the combination of failures handling approaches, in order to guarantee consistent

outcome and correct execution of collaborative process.

This chapter is organized as follows: Section 6.1 is introduction and Section 6.2

introduces transactional models. Section 6.3 presents an extended atomicity sphere

concept for reliable collaboration. Section 6.4 focuses on recovery approaches. Finally,

we discuss related work in Section 6.5 and provide a summary of this chapter in Section

6.6.

6.1 Introduction

Business collaboration is a dynamic process in which a set of independent partners

(organizations, institutions, or specialized individuals) work together to form a

temporary business alliance, called a virtual organization or virtual enterprise [58, 95],

where each member of business alliance contributes parts to the overall virtual enterprise

in order to exploit an apparent market opportunity. The main objectives of such

collaboration are to share resources, improve an organization’s working efficiency and

 159

provide better products or services, in order to survive in the increasing competitive

pressure of the globalization of economies.

The importance of service-oriented computing for collaboration in business alliance and

software engineering continues to grow. The growth however, is impeded by the

increasing complexity of distributed applications and the lack of reliability and

flexibility of applications that use Web services. Here, reliability refers to the continuity

of the service delivered by a system. In other words, a system could successfully

complete its tasks in the instance of failure. As pervasive use of Web services, there is a

need for ensuring the reliability in developing business collaboration infrastructure in

services-oriented context.

Typical examples in distributed collaboration where reliability and flexibility can be of

great importance, are in the fields of e-business and e-research. Consider a case related

to supply chain management and manufacturing processes that involves a high level of

complexity and many business partners with complex interrelationships. For example,

the completion of whole business transaction involves selecting goods remotely,

managing orders with an electronic cart, paying electronically and tracking the shipment,

and so on. Consequently, any failure during the collaboration among partners may result

in unreliability in the software systems, and have a significant commercial impact. For

example, a customer may have paid the bill whereas the supplier fails to deliver the

products.

There is a long history of efforts to make distributed applications reliable. The two

fundamental approaches for constructing a reliable system are fault tolerance and

transaction based approaches [40]. Fault tolerance refers to a system design approach

 160

which recognizes that faults will occur; it tries to build mechanisms into the system so

that the faults can be detected and removed, or compensated for before they can result in

a system failure. One of the basic techniques in implementing fault tolerance is to utilize

error recovery. The goal of error recovery is to transform the current erroneous system

state into a well-defined and error-free state, from which normal system operation can

continue. Specifically, there exist two basic ways to deal with the recovery: forward

error recovery and backward error recovery. Forward error recovery attempts to continue

the execution of normal system operations by replacing the failed components or tasks

with other tasks. In other words, the current erroneous state is manipulated by system to

enable the system to move forward without failing. Conversely, backward error recovery

aims to restore the system to a state which occurred prior to the manifestation of the

fault.

The transactional support is widely used to address the reliability of systems. In

traditional database systems and workflows [40, 41, 45, 107], the consistency of sharing

data and administration among components can be achieved through implementing strict

transaction semantics in terms of atomicity, consistency, isolation and durability (ACID)

[40]. Although extremely reliable, traditional ACID transactions are not suitable for

loosely coupled environments such as Web service-based business transactions [40, 73,

107, 119]. This is because fine-grained lock controls and full trustworthiness are not

generally applicable in Web services-based transactions. Although a number of

proposals[45, 107] are presented to address this issue, currently, the existing Web

service frameworks still lack effective models and approaches for the reliable (fault-

tolerant, transactional) execution of a group of Web services[5, 81].

 161

In this chapter, we focus on the combination of transaction approach with exception

handling in order to ensure the reliable collaboration on the Web. For this end, we

present an extended atomicity sphere model by considering two levels of atomicity

abstraction for supporting reliable collaboration. The basic features of our solutions are:

• Maintaining data consistency. At a single task level, we apply the notion of atomicity

to ensure the consistency of data in the case of a failure.

• Maintaining process consistency. At a higher level of process, we propose an

approach to maintain process consistency by combining atomicity sphere with

exception handling, aiming to maintain the consistency of computing processes.

6.2 Transaction Models

In this section, we first take the view on some terms that are used to describe and define

transactional capability, and then provide basic transactional model and reliable

approaches.

6.2.1 Transaction and Transaction Properties

In traditional database, a transaction refers to a general computing activity, such as

creating, updating or deleting data in a database. More precisely, a transaction is a

running program that may contain a collection of operations. Although there are various

descriptions for transactions, two key points on transactions are a collection of

operations in a transaction and the integrity of a sequence of the operations. This

integrity is embodied in the concept of transaction, that is, a transaction is a collection of

operations to be performed as a single unit of work, either being completed successfully

 162

or none of these operations being done. This all-or-nothing semantics of the collection

as a whole can be described through implementing the transaction properties: atomicity,

consistency, isolation and durability (ACID) [40].

• Atomicity. Either all of the operation of a transaction are completed successfully, or

none of them are done. This is called the all-or-nothing semantics.

• Consistency. The unit of work maps an application from one consistent state to a new

valid state. This is called the transaction’s correctness.

• Isolation. The result of a running transaction is not revealed to other transactions

until it commits. This is called partial results hidden.

• Durability. The committed updates cannot be erased. This is called permanency.

6.2.2 Advantages of Transaction

Transaction provides the designer of enterprise software systems with a useful

conceptual tool for supporting mission-critical applications. First, transactions provide

an effective approach for abstracting computations. For example, some important

operations in an enterprise are grouped together to constitute a logic operation, which

can be run as a transaction. As a result, a designer can focus on his correct program to

execute the transaction because the consistency in the presence of concurrent users could

be achieved via transaction semantics. Second, transactions offer an excellent fault-

tolerance mechanism. The widely employed notion of atomicity on a transaction implies

additional connotations such as recovery properties. As a collection of operations are

arranged within a transaction, the benefits of all-or-nothing semantics are achieved

despite of failures.

 163

Although extremely reliable, traditional ACID transactions are not suitable for loosely

coupled environments such as Web service-based business collaboration [75, 81].

Business collaboration using Web services may be complex, involving many parties,

spanning many different organizations, and potentially lasting for hours or days. Typical

examples in distributed collaboration where reliability can be of great importance are in

the fields of e-business and e-research. Consider a case related to supply chain

management and manufacturing processes that involves a high level of complexity and

many business partners with complex interrelationships. For example, the completion of

whole business transaction involves selecting goods remotely, managing orders with an

electronic cart, paying electronically and tracking the shipment, and so on.

Consequently, any failure during the collaboration among partners may result in

unreliability in the software systems, and have a significant commercial impact. For

example, the customer may have paid the bill whereas the supplier fails to deliver the

products. Unfortunately, for a number of reasons, fine-grained lock controls that require

to lock resources exclusively, and full trustworthiness are not generally applicable in

Web services-based transactions. Therefore, there is a requirement for extended

transaction models in the business collaboration.

6.2.3 Transaction for Collaboration

Firstly the transaction requirements for reliable collaborations in a distributed

environment will be associated with tasks’ models, Web services models and process

models so that they are characterized by transactional functions.

 164

To support the reliable collaborations in a distributed environment, effective transaction

mechanisms should satisfy different transaction requirements needed in different

contexts. These transaction requirements are mainly reflected in the collaborating

activities among participants in various application scenarios. For example, orchestrating

a computational step A and a computational step B may be considered to be reasonable,

but combining the step A or step C without step B might be not acceptable.

A transaction in a distributed environment is characterized by some distributed features:

long-running, heterogeneous, and loosely coupled. Firstly, long-running computational

tasks can be executed over a long period of time duration, so that it is impractical to lock

all data used in a computing process for extended period of time. Next, heterogeneous

features may involve multiple participants from various organizations whose scientific

computing processes run independently. These organizations may have different

transaction models developed, managed, and run independently. In addition, loosely

coupling indicates that the collaborating relationships between partners are established in

a highly dynamic fashion and in an on-demand basis. From these characteristics, it is

clear that the overall transactional behaviors associated with a transaction depend on the

transactional capabilities and behaviors of individual computing processes. Therefore, an

effective transaction model, suitable for a distributed environment, should support

different transactional semantics in the same model.

6.2.4 Atomicity Sphere

The concept of sphere was originally used to refer to the sphere of control in the

traditional database [28, 40]. A sphere of control logically defines the boundaries around

 165

a collection of operations performed on resources. As a unit of work composing of set of

operations, a sphere is atomic if all its composed operations are committed or aborted

unilaterally. This property can be used to create a fault-handling mechanism for reducing

the cost of recovering processes in case of the failure, and ensuring data consistency at

various levels of granularity. For example, when a sphere included in a process is found

to be in error, recovery can be made by undoing or compensating the parts of tasks

included in the sphere rather than undoing the whole process.

Atomicity spheres go further by correlating related transaction properties with a process

or a group of operations [65, 45, 119]. More precisely, an atomicity sphere represents a

group of tasks with transactional properties. Each transactional task within a sphere can

be implemented as a sub-transaction while the whole atomicity sphere forms a unit of

work implemented as a global transaction. For instance, with a two-phase commit

protocol (2PC), all tasks within an atomicity sphere are sure to be either committed or all

aborted, thus the all-or-nothing semantics of the global transaction representing the

atomicity sphere can be achieved.

6.3 Extended Atomicity Sphere

At a single task’s level, we apply the notion of atomicity to ensure the consistency of

data in the case of a failure. We model the execution of a task as a run. A run r on a task

t can be triggered by different events. For example, the output data of a task r are

arriving in the input container of task h may lead to the execution of its successor task h.

We assume that these events and runs are recorded into log files as the history, which

can be used to recover a scientific computing process in the presence of failures. In the

 166

run model, execution of a task will influence the dependency between output data and

input data. For instance, a run on a task will modify the data inputted to the task, change

the state of the task and influence the next task to be executed.

6.3.1 Maintaining Data Consistency

Based on the principle of message passing in distributed computing [66], there is a

separation between acceptation of message arriving at tasks and communication with

other tasks by sending the computation results. For instance, in a data-oriented scientific

workflow model, data availability would determine the related computational steps to

run. For this reason, a run on a task starts with copying data from the task’s input

container to local variables, which may be associated with specific data types, so that it

is possible to validate the data reaching the task. The run then carries out the

computation based on some formula. If the computation completes successfully, the

updated results will be put into the task’s output container, ready to be sent to the next

tasks. Therefore, for the sake of consistency, it is desirable to model copy and update

operations performed on the data items in a run, as shown in Fig. 6.1 (a). Based on this

model, each execution of an entity consists of copying incoming data items into the local

variables, followed by updating the data items. If either of these operations fails due to a

copying failure or due to the computation updating failure, the entire execution can be

retried. Without loss of generality, we employ an entity to denote a task in the following

definition.

Definition 6.1 (Run model) An entity can be invoked by applying the following two

access modes to the entity’s parameters: Copy(C) and Update (U). A run r of an entity ie

 167

is a tuple { }θ,,, LOIeR cci =• , where cI is entity ie ’s input container; cO denotes ie ’s output

container, L represents local variables and cc OI ×∈θ represents the dependency of output

on input with an execution of the entity.

◊

Intuitively, based on the run model, data flows should be manipulated in the right way in

the execution of a workflow to ensure data consistency. The consistency mainly includes

three aspects: proper connection of data flows between tasks, correct matching of data

formats and atomicity of run a task. Firstly, the proper connection implies that for given

two different nodes, there exists a feasible path by which data can flow from one to the

other. Let a workflow specification be ()fEVG ,,= , where nVVVV UUU ...21= is the set of

nodes, and let ΣP be the set of all path among V. For two nodes VVi ∈ and VV j ∈ , we say

that data can move from iV to jV if the following conditions are satisfied:

(1) φ=∩→≠∈∀ jiji VVjiifVVV ,, (e.g. iV is different from jV), and

(2) () () ()jiVVnVVn VVdPPVVPPVVPp
jiji

,.,...,,,..., 11 ==∈∃∈∀ ×Σ×Σ .

Secondly, data consistency should ensure correct data matching between two tasks. In

other words, for two tasks iT and 1+iT , data matching indicates that the output data of task

iT should be compatible with the input data of task 1+iT . In distributed environment, we

assume that data transmitted over the Web are described by WSDL XML messages.

Thus data matching can start with by extracting the data from containers by using XPath

based on its expressions as well as the structure of the XML schema. The detailed data

matching method is beyond the scope of this thesis.

 168

Figure 6.1: Run model and composite entity

Thirdly, the atomicity semantics of execution of an entity says that either execution of a

task completes or none of runs depending on the execution has any effect. To achieve

the atomicity, we model a run as a transaction.

Definition 6.2 (Transaction) A transaction jT is defined as a partial ordering over its

operations: },{ jjjT <Σ= , where

(1) },{}][,][{ jjjjj commitabortxupdatexcopy ∪=Σ ; x denotes data item, and j< is

 ordering relation;

(2)for any two conflicting operations })()({ xUorxCh j = and

 })({ xUd j = , then either jjj dh < or jjj hd < ;

(3) for any operation jj Oh ⊆ , },{ commitaborth
jj < ; jO denotes all operation in jT .

◊

Formally, we describe the atomicity of an execution of entity as follows. For task iT , let

its input container be () { }mi vvvTin ,...,, 21= , output container as () { }qi wwwTout ,...,, 21= , the set of

local variable as { }m
iiii LLLL ,...,, 21= , and its input and output instance as () { }i

m
iiinst

i vvvTin ,...,, 21=

and () { }i
q

iiinst
i wwwTout ,...,, 21= respectively. When data are available at iT , the availability

 169

would trigger iT to run. If all conditions are satisfied such as data type matching, then the

variables would be populated with the input instances, that is,

[] () []mkTinvLmgL
inst

i
i
k

g
i

g
i ,...,2,1|:,...,2,1| ∈∈=∈∀ . Furthermore, if the update operation

completes successfully at the end of execution of task iT , then current value of data will

be updated to '
1 i

m
i L=U according to rules stipulated by task iT . After the output container

()iTout of iT is populated by the updated values '
1 i

m
i L=U , the local variables would then be

cleared whilst the result of run would be sent to the next task. However, if for any reason

an exception has been raised in one of the operations performed by a run, appropriate

recovery measures have to be taken. In this case, a run on an entity provides a fault-

tolerant approach based on exception handling for maintaining the consistency of data.

For example, when a computation runs into trouble, a fault recovery can be made by

employing a forward recovery mechanism, that is, run on the entity can be retried within

the finite times. In this case, data consistency sub-system would remove the error and

automatically restarts the run, so that regular computation can be resumed.

If an entity is a composite one, reliable data handling system needs to determine the

scope affected by the failure to maintain the consistency of data in the case of failure.

This can be achieved by identifying the children of the failed entity as shown in Fig.

6(b). In this case, the atomicity data handling sub-system detects the failure of an

execution on a composite entity and decides to abort the execution by adopting the

following steps. Firstly, an execution on a composite entity aborts if all executions

depending the composite entities have aborted. Secondly, the abort of the execution on

entity will remove all output data in its output container, and then recover all input data

from the log files.

 170

6.3.2 Maintaining Process Consistency

In the previous subsection, we extend the notion of atomicity in the lower level

associated with executing an entity, aiming to maintain the consistency of data in the

case of failure. When the atomicity handling system decides to abort the execution of an

entity, for instance, if any of the components within an atomicity sphere does not have a

fault handler for a raised exception, then all of the components in the sphere should

indicate the sphere failure. In this subsection, we extend the notion of atomicity sphere

in the higher level related to executing sets of entities by combining atomicity sphere

with exception handling, aiming to maintain the consistency of computing processes.

As one failure may cause the entire collaborative computing process to be interrupted

and as rolling back an entire process may be expensive, we use atomicity sphere to make

the collaboration resumable because the approach can recover something smaller than

the entire process. For this end, an application system can be constructed by nesting

spheres properly. For example, a set of spheres can form a hierarchy construction where the

outermost sphere represents a root and other spheres below the root indicate children.

From the point of view of a transaction, the top-level sphere represents a global transaction

that regulates the commits of nested sub-transactions (sub-spheres). If the failure of a sub-

transaction is not recoverable inside its sphere, the failure can be propagated along the

hierarchy construction until it can be treated by an ancestor transaction. One of main

advantages in this sphere construction is that the failure of a sub-transaction can avoid

aborting the entire computing process since such failure may be handled at a certain

level.

 171

Figure 6.2: Example of process consistency

To ensure the consistency of the collaborative processes, an atomicity sphere should

comply with the requirements of a well-formed structure. Let { }nTTTT ,...,, 21= be the set of

tasks; and atomic sphere { } nmTTTAP miiiji <= ,,...,, .2.1.. , be the ith subset of set of T. Based on

the requirements proposed in [45, 107], we summarize the basic requirements for a well-

formed atomicity sphere as following:

(1) An atomicity sphere has only one pivot task.

The requirement indicates:

[] () () pivottypeTTTTpivottypeTmlAPT jiliki
m
jjilijili ≠∧−∈∧=∈∈∃ = .)(.:,...,1| ...1.... U

(2) Execution path pointing to the pivot task consists of only compensatable tasks.

Let p
iT be a pivot task and all tasks p

iTp before p
iT would be

(){ }blecompensatatypeTTTEeAPTT ji
p

ijijiji
p

i =∧=∧=∈∃∈= .:|: .2.1.. ππp

(3) Execution path leaving the pivot task consist of only retriable task.

Let p
iT be a pivot task and all tasks p

iTf after p
iT would be

() () (){ }retriabletypeTTeTeEeAPTT jiji
p

ijiji
p

i =∧=∧=∈∃∈= .:|: ..21.. ππf

 172

The condition (1) and condition (2) indicate that a pivot task decides the outcome of the

sphere. If the pivot task fails, the sphere has failed. In this case, the sphere has to be rolled

back by undoing the executed task. And condition (3) expresses that after passing pivot

task, undoing is possible only through the rollback method. In short, if satisfying these

conditions, the process is able either to proceed until termination or to compensate all tasks

executed so far. Fig. shows a well-formed example.

6.4 Recovery Approach

There is a long history of efforts to make distributed applications reliable. The two

fundamental approaches for constructing a reliable system are fault tolerance and

transaction based approaches [40]. Fault tolerance refers to a system design approach

which recognizes that faults will occur; it tries to build mechanisms into the system so

that the faults can be detected and removed, or compensated for before they can result in

a system failure. One of the basic techniques in implementing fault tolerance is to utilize

error recovery. The goal of error recovery is to transform the current erroneous system

state into a well-defined and error-free state, from which normal system operation can

continue. Specifically, there exist two basic ways to deal with the recovery: forward

error recovery and backward error recovery.

Based on the basic models and notion introduced in the previous subsections, we

combine a backward error recovery and forward error recovery methods in order to

ensure reliable collaboration, aiming to maintain processes consistency as well as the

data consistency. In particular, we adopt exception handling models proposed in [45,

121]. The basic actions of exception handling include retry and alternate methods.

 173

Retry: it simply means that an interrupted computing process due to a failed task can be

recovered by re-revoking the failed task in accordance with the following conditions.

Firstly, the type of the task should be retriable. Secondly, the number of times of retrying

is restricted as finite value.

Alternate: It allows the exception handler to replace a failed task with another one that is

supposed to have the same function as the failed tasks.

In short, all these retry-based recovering approaches are characterized by a forward

recovery mechanism in nature that a failed entity would be retried again.

6.5 Related Work

There are many transaction models [79, 97, 115] and protocols proposed to support long-

running and distributed business processes, such as Saga model [80], Business

Transaction Protocol (BTP) [125] and Web services coordination (WS-C) [126], etc. All

these efforts have focused on the relaxation of the traditional ACID properties in order to

meet the requirements for long running collaborative business applications.

Fault tolerant approaches have been employed to ensure reliable execution of scientific

workflows. Basic fault tolerant mechanisms include checkpoint, log-based message

approaches and transaction approaches. To reduce the cost of recovery from failures in

distributed environments, one of the transaction-oriented recovery approaches used, is

the concept of sphere [28]. Sphere simply means the control sphere that was originally

used to recover from failures in the traditional database. Leymann [65] put forward the

notion of atomicity sphere, which correlates related transaction properties with a process

or a group of operations, whereas Hagen [45] proposed an advanced fault tolerance

 174

mechanism to integrate both transactions and exception handling into workflow systems,

for ensuring reliable implementation of workflow systems. In addition, a unified model

of atomicity and isolation was presented by Schuldt [107] for the usage of transactional

processes. There is also some work focused on applying fault tolerance and transaction

approaches for Web services composition [5, 81, 119]. For example, Bhiri [5] proposes a

transactional approach to effectively support reliable Web services composition. The

method is based on the conception that a composite service is regarded as a structured

transaction, whilst individual Web services are treated as sub-transactions.

6.6 Summary

In this chapter, we present an extended transaction model that supports reliable

collaboration in the distributed context. To this end, we present an extended atomicity

sphere model by considering two levels of atomicity abstraction for supporting reliable

collaboration. The basic features of our solutions are:

• Maintaining data consistency. At a single task level, we apply the notion of atomicity

to ensure the consistency of data in the case of a failure.

• Maintaining process consistency. At a higher level of process, we propose an

approach to maintain process consistency by combining atomicity sphere with

exception handling, aiming to maintain the consistency of computing processes.

In order to validate the model introduced in this chapter, a case study can be found in

Chapter 7.

 175

7. Chapter 7

A Framework for Supporting e-Services

Transaction and Case Study

In this chapter, we present a framework to exemplify the usage of the approach

presented in this thesis for supporting reliable collaboration. The proposed framework is

a service-oriented architecture, aiming to collaborate and integrate a large number of

distributed, autonomous services. In addition, case study shows that long-running

scientific research activities can be structured as much short-duration transaction with

atomicity sphere concept.

This chapter is organized as follows: Section 7.1 gives an overview of the framework for

collaboration. Section 7.2 briefly describes user application layer. Section 7.3 overviews

collaborative process model layer. Section 7.4 presents an evaluation and case study.

Finally, summary of the chapter is provided in Section 7.5.

7.1 System Architecture

Based on the models introduced in the previous chapters, a securing framework (shown

in Figure 7.1) for supporting reliable collaboration is proposed to deal with long-running

computing processes that may include both human and automated tasks. The proposed

framework is a service-oriented architecture, aiming to collaborate and integrate a large

 176

number of distributed, autonomous services. In addition, the framework combines

techniques from business process management, workflow technologies, process views

and service-oriented computing, in order to facilitate general business users for partially

automating process construction, manipulation of relationships among process and data,

and the setup of business alliances.

The new challenge is to provide the benefits of flexible approaches tailored to end users

at various abstraction layers, because there is no need for pre-established organisational

relationships between the prospective partnering organisations. The proposed framework

extends the traditional four-level model of collaboration among different enterprises by

introducing virtual process alliances. The proposed prototype consists of three layers:

User Applications Layer (UAL) (Section 7.2), collaborative process model layer

(Section 7.3), and Web service layer. All components communicate through SOAP

message.

7.2 User Application Layer (UAL)

A user application layer provides a basis on which a virtual process alliance for potential

business partners could be created. At the virtual business alliance layer, different

enterprises exchange high-level business strategies, for example, whether they want to

form a business alliance relationship to develop a product together. Thus the purpose of

UAL is to provide business partners with a loosely coupling collaborative management

environment. Here the loosely coupling collaborative context means that a general and

strategy-level agreement will be reached before the actual business actives among

partners can be taken. It is on this layer that different companies are able to exhibit and

 177

provide their particular services, products, and resources, which could be shared by one

another.

More often, a modern business application is comprehensive in that, it is difficult for one

single enterprise to solve all complicated business problems. Instead, it is more likely

that the enterprise outsources parts of business activities to other business partners. For

example, a computer maker of company A may contribute the virtual alliance by

providing computer CPU components whilst company B supplies motherboard products.

As a result, new business opportunities may be provided to business partners.

7.3 Collaborative Process Model Layer

Once different enterprises agree on their common strategic goal, form a virtual business

alliance is created. Then a concrete business process specification will be regulated on

the collaborative process model layer. On the process model layer, different enterprises

decide how they can achieve their business goals defined at the level of process model,

which is usually involving detailed operational steps. There are different tools which can

be used as model the business process specification such as Business Process Modeling

Notation (BPMN), and ebXML [35]. Finally, this model representation then can be

further converted to a Business Process Execution language (BPEL).

Fig. 7.1 shows the basic structure of reliable Web service-based collaborative transaction

management. The architecture consists of two layers: User Applications Layer (UAL)

and Transaction Supporting Infrastructure Layer (TSIL). The purpose of UAL is to

provide users with an accessing environment that consists of generic function templates.

In UAL, users can use templates to register and describe their e-services. On the other

 178

hand, TSIL provides a service transaction management environment for services

discovery and transactional Web service composition. BPEL is used to describe process

schemes and coordinate the interactions among Web services. In this framework, we

separate the normal processes that are specified in BPEL and the reasoning of securing

service transaction management. Other basic modules in the framework include the Plan

Manager, the Access Control Evaluation Model (ACEM) and the Composition Policy

Repository (CPR). The Plan Manager will monitor the behavior of the scientific

computing process. The ACEM will evaluate the request issued by a service source via

sending the request to CPR. If the request is compatible to the requirement of the

security constraints, the requested action is permitted and ACEM will refer to the request

to the target services.

Within this framework, developers can specify the access policy and associate services

to the accesses authorizations, and generate access binding for collaborative services.

Figure 7.1: Structure of reliable collaboration

 179

7.4 Evaluation and Case Study

Our case study is based on the scenario adapted from the CyberShake system [31],

which focuses on earthquake science research conducted by the collaborations among

scientists and different organizations (sites). In this scenario, for example, the

participants involving the collaboration include hundreds of scientists from over 54

different institutes that form a virtual organization. The goal of the project is to produce

hazard maps for some specific areas in order to forecast the probabilities at which

earthquake would occurs in these areas.

Fig. 7.2(a) shows an example of the collaborative earthquake science research involving

three different sites (areas) around city M. For each site, scientist carry out the

experiments for deducing a hazard curve that shows the probability for this specific site

due to likely earthquake over some period of time. For example, a seismologist at a site

may first stimulate an experimental plan by indicating required experimental steps,

which may include the following seven experimental steps: selecting a site (SS),

identifying ruptures (IR), computing rupture variations (CRV), computing tensors (CT),

synthesizing synthetic seismograms (SSS), computing peak value (CPV) and computing

hazard curve (CHC). These experimental steps can be modeled as tasks and the

combination of the tasks forms a scientific workflow as shown in Fig. 7.2(b). The

scientist then creates the data dependencies among steps though designing proper

inputting data IDs to each step. During the run time, an engine would be in charge of

invoking these tasks in an appropriate order. Finally, through the integration of the

hazard curves created from the three sites, a hazard map for the city M is produced to be

 180

able to indicate the ground motions, which may predicate a particular earthquake in city

M. Normally, the number of sites used to produce a hazard map for an area in practice

may be huge, therefore the computation and collaboration in this case may be

complicated.

In order to depict the hazard map for city M, a scientist S would first run the scientific

workflow by providing it with related information. The collaborative system would then

send the requirement to different sites, where needed scientific research data are stored.

Fig. 7.3 shows an example of atomicity sphere application.

Figure 7.2: Scenario of earthquake science research adapted from [56]

Figure 7.3: Example of atomicity sphere application

We assume that there exist two different spots at each site, for example, data warehouse

W1 at spot 1 and R1 at spot 2 for site 1, similarly for W2 and R2 for the site 2, and W3

 181

and R3 for site 3. To facilitate the interaction and collaboration, each computing step as

well as the workflow in a site can be wrapped as Web services, which can in turn be

associated with different back-end databases, so that the scientific computation can be

carried out in a cooperative and standard way. Furthermore, for a specific requirement

for producing a cure for a site, it may be desirable that data stored in W1 needs to be

integrated with the data stored in R1, W2 to R2, and W3 to R3 respectively because the

two spots in a site are closer each other, so that they are able to produce similar

geographical data. As a result, W1 to R1, W2 to R2 and W3 to R3 form atomicity

spheres AS1, AS2 and AS3 respectively, as shown in Figure 7.3. In addition, AS0

represents a top-level sphere that simulates the interaction between the scientists S and

the collaborative system. In this case, AS0 can be implemented as a global transaction

while nested spheres AS1, AS2 and AS3 are implemented as sub-transactions.

The during the execution of the workflow, if, for example, a failure would occur in

invoking R1 for some reasons, R1 could be retired for finite times(e.g. two times) based

on our run model for ensuring data consistency. On the other hand, if R1 were

unavailable, it then could be replaced with another data warehouse that is close to R1,

so that the computing process would be continued.

7.5 Summary

In this chapter, we present a framework to exemplify the usage of the approach

presented in this thesis for supporting reliable collaboration. In order to validate the

feasibility and benefits of the proposed approaches, a transaction model has been used to

develop an application for reliable collaboration in a distributed context. The application

 182

illustrates that the proposed approaches can efficiently ensure the reliable collaboration.

In addition, case study shows that long-running scientific research activities can be

structured as much short-duration transaction with atomicity sphere concept.

 183

8. Chapter 8

Conclusion and Future Work

In previous chapters, the framework for supporting reliable collaboration has been

presented based on the business process management, workflow technologies, process

views and service-oriented technology. In this chapter, we summarize the contributions

and identify directions for possible future work.

8.1 Contributions and Summary of This Thesis

The need for the coordination of trading partners and the importance of transaction

management in a distributed environment has been evident for long time. As traditional

business approaches are mainly based on central control mechanisms by which trading

partners are working together with closely coupled, it is quite difficult to facilitate the

interoperability among trading partners and may have a significant impact on providing

competitive products and services. As we discussed in the previous Chapters, effective

collaborative approaches can cope with those issues, but they also pose a number of

significant challenges such as semantics, security and reliability. Fortunately, service-

oriented technologies are deemed as an effective means to support cooperating

applications and have significant impact on expanding service-based economy.

To support the business transaction, coordination across all or some of their involving

 184

partners must be required. Such coordination needs a loose coupling context and must be

imposed by a semantic, secure and reliable manner. Reliable interoperation with other

companies is important for modern enterprises because it enables them to improve their

working efficiency, provide better products or services, and exploit market opportunity

in order to survive in the increasing competitive pressure of the globalization of

economies. For this purpose, information and communication technologies have been

identified as critical success factors for efficiently managing business alliances.

However, current available collaboration technologies still lack concepts and approaches

such as reliable integration of heterogeneous environments across partner sites, flexible

support of interoperable business.

In this thesis, we propose an access framework and models for supporting semantic,

secure and reliable collaboration. The major contributions of this work are:

• The first contribution is a novel approach to find relevant services through the

combination of keyword technique and the semantics extracted from the services’

descriptions by using a probabilistic semantic approach in order to handle poor

scalability and lack of semantics.

• The second contribution is a novel two layered access control model based on the

general principles of the order of security priority in an organization is proposed.

With the model, various roles are associated with views, so that right users can only

see necessary parts of workflows exposed to them.

• The third contribution is an extended transaction model. The proposed atomicity

sphere model is relaxed by considering two levels of atomicity abstraction for

 185

supporting reliable collaboration at the level of process, as well as, at the level of

data to maintain the process consistency and data consistency in case of failures.

8.2 Possible Future Research Work

In this thesis, we propose a solution addressing secure and reliable Web service

transaction management. This is a challenging work that is currently being investigated

by both industries and research institutions. In the following future research work,

several directions for possible future work are identified.

Develop process model with combination of control flows and data flows and workflow

management. The new challenge is to provide a hybrid approach integrating control

flows and data flows into a process model [4, 29, 99]. For this purpose, we will further

investigate how to effectively model, verify process by extending our previous work on

modeling workflows [75]. We will design new operators to analyze and manipulate

process and process views introduced in the next task by employing a process algebra

approach. These operators can flexibly map choreographies and orchestrations to

services. For example, with these operators, a bioinformatics scientist is able to run,

revise, and resume a workflow. This flexible ability to collaborate is currently absent in

most business workflow systems.

Develop a protocol supporting personal business collaboration. We plan to propose

related protocols to regulate the interaction of business processes in business alliance in

a reliable and flexible manner. A protocol is a formal model, often represented by a set

of rules, which govern software processing, decision making and communication tasks.

A possible research work is to design a metadata, which can be used as fundamental

 186

message units for participants to interact with each other to reach common goal. A

typical message unit may include the requirement and response for collaboration.

 187

9. Chapter 9

Bibliography

[1] A. Ankolekar, M. Burstein, J.R Hobbs, O.Lassila, D. Martin, D. McDermott,

S.A McIlraith, S. Narayanan, M. Paolucci, T. Payne and K. Sycara. DAML-S:

Web Service Description for the Semantic Web. In Proceedings of the 1st

International Semantic Web Conference (ISWC), 2002.

[2] C. Atkinson, P. Bostan, O. Hummel and D. Stoll. A Practical Approach to Web

Service Discovery and Retrieval. In Proceedings of IEEE International

Conference on Web Services (ICWS2007), July 9-13, 2007, Utah, USA, 2007.

[3] W. Abramowicz, K. Haniewicz, M. Kaczmarek and D. Zyskowski. Architecture

for Web Services Filtering and Clustering. In Proceedings of Internet and Web

Applications and Services (ICIW '07), 2007.

[4] R.Barga and D. Gannon. Scientific versus Business Workflows. In book:

Workflows for e-Science, Scientific Workflows for Grids. Pages: 9-16,

Publisher: Springer London, 2007.

[5] S. Bhiri, O. Perrin and C. Godart. Ensuring Required Failure Atomicity of

Composite Web Service. In the Proceedings of 14th International World Wide

Web Conference (WWW2005), May 10-15, Chiba, Japan, 2005.

[6] Z. Bao, S. C. Boulakia, S. B. Davidson, A. Eyal and S. Khanna. Differencing

Provenance in Scientific Workflows. In Proceedings of The 25th International

Conference on Data Engineering (ICDE2009), pages: 808-819, March 29 - April

2, Shanghai, China, 2009.

[7] O. Biton, S.C. Boulakia, S. B. Davidson and C. S. Hara. Querying and Managing

Provenance through User Views in Scientific Workflows. In Proceedings of The

24
th

 International Conference on Data Engineering (ICDE2008), pages: 1072-

1081, April 7-12, Cancún, México 2008.

[8] S. Bowers, B. Ludäscher, A. H. H. Ngu, T. Critchlow. Enabling Scientific

Workflow Reuse through Structured Composition of Dataflow and Control-Flow.

ICDE Workshops 2006, 2006.

[9] W. T. Balke and M.Wagner. Towards Personalized Selection of Web Services. In

the 12th International World Wide Web Conference (WWW2003), 2003.

 188

[10] D. Bachlechner, K. Sirpaes, D. Fensel and L. Toma. Web Service Discovery- A

Reality Check. In Technical Report, 2006.

[11] B. Benatallah, M. Hacid, A. Leger, C. Rey and F. Toumani. On Automating Web

Services Discovery. In VLDB Journal, Vol.14, 2005.

[12] M. W.Berry, S.T. Dumais and G.W.O’Brien. Using Linear Algebra for Intelligent

Information Retrieval. In SIAM Rev. Vol. 37(4): pages: 573-595, 1995.

[13] M. W. Berry, S. A. Pulatova and G. W. Stewart. Computing Sparse Reduced-

Rank Approximations to Sparse Matrices. In ACM Transactions on

Mathematical Software, Vol. 31, No. 2, pages 252–269, 2005.

[14] J. Baliński and C. Daniłowicz. Re-ranking Method based on Inter-Document

Distances. In Journal of the Information Processing and Management. Vol. 41,

Issue 4, 2005.

[15] S. Bowers, B. Ludäscher. Actor-Oriented Design of Scientific Workflows. ER

2005: pages: 369-384, 2005.

[16] J. Brooke, S. Pickles, P. Carr and M. Kramer. Workflows in Pulsar Astronomy.

In book: Workflows for e-Science, Scientific Workflows for Grids. Pages: 60-

79, Publisher: Springer London, 2007.

[17] D.A. Brown, P.R. Brady, A. Dietx, J. Cao, B. Johnson and J. McNabb. A Case

Study on the Use of Workflow Technologies for Scientific Analysis:

Gravitational Wave Data Analysis. In book: Workflows for e-Science, Scientific

Workflows for Grids. Pages: 39-59, Publisher: Springer London, 2007.

[18] J. Chen and Y. Yang. Temporal Dependency Based Checkpoint Selection for

Dynamic Verification of Fixed-Time Constraints in Grid Workflow Systems.

ICSE 2008: pages: 141-150, 2008.

[19] J.Chen and W. M.P. van der Aalst. On Scientific Workflow. on Technical

Committee on Scalable Computing. Available at:

http://www.ieeetcsc.org/newsletters/2007-01/scientificworkflow.html.

[20] Q.Chen and M.Hsu.Inter-Enterprise CollaborativeBusiness Process Management.

In Proceedings. of 17th International Conference on Data Engineering (ICDE),

2001.

[21] J. Crampton. XACML and Role-Based Access Control. In Presentation at

DIMACS Workshop on Security of Web Services and e-Commerce. 2005.

[22] F. Casati and S. Ilnicki. EFlow: A Platform for Developing and Managing

Composite-Services. In Research Challenges, 2000. Proceedings.

Academia/Industry Working, 2002.

 189

[23] J. Cardoso and A. Sheth. Quality of Service for Workflows and Web Service

Processes. In Journal of Web Semantic. In Journal of Web Semantics, Vol.1,

No.3, April 2004.

[24] W.C. Dou, J. Chen, S. Fan and S. C. Cheung. AContext- and Role-Driven

Scientific Workflow Development Pattern. In Concurrency and Computation:

Practice and Experience Vol. 20(15), pages: 1741-1757 , 2008.

[25] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana. The Next Step in

Web Services. Communications of the ACM, Vol. 46. No. 10, October 2003.

[26] G. De Giacomo,Y. Lesperance, and H. Levesque.ConGolog, a Concurrent

Programming Language Based on the Situation Calculus. In Artificial

Intelligence, Vol. 1 – 2, No. 121, pages: 109 – 169, August 2000.

[27] S. Deerwester, S.T. Dumais. Indexing by Latent Semantic Analysis. In Journal

American Society for Information Retrieval, pages: 391-407, 1990.

[28] C. Davies. Data Processing Spheres of Control. In IBM Systems Journal, Vol.

17(2), pages:179-198, 1978.

[29] E.Deelman, D.Gannon,M.Shields and I. Taylor. Workflows and e-Science: An

Overview of Workflow System Features. In Future Generation Computer

Systems. Vol. 25(2009), pages:528-540, 2009.

[30] E. Deelman, S. Callaghan, E. Field, H. Francoeur, R.Graves, N. Gupta, V. Gupta,

T.Jordan, C. Kesselman, P. Maechling, J. Mehringer, G. Mehta, D. Okaya, K.

Vahi and L. Zhao. Managing Large-Scale Workflow Execution from Resource

Provisioning to Provenance Tracking: The Cyber-S-hake Example. e-Science

2006.

[31] E. Deelman, J.Blythe, Y. Gil, C. Kesselman, G. Mehta, K.Vahi, K. Blackburn, A.

Lazzarini, A.Ar bree, R. Cavanaugh, and S. Koranda. Mapping Abstract

Complex Workflows onto Grid Environment. In Journal of Grid Computing,

Vo1.1, pages: 25-39, March 2003.

[32] S. Deerwester, S.T. Dumais. Indexing by Latent Semantic Analysis. In Journal

American Society for Information Retrieval, pages: 391-407, 1990.

[33] S.C. Deerwester, S.T.Dumais, T.K. Landauer, G.W.Furnas and R. A. Harshman.

Indexing by Latent Semantic Analysis. In Journal of the American Society of

Information Science, Vol. 41(6), pages: 391-407, 1990.

[34] X. Dong, A. Halevy, J. Madhavan, E. Nemes and J. Zhang. Similarity Search

for Web Services. In Proceedings of the 30th VLDB Conference, Toronto,

Canada, 2004.

 190

[35] ebXML(Electronic Business using eXtensible Markup Language),2006.

http://www.ebxml.org/.

[36] C. Eckart and G. Young. The Approximation of One Matrix by Another of Lower

Rank. In Psychometrika, Vol.1 (1939), pages: 211-218, 1939.

[37] J. Fan and S. Kambhampati. A snapshot of public Web Services. In ACM

SIGMOD Record Archive, Vol. 34, Issue 1, 2005.

[38] G.W. Furnas, T.K. Landauer, L.M. Gomez and S.T. Dumais. The Vocabulary

Problem in Human-System Communication. In Communication of ACM, Vol.

30(11), pages: 964-971, 1987.

[39] Y. Fu, Z. Dong. Modelling, Validating and Automating Composition of Web

Services. In ICWE’06, July 11-14, 2006, Palo Alto, California, USA, 2006.

[40] J. Gray,A. Reuter.Transaction Processing: Concepts and Techniques. Morgan

Kaufmann, 1993.

[41] P.Grefen, J.Vonk and P. Apers. Global Transaction Support for Workflow

Management Systems: from Formal Specification to Practical Implementation. In

VLDB Journal, Vol.10, No.4, December 2001, pages: 3l6—333, 2001.

[42] Y. Gil, B. Deelman, M. H. Ellisman, T. Fahringer, G. Fox, D. Gannon, C. A.

Goble, M. Livny, L. Moreau and J. Myers. Examining the Challenges of

Scientific Workflows. In IEEE Computer . Vol. 40 (12), pages: 24-32, 2007.

[43] J. Garofalakis, Y. Panagis, E. Sakkopoulo and A. Tsakalidis. Web Service

Discovery Mechanisms: Looking for a Needle in a Haystack? In International

Workshop on Web Engineering, August 10, 2004.

[44] L. Gong and X. Qian. The Complexity and Composability of Secure

Interoperation. In Proceedings of 1994 IEEE Computer Society Symposium on

Research in Security and Privacy, 1994.

[45] C. Hagen , G. Alonso.Exception Handling in Workflow Management Systems. In

IEEE Transactions on Software Engineering, Vol.26, No.10, October 2000,

pages: 943-958, 2000.

[46] V. V. Heck, and P. Vervest. Smart Business Networks – How the Network Wins.

Communications of the ACM, Vol. 50, No 6, pages: 29-37, 2007.

[47] J. Hendler. Agents and the Semantic Web. In IEEE, Intelligent Systems, Vol. 16,

Issue: 2, March-April 2001.

[48] M. N Huhns. Software Agents: The Future of Web Services. Agent Technology

Workshops 2002, LNAI 2592, pages: 1-18, 2003.

 191

[49] R. Hull, M. Benedikt, V. Christophides and J. Su. E-services: A Look Behind the

Curtain. In Proceedings of the Twenty-Second ACM SIGMOD-SIGACT-

SIGART Symposium on Principles of Database Systems, June 2003.

[50] T. Hofmann. Probabilistic Latent Semantic Analysis. In Proceedings of the 22nd

Annual ACM Conference on Research and Development in Information

Retrieval. Berkeley, California, pages: 50-57, ACM Press, August 1999.

[51] T. Hofmann. Probabilistic Latent Semantic Indexing. In Proceedings of the 22nd

Annual International SIGIR Conference on Research and Development in

Information Retrieval. 1999.

[52] T. Hofmann. Unsupervised Learning by Probabilistic Latent Semantic Analysis.

In Machine Learning. Vol. 42, No. 1-2, pages: 177-196, January 2001.

[53] V. van den. Heuvel, K. Leune and P. Papazoglou. EFSOC:A Layered Framework

for Developing secure Interactions between Web services. In Distributed and

Parallel Databases Archive. Vol. 18, Issue 2, pages:115-145, 2005.

[54] A. C. Jones.Workflow and Biodiversity e-Science. In book: Workflows for e-

Science, Scientific Workflows for Grids. Pages: 80-90, Publisher: Springer

London, 2007.

[55] A. K Jain,and M. N. Murty. Data Clustering: A Review. In ACM Computing

Surveys, 1999.

[56] J. Y. Jung, W. Hur and S.H. Kang. Business Process Choreography forB2B

Collaboration. In IEEE Internet Computing, Vol. 8(1), pages: 37-45, January-

February 2004.

[57] O. Kipp, M.Wieland and F. Leymann. Towards Choreograph Transactions. In 1st

Central European.

[58] E. C. Kasper-Fuehrer and N. M. Ashkanasy. The Interorganisational Virtual

Organization: Defining a Weberian Ideal. In International Studies of

Management & Organization, Vol. 33, No. 4, pages: 34-64, 2003.

[59] M. Klein and A. Bernstein. Toward High-Precision Service Retrieval. In IEEE

Internet Computing, Vol 8, No.1, January-February 2004, pages: 30 – 36, 2004.

[60] H. Koshutanski. A Survey on Distributed Access Control Systems for Web

Business Processes. In International Journal of Network Security, Vol. 9(1),

pages: 61-69, 2009.

[61] D. Liu and M. Shen. Workflow Modeling for Virtual Processes: An Order-

Preserving Process-View Approach. In Information Systems. Vol. 28, No.6,

pages 505-532, September 2003.

 192

[62] D. Liu, M.Shen, Business-to-BusinessWorkflow Interoperation Based on Process

Views. In Decision Support Systems. Vol. 38 (2004), pages: 399–419, 2004.

[63] L.S. Larkey. Automatic Essay Grading Using Text Classification Techniques. In

Proceedings of ACM SIGIR, 1998.

[64] F.Leymann, D. Roller and M. Schmidt. Web Services and Business Process

Management. In: IBM Systems Journal: Web Services and Business Process

Management. Vol. 41(2), IBM, 2002.

[65] F.Leymann and D.Roller. Production Workflow Concepts and Techniques, PTR

Prentice Hall, 2000.

[66] L. Lamport. A Theorem on Atomicity in Distributed Algorithms. In Distributed

Computing. Vol. 4(2), pages: 59-68, 1990.

[67] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee,

J.Tao and Y. Zh-Ao. Scientific Workflow Management and The Kepler System.

In Concurrency and Computation: Practice and Experience. Vol. 18(10),

pages:1039-1065, 2006.

[68] B. Limthanmaphon and Y. Zhang. Web Service Composition with Case-Based

Reasoning. In Proceedings of the Australasian Database Conference (ADC2003),

Adelaide, Australia, 2003

[69] H.J. Levesque, R. Reiter, Y. Lesprance, F. Lin and R.B Scherl. Golog: A Logic

Programming Language for Dynamic Domains. 1997.

[70] D. Chiu, S.Cheung, S. Till, K. Karlapalem, Q. Li, E. Kafeza, Workflow View

Driven Cross Organizational Interoperability in A Web Service Environment. In

Information Technology and Management. Vol. 5 (2004), pages: 221–250, 2004.

[71] L.J. La Padula, J.G. Williams. Toward a Universal Integrity Model. In IEEE

Computer Security Foundations Workshop, June, 1991.

[72] Q. Li, Z. shan, P.C.K. Hung, D. K.W. Chiu and S.C. Cheung. Flows and Views

for Scalable Scientific Process Integration. In Proceedings of the 1st International

Conference on Scalable Information Systems, 2006.

[73] M. Little. Transactions and Web Services. In Communications of the ACM,

October 2003, Vol. 46, No. 10, 2003.

[74] J. Ma, J. Cao and Y. Zhang. A Probabilistic Semantic Approach for Discovering

Web Services. In the 16
th

 International World Wide Web

Conference(WWW2007). Banff, Alberta, Canada, May 8 -12, 2007.

 193

[75] J. Ma, J. Cao and Y. Zhang. Efficiently Supporting Secure and Reliable

Collaboration in Scientific Workflows. In Journal of Computer and System

Sciences(JCSS), Vol. 76, Issue 6, pages: 475-489, September 2010.

[76] J. Ma, Y. Zhang and J. He. Web Services Discovery Based on Latent Semantic

Approach. In the Proceedings of IEEE International Conference on Web Services

(ICWS2008), September 23-26, China, 2008.

[77] J. Ma and Y. Zhang. Efficiently Finding Web Services Using a Clustering

Semantic Approach. In the Proceedings of the 2008 International Workshop on

Context Enabled Source and Service Selection Integration and Adaptation:

Organized with the 17th International World Wide Web Conference (WWW

2008), CSSSIA 2008, Beijing, China, April 22, 2008.

[78] J. Ma, Y. Zhang and M. Li. OMWSC-An Ontology-Based Model for Web

Services Composition. In the Proceedings of Fifth International Conference on

Quality Software (QSIC 2005). Australia, 2005.

[79] S. Mehrotra, R. Rastogi, A. Silberschatz, H. Korth.A Transaction Model for

Multi-Database Systems. In Proceedings of the 12th International Conference on

Distributed Computing Systems (ICDCS92), IEEE Computer Society Press,

pages: 56-63, June 1992.

[80] H. Molina and K. Salem. SAGAS. In Sigmod Record, ACM Special Interest

Group on Management of Data, Vol.16, No.3, pages;.249-259, December 1987.

[81] F. Montagut and R. Molva. Augmenting Web Services Composition with

Transactional Requirement. In the Proceedings of International Conference on

Web Services (ICWS'06), 2006.

[82] B. Mandhani, S. Joshi and K. Kummamuru.A Matrix Density Based Algorithm

to Hierarchically Co-Cluster Documents and Words. In the 12th International

World Wide Web Conference (WWW2003). 2003

[83] B. Medjahed, A. Bouguettaya andA.K Elmanarmid. Composing Web Services on

the Semantic Web. In VLDB Journal. Vol. 12, Issue 4, November 2003.

[84] S.A. McIlraith, T.C Son and H. Zeng. Semantic Web Services. In Intelligent

system, IEEE, Vol. 16, Issue: 2, pages: 46-53, March-April 2001.

[85] S. McIlraith and T.C Son. Adapting Golog for Composition of Semantic Web

Services. In Proceedings of KR’02, 2002.

[86] M. Matskin, J. Rao. Value-Added Web ServicesComposition Using Automatic

Program Synthesis. WES 2002, LNCS 2512, pages:213-224, Springer-Verlag,

2002.

 194

[87] Z. Maamar, Q.Z Sheng and B. Benatallah. Interleaving web services composition

and execution using software agents and delegation. In SiteSeer.IST –Scientific

Literature Digital Library

[88] R. Nayak and B. Lee. Web Service Discovery with Additional Semantics and

Clustering. In Proceedings of Web Intelligence, IEEE/WIC/ACM International

Conference, 2007.

[89] M. Oussani and A. Bouguettaya. Efficient Access to Web Services. In IEEE

Internet Computing, Vol. 8, Issue 2, pages: 34-44, March-April, 2004.

[90] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver,

K.Glover, M.R. Po- cock, A. Wipat, and P. Li. Taverna: A Tool for the

Composition and Enactment of Bioinformatics Workflows. In Bioinformatics

Journal., Online, June 2004.

[91] A.V. Paliwal, N.R. Adam and C. Bornhövd. Web Service Discovery: Adding

Semantics through Service Request Expansion and Latent Semantic Indexing. In

2007 IEEE International Conference on Services Computing (SCC 2007), 2007.

[92] M. Paolucci, T. Kawamura, T. Payne and K. Sycara. Semantic Matching of Web

Services Capabilities. In Proceedings of the 1st International Semantic Web

Conference (ISWC2002), 2002.

[93] C. Peltz. Web Services Orchestration and Choreography. In Computer, Vol. 36,

Issue 10, pages: 46-52, October 2003.

[94] S. R. Ponnekanti and A. Fox. SWORD: A Developer Toolkit for Web Service

Composition. In Proceedings of The Eleventh World Wide Web

Conference(Web Engineering Track), Honolulu, Hawaii, USA, May 7-11, 2002.

[95] O. Prokein, T. Faupel and D. Gille. Web Services as An Enabler for Virtual

Organizations. In Book: E-Commerce and V-Business: digital enterprise in the

twenty-first century, pages: 245-269, Butterworth-Heinemann, 2007.

[96] O. Prokein, T. Faupel. Using Web Services for Intercompany Cooperation - An

Empirical Study within the German Industry. In Proceedings of the 39th Hawaii

International Conference on Systems Science (HICSS 2006), 2006.

[97] M. Rusinkiewicz, A. Sheth. Specification and Execution of Transactional

Workflows. In Modern Database Systems: The Object Model, Interoperability,

and Beyond. W.Kim Ed. ACM Press and Addison-Wesley, 1995.

[98] G. Salton. Automatic Text Processing, The Transformation, Analysis, and

Retrieval of Information by Computer. In Published by Addison Wesley

Publishing Company. 1988.

 195

[99] M. Shields. Control Versus Data-Driven Workflows. In book: Workflows for e-

Science, Scientific Workflows for Grids. Pages: 167-173, Publisher: Springer

London, 2007.

[100] M. Shehab, E. Bertino and A. Ghafoor. Workflow Authorisation in Mediator

Free Environment. In International Journal of Security and Networks, Vol. 1,

Issue 1/2, September 2006.

[101] M. Steinbach, G. Karypis and V. Kumar. A Comparison of Document Clustering

Techniques. In KDD Workshop on Text Mining, 2000.

[102] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman.Role-Based Access

Control Models. In IEEE Computer, Vol. 29, pages: 38-47, 1996.

[103] R. Reiter. Knowledge in Action: Logical Foundations for Specifying and

Implementing Dynamical Systems. The MIT Press, 2001.

[104] S. Staab, W. Van der Aalst, V.R. Benjamins, A. Sheth, J.A. Miller, C. Bussler, A.

Maedche, D. Fensel and D, Gannon. Web Services: Been There, Done That? In

IEEE, Intelligent Systems, Vol. 18, Issue: 1, pages: 72-85, January-February

2003.

[105] K. Sivashanmugam, K. Verma, A.P and J.A. Miller. Adding Semantics to Web

Services Standards. In Proceedings of the International Conference on Web

Services ICWS’03, pages: 395-401, 2003.

[106] A. Sajjanhar, J. Hou and Y. Zhang. Algorithm for Web Services Matching. In

Proceedings of the 6th Asia-Pacific Web Conference (APWeb 2004), Hangzhou,

China, April 14-17, 2004.

[107] H. Schuldt, G. Alonso, C. Beeri and H. Schek. Atomicity and Isolation for

Transactional Processes. In ACM Transaction on Database System (TODS). Vol.

27(1), March, 2002.

[108] J.Spohrer and D.Riecken. Special Issue on Services Science. In Communications

of the ACM: Services Science, Vol. 49 Issue 7, July 2006.

[109] I. Taylor, I. Wang, M. S. Shields, and S. Majithia. Distributed Computing with

Triana on The Grid. In Concurrency - Practice and Experience, Vol. 17(9),

pages: 1197-1214, 2005.

[110] L.Thorburn. Knowledge Management and Innovation in Service Companies —

Case Studies from Tourism, Software and Mining Technologies (Study for the

Department of Industry, Tourism & Resources). 2004.

[111] K. Thompson. The Networked Enterprise. Competing for the Future Through

Virtual Enterprise Networks. Meghan Kiffer, Tampa (2008), 2008.

 196

[112] L.Thorburn, Knowledge Management and Innovation in Service Companies —

Case Studies from Tourism, Software and Mining Technologies. (Study for the

Department of Industry,Tounism & Resources). Innovation Dynamics 2006,

htin://www.oecd.orpJdataoectll5V39/34698722.odf.

[113] R. K. Thomas and R. S. Sandhu. Task-based Authorization Controls (TBAC): A

Family of Models for Active and Enterprise-oriented Authorization Management.

In Proceedings of 11th International Conference on Database Security, IFIP

WG11, pages:166-181, California, USA, 1997.

[114] M. Wooldridge. An Introduction to Multiagent System. John Wiley and Sons,

February 2002.

[115] L.Wang, S. Lu, X. Fei, A. Chebotko, H. V. Bryant and J. Ram. Atomicity and

Provenance Support for Pipelined Scientific Workflows. In Journal of Future

Generation Computer Systems. Vol. 25(5), pages: 568-576, 2009.

[116] Y. Wang, E. Stroulia. Semantic Structure Matching forAssessing Web Service

Similarity. In Proceedings of the First International Conference on Service

Oriented Computing, Trento, Italy, December 15-18, 2003.

[117] D. Woollard, N. Medvidovic, Y. Gil and C. Mattmann. Scientific Software as

Workflows: From Discovery to Distribution. In IEEE Software 25(4), pages: 37-

43, 2008.

[118] S.Weerawarana, F.Curbera, F.Leymann, T.Storey and D.F. Ferguson .Web

Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing,

WS-BPEL, WS-Reliable Messaging, and More. Prentice Hall, 2005.

[119] C. Ye, S. C. Cheung, W. K. Chan. Publishing and Composition of Atomicity-

Equivalent Services for B2B Collaboration. In Proceedings of the 28th

International Conference on Software Engineering (ICSE'06), pages: 351-360,

2006.

[120] J. Yu and R. Buyya. A Taxonomy of Workflow Management Systems for Grid

Computing. In Journal of grid Computing, Vol. 3(3-4), pages: 171-200,

September, 2005.

[121] L. Zeng, H. Lei, J.Jeng, J. Chung and B.Benatallah. Policy-Driven Exception-

Management for Composite Web Services. In Proceedings of the Seventh IEEE

International Conference on B-commerce Technology (CEC’05), 2005.

[122] L. Zeng, B. Benatallah , M. Dumas.Quality Driven Web Services Composition.

In Proceedings of the International World Wide Web Conference (WWW’2003),

Budapest, Hungary, 2003.

[123] L.J. Zhang and M. Jeckle. The Next Big Thing: Web Services Collaboration. In

the Proceedings of International Conference ICWS-Europe 2003, 2003.

 197

[124] Y. Zhang and J. Ma. Discovering Web Services Based on Probabilistic Latent

Factor Model. In the Joint Conference of the 9th Asia-Pacific Web Conference

and The 8th International Conference on Web-Age Information Management

APWeb/WAIM’07, Huang Shan, China, 2007.

[125] Business Transaction Protocol (BTP).Available at : http://www.oasis-

open.org/committees/business-transactions/documents/.

[126] Web Services Coordination (WS-C). Available at: http://docs.oasis-open.org/ws-

tx/wstx-wscoor-1.1-spec-os/wstx-wscoor-1.1-spec-os.html.

[127] Web Service Flow Language (WSFL). Available at

:http://xml.coverpages.org/WSFL-Guide-200110.pdf.

[128] Google. Available at: http://www.google.com.

[129] Yahoo. Available at: http://www.yahoo.com.

[130] XMethods. Available at: http://www.xmethods.com/.

[131] Web Service List. Available at: http://www.Webservicelist.com.

[132] Web Services Coordination (WS-C). Available at: http://docs.oasis-open.org/ws-

tx/wstx-wscoor-1.1-spec-os/wstx-wscoor-1.1-spec-os.html.

[133] AT&T Knowledge Ventures: Collaboration Across Borders. Available at:

http://www.corp.att.com/emea/docs/s5_collaboration_eng.pdf.

[134] Web Services Description Language (WSDL). Available at:

http://www.w3.org/wsdl.

[135] Simple Object Access Protocol (SOAP). Available at:

http://www.w3.org/TRJSOAP.

[136] Universal Description, Discovery and Integration (UDDI) Specification.

Available at: http://www.uddi.org.

[137] Business Process Execution Language for Web Services (BPEL4WS). Available

at: http://www- 106.ibm.comldeveloperworks/library/ws-bpel/.

[138] The Workflow Management Coalition. Available at: http://www.wfmc.org/.

[139] OWL-S: Semantic Markup for Web Services. Available at:
http://www.daml.org/services/owl-s/

[140] Web Service Data. http://www.andreas-hess.info/projects/annotator/ws2003.html.

[141] Data Sets. Available at : http://www.cs.utk.edu/~lsi/

 198

[142] WS-Security Core Specification 1.1. OASIS, 2006. Available at:

http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-

SOAPMessageSecurity.pdf

[143] Web Services Policy 1.2- Framework (WS-Policy). W3C, 2006. Available at:

http://www.w3.org/Submission/WS-Policy/

[144] WS-Trust 1.3. OASIS, 2006. Available at: http://docs.oasis-open.org/ws-sx/ws-

trust/200512.

[145] Security Assertion Markup Language (SAML). OASIS. Available at:

http://saml.xml.org/saml-specifications.

