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Abstract 

    This thesis studies the features and performance of privacy-preserving distributed data 

mining protocols published as journal articles and conference proceedings from 1999 to 

2009. It examines the topics and settings of various privacy-preserving distributed data 

mining protocols as well as the performance metrics for evaluation of these protocols. 

The framework for analysis of thesis draws on systematic data collection, document 

encoding, content analysis, protocol classification, criteria identification and performance 

comparison of privacy-preserving protocols for distributed data mining applications. 

 We studied and revealed an elaborate taxonomy for classifying privacy-preserving 

distributed data mining algorithms. Such a classification scheme is built on several 

dimensions, including secure communication model, data distribution model, data mining 

algorithms and privacy-preservation techniques. Besides, we have classified these 

privacy-preserving distributed data mining protocols into one of the mutually exclusive 

categories and recorded the frequency of protocols in each category as well. Based on this 

classification scheme, we have characterized each privacy-preserving distributed data 

mining algorithm according to its feature of dimensions. Therefore, we can compare the 

performance of protocols in similar or same categories in terms of an array of metrics, 

namely communication cost, computation cost, communication rounds and scalability. 

Relative performance of different protocols is also presented. 

This thesis, thus, aims to provide a framework for classifying privacy-preserving 

distributed data mining protocols and compare the performance of different protocols 

based on the outcome of the classification scheme.  
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                                          Basic definitions 

 

Algorithm – a finite sequence of instructions, an explicit, step-by-step procedure for   

solving a problem.  

A priori – a classic algorithm for learning association rules on transaction databases. 

Boolean vector – a vector with its only possible values being 0 and 1. 

Broadcast – refers to transmitting a packet that will be received by every device on the 

network. 

Class label – in classification, the input fields to be classified. It’s also referred to as 

target field. 

Cryptosystem – a computer system involving cryptography. 

Data holder – a user participating in the computation and hold data sets as input.   

Decision tree – a predictive model mapping from observations about an item to its 

conclusion about the target value. 

Discrete logarithm – group-theoretic analogous to ordinary logarithm.   

Distributed computing – loosely or tightly coupled programs or concurrent process 

running on multiple processing elements or storage elements. 

ElGamal Cryptosystem - is an asymmetric key encryption algorithm for public-key 

cryptography.  

Factorization – decomposition of an object into a product of other objects, called factors. 

Frequent itemset – is an itemset whose support is greater than some user-specified 

minimum support. 
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Naïve Bayes classifier – a term dealing with a simple probability classifier based on 

applying Bayes’ theorem with strong (naïve) independence assumption. 

Polynomial – a finite length of expressions constructed from variables and constants 

using algebraic operations (addition, subtraction and multiplication) 

Protocol – a set of rules for computers to communicate with each other across a network. 

It is a convention or standard that controls connection, communication and data 

transfer between computing endpoints.  

Random number – a number or sequence exhibiting statistical randomness. 

Scalar product – also referred to as dot product. Is an operation of two vectors on real 

numbers and returns a real-valued scalar quantity. 

Scalability – a desirable property of a system, a network or a process, which indicates the 

ability to either handle growing amounts of work in good manner or to be readily 

enlarged.  

Trusted Third Party (TTP) - is an entity which facilitates interactions between two 

parties who both trust the third party; they use this trust to secure their own interactions. 
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Chapter 1   Introduction 

1.1 Overview 

    Nowadays, data management applications have evolved from pure storage and 

retrieval of information to finding interesting patterns and associations from large 

amounts of data. With the advancement of Internet and networking technologies, 

more and more computing applications, including data mining programs, are required 

to be conducted among multiple data sources that scattered around different spots, and 

to jointly conduct the computation to reach a common result. However, due to legal 

constraints and competition edges, privacy issues arise in the area of distributed data 

mining, thus leading to the interests from research community of both data mining 

and information security. 

This kind of requirements give birth to the field of Privacy-preserving Distributed 

Data Mining (PPDDM), which aims at solving the following problem: a number of 

participants want to jointly conduct a data mining task based on the private data sets 

held by each of the participants. After the task, each participant knows nothing more 

than their local inputs and the global result of the data mining algorithm. 

Three major phases [32] - Conceptive Stage, Deployment Stage and Prospective 

Stage have been land-marked regarding the progress of this new research area -. 

During each of these phases, researchers of PPDDM concentrated their efforts on 

different aspects of this area. 

Conceptive Stage starts off with the identification of conflicts between knowledge 

discovery and privacy concerns as is proposed by O’Leary [65] [66], Fayyad, 

Piatetsky-Shapiro and Smith [64] [67]. From then on, a debate over how to balance 

between privacy concerns and accurate results of data mining applications has arisen. 
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Deployment Stage characterizes the period when a large number of PPDDM 

algorithms have been developed in various refereed sources, such as [22][40][43]. 

These algorithms address different privacy related issues in distributed data mining 

context. 

Prospective Stage is a forthcoming period, which is expected to be a popular 

research area. Researchers in [3][32] have focused more effort on the privacy 

principles, policies, requirements and standards in order to establish a common 

framework to evaluate and standardize PPDDM. 

One of the major challenges of PPDDM area is to devise a framework of 

synthesizing and evaluating various protocols and algorithm developed so far, because 

researchers, developers and practitioners interested in this topic have been confused, 

to some extent, by the excessive number of techniques developed so far.   

In this thesis, our main objective is to put forward a framework to synthesize and 

characterize currently existing Privacy-preserving Distributed Data Mining (PPDDM) 

protocols and to provide a standard and systematic approach of understanding 

PPDDM-related problems, analysing PPDDM requirements, designing effective and 

efficient PPDDM protocols and undertaking studies on continuous performance 

improvement. The PPDDM protocols we present and analyze here in this thesis are all 

assumed to preserve privacy absolutely under certain privacy definition and produce 

completely accurate data mining outcomes. Our contributions in this thesis can be 

summarized as follows: 1) we devise a framework to analyse and synthesize currently 

existing literatures and classify them into logical categories; 2) we illustrate the nature 

of the problem by characterizing scenarios in PPDDM; 3) we analyse and compare 

different PPDDM protocols that address the same problem setting to evaluate their 
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relative performance; 4) we initialize a new potential research area within PPDDM 

that can contribute to standardization of PPDDM.  

The efforts made in this thesis are by no means exhaustive and comprehensive. 

However, we primarily aim at providing directions to narrow the gap between 

technical solutions and business requirements of PPDDM algorithms. PPDDM 

protocols can be characterized as a variety of scenarios or problems, which have 

distinct requirements and constraints for performance. The performance of PPDDM 

protocols are generally determined by three parameters: effectiveness, efficiency and 

privacy degree. Currently, various PPDDM protocols devised with different 

techniques present different performance indicators on these parameters. Some 

algorithms are more efficient and secure, but the joint data mining results are greatly 

affected. Others produce accurate outcomes and absolute security, but the 

computational or communicational complexity is too high to be accepted. 

Accordingly, a decision-making strategy is needed to analyse and determine how to 

work out PPDDM solutions fit for the proposed business problems. Research 

communities have already set about standardizing such a strategy. This thesis focuses 

on bringing about a classification framework and evaluation methodology to assist 

informed and intelligent selection of PPDDM algorithms. Thus, we argue that this 

piece of work will shed some light on standardized strategy for design and develop 

PPDDM protocols.  

 

1.2 Keywords 

Classification, Evaluation, Privacy, Security, Privacy-preserving, Distributed, Data 

Mining. 
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1.3 Topic of the thesis 

This thesis introduces the current status of research on privacy-preserving 

distributed data mining protocols, highlighting the gap between the development of 

algorithms and the standardization of the algorithms.  

Our study, therefore, focuses on the topics of what is the classification scheme of 

privacy-preserving distributed data mining (PPDDM) protocols, how PPDDM 

protocols can be classified, what are the evaluation metrics to analyse various 

PPDDM protocols and how to compare their performance based on a set of common 

scales. 

  

1.4 Problem description 

    Designing and developing efficient, effective and secure privacy-preserving 

distributed data mining protocols is considered one of the most challenging tasks 

when it comes to the trade-off between privacy, efficiency and complexity. There are 

no fixed design approaches that can be generalized to address different problem 

settings. Different distributed data mining applications are formulated into different 

problem definitions, thus different methods and techniques used for generating 

solutions. Under such circumstances, the invention of standard to guide effective and 

efficient development and testing of privacy-preserving data mining protocols has 

become imperative. The research community of Privacy-preserving data mining have 

also been aware of this situation and have actually made great progresses and 

achievements in this field. However, the real problem is that the contributions made 

so far have aimed at dealing with either centralized scenarios or general scenarios 

without focus on distributed ones. No solutions have been developed to address 

standardization issues in the distributed scenario for privacy-preserving data mining 
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applications. This thesis aims at proposing a framework to satisfy the needs for 

standardization towards privacy-preserving data mining protocols in distributed 

scenarios - PPDDM protocols. 

Three research questions will be explored in this thesis: 

1. What are the design tools of privacy-preserving distributed data mining protocols? 

2. How to characterize and classify PPDDM protocols? 

3. How to evaluate and compare PPDDM protocols in terms of predefined metrics? 

    In accordance with the research questions, the work of this thesis can be divided 

into three parts: 

• Provide a summary of protocols and algorithms that serve as design tools of 

PPDDM protocols; 

• Classify current PPDDM protocols in terms of a set of dimensions, including data 

partitioning model, data mining algorithms, secure communication model, privacy-

preserving techniques; 

• Evaluate the complexity of PPDDM protocols and compare them based on unified 

criteria, including communication cost, communication round, computation cost. 

Communication cost is the total number of bytes of information exchanged among 

all the sites involved in the distributed data mining tasks; communication round 

refers to the total number of transfers of information required over the separate 

databases; computation cost is the total times of CPU operations needed to 

execute the PPDDM algorithms. 

 

1.5 Justification and motivation 

This is an emerging and promising area which has captured interests of both 

information security and data mining research communities. Various protocols 
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addressing different problem settings and data mining applications have been 

developed during the last decade. 

However, the lack of a common framework to classify and evaluate privacy-

preserving distributed data mining protocols can cause a serial of troubles. Firstly, 

proposed protocols may be of little value to practical situations. Secondly, new 

researchers and practitioners can be confused by the variety of techniques and 

algorithms without learning of their features. Finally, such lack of classification and 

evaluation work may prevent this area from future development towards 

standardization. 

Thus, after completing this thesis, one will have a clearer understanding of PPDDM 

area with respect to the design methods, the classification criteria and features as well 

as the relative performance of different PPDDM protocols. 

 

1.6 Selection of methods 

The methods that are used to answer the research questions in this thesis are a 

combination of literature search and more analytical approaches to classify and 

evaluate various existing algorithms. 

The answer to the first research question will be found in the literature review and 

background information. We are able to find the relevant information, summarize it 

and present it in a structured manner. 

The second question is answered by our own approach, which is like common 

process of problem-identifying and problem-solving. We survey the relevant context 

of PPDM classification area and find a gap to be filled in PPDDM classification work. 

We propose our scheme to address this problem. 
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The answer to the third question is presented through analysis of grouped PPDDM 

protocols and comparison of their performance in terms of certain metrics. 

Thus, the methods used in this thesis to address the research questions can be 

summarized as literature survey, content analysis and performance analysis. 

 

1.7 Organization of the thesis 

    The rest of the thesis is organized as follows. Chapter 2 provides background 

materials and related work in privacy-preserving distributed data mining area. In 

Chapter 3, we discuss some cryptographic primitives and building blocks for PPDDM 

algorithms. Then we introduce classic data mining algorithms, including classification, 

association rule mining and clustering, in which privacy concerns are always 

considered with respect to scientific, business and government applications.  

    In Chapter 4 and Chapter 5, we go into the solutions of distributed naïve bayes 

classification and distributed association rules mining, analyse the complexity of 

different solutions and undertake comparison between them in terms of 

communication cost, computation cost and communication rounds.  

The findings of Chapter 3 - 5 are summarized in Chapter 6, which presents the 

conclusions we have drawn in this thesis. Chapter 7 addresses future work to be 

conducted. 
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Chapter 2   Preliminaries 

There are some cryptographic properties or features that are used to create privacy-

preserving protocols. These properties include additive homomorphic encryption 

property and commutative encryption property. Form these rudimental properties we 

can get some core components that most privacy-preserving distributed data mining 

protocols are based on. Considering developing privacy-preserving distributed data 

mining algorithms, the most common challenge is how to obtain the trade-off among 

accurate data mining results, privacy-preservation of individual records and efficient 

and scalable algorithms. In order to determine a PPDDM algorithm meeting these 

design goals, analysis work has to be done in a systematic and comprehensive way.  

Several approaches have been proposed to address the privacy protection issues in 

data mining applications. One method is a reconstruction-based approach which 

reconstructs the distribution probability of the original dataset and creates a new 

distribution curve. Another method is a heuristics-based approach that protects 

individual information by using data perturbation methods, such as blocking, 

generalizing, aggregating and swapping, etc. These two approaches have a major 

drawback when dealing with privacy-preserving data mining problems. They trade off 

between the privacy of the individual information and the correctness of the data 

mining results. That is, privacy is achieved at the cost of accurate outcome. Besides, 

such kind of solutions can only tackle centralized data mining applications. 

Cryptographic-based approach is an effective way to resolve this accuracy-privacy 

trade-off. The data mining outcome is absolutely accurate and the privacy of personal 

information is leaked by no means under predefined security constraints. Therefore, 

we assume that privacy is ensured and accuracy is maintained when it comes to 

cryptographic solutions for distributed data mining applications. 
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This chapter gives a brief review of related work. It provides an overview of 

encryption properties that privacy-preserving key components make use of, and 

presents some sub-protocols that most privacy-preserving distributed data mining 

protocols are based on. We also describe some most common privacy-preserving 

techniques used to prevent disclosure of private information (e.g. encryption, secret 

sharing). The last section provides the evaluation criteria we will employ to measure 

and compare the performance of our selected protocols. 

   

2.1 Data mining algorithms 

2.1.1. Classification 

     Data classification deals with the process of finding the common properties among 

a set of objects in a database and divides them into different categories. The basic idea 

of classification techniques is to use some limited set of records, named a training set. 

In this training set, every object has the same number of items of the real database, 

and every object has already associated a label identifying its classification. We take 

Naïve Bayes algorithm as an example. 

The Naïve Bayes algorithm gives us a way of combining the prior probability and 

conditional probabilities in a single formula, which we can use to calculate the 

probability of each of the possible classifications in turn. Having done this we choose 

the classification with the largest value. 
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Naïve Bayes Classification 

Given a set of k mutually exclusive and exhaustive classifications c1, c2, …, 

ck 

which have prior probabilities P(c1), P(c2), …, P(ck), respectively, and n 

Attributes a1, a2, …, an which for a given instance have values v1, v2, …, vn 

respectively, the posterior probability of class ci occurring for the specified  

instance can be shown to be proportional to 

            P(ci) ×  P(a1 = v1 and a2 = v2 … and an = vn| ci) 

with the assumption that the attributes are independent. Then the value of 

this expression can be calculated using the product 

               P(ci) ×  P(a1 = v1 | ci) ×  P(a2 = v2 | ci) ×  ... ×  P(an = vn | ci) 

We calculate this product for each value of i from 1 to k and choose the  

classification that has the largest value. 

 

Figure 1: The Naïve Bayes Classification algorithm 

 

2.1.2. Association rules 

    Association rule mining is one of the most important tasks of data mining to find 

patterns in data. Association rules can be briefly expressed in the form of X ⇒ Y, 

where X and Y are sets of items. Association rule mining stems from the analysis of 

market-basket datasets. 

The association rule mining problem can be formally described as follows: let I = 

{i1, i2, …, im} be a set of literals, called items. Let D be a set of transactions, where 

each transaction T is a set of items such that T⊆ I. A unique identifier, called TID is 

linked to each transaction. A transaction T is said to contain X, a set of some items in I, 

if X ⊆ T. An association rule is an implication of the form X ⇒ Y, where X⊂ I, Y⊂ I, 

and X ∩ Y=Ø. The rule X⇒ Y holds in the transaction set D with confidence c if c% of 
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transactions in D that contain X also contain Y. The rule X ⇒ Y has support s in D if 

s% of the transactions in D contain X ∪ Y. 

Apriori algorithm is used for generating all the supported itemsets of cardinality at 

least 2. 

 1: Create L1 = set of supported itemsets of cardinality one 

 2: Set k to 2 

 3: While (Lk-1 ≠ Ø) { 

 4:     Create Ck from Lk-1 (see Figure 3, Generate Ck from Lk-1) 

 5:     Prune all the itemsets in Ck that are not 

 6:        Supported, to create Lk 

 7:    Increase k by 1 

 8: } 

 9: The set of all supported itemsets is L1 ∪ L2 ∪…∪ Lk 

 

Figure 2: The A priori Algorithm 

 

Generates Ck from Lk-1 

Join Step: 

Compare each member of Lk-1, say A, with every other member, say B, in 

turn.  

If the first k-2 items in A and B (i.e. all but the last two elements in the two 

itemsets) are identical, place set A ∪  B into Ck. 

Prune Step: 

For each member c of Ck in turn { 

Examine all subsets of c with k-1 elements 

Delete c from Ck if any of the subsets is not a member of Lk-1 

} 

 

Figure 3: The A priori-gen Algorithm 
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2.1.3. Clustering 

    Clustering is an effective method to discover data distribution and patterns in 

underlying datasets. The primary goal of clustering is to learn where the data is dense 

or sparse in a dataset. Clustering is also considered the most important unsupervised 

learning problem, as it concerns with finding a structure in a collection of unlabeled 

data. The general definition of clustering can be stated as:  

The process of organizing objects into groups whose members are similar in some 

way. Although classification is a convenient means for distinguishing groups or 

classes of objects, it requires the costly collection and labeling of a large set of 

training records or patterns, which the classifier uses to model each group.  

K-means clustering is an exclusive clustering algorithm. Each object is assigned to 

precisely one of a set of clusters. This method of clustering is started by deciding how 

many clusters need to be formed from the raw data. This value is called k. Generally, 

the value of k is a small integer, such as 2, 3, 4 or 5. 

We next select k points. They are treated as the centroids (initial central points) of k 

potential clusters. We can select these points as we wish, but the method may work 

better if the k initial points picked are fairly far apart. Then each point is assigned one 

by one to the cluster with the nearest centroid. The entire algorithm is summarized in 

Figure 4. 

1. Choose a value of k 

2. Select k objects as initial set of k centroids in an arbitrary fashion. 

3. Assign each of the objects to the cluster for which it is nearest to the 

centroid. 

4. Recalculate the centroids of the k clusters. 

5. Repeat step 3 and 4 until the centroids no longer move. 

 

Figure 4: The k-means clustering algorithm 
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2.2. Privacy-preserving techniques 

2.2.1. Public-key encryption scheme 

The idea of public-key cryptography [68] was first put forward in 1976. In 1977, 

Ronald Rivest, Adi Shamir and Leonard Adleman invented the famous RSA 

Cryptosystem. Several other public-key systems, such as Elliptic Curve Cryptosystem 

and ElGamal Cryptosystem, were proposed later on. The security of these public-key 

cryptosystems is based on different computation problems, such as Discrete logarithm 

problem, Elliptic curve discrete logarithm problem, Factorization problem and etc. 

The idea behind a public-key cryptosystem is to find a cryptosystem where it is 

computationally infeasible to determine Dk given Ek. The advantage of such a system 

is to relieve the cost of communication of secret keys as is in a symmetric-key 

cryptosystem. We take RSA as an example to describe a public-key cryptosystem here: 

    RSA algorithm consists of three steps: key generation, encryption and decryption. 

Key generation 

1. Assume n = p q, where p and q are two distinct large primes.  

2. Compute ϕ (n) = (p-1) (q-1)  

3. Choose an integer a, where 1<a<ϕ (n) and a and ϕ (n) are co-prime (share no 

common divisors other than 1). 

4. Compute b, such that ab≡1 (mod ϕ (n)). The public key comprises p, q and the 

public exponent b. The private key comprises the modulus n and the private 

exponent a, which is secretly kept. 

Encryption 

Bob first sent the public key (n, b) to the Alice, who wishes to send message m to 

Bob. 
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Alice computes the ciphertext c ≡ mb (mod n), and then transmits c to Bob. 

Decryption 

Bob receives the c and recovers m by making the following computation: 

m ≡ ca ≡ (mb)a ≡ mab ≡ m1+kϕ (n) ≡ m(mk) ϕ (n) ≡ m (mod n), since ab = 1 + kϕ (n). 

For small n of the RSA Cryptosystem, it is not secure in practice actually. 

 

2.2.2. Oblivious transfer protocol 

Oblivious transfer protocol (often abbreviated as OT) refers to a protocol that a 

sender sends some information to the receiver, but remains oblivious as to what is 

received. 

The first form of oblivious transfer protocol [69] was presented in 1981. In this 

form, the sender gives out a message to the receiver with probability ½, while the 

sender remains oblivious as to whether the receiver gets the message or not. Rabin’s 

oblivious transfer scheme is based on the RSA cryptosystem. A more useful form of 

oblivious transfer, named 1-out-2 oblivious transfer was invented and used to build 

protocols for secure multi-party computation. It is generalized to “1-out-of-n oblivious 

transfer” where the user gets exactly one database element without the server getting 

to know which element was queried. The latter notion of oblivious transfer is a 

strengthening of private information retrieval where one does not care about 

database’s privacy. 

In a 1-out-2 oblivious transfer protocol, the sender has two messages m0 and m1, 

and the receiver has a bit b, and the receiver wishes to receive mb, without the sender 

learning b, while the sender wants to ensure that the receiver receives only one of the 

two messages. The protocol of Even, Goldreich, and Lempel is general, but can be 

instantiated using RSA encryption as follows. 
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1. The sender generates RSA keys, including the modulus N, the public exponent 

e, and the private exponent d, and picks two random messages x0 and x1, and 

sends N, e, x0, and x1 to the receiver. 

2. The receiver picks a random message k, encrypts k, and adds xb to the 

encryption of k, modulo N, and sends the result q to the sender. 

3. The sender computes k0 to be the decryption of q-x0 and similarly k1 to be the 

decryption of q-x1, and sends m0 + k0 and m1 + k1 to the receiver. 

    The receiver knows kb and subtracts this from the corresponding part of the 

sender’s message to obtain mb. 

 

2.2.3. Secret sharing scheme 

Here we present a special type of secret sharing scheme called threshold scheme. 

We formalize the definition as follows: 

Let t, w be positive integers, t ≤ w. A (t, w)-threshold scheme is a method of sharing 

a key K among a set of w participants denoted as P, so that t participants can compute 

the value of K, but no group of (t-1) participants can do so. 

Shamir Threshold Scheme [72], invented by Shamir in 1979, is one of the methods 

to construct such a (t-w)-threshold scheme and describes as follows: 

Initialization Phase 

1. D chooses w distinct integer denoted as xi, 1 ≤ i ≤ w, 1 ≤ xi ≤ n, where n≥ w+1. 

For 1 ≤ i ≤ w, D gives the value xi to Pi. The values are public. 

Share Distribution Phase 

2. Suppose D wants to share a key K∈[1,n], D secretly chooses t-1 values at 

random from [1,n], denoted as a1, …, at-1. 

3. For 1 ≤ i ≤ w, D computes yi = a(xi), where a(x) = K + ∑ −

=

1

1

t

j
j

j xa mod n. 
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4. For 1 ≤ i ≤ w, D gives the share yi to Pi. 

In this scheme, the dealer construct a random polynomial function a(x) of degree at 

most t-1. The constant value of the function is the key K. Each participant gets a share 

xi from the dealer D. They calculate yi = a(xi) correspondingly, and obtains the point 

(xi, yi) of the polynomial. In that case, they obtain a set of t functions, from which a 

group of t participants can jointly determine the polynomial by sharing (xi, yi) (i = 1, 

2, …, t) and then K is obtained while t-1 participant cannot succeed. 

 

2.2.4. Randomization techniques 

    Randomization is the process of perturbing the input data to distributed data mining 

algorithms so that the data values of individual entities are protected from revealing. 

Several randomization techniques can be identified in privacy preserving data mining 

algorithms, including adding random numbers, generating random vectors and 

random permutation of a sequence.  

    The typical example of randomization approach is the one found in Agrawal-

Skrikant algorithm [1]. Data is perturbed in two manners: the value class membership 

and value distortion. The value class membership is a method that values of an 

attribute are divided into intervals and the interval in which a value lies is returned 

instead of the original value. The value distortion method works by adding a random 

value yi to each value xi of an attribute. Then, the original data distribution is 

reconstructed by the Bayesian approach, i.e., iterating 

∑
∫

= ∞

∞−

−

−

−

−
=

n

i j
Xiy

j
Xiyj

X
dzzfzwf

afawf
n

af
1 )1(

)1(
)(

)()(

)()(1)(  until )( j
Xf  is statistically the same as the 

original distribution of X (using the 2χ  goodness-of-fit test), where X(=x1, x2, …, xn) 

is the original variable, Y(=y1, y2, …, yn) is an random variable obeying a uniform 
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distribution between [-u, u], fY(a) stands for the density function of Y, wi = xi + yi for i 

=1, 2, …, n, and for )0(
Xf  is a uniform distribution. Given a sufficiently large number 

of samples, )( j
Xf  can be expected to be very close to the real density function fX of X 

after sufficient iterations. Based on the reconstructed distribution, decision trees can 

be induced [1]. 

 

2.3. Design tools 

    Privacy-preserving distributed data mining problems are normally addressed by 

means of cryptographic-related techniques, which provide various encryption tools to 

help protect individual and private information from being revealed when transferred 

online or communicated among different data sources. Here, we introduce some basic 

but common techniques in cryptography that can serve as building blocks for more 

advanced privacy-preserving protocols to tackle distributed data mining applications. 

 

2.3.1. Homomorphic encryption scheme 

    Homomorphic encryption is a form of encryption where one can perform a specific 

algebraic operation on the plaintext by performing a different algebraic operation on 

the ciphertext. In secure computation protocols, we use homomorphic encryption keys 

to encrypt individual parties’ private data so that their joint computation result can be 

obtained without decrypting the private input. In general, a homomorphic encryption 

scheme satisfies the following condition: E(x1) ∙ E(x2) = E(x1 + x2), where E is an 

encryption functions; x1 and x2 are plaintexts to be encrypted. According to 

associative property, E(x1 + x2 + … + xn) can be computed as E(x1) ∙ E(x2) ∙ … ∙ E(xn). 

That is,  

        E(x1 + x2 + … + xn) = E(x1) ∙ E(x2) ∙ … ∙ E(xn) 
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2.3.2 Secure sum 

In distributed data mining algorithms, calculating the sum of values from individual 

sites is a very frequent task. Secure sum [5] assumes three or more parties with no 

collusion among them. It is also a special case of secure multi-party computations. 

The value n = ∑ =

s

l ln
1

 is assumed to lie between [0…m]. One site, numbered as 1, 

is designated as the master site. The remaining sites are numbered 2…s. Site 1 

generates a random number r, uniformly chosen from [0…m]. Site 1 adds r to its local 

value n1 and passes (r+n1) mod m to site 2. Since the value r is uniformly chosen from 

[1…m], (r+n1) mod m is also distributed uniformly across this region, so site 2 learns 

nothing about the actual value of n1.  

Throughout the process from site l = 2…s-1, the algorithm is as follows. Site l 

receives 

    N = r + ∑
−

=

1

1

l

j
jn  mod m. 

Since this value is uniformly distributed across [1…m], I learns nothing. Site i 

computes 

        r + ∑
=

l

j
jn

1

 mod m = (nj + N) mod m 

and then passes it to site l+1. This process continues until it is passed back to site 1. 

 

2.3.3 Secure Scalar Product 

The scalar product, or inner product, of two binary vectors is a commonly used tool 

in privacy-preserving data mining applications [7].  
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Notations: 

• Ra: first binary vector with n elements (a1, a2, …, an)  

• Rb: second binary vector with n elements (b1, b2, …, bn)  

• Ra ∙ Rb: product of first and second vector∑ =

n

i iiba
1

 

•  (PK, SK): random generated public-private key pair 

• r: a random number 

• e(x): encryption of x using PK 

• d(x): decryption of x using SK 

 

The procedure of this protocol is summarized in Algorithm 1. 

Setting: Alice has Ra and Bob has Rb 
Goal: Bob learns Ra ∙ Rb + r and Alice learns r 
1. Bob generates (PK, SK) of a semantically secure  
    Homomorphic encryption scheme and sends PK to Alice. 
2. Bob encrypts his elements using PK and sends the vector (e(b1), …, e(bn)) 
    To Alice. 
3. Alice generates r and encrypts it using PK. 
4. Alice computes Z = e(r) ∙ ∏ =

n

i iy
1

, where yi = e(bi) if ai = 1 and yi = 1 if  
    ai = 0. Alice sends Z to Bob. 
5. Bob decrypts Z to get d(Z) = r + ∑ =

•
n

i ii ba
1

and sends to Alice. 

6. Alice gets ∑ =
•

n

i ii ba
1

 and sends to Bob. 
 

Algorithm 1: Secure scalar product protocol 

 

2.3.4 Secure Frequency Mining Protocol  

    Here, we present a primitive, which is the most popular in data mining applications. 

It is named secure frequency mining [54]. This protocol is implemented by additive 

homomorphic encryption scheme on a variant of Elgamal encryption. We describe the 

protocol as follows: 
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Notations: 

• G: a group in which discrete logarithm is hard 

• g: a generator in G 

• Ui: the ith user participating in the computation 

• xi: the first private key generated by the ith party 

• yi: the second private key generated by the ith party 

• Xi: gxi, the fist public key for the ith party 

• Yi: gyi, the second public key for the ith party 

• X : multiplication of all Xi;∏ =

n

i iX
1

 

• Y : multiplication of all Yi;∏ =

n

i iY
1

 

Suppose that each user holds a Boolean value di, and the miner’s goal is to learn d = 

∑ =

n

i id
1

. The privacy-preserving protocol for the miner to learn d is detailed in Figure 

5. 

 

Ui →  miner: mi = gdi ∙ Xyi; 
                       hi = Yxi. 

    Miner:       r = ∏ =

n

i
i

i

h
m

1
; 

                     for d = 1 to n 
                         If gd = r then 
                             Output d. 

 

Figure 5: Secure frequency mining protocol 

 

Now we prove that when the miner finds gd = r, the value d is the desired sum. 

Suppose gd = r, then 
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n

i idg 1 .  

Thus, gd = ∑ =

n

i idg 1  as desired. For d = 1 to n, it is easy to find the value of d. 

 

2.4. Evaluation criteria of PPDDM protocol 

In this section of the thesis, we are going to present some metrics that can be used 

to measure and evaluate privacy-preserving distributed data mining protocols. 

Researchers have designed and developed some set of measuring metrics regarding 

privacy-preserving data mining. In [3], Elisa Bertino and Igor Nai Fovino proposed a 

framework for evaluating PPDM. They devised some general criteria to evaluate the 

effectiveness and correctness of PPDM algorithms, including efficiency, scalability, 

data quality, hiding failure and privacy level. In general, privacy-preserving data 

mining algorithms can be evaluated and analyzed in regard to the work of privacy, 

complexity and accuracy. These three areas are the major design and testing goals of 

PPDM algorithms. 

In the case of PPDDM, that is, privacy-preserving distributed data mining, 

cryptographic techniques are commonly employed to protect the privacy of each data 

holder while still ensuring the result is accurate compared with non-privacy 

preserving techniques exerted on data mining algorithms. This strategy is quite 

different from that of reconstruction-based techniques [3] used in centralized data 
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mining tasks, where a trade-off between the privacy of datasets and accuracy of 

mining results is unavoidable. 

In this thesis, we are not going to quantitatively analyze the privacy and accuracy of 

these protocols, because their outcomes are designed and proved to be secure and 

correct under the agreed assumption and privacy definition. Rather, we focus on how 

well these algorithms perform to achieve the security goals – the efficiency parameter. 

Now let’s get down to the efficiency parameter in more detail. Efficiency is a 

metric that is used to assess the resources consumed by a privacy-preserving data 

mining algorithm. It’s also known as the complexity analysis of an algorithm, which 

represents the ability of the algorithm to execute with good performance that is 

assessed in terms of time and space, and in case of distributed data mining algorithms, 

in terms of communication cost and computation cost.  

• Time requirements are usually measured in terms of CPU time, or computation 

cost or even the average number of operations required by the PPDDM techniques. 

Normally, it is desirable for an algorithm to have a polynomial complexity than to 

have an exponential one. As is in the case of privacy preserving distributed data 

mining, it is advisable and practical to confine the execution times of the 

algorithms to being proportional to that of the non-privacy preserving data mining 

algorithms. Space requirements are assessed by means of the amount of memory 

allocated to implement the given algorithm, or the number of items and values 

assessed in case of privacy preserving data mining. 

• Communication requirements are evaluated in terms of the amount of information 

exchanged among all the sites involved in the distributed data mining tasks. The 

communication overhead can further be measured by means of communication 
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rounds, which indicates the synchronizing capability of the distributed system. 

The unit of measure of communication overhead in thesis is byte. 

• Scalability is another important aspect to assess the performance of PPDDM 

algorithms: it represents the efficiency trends of an algorithm towards the increase 

in the size of datasets. Thus, this parameter is used to measure both the 

performance and storage requirements together with the costs of the 

communications required by a distributed data mining technique when data sizes 

increase. A PPDDM algorithm must be designed and implemented to be scalable 

with larger datasets, due to the rapid development of the hardware and storage 

technology, which enables it possible to store and manage increasingly huge 

amounts of data. 

 

Therefore, in this thesis, the evaluation metrics of privacy-preserving distributed 

data mining algorithms are summarized as communication cost, communication 

rounds, computation cost and scalability. 
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Chapter 3   Classification of PPDDM Protocols 

3.1. Introduction 

3.1.1. Overview 

    Privacy issues arise when distributed data computing applications become popular 

in private and public sectors. Different data holders across scattered spots want to 

undertake a joint data mining task to obtain certain global patterns that will benefit 

them all whilst they each are reluctantly to disclose their private data sets to one 

another during the execution of the computing. This trick problem is commonly 

referred to as privacy-preserving distributed data mining. 

    Let us first take a look at two real-world examples of distributed data mining with 

different privacy constraints: 

• Scenario 1: Multiple competing supermarkets, each having an extra large set of 

data records of its customer’s buying behaviors, want to conduct data mining on 

their joint data set for mutual benefit. Since these companies are competitors in 

the market, they do not want to disclose too much about their customer’s 

information to each other, but they know the results obtained from this 

collaboration could bring them an advantage over other competitors. 

• Scenario 2: Success of homeland security aiming to counter terrorism depends on 

combination of strength across different mission areas, effective international 

collaboration and information sharing to support coalition in which different 

organizations and nations must share some, but not all, information. Information 

privacy thus becomes extremely important; all the parties of the collaboration 

promise to provide their private data to the collaboration, but neither of them want 

each other or any other party to learn much about their private data. 
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    The above scenarios describe different PPDDM problems. Each scenario poses a 

set of challenges. For instance, scenario 1 is a typical example of heterogeneous 

collaboration, while scenario 2 refers to a task in a homogeneous cooperation setting. 

    Technology alone cannot address all of the PPDDM scenarios [32]. The above 

questions can be to some extent addressed if we provide some key requirements to 

guide development of technical solutions. One alternative is to describe them in terms 

of general parameters. In [32], some parameters are suggested: 

• Outcome: Refers to the desired data mining results. For instance, some may look 

for association rules identifying relationships among attributes, or relationships 

among customers’ buying behaviors in scenario 1, or may even want to classify 

data as is in scenario 2. 

• Data Distribution: How are the data available for mining? Are they horizontally 

distributed or vertically distributed across multiple sites? In the case of 

horizontally partitioned situation, each data owner holds the same schema of 

entities in their database, and in vertically partitioned scenario, different sites 

contain different attributes for every entity. 

• Privacy Preservation: What specific concerns are required to tackle privacy 

issues? If the privacy is maintained for every local data holder, the individual 

privacy or personal identifiable information is ensured, otherwise collective 

privacy is. Even for personal privacy, privacy level can vary regarding data 

privacy or data anonymity. 

 

3.1.2. Research questions 

Several research questions have been asked about this field: 1) what kinds of 

options exist for privacy preserving purposes in distributed data mining? 2) Which 
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method or technique is more popular or prevailing? 3) How to measure the 

performance of privacy-preserving distributed data mining protocols? We reviewed 

60 recent published journal and conference papers from 2000 to 2008 to analyze and 

demonstrate these problems. 

 

3.2. Related work 

There are some works by other researchers in regard to synthesizing and classifying 

existing privacy-preserving data mining literatures. Vassilios S. Verykios, Elisa 

Bertino and Igor Nai Fovino [3] propose five dimensions to classify and analyze 

privacy-preserving data mining algorithms with aims of state-of-the-art. Their 

classification dimensions are data distribution, data modification, data mining 

algorithm, data or rule hiding and privacy preservation. Based on their classification 

dimension, in [3], they proposed a classification taxonomy of existing PPDM 

algorithms. According to the features of privacy preservation solutions, these 

algorithms are primarily divided into three categories: heuristic-based, reconstruction-

based and cryptography-based. The former two categories deal with centralized 

database and the last one tackles with distributed database. In [46], Xiaodan Wu et al. 

presented a simplified taxonomy to consolidate the previous one. They analyzed and 

summarized existing references, thus putting the taxonomy into practical usage. 

Although the scheme and taxonomy by Bertino, Nai and Parasility in [3] provided a 

comprehensive coverage for privacy-preserving data mining algorithms, it still has 

two major drawbacks. Firstly, they did not provide us with specific cryptographic 

techniques used in the cryptographic-based solutions for distributed-DB case. Rather, 

they merely mentioned encryption techniques. Secondly, in distributed database 

scenarios, we usually do not pay too much attention to whether raw data or aggregated 
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data is hidden, because normally we aim at hiding raw data, which requires a more 

contingent privacy level. Instead, how data is distributed, namely, horizontally 

partitioned or vertically partitioned across data sites is the factor that counts and 

interests us. 

 

3.3 Classification dimensions of PPDDM protocols 

    In this section, we present a concise classification scheme for PPDDM protocols. In 

this scheme, four dimensions are identified according to which any privacy preserving 

distributed data mining problems can be categorized and classified. They are: 

• Data partitioning model 

• Data mining algorithms 

• Secure communication model 

• Privacy preserving techniques 

We propose a taxonomy regarding PPDDM protocols contained in four levels (see 

Figure 6).  This scheme is different and innovative from current relevant schemes in 

two ways: 1) it specifically deals with the distributed privacy-preserving data mining 

protocols while some other schemes do not deal with this area in depth; 2) It includes 

data distribution models of distributed data mining, including horizontally partitioned 

and vertically partitioned, which other schemes have not specified clearly; 3) This 

scheme expands cryptographic techniques used in distributed data mining for privacy 

protecting purpose, such as encryption, secret sharing, oblivious transfer and etc. 

Figure 6 depicts a general architecture of how these dimensions interrelated to one 

another. 
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Cryptographic techniques = {public-key encryption, oblivious transfer,  
  secret sharing, randomization} 

Figure 6:  Classification of PPDDM protocols  
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3.3.1 Data partitioning model 

The first dimension is data partitioning model. In distributed data mining scenarios, 

datasets can be distributed and scattered in different locations in different models. 

Two basic ways of distribution of datasets are: homogeneous distribution (horizontal 

partitioning) and heterogeneous distribution (vertical partitioning). These two models 

are formally defined as follows [44]: assume dataset be D in terms of the entities for 

which the data is collected and the information that is collected for each entity. Thus, 

we denote D ≡ (R, A), where R is the data records that are collected for each 

individual or entity and A is the attribute set that is collected about each record. We 

assume that there are k different sites, P1, …, Pk collecting datasets D1 ≡ (R1, A1), …, 

Dk ≡ (Rk, Ak) respectively. 

It assumes that in horizontal partitioning data model, different sites collect the same 

sort information about different entities. Therefore, in horizontal partitioning, RG = 

i∪ Ri = R1 ∪… ∪ Rk, and AG = A1 … = Ak. Such situations exist in real life. For 

example, two organizations collect very similar information. However, the customer 

base for each organization tends to be quite different. Figure 7 demonstrates 

horizontal partitioning of data. The figure shows two medical institutions, New York 

Hospital and Chicago Medical Centre, each of which collects personal information for 

their patients. Attributes such as PatientID, Gender, Age, Occupation and Disease are 

stored in both databases. Merging the two databases together should lead to more 

accurate predictive models used for medical research activities. 
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Patient ID Gender Age Occupation Disease 

 

New York Hospital 

Patient ID Gender Age Occupation Disease 

18 Female 35 Manager Arthritis 

73 Male 27 Engineer Diabetes 

… …     …     … … 

249 Female 56 Teacher Tuberculosis 

 

Chicago Medical Centre 

Patient ID Gender Age Occupation Disease 

291 Female 43 Nurse Hepatitis 

426 Male 19 Student Chlamydia 

… … … … … 

610 Male 62 Retired Obesity 

 

Figure 7: Horizontal partitioning / Homogeneous distribution of data 

 

    On the other hand, vertical partitioning of data assumes that different sites collect 

different feature sets for the same set of entities. Thus, in vertical partitioning, RG = 

R1 … = Rk, and AG = i∪  = A1 ∪…∪ Ak. For example, in some city, Walmart collects 

information about potatoes and tomatoes consumed by a group of customers. 

Carrefour, it competitor, collects information about chicken, beef and pork bought by 

the same group of customers. Groceries can be linked to butchers. This linking 
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information can be used to join the databases. The joint database could then be mined 

to reveal more useful information about the buying behaviour of that group of 

customers. Figure 8 demonstrates vertical partitioning of data. 

 

TID Potato Tomato Chicken Beef Pork 

 

Walmart Carrefour 

TID Potato Tomato 

 

TID Chicken Beef Pork 

ABC Yes Yes  ABC No No Yes 

MFN No No  MFN No Yes No 

… … …  … … … … 

QYR No Yes  QRY Yes Yes Yes 

 

Figure 8: Vertical partitioning / Heterogeneous distribution of data 

 
    A fully distributed setting is a special case of horizontal partitioning when the 

number of entities, denoted as N, is the same as the number of parties involved in the 

distributed computing, that is N = k. In the case of distributed data mining, if every 

individual user or participant holds exactly one record of the dataset, which is 

provided to the joint computation, this scenario is called a fully distributed setting. 

There has been some more complex and hybrid partitioning models of data, like the 

partitioning of each entity or each feature is different. 

    The following table summarizes the relevant references specifying privacy-

preserving data mining problems in horizontally partitioned or vertically partitioned 

environment, respectively. 
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Data distribution References 

Horizontally partitioned [2][7][10][14][16][21][22][26][27][39][54][55][57] 

Vertically partitioned [4][6][9][17][18][19][20][23][24][33][34][40][41][42][4

3][48][51][52][61][63] 

 
Table 1: Summary of data distribution references 

 

3.3.2 Data mining tasks / algorithms 

The second dimension is data mining algorithms on which privacy preserving 

techniques are imposed. Generally, the data mining algorithms under research include 

classification, association rule mining and clustering. Classification concerns the 

problem of finding a set of models (or functions) that describe and distinguish the data 

classes or concepts, for the purpose of being able to use the model to predict the class 

of objects whose class label is unknown. As to classification, there are several 

different ways to classify a new instance. They are naïve Bayes classifier, decision 

tree classifier and k-nearest neighbor classifier. Association rule mining is the process 

of discovering associated rules and showing attribute value and conditions that occur 

frequently in a given set of data. Clustering analysis involves the process of 

decomposing or partitioning a data set (usually multivariate) into groups so that the 

points in one group are similar to each other and are as different as possible from the 

points in other groups. For clustering, the most commonly used algorithms are k-

means clustering and EM clustering. 

The following table summarizes the references regarding the data distribution 

models that various data mining algorithms are divided into. 
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References Data mining  

Algorithms Horizontally partitioned Vertically partitioned 

Classification [9][20][21][51][54][57] [2][7][24][42][43][48][51][52][6

1] 

Association Rules [10][14][19][22][39][56] [4][14][23][33][34][40][63] 

Clustering [16][17][18][27] [6][18][41] 

 

Table 2: Summary of data mining techniques references 

 

3.3.3 Secure communication model 

Here, we present our third classification dimension, secure communication model, 

which generally refers to the interactive relation of the participants joining in the 

cooperative computation and the roles they play in the whole process of privacy-

preserving distributed data mining tasks. Another similar term is “coopetative” model 

[36]. This term stems from the word “coopetation”, which was originally employed in 

social-economics to describe the situation that competing entities producing the same 

line of products and services have to cooperate with each other to improve the overall 

value of their market by means of making decisions based on the joint analysis of 

their private data. Similarly, distributed data mining tasks commonly feature a 

scenario where all the data holders participating in the joint computation on their 

individually private data sets naturally have the desire and interest to obtain the final 

result of the application. As the proprietary owner of their individual data set, it is 

understandable that each data holder is reluctant to share private information with 

other data holders. However, in order to reach the final result of the distributed data 
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mining, they are ready and motivated to provide inputs to the computation, as long as 

the privacy requirements are met.  

Generally, most practical approaches to solve this scenario is to conduct the secure 

computation at one or more of the participants or at one or more third parties with the 

assumption that all of participants are semi-honest [39] and the third parties are semi-

trusted participants [39]. Herein, let us give the informal definition of both semi-

honest and semi-trusted. In [44], a semi-honest party (i.e. honest but curious) follows 

the rules of the protocol using its correct input, but is free to learn from what it sees 

during the execution of the protocol to compromise security. In [56], a third party is 

semi-trusted if it fulfills the following condition: the third party is trusted to provide 

some commodities or compute intermediate outcome of the computation based on 

encrypted input it receives; it follows the execution of the protocol correctly, just like 

all the other users as well, although it tries to learn and deduce some information from 

its own input and output.  

Under such scenario and assumption, privacy-preserving distributed data mining 

problems can be solved mainly based on two types of secure computation model: One 

is based on Semi-trusted Third Party (STTP) model. Theoretically, the general secure 

multi-party computation protocols can be used to deal with any collaborative data 

mining problems, yet this kind of solutions are too inefficient when the database is 

huge in amount and the number of participants is large, due to its intricate and 

complicated design. On the other hand of the spectrum, the trusted third party (TTP) 

model is too navie and straightforward, so that the privacy is compromised to a larger 

extent at the point of the TTP. Therefore, more practical solutions have been put 

forward in the past few years with respect to how to solve the privacy issues of 

distributed data mining more efficiently and accurately. Among them, two broad 
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streams of ideas are manifesting themselves: one is to introduce a semi-trusted third 

party, as compared to the trusted third party (TTP). In real world, it is much more 

feasible to find such a semi-trusted third party than to find a trusted third party. This 

semi-trusted third party can be implemented by means a miner, a mixer, or a 

commodity server, that all act in a semi-trusted manner. 

The other stream is based on Specific Secure Multi-party Computation under Semi-

honest assumption (SSMC). It aims at accomplishing efficient and accurate solution 

for the PPDDM problems. Under the semi-honest assumption, specific secure multi-

party computation protocols are employed to deal with functions commonly used in 

data mining applications rather than the general secure multi-party computation 

protocol. These techniques include secure sum, secure set union, secure intersection, 

secure scalar product, etc. The advantage of such kind of protocols and tools lies in 

that they are designed to specially fit in with the data mining tasks, instead of any 

general functions. As the function for secure computation can be identified, the 

computing complexity is reduced greatly and a linear proportional cost can be 

obtained. 

Clifton and Vaida [5] propose a toolkit of techniques that can be used to address 

various kinds of PPDDM issues in a practical and performance-friendly manner. The 

assumption of their ideas and techniques are that all participants of the joint 

computation conduct the algorithm strictly within themselves, rather than inviting any 

other external parties of any trust level to assist the computation. They argue that most 

distributed data mining tasks can be reduced to computing certain simple functions 

such as sum, average, frequency, sets union, etc with inputs of individual parties, 

which are the private information that needs protecting. Furthermore, some techniques 

can be generalized to tackle the computation of these simple functions and the 
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preservation of private data, thus solving many privacy-preserving distributed data 

mining problems. These techniques are all built on SSMC model; however the 

computational complexity is greatly reduced compared with Yao’s secure evaluation 

function [55]. 

    Alex Gurevich and Ehud Gudes [14] propose a new architecture of conducting 

privacy-preserving distributed association rule mining applications and further extend 

to general distributed data mining tasks. This architecture is composed of n 

participating databases, a miner which manages the computation and decides which 

computation to be done, and the calculator which compute without knowing what 

itemset it computes. The key point of the architecture is that it invites the miner and 

calculator as third parties to participate in the joint computation while during the 

process, only the miner and all participants get to know the result of the mining and 

the calculator only performs auxiliary computations without knowing any information 

provided and published.  

    The miner and calculator in the above architecture and model depict a general 

picture of what we present in this thesis as Semi-trusted third party (STTP). These 

third parties are semi-honest themselves like those semi-honest participants, but they 

do not hold any part of the data or provide any private inputs. Their roles are just to 

manage the data mining process or assist in the computation. They do not collude or 

collaborate between them or any participants and they not trusted by the participants. 

Therefore, to our assumption and definition, external parties that possess such 

properties other than any data holders participating in the distributed mining process 

are called Semi-trusted third parties. 

The following table summarizes the categories of secure computation models 

(STTP or SSMC) on which papers published from 2000 to 2009 are based: 
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References Secure 

communication model Horizontally partitioned Vertically partitioned 

Semi-trusted third 

party (STTP) 

[2][10][14][16][21][26][27]

[39][54][56][57] 

[7][14][34][39] 

Specific secure multi-

party computation 

(SSMC) 

[9][17][18][19][20][22][51] [4][6][18][23][24][33][40][41]

[42][43][48][51][52][61][63] 

                               
Table 3: Summary of secure communication model references 

 

3.3.4 Privacy preservation techniques 

The fourth dimension to classify PPDDM algorithms are the privacy preserving 

techniques used to protect the private information communicated among sites and 

central miner or mixer. These techniques include homomorphic encryption scheme, 

public key cryptosystem, etc. All of them serve as the building blocks for other more 

advanced and high-level protocols, such as privacy-preserving frequency mining, 

privacy-preserving summation, etc. 

We present some efficient methods to conduct secure computation in distributed 

data mining settings. This is by no means an exhaustive list of efficient methods and 

techniques to achieve privacy preserving data mining protocols. They are, however, 

sufficient to allow us to present several privacy-preserving solutions for distributed 

data mining problems. 

l Oblivious transfer: refers to a protocol by which a sender sends some information 

to the receiver, but remains oblivious as to what is received. See Section 2 for 

more details. 
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l Public-key encryption: an encryption holds the property of additively 

homomorphic if the functionality of the encrypted values can be obtained by 

means of the encryption of the addition of the values, i.e. E (a) * E (b) = E (a + b). 

See Section 2 for more details. 

l Secret sharing: refers to any the method for distributing a secret amongst a group 

of participants, each of which is allocated a share of the secret. The secret can 

only be reconstructed when the shares are combined together; individual shares 

are of no use on their own, i.e. Shamir secret sharing scheme. See Section 2 for 

more details. 

l Randomization: refers to adding a noise to the original data to hide its real value, 

thus protecting privacy of the data sets. 

    The following table summarizes the references in relation to the above-mentioned 

privacy-preserving techniques employed in different data partitioning models of 

PPDDM. 

PP Techniques                    References 

Public-key encryption [10][17][22][23][24][34][39][41][54][56][57][61

][63] 

Oblivious transfer [2][16][18][20][21][43] 

Secret sharing [9] 

 

H-Partition 

Randomization [14] 

Public-key encryption [4][8][10][19][23][24][33][40][42][43][48] 

Secret sharing [6][27] 

Oblivious transfer N/A 

 

V-Partition 

Randomization [14][51][52] 

Table 4: Summary of privacy preservation techniques references 
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Chapter 4   Privacy-preserving Distributed Naïve Bayes Classifier 

The study on secure distributed classification solutions is an important task. The 

goal is to have a simple, efficient and privacy-preserving classifier. The ideal would 

be for all parties to jointly decide on a model and then use the model locally. In this 

section, we discuss the context of Naïve Bayes classifier. We assume that the data 

address the problem of building naïve classifier in a horizontally partitioned setting. 

This means that many parties collect the same set of information about different 

entities. They do not want to reveal their own instances or the instance to be classified. 

We formally define the problem as follows: assume there are m attributes, (A1, 

A2, …, Am), and one class attribute V, which has a domain of {v1, v2, … vp}. We also 

assume that there are n data holders (U1, …, Un), where each data holder Uj , j ∈ [1, n] 

has a vector denoted (aj1, …, ajm, vj) which is an instance of the attributes vector (A1, 

A2, …, Am) and vj is Uj’s class label. In this problem setting, a classifier to classify a 

new instance is required for selecting the most likely class label v: 

    V = C
m

i

l
i

l vav
1

)()( )|Pr()Pr(maxarg
=

, 

where (a1, …, am) is the attributes vector of the new instance. 

 

4.1. STTP-based public-key encryption solution – Privacy-preserving 

Classification of Customer Data without Loss of Accuracy [54] 

    In this protocol, a semi-trusted miner is introduced to compute the intermediate 

value transferred by each participant and ElGamal public-key encryption scheme with 

additive homomorphic property is employed to achieve privacy-preserving goal. For 

this protocol, we consider the following scenario: n parties, m attributes and d class 

values. 
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4.1.1. Notations 

• m: total number of non-class attributes in the dataset 

• A: attribute set of dataset (A1, A2, …, Am) 

• Ai: the ith attribute of A (1≤i≤m) 

• {a )1(
i , …, a )(d

i }: value domain of the ith attribute, 1≤k≤d 

• V: the class attribute in the dataset 

• {v(1), …, v(p)}: value domain of class variable, 1≤l≤p 

• Uj: the jth user participating in the computation, 1≤j≤n 

• n: total number of users participating in the computation 

• (aj1, …, ajm, vj): the jth user’s vector of the dataset 

• S: the set of privacy-sensitive attributes; S ⊆ A 
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4.1.2. Protocol  

A detailed specification of the protocol is given in Algorithm 2. 

Input: n parties, m attributes, d class values 
Output: naïve bayes classifier 
1: Let ),( lk

jia = 1 if (aji, vj) = (ai
(k), v(l)); 0 otherwise. 

2: Uj’s private keys: (xji
(k,l))i∈S, (yji

(kl)) i∈S 
3: Public keys: ),( lk

jiX = gx ),( lk
ji ; ),( lk

jiY  = gy ),( lk
ji . 

4: ),( lk
iX = ∏ ≤≤ mj

lk
jiX

1
),( ; ),( lk

iY =∏ ≤≤ mj
lk

jiY
1

),( . 
5: Uj: for i∈S { 
6:         

),( lk
jia = ga

),( lk
ji . ( ),( lk

iX )y
),( lk

ji ; 

7:         ),( lk
jih = ( ),( lk

iY )x
),( lk

ji ; } 

8: Uj → miner: (
),( lk

jia , ),( lk
jih ); (aji)i∈S, vj. 

9: Miner: for i∈S { 

10:            ),( lk
ir =∏ =

n

j lk
ji

lk
ji

h
a

1 ),(

),(

; 

11: } 

12: for # ( )(k
ia ,v(l)) = 1…n { 

13:                  if g# )()( ,( lk
i va )= ri break; 

14: } 
15: for i∈S { 
16:   count # ( )(k

ia , v(l)). 
17: } 
18: for l = 1… p { 
19:   count # (v(l)); 
20: } 
21: Compute the posterior probability based on the frequency        
counts obtained. Output naïve bayes classifier. (see Section 2.1 
for details) 

 

Algorithm 2: STTP-based Privacy-preserving Naïve Bayes classifier 

 

4.1.3. Protocol Analysis: we implicitly assume that the output classifier is encoded in 

such a way that it contains the frequencies #(v(l)) and #(a )(k
i , v(l)) for all (i, k, l). 

Complexity Analysis: n customers and m attributes are involved in this protocol. The 

size of each non-class attribute is d and the domain size of class label is p. Also, the 
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set of privacy-sensitive attributes is S. Assume there are s sensitive attributes, where s 

= |S|. It can be deduced that the computational overhead of each customer, as opposed 

to a non-private solution, is dps encryptions. In data mining applications, we usually 

have n>>dps; thus,  

Communication overhead:  

We calculate the communication cost of the protocol by means of calculating the bits 

of total information exchanged among all sites during the execution of the algorithm. 

In this case, we note the figure as O(2.dps.n)N; the exchange round is constant 

number 2. 

Computation overhead: 

The computation cost is measured by means of counting the total number of 

additional encryption and decryption operations executed in the algorithm. The time 

cost is O(2.dps.n); the space cost is 3nN 

 

4.2. SSMC-based public-key encryption solution – Privacy Preserving Naïve 

Bayes Classifier for Horizontally Partitioned Data [20] 

In this protocol, we consider the following scenario: there are n parties participating 

in the computation, m attributes in the dataset, the class variable V has d values. 

Algorithm 3 illustrates the protocol of generating the output of classifier on 

horizontally partitioned dataset in privacy preserving manner. When it comes to the 

case of numeric attributes, we deal with it by first converting the numeric attributes to 

nominal attributes and then running the protocol. Thus, in this section we only discuss 

the case of nominal attribute. 
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4.2.1. Notations 

• n: number of parties participating the computation 

• d: number of class variable values in the dataset 

• m: number of attributes in the dataset 

• vj: the ith value of class variable, 1 ≤ j ≤ d 

• x
yzc : the number of instances with party Px having class y and attribute value z 

• x
ya : the number of instances with party Px having class y 

• pyz : the probability of an instance having class y and attribute value z 

 

4.2.2. Protocol 

 Input: n parties, m attributes, d class values 
 Output: Naïve bayes classifier 
1: for (class values y = v1… vd) { 
2:   for (i = 1…k) { 
3:     ∀ z, Pi locally computes i

yzc      

4:      Pi locally computes i
ya  

5:   } 
6: } 
7: ∀ (y, z), All parties calculate cyz = ∑ =

k

i
i
yzc

1
 using secure sum 

protocol (see Section 2.4) 
8: ∀ y, All parties calculate ay = ∑ =

k

i
i
ya

1
 using secure sum 

protocol 
9: All parties calculate pyz = cyz/ay 
10: Output naïve bayes classifier (see Section 2.1 for details) 

 

Algorithm 3: SSMC-based Privacy-preserving Naïve Bayes classifier 

 

4.2.3. Protocol Analysis: since all the model parameters are completely present with 

all the parties, evaluation is no problem at all. The party which wants to evaluate an 

instance simply uses the Naïve Bayes evaluation procedure locally to classify the 
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instance. The other parties have no interaction in the process. Thus, there is no 

question of privacy being compromised. 

Performance analysis: The communication cost of the protocol can be measured by 

means of calculating the total bits of information exchanged among all sites during the 

execution of the algorithm. In this case, the communication overhead is noted as 

O(dps.n)N; the communication round is n + 1, a number proportional to the number of 

sites. 

The computation cost is measured in terms of the total number of additional 

encryption and decryption operations executed in the algorithm. In this protocol, the 

computation overhead is O(dps.n); space complexity is nN, that is the amount of 

storage consumed by parameters of the algorithm. 

 

4.3. Performance comparison 

Here, we provide a graphic illustration of both algorithms in terms of their 

communication cost, computation cost and communication rounds. Our experiment is 

done on the environment of a PC with a 1GHz processor and 512MB memory under 

NetBSD. The simulations of the protocols are implemented in the C#.NET 

programming language. The length of cryptographic key is 512 bits. The dataset we 

used is a synthetic control chart time series data taken from the UCT Machine 

Learning repository. The dataset consists of 60 rows and 6 columns. It is attached in 

the Appendix of this thesis. We have performed two tests with the datasets. The 

performance is recorded and measured in the case of 5, 10, 15, 20 and 25 participating 

sites respectively for communication cost comparison and 3, 5, 7, 9 and 11 

participating sites respectively for the comparison of computation cost and 

communication rounds. The first test is to see how much communication overhead 



                       
 

45 

STTP-based protocol brings and how the communication overhead SSMC-based 

protocol compares with the former one. The total amounts of transmissions caused by 

the protocols with respect to the number of parties are depicted in Figure 9. The 

communication rounds of each protocol are displayed in Figure 10. As expected from 

the formula in Section 4.1.3 and Section 4.2.3, STTP-based protocol incurs a constant 

communication round, which is 2, while SSMC-based protocol incurs n rounds. The 

second test that we have performed is to analyze and compare the computational 

overheads brought by STTP-based protocol and SSMC-based protocol. Execution 

times of the protocols with respect to the number of parties are shown in Figure 11. 

The communication cost, communication rounds and computation cost for both 

protocols are recorded, compared and presented below. 

 

 

Figure 9: Communication cost comparison for classification 
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Figure 10: Communication round comparison for classification 

 

 

Figure 11: Computation cost comparison for classification 
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based protocol are all lower than those of Vaidya’s SSMC-based protocol. Therefore, 

through the analysis and comparison based on our evaluation framework, we conclude 

that Wright’s protocol dominates Vaidya’s protocol in the overall performance. 
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Chapter 5   Privacy-preserving Distributed Association Rule Mining 

This section addresses the problem of computing association rules within such a 

distributed scenario, in which one of the distributed custodians of data are allowed to 

transfer their data to another site. Here, we assume homogeneous / horizontal (see 

Section 3.1 for more details) databases: all sites have the same schema, but each site 

has information on different entities.  

This problem of distributed association rule mining can be formulated as follows: 

assume that a transaction database DB is horizontally partitioned among n sites 

(namely S1, S2, …, Sn) where DB = DB1 ∪  DB2 ∪…∪  DBn and DBi resides at side Si 

(1 ≤ i ≤ n). The itemset X has local support count of X.supi at site Si if X.supi of the 

transactions contains X. The global support count of X is given as X.sup = ∑ =

n

i
X

1
.supi. 

An itemset X is globally supported if X.sup ≥ s ×  (∑ =

n

i
DBi

1
|| ). Global confidence of 

a rule X ⇒ Y can be derived by {X ∪ Y}.sup/X.sup. Thus, association rules can be 

constructed based on these rules with their global confidence greater than the 

minimum confidence level.  

 

5.1. STTP-based public-key encryption solution – Privacy-preserving distributed 

association rule mining via semi-trusted mixer [56] 

    This protocol is performed in four steps: the first step is setup phase. During this 

phase, all users exchanged a secret key among themselves based on group key 

agreement protocol [71]. Details of key agreement protocols will not be demonstrated 

in this thesis. The second step is to find all global frequent sets of items on the basis of 

local frequent sets of items. In this phase, a priori algorithm [70] is utilized for sorting 

out all local frequent sets of item. During the third step, global support counts of all 
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frequent item sets are discovered. In the fourth step, rules are formulated out of global 

frequent sets of items above the minimum confidence threshold. These steps are 

operated one by one in a sequential order.  

 

5.1.1. Notations 

• n: # parties attending the joint computation 

• Ui: the ith user attending the joint computation 

• DBi: local dataset held by Ui  

• Pi: the set of locally frequent items in DBi    

• Smin: global minimum support of candidate itemsets 

• (Ek, Dk): secret key encryption (DES or AES encryption) 

• K: secret encryption key 

• (N, g): public key of Paillier public-key cryptosysem 

• (p, q): private key of Paillier public-key cryptosystem; N = p q 

• λ = lcm(p-1, q-1) 
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5.1.2. Protocol  

Step 1: Finding candidate items  

    

 Input: P1, P2, …, Pn (n ≥ 3), the minimum support is smin, the 
             encryption key is K 
 Output: C1 = U

n

i iP
1=

 
 for Ui, i = 1…n { 
   Pi = Ø, Ek(Pi) = Ø 
   for j = 1 … |I| { 
     if Fi(j) ≥ smin |DBi| { 
       Pi = Pi ∪ {ij}, Ek(pi) = Ek(pi) ∪ {Ek(ij)} 
     } 
       M ←  Ek(Pi) 
   } 

} 
 M1 = Ø 
 for i = 1…n { 
   M1 = M1 ∪ Ek(Pi) 
 } 
 for Ui, i = 1…n{ 
   C1 = Ø  
   for each X∈ M1 { 
     C1 = C1 ∪ {Dk(X)} 
   } 
   Return C1 = i

n
i P1=∪  

 } 
 

Algorithm 4: Finding candidate items 
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Step 2: Finding the global support count of an itemset A 

 

 Inputs: p1, p2, …, pn (n ≥ 3), pi is the local support count of the 
              the itemset in DBi, public key (N,g), N = pq, private key 
              (p,q), or λ  = lcm(p-1, q-1) 
 Output: F(A) = ∑ =

n

i ip
1

  
 for Ui, i = 1…n { 
   Randomly choose ri∈ *

NZ , 
   Eg(pi) = gp i r N

i (mod N2) 
   M ←  Eg(pi) 
 } 
 M2 = 1 
 for i = 1…n { 
   M2 = M2 * Eg(pi) (mod N2) 
 } 
 for Ui, i∈  (1,n) { 

   F(A) = )(mod
/1)(mod(
/)1)(mod(

2

2
2 N

NNg
NNM

−
−

λ

λ

 

   Return F(A) = ∑ =

n

i ip
1

 
 } 

 

Algorithm 5: Finding global support count of itemsets 

 

5.1.3. Protocol Analysis: In protocol 1, each user has two communications with the 

mixer: (1) Each user Ui sends the encrypted candidate items (which are frequent in 

DBi) to the mixer; (2) The mixer broadcasts the mixed encrypted candidate items, i.e. 

the union of encrypted candidate items from all users. In protocol 2, each user also has 

two communications with the mixer: (1) Each user Ui sends the encrypted local 

support count of an itemset in DBi to the mixer; (2) The mixer broadcasts the mixed 

encrypted global support count of the itemset, i.e., the product of encrypted local 

support counts from all users. 

Complexity analysis: In protocol 1, assume that the size of a ciphertext Ek(aij) (of a 

standard secret key cryptosystem) is l bits, then the communication cost of each user 
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Ui is (|Pi| + |C1|)l bits, and the total communication cost in protocol 1 is 

∑ =
+

n

i i lCP
1 1 )||||( bits. The computation cost for each user Ui is 2|Pi| (secret key) 

encryptions plus |C1| (secret key) decryptions, and the computation cost for the mixer 

is ∑ =

n

i iP
1

||  (secret key) decryptions plus set union. In protocol 2, assume that the size 

of N is L bits, i.e., L = log2 N, then the size of a cipher text in Paillier cryptosystem is 

2L bits. In this case, the communication cost for each user Ui is 4L bits and the total 

communication cost of the mixer is (2n+2)L bits. The computation cost for each user 

is one Paillier encryption, on Paillier decryption and 2L/l (secret key) encryptions, 

while the computation cost for the mixer is 2nL/l (secret key) decryptions and n-1 

modular multiplications. 

 

5.2. SSMC-based public-encryption solution – Privacy-preserving Distributed 

Mining of Association Rules on Horizontally Partitioned Data [21] 

This protocol comprises two algorithms that run sequentially to form the whole 

distributed association rule mining protocols. The first sub-protocol, like the 

counterpart in the previous section, intends to find the global frequent itemsets. The 

second sub-protocol aims at obtaining the global support count of all frequent itemsets. 

The following sections will illustrate and analyze the protocol in more details. 

 

5.2.1. Notations 

• N: number of sites participating in the computation 

• LLi(k): locally large itemset of the ith site 

• LLei(k): encryption of locally large itemset of the ith site 

• RS: RuleSet, set of items and rules merged 
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• xr: random integer chosen from a uniform distribution over 0…m-1 

• m: m ≥ 2 * |DB| 

• f: randomly selected itemset from F 

• CG(k): the union of k locally large itemsets 

• F: random itemsets 

 

5.2.2. Protocol 

Step 1: Finding secure union of large itemsets of size k 

 Input: N sites numbered 1, 2, …, N, N≥3, F is set of non-
itemset 
 Output: globally large k itemsets RS(k) 
 for site I = 1…n { 
    Generate LLi(k) as in steps 1 and 2 of FDM algorithm 
    LLei(k) = Ø 
    For each X∈LLi(k) { 
      LLei(k) = LLei(k)∪ {Ei(X)} 
    } 
    For j = |LLei(k)| + 1 to |CG(k)| { 
      LLei(k) = LLei(k) ∪ {Ei(f)} 
    } 
  } 
  for j = 0…N-1 {  
    if j = 0 { 
      site i →  LLei(k) to site (i+1)mod N 
     
    } 
  } 
  Each site I →  LLei+1 mod N to site i mod 2 
  site 0: RS1 ←    )()12(

2/)1(
1 kLLe j
N

j −
−

=∪  

  site 1: RS2 ←    )(2
2/)1(

0 kLLe j
N

j
−

=∪  
  site 1 → RS1 to site 0 
  site 0: RS ←  RS0 ∪ RS1 
  for i = 0…N-1 { 
    Site i decrypts items in RS using Di 
    Site i sends permuted RS to site i+1 mod N 
  } 
  site N-1 decrypts items in RS using DN-1 
  RS(k) = RS – F 
  site N-1 →  RS(k) to sites 0…N-2 

 
Algorithm 6: Finding secure union of large itemsets 
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Step 2: Finding global support counts 

 Input: N sites numbered 1, 2, …, N, m ≥ 2*|DB| 
 Output: all globally large itemsets 
 rs = Ø 
 At site 0: 
 for each r∈candidate_set { 
   t = r.supi – s * |DBi| + xr (mod m); 
   rs = rs ∪ {(r,t)}; 
 } 
 Send rs to site 1; 
 for i = 1 to N-2 { 
   for each (r,t)∈rs do 
     t  = r.supi – s * |DBi| + t (mod m); 
     rs = rs – {(r,t)} ∪ {(r, t )}; 
   } 
   Send rs to site i+1; 
 } 
 At site N-1: 
 for each (r,t)∈rule_set { 
   t  = r.supi – s * |DBi| + t (mod m); 
   if ( t -xr) (mod m)>0 { 
     Multi-cast r as a globally large itemset. 
   } 
 } 

 
Algorithm 7: Securely finding global support counts 

 

5.2.3. Protocol Analysis: In this protocol, the number of sites is N. Let the total 

number of locally large candidate itemsets be |CGi(k)|, and the number of candidates 

that can be directly generated by the globally large (k-1) itemsets be |CG(k)|. The 

excess support of an itemset X can be represented in m = [log2 (2*|DB|)] bits. Let t be 

the number of bits in the output of the encryption of an itemset. A lower bound on t is 

log2 (|CG(k)|); based on current encryption standards t = 512 is a more appropriate 

value.  

Performance Analysis: The total communication cost for protocol 1 is O(t* |CG(k)|*N2) 

bits, and that of Protocol 2 is O(m*| )(kii LL∪ |*(N+t)) bits. The computation cost in 

protocol 1 is O(t3*|CG(k)|*N2), where t is the number of bits in the encryption key. The 
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computation cost in protocol 2 is O(t3*|CG(k)|*m) for the secure comparison at the end 

of the protocol. 

 

5.3. Performance comparison 

The following graphs are illustrations of the comparisons of the performance of 

these two protocols in terms of their communication cost and computation cost. Our 

experiment is done on the environment of a PC with a 1GHz processor and 512MB 

memory under NetBSD. The simulations of the protocols are implemented in the 

C#.NET programming language. The length of cryptographic key is 512 bits. The 

dataset we used for test is the Heart Disease Multivariate dataset consisting of 76 

attributes and 293 instances. Due to the large amount of data, the full data set is not 

included in this thesis and can be referred to through the URL in [73]. We have 

performed two tests with the datasets. The performance is measured in the case of 3, 5, 

7, 9 and 11 sites participating in the joint computation. The first test is to see how 

much communication overhead STTP-based protocol brings and how the 

communication overhead SSMC-based protocol compares with the former one. The 

total amounts of transmissions caused by the protocols with respect to the number of 

parties are depicted in Figure 12. The communication rounds of each protocol are 

displayed in Figure 13. As expected from the formula in Section 5.1.3 and Section 

5.2.3, STTP-based protocol incurs a constant communication round, which is 2, while 

SSMC-based protocol incurs n rounds. The second test that we have performed is to 

analyze and compare the computational overheads brought by STTP-based protocol 

and SSMC-based protocol. Execution times of the protocols with respect to the 

number of parties are shown in Figure 14. The communication cost, communication 
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rounds and computation cost for both protocols are recorded, compared and presented 

below. 

 

 

Figure 12: Communication cost comparison for association rules 

 

 

Figure 13: Communication round comparison for association rules 
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Figure 14: Computation cost comparison for association rules 

 

 

From the information presented in the above graphs, we can clearly identify that the 

communication, computation cost and the communication rounds of the Xun Yi’s 

STTP-based protocol are all lower than those of Clifton’s SSMC-based protocol. 

Therefore, through the analysis and comparison based on our evaluation framework, 

we can conclude that Xun Yi’s protocol dominates Clifton’s protocol in the overall 

performance. 
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Chapter 6   Conclusion 

The purpose of this master thesis is to organize some designing methods of 

PPDDM protocols, to classify privacy-preserving distributed data mining protocols by 

means of certain dimensions and to compare the performance of PPDDM protocols 

with a set of evaluation metrics. After identifying the classification scheme and 

relative performance of various PPDDM protocols, we are able to design more quality 

protocols that meet specific business needs with respect to the its privacy, accuracy 

and efficiency. 

    We will make some conclusions regarding the research questions in Section 1.6. 

 

6.1 Design methods of PPDDM protocols 

Most PPDDM protocols can be reduced to some sub-protocols. As we have seen in 

Section 2.4, there are three sub-protocols that serve as the key component in the 

design of PPDDM protocols. They are: 

• secure sum protocol 

• secure frequency mining protocol 

• secure scalar product protocol 

Common privacy-preserving distributed data mining problems can be solved by 

means computing the sum of the frequencies of data values of each attributes in each 

dataset or the scalar product of Boolean vectors that represent database transactions. 

In solving this kind of small components, we are able to design and develop secure, 

effective and efficient privacy-preserving data mining protocols. 
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6.2 Classification scheme of PPDDM protocols 

As we have seen in Chapter 3, PPDDM protocols can be classified into mutually 

exclusive categories in terms of a set of classifications such as: 

• Secure communication model 

• Data partitioning model 

• Data mining algorithms 

• Privacy preservation techniques 

Such a classification scheme can effectively cover all current PPDDM protocols 

and put each protocol into one of the categories. Each category represents a 

combination of different values in each dimension. As is in our case, 2*2*3*4 = 48 

categories can be identified altogether. With any combination of two dimensions, we 

have surveyed the presence of protocols and drew a reference table describing them.  

 

6.3 Evaluation of PPDDM protocols 

We have conducted an evaluation work on various PPDDM protocols in terms of 

its performance complexity. A set of evaluation metrics - communication cost, 

computation cost, communication round and scalability have been set up. Our 

evaluation strategy is to calculate the overall overhead of the protocol measured in 

terms of number of bits exchanged. Each protocol in the predefined category has been 

represented in the form of a numerical figure with its performance. Based on that, 

comparison of the performance of protocols that fall into the same category is carried 

out by means of demonstrating in line chart. 

Assessing the relative performance of PPDDM algorithms is a very difficult task, 

as it is often the case that no single algorithm outperforms others on all criteria. Also, 

for maximum flexibility, we rate that relative merit of individual module that 



                       
 

60 

comprised by the PPDM algorithm. The rating is given in three different levels – high, 

medium and low. In Table 5, we are able to summarize the results and the general 

principles. 

 

Elements Complexity Bytes 
exchanged 

Communication 
round 

Scalability 

Secure 
Communication 
Model:  

    

STTP Low  High Low High 
SSMC High Low High Low 
Data Mining 
Tasks: 

    

Classification Low N/A N/A High 
Association Rule Low N/A N/A High 
Clustering High N/A N/A Low 
Privacy Preserving 
Technique: 

    

Homomorphic 
encryption 

Low Medium N/A High 

Oblivious transfer High High N/A Low 
Secret sharing Medium Low N/A High 
Randomization Low Low N/A High 
 

Table 5: Relative performance of PPDDM protocols 
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Chapter 7   Future work 

Researches on privacy-preserving distributed data mining have gone through several 

stages and will continue to progress in the next few years. Issues such as, standardization 

of PPDDM protocols, secure multi-party computation approaches under malicious model 

and game-theoretical framework of PPDDM will be the hot spots in this research area. 

Standardization issues in privacy-preserving distributed data mining cover a wide 

range of topics, including a common framework of PPDDM with respect to privacy 

definitions, principles, policies and requirements as well as more effective and precise 

evaluation metrics regarding efficiency, privacy and complexity of PPDDM algorithms. 

Currently, most cryptographic solutions to PPDDM problems are constructed and 

analysed with the assumption of semi-honest model. However, in real world applications, 

the case of pure semi-honest scenario is rare. Most parties should be regarded as 

malicious users, that is, they can deliberately provide false information or corrupt the 

execution of the algorithm. Research work into this area has gained great momentum and 

requires further efforts to clarify. 

Game theoretical approach is another emerging field that aims to tackle privacy-

preserving distributed data mining problems. This kind of solution characterizes PPDDM 

problems by means of ‘coopetative’ models in social economic field. It defines the 

behaviour of the parties based on the assumption of rational selection, which maximize 

one’s own utility rather than simply honest or malicious. This area is a very proposing 

one, the framework of which has been proposed, yet the solution and evaluation work is 

still open for further investigation.  
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Appendix 

Synthetic Control Chart 
 
Data Set Characteristics: Time-Series 
Attribute Characteristics: Real 
Number of Instances: 60 
 

 
28.7812 34.4632 31.3381 31.2834 28.9207 33.7596 
24.8923 25.7415 27.5532 32.8217 27.8789 31.5926 
31.3987 30.6316 26.3983 24.2905 27.8613 28.5491 
25.7743 30.5262 35.4209 25.6033 27.9734 25.2702 
27.1798 29.2498 33.6928 25.6264 24.6555 28.9446 
25.5067 29.7929 28.0765 34.4812 33.8345 27.6671 
28.6989 29.2101 30.9291 34.6229 31.4138 28.4636 
30.9493 34.3179 35.5674 34.8829 30.6691 35.2667 
35.2538 34.6402 35.7584 28.5518 25.6518 29.6442 
29.1734 31.5089 33.1944 35.6177 31.5892 35.1223 
35.2623 35.6805 31.0851 30.2589 24.1366 27.0766 
26.7115 24.0969 30.0213 29.9423 31.5461 33.7673 
34.2296 32.8783 24.2457 26.9036 25.8677 34.0545 
30.1451 28.2025 26.5217 26.3509 35.4694 33.4757 
24.0543 33.0039 35.4925 28.5634 28.7661 32.5147 
28.1944 30.7994 33.9014 26.7178 27.5378 28.0809 
26.0377 28.3229 27.8169 26.0755 35.8312 26.7637 
35.4815 26.8952 34.7511 36.0264 26.2202 30.3771 
27.0997 31.5199 30.8038 28.5932 26.6983 32.5261 
29.4965 28.1316 29.4459 31.4876 32.5261 34.8466 
25.7946 33.9116 25.3323 24.4356 26.9818 25.3804 
33.4655 30.7767 35.9042 35.4448 27.8881 24.0044 
31.7006 31.3466 34.3405 33.6582 34.7008 29.0794 
32.2613 27.3329 30.6942 27.3329 33.7185 30.3973 
30.2137 33.5576 34.5969 35.8645 32.4596 30.8967 
34.2127 25.6697 24.0059 31.6246 28.0684 25.6268 
33.0777 32.9058 26.4093 25.7531 25.1916 24.8237 
26.1229 27.5393 27.8286 32.7989 32.2584 33.4875 
34.1522 28.7753 32.6374 28.1436 31.2739 26.1861 
26.0528 26.6546 25.6327 30.1965 30.5483 34.0332 
26.8518 35.4224 27.0112 24.2167 27.0174 33.6189 
29.3166 26.3116 27.7893 28.1943 35.7062 31.5904 
35.1227 25.1472 32.4178 29.6882 25.0212 34.6611 
28.1731 28.4389 32.2253 33.9017 35.7554 34.0295 
25.5897 35.4172 28.1573 24.0632 33.7019 30.8997 
33.0274 30.1664 34.7195 26.2819 26.4512 27.5253 
25.7733 30.8156 27.1798 31.8126 30.3624 34.5414 
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34.9666 27.9138 28.6666 29.0522 33.2348 31.0326 
27.2146 25.2048 34.4779 30.5769 32.0237 24.368 

29.9681 29.0023 30.4124 34.6798 26.3895 25.9224 
34.4988 30.9151 31.0631 35.3471 35.4036 29.5457 
32.5771 34.6846 33.8951 32.1611 30.2299 25.5001 
31.5544 27.4875 31.6382 33.7431 30.5938 28.4246 
30.9239 30.6985 26.9554 30.2883 29.2382 31.7165 
33.6876 34.2003 35.4782 25.0712 28.2744 35.3555 
27.4772 33.4699 33.2165 28.2722 32.1262 35.4932 
32.8206 33.6873 26.9483 30.8083 28.2708 26.5647 
33.1673 35.5424 35.1414 29.9838 29.1135 24.5773 
28.4681 35.4415 25.6554 28.3725 25.7072 29.978 

26.9161 30.7253 30.9511 29.6203 34.9325 35.0063 
24.1182 26.5063 29.8101 24.7781 30.7051 30.0393 
24.9684 34.7265 32.8871 28.9516 25.0455 29.6056 
25.1186 25.9547 33.2881 29.5138 29.4147 24.4418 
31.3965 29.0775 30.8773 25.9966 29.7929 24.6621 
26.0285 26.5547 32.1637 34.9435 30.7851 28.2194 
26.2081 32.9091 29.9049 35.2788 25.4861 31.5948 
35.5825 28.1943 32.7483 28.2917 30.6059 25.1913 
27.1566 25.8174 28.7136 31.3756 31.5648 30.2067 
30.9518 30.6834 25.0323 35.2149 25.1843 35.2237 
32.7251 34.6791 24.0879 32.3513 28.7592 33.6939 
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