

Graphic User Interface Modelling
and Testing Automation

A thesis submitted in fulfilment of the requirements of the degree of

Doctor of Philosophy

Xuebing Yang

Supervisor: Professor Yuan Miao

School of Engineering and Science

Victoria University

May 2011

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

DECLARATION

I, Xuebing Yang, declare that the PhD thesis entitled Graphic User Interface

Modelling and Testing Automation is no more than 100,000 words in length including

quotes and exclusive of tables, figures, appendices, bibliography, references and

footnotes. This thesis contains no material that has been submitted previously, in

whole or in part, for the award of any other academic degree or diploma. Except where

otherwise indicated, this thesis is my own work.

Signature Date

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

PUBLICATIONS

1. Y. Miao, X. Yang. “An FSM based GUI Test Automation Model”, the 11th

International Conference on Control, Automation, Robotics and Vision,

ICARCV 2010. Singapore, December 7-10, 2010

2. X. Yang, Y. Miao and Y. Zhang. Model-driven GUI automation for efficient

information exchange between heterogeneous electronic medical record

systems, 19th International Conference on Information Systems Development,

ISD 2010. Prague, Czech Republic, August 25 - 27, 2010

3. X. Yang, Y. Miao. Distributed Agent Based Interoperable Virtual EMR

System for Healthcare System Integration. Journal of Medical Systems. August

2009.

4. X. Yang, Y. Miao and Y. Zhang. GP eConnect: Extends e-referrals exchange

to healthcare providers' collaborations. IADIS eHealth 2009. Algarve, Portugal,

21-23 June 2009.

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

ACKNOWLEDGMENTS

First and foremost, I would like to express my deep gratitude to my supervisor,

Professor Yuan Miao, for his exceptional support, encouragement, and patience during

all stages of my research for this dissertation. This dissertation would not have been

possible without his invaluable advice and guidance. I feel blessed to have had

Professor Miao as my supervisor. I will be forever in his debt.

I also wish to thank my co-supervisor, Professor Yanchun Zhang, for his constant help,

discussions, and many constructive suggestions throughout the course of my doctoral

study. I have taken the great pleasure in working with my colleagues in the Centre for

Applied Informatics Research (CAI) at Victoria University. I would like to thank them

for their valuable suggestions and discussions during the process. I thoroughly enjoyed

their fruitful collaboration, and I gained invaluable skills by working with them.

I am grateful to the School of Engineering and Science for supplying a very good

research environment, and the staff members who frequently offered assistance,

particularly the School Postgraduate Coordinator, Dr. Gitesh Raikundalia, A/Prof. Xun

Yi, Dr. Fuchun Huang, Professor Pietro Cerone, A/Prof. Hao Shi, and the Scholarship

Coordinator for Postgraduate Research, Ms. Lesley Birch.

I am also grateful to our research partner organization Westgate General Practice

Network (WGPN) for providing me with a practical working environment, and the

staff members who encouraged me through all the stages of my study, particularly the

Chief Executive Officer Dr. Corinne Siebel, the Information Management Officer Mr.

Manfred Queteschiner, and the Psychologist Ms. Sandra Plant.

I wish to extend my deepest gratitude to my parents for their love, support and

encouragement. I thank my be-loved wife, Hong Tao. Without her endless love and

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

support, I could not possibly have come this far. I would also like to thank my son,

Zeming Yang, for constantly encouraging me and making everything I do meaningful.

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

ABSTRACT

A Graphical User Interface (GUI) is the most widely used method whereby

information systems interact with users. According to ACM Computing Surveys, on

average, more than 45% of software code in a software application is dedicated to the

GUI. However, GUI testing is extremely expensive. In unit testing, 10,000 cases can

often be automatically tested within a minute whereas, in GUI testing, 10,000 simple

GUI test cases need more than 10 hours to complete.

To facilitate GUI testing automation, the knowledge model representing the interaction

between a user and a computer system is the core. The most advanced GUI testing

model to date is the Event Flow Graph (EFG) model proposed by the team of

Professor Atif M. Memon at the University of Maryland. The EFG model successfully

enabled GUI testing automation for a range of applications. However, it has a number

of flaws which prevent it from providing effective GUI testing. Firstly, the EFG model

can only model knowledge for basic GUI test automation. Secondly, EFGs are not able

to model events with variable follow-up event sets. Thirdly, test cases generation still

involves tremendous manual work.

This thesis effectively addresses the challenges of existing GUI testing methods and

provides a unified solution to GUI testing automation. The three main contributions of

this thesis are the proposal of the Graphic User Interface Testing Automation Model

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

(GUITAM), the development of GUI Defect Classification and the proposal of the

Long Use Case Closure Envelope Model.

Graphic User Interface Testing Automation Model. This research proposed a GUI

testing automation model (GUITAM), proved that GUITAM is not only able to

automate all testings that EFG can automate, but also able to model a series of

important scenarios which EFG cannot. The efficiency of GUITAM, in terms of

storage and computational complexity, was also proved to be at least as good as that of

the EFG model.

GUI Defect Classification. This research systematically established, for the first time,

a GUI defect classification, which includes criteria of classifying defects, distributions

of defects and classification directed test case generation. Defect classification allows

test cases to be designed for specific classes of defects, thus effectively avoids large

unnecessary permutations in existing models.

Long Use Case Closure Envelope Model. This research proposed a knowledge model

called the Long Use Case Closure Envelope Model, for representing user experience of

interacting with the GUI, and generating task-oriented test cases automatically. By

using a use case as the backbone, an envelope model was developed to encapsulate all

possible branches of states and events related to a given task. Highly efficient and

effective task-oriented test cases can be automatically generated from the envelope.

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

TABLE OF CONTENTS

LIST OF FIGURES ... I

LIST OF TABLES ... V

Chapter 1 Introduction .. 1

1.1 Conventional software testing. ... 2

1.2 GUI Testing .. 4

1.3 GUI Testing Automation .. 9

1.4 Challenges in GUI Testing Automation ... 15

1.5 Thesis structure .. 17

Chapter 2 Background and Related Work ... 18

2.1 Software Testing Principles ... 18

2.1.1 Terminologies ... 18

2.1.2 Representation of program source code .. 20

2.1.3 Coverage Criteria .. 23

2.1.4 Test Case Generation .. 25

2.1.5 Test Execution .. 26

2.1.6 Regression Testing .. 26

2.2 GUI Testing .. 27

2.2.1 Manual GUI Testing ... 28

2.2.2 Automated GUI Testing .. 28

2.3 Existing GUI testing models .. 32

2.3.1 Event Sequence Graph .. 32

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

2.3.2 Event Flow Graph (EFG) and Event-Interaction Graph (EIG) 39

2.4 Conclusion .. 47

Chapter 3 Graphic User Interface Testing Automation Model 49

3.1 What is GUI? ... 49

3.2 GUI states .. 52

3.3 GUI Testing Automation Model ... 56

3.4 Automatic construction of GUITAM. ... 60

3.5 Analysis of GUITAM.. 68

3.5.1 Completeness of Algorithm AutoGenerateGUITAM 68

3.5.2 Inclusive Mapping between EFG and GUITAM. ... 69

3.5.3 Storage Analysis ... 73

3.5.4 Computational Complexity Analysis .. 74

3.5.5 Dynamic GUI Interactions Modelling ... 76

3.6 Representing Test Case.. 81

3.7 GUI Test Coverage Criteria ... 82

3.8 Test Case Generation ... 85

3.8 Test Oracles ... 88

3.8.1 Expected states generation from AUT’s specifications 89

3.8.2 Expected states generation from base version of AUT 91

3.9 Implementation and Experiment .. 92

3.9.1 Subject Applications ... 95

3.9.2 Automatic GUITAM generation ... 100

3.9.3 Test case generation .. 100

3.9.4 Oracle information .. 101

3.9.5 Test Executor .. 102

3.10 Conclusion ... 108

Chapter 4 Defect Classification .. 110

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

4.1 Introduction to Defect Classification ... 110

4.2 Types of Objects .. 115

4.3 GUI object based Defect Classification ... 122

4.4 Classification directed test case generation ... 126

4.3.1 Functional defects directed test cases generation .. 127

4.3.2 Interactive defects directed test case generation ... 129

4.3.3 GUI adjustment defect directed test case generation 132

4.3.4 Functional-interactive defects directed test case generation 134

4.4 Experiment .. 138

4.5 Conclusion ... 144

Chapter 5 Long Use Case Closure Envelope Model .. 146

5.1 Use cases representation ... 147

5.2 Backbone of a use case ... 157

5.3 Encapsulating the UCBB with an envelope ... 163

5.4 Use case envelope based test case generation .. 172

5.5 Experiment ... 175

5.6 Conclusion .. 181

Chapter 6 Conclusions and Future Work .. 184

6.1 Major contributions ... 185

6.2 Future work ... 187

BIBLIOGRAPHY ... 189

I

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

LIST OF FIGURES

Figure 1.1 Process of conventional software test case execution ………………….4

Figure 1.2 GUI and its underlying codes………………………….……………….7

Figure 1.3 Process of GUI test case executions………..……..………………….8

Figure 2.1 Types of software testing….…………….…………..………………21

Figure 2.2 A sample program ……………………………..….…..……………22

Figure 2.3 ICFG of the sample program in Figure 2.2……………..…………23

Figure 2.4 GUI of Real Juke Box……………………………………….….…….33

Figure 2.5 ESG representation of Play and Record a CD system function….…34

Figure 2.6 ESG with FP………………….………………………………………….35

Figure 2.7 Refinement of the vertices S, P, and M of the ESG in Figure 2.4.…37

Figure 2.8 An example of EFG……………………………..………………………41

Figure 2.9 Algorithm GetFollows………………….………………………………..42

Figure 2.10 Algorithm GenerateEIG…………………….…….......…………………45

Figure 2.11 The EIG for the EFG of Figure 2.7………………..…………………..46

Figure 3.1 GUIs of Simple Clinic Software………….……..…………..……………50

Figure 3.2 Hierarchical objects of W1 in Figure 3.1…………………………………51

Figure 3.3 Patient details editing GUI in Medical Director 3……………..…………55

Figure 3.4 GUITAM states of Figure 3.1………………….………..……….……57

II

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Figure 3.5 Algorithm AutoGenerateGUITAM………….…………………………61

Figure 3.6 Algorithm NavigateTo…………………………....…………………….63

Figure 3.7 Illustration of AutoGenerateGUITAM algorithm for Simple Clinic

Software……………………………………………………………………………68

Figure 3.8 Algorithm TransformEFGtoGUITAM…………….………………….71

Figure 3.9 A GUITAM model converted from EFG in Figure 2.7….…....…….72

Figure 3.10 Non-fixed follow-up event set of event ‘B1Click’……………..………77

Figure 3.11 Non-fixed events set in GUITAM…………………..………..…………78

Figure 3.12 Expandable panel……………………………………………………79

Figure 3.13 Panel visible changes state in GUITAM…………………………..80

Figure 3.14 General algorithm for criteria-based test cases generating…...…..86

Figure 3.15 Mechanism of generating expected states from specifications.…...89

Figure 3.16 Mechanism of generating expected states from base version of AU...89

Figure 3.17 Algorithm for generating expected states from specification…….….91

Figure 3.18 Algorithm for generating expected states from base version of AUT...92

Figure 3.19 Main interface of Calculator…………………………………………….96

Figure 3.20 Main interface of EasyWriter…………………...……………………….97

Figure 3.21 Main interface of EnglishStudy……………………………..……………98

Figure 3.22 the Icon of ScreenDrawer………………………………………………..99

Figure 3.23 The drawing mode interface of ScreenDrawer………………………….99

Figure 3.24 Number of faults seeded to the subject applications…………………103

III

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Figure 3.25 Number of faults seeded to each class………………..…..………104

Figure 3.26 Faults detected by different length of cases………………….…..105

Figure 3.27 Faults detect effects of different length of cases………….….…106

Figure 3.28 Faults detected for each fault type…………………………………107

Figure 3.29 Percentage of detected faults for each type of faults…………......108

Figure 4.1 Distribution of GUI detectable defects…………………..…………126

Figure 4.2 Algorithm of generating functional defects directed test cases.…..128

Figure 4.3 Example of Functional Object Coverage ………….………………..129

Figure 4.4 Example of Interactive Object Coverage………………….…….……..130

Figure 4.5 Algorithm for generating interactive defects directed test cases……...131

Figure 4.6 Algorithm for generating GUI adjustment defects directed test cases…..133

Figure 4.7 Algorithm for refining test suite……………………………….…………134

Figure 4.8 Example of Functional-Interactive Object Coverage………...…….136

Figure 4.9 Algorithm for generating functional-interactive compound test cases..…137

Figure 4.10 Comparison of oracle sizes generated by different methods…………141

Figure 4.11 Number of faults detected by defect classification directed test cases...142

Figure 4.12 Comparison of numbers of test cases generated by different method…143

Figure 4.13 Comparison of numbers of faults detected by different methods….….144

Figure 5.1 Online shopping use case diagrams……………………….…………149

Figure 5.2 Activity diagram of the purchase use case……………………….….151

Figure 5.3 “Submit a cart” sequence diagram…………………….……..………153

IV

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Figure 5.4 “Submit a cart” detailed use case sequence diagram…….…..156

Figure 5.5 Algorithm Convert Use Case to GUITAM Subset……...……160

Figure 5.6 Algorithm for converting use case sequence diagram to UCBB....162

Figure 5.7 Algorithm of converting DUCSD diagram to UCBB………...…..163

Figure 5.8 UCBB and Closure Set of Sending a Referral in MD………….....166

Figure 5.9 Typical GUIs of Medical Director 3……………………….………..168

Figure 5.10 Algorithm for Generating Closure Set of a use case………….…..171

Figure 5.11 Algorithm for generating envelope of a use case…………………..171

Figure 5.12 Algorithm for envelope based full path test case generating…..….174

Figure 5.13 Algorithm for Envelope Test Case Generating With Coverage Criterio.175

Figure 5.14 Comparison of oracle sizes generated by different methods…………178

Figure 5.15 Envelope-based test case faults detecting results…………………….180

Figure 5.16 Numbers of test cases generated by different methods……………….181

Figure 5.17 Number of faults detected by different methods………………….....181

V

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

LIST OF TABLES

Table 1.1 Relative cost of repairing software faults………………..…………………2

Table 2.1 Real Juke Box System functions ……………………………………….34

Table 3.1 GUITAM states and their corresponding windows of simple clinic

software ……………………………………………………….…………..… 58

Table 3.2 Transitions (events) description for figure 3.4……….………….58

Table 3.3 Comparison between GUITAM Runner and Automation Anywhere ..95

Table 3.4 Subject applications.................................….……………………95

Table 3.5 GUITAM information of subject applications……………………100

Table 3.6 Test cases generated for each subject application………..………100

Table 3.7 Oracle information for each subject application………..…………101

Table 3.8 Types of seeded faults…………………………….………………….103

Table 4.1 Distribution of defect types……………………………………..……..114

Table 4.2 Object types and their related events……………………….....………115

Table 4.3 Classification of objects………………………………………..………119

Table 4.4 Object statistics for Microsoft Offices software………………………..120

Table 4.5 Object statistics for MD2 and MD3…………………………….………121

Table 4.6 Defect Classes and their related object types………………………….125

Table 4.7 Distribution of different kinds of objects in subject applications…..…138

Table 4.8 Number of defect classification directed test cases……………....…..…139

VI

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Table 4.9 Oracle information for each subject application……………………..140

Table 5.1 Use cases selected for each subject application………….……….176

Table 5.2 Use case and test case information of subject applications…..……177

Table 5.3 Oracle information for each subject application…………………….177

1

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Chapter 1

Introduction

With the development of Information Technology (IT), computers and intelligent

devices have become ubiquitous in our society. Computers and intelligent devices

provide functions by running software systems. Software systems are present in

virtually all aspects of modern society, aeroplanes and cars have computer boards,

banks manage user accounts and relevant information with banking systems, trains are

scheduled by coordinating systems, doctors use Electronic Medical Record (EMR)

systems to record patient information, people pay for goods and services electronically,

and shopping can be done on the Internet. Increasing implantation of software systems

makes our daily lives more dependent on their functioning without errors. For instance,

a slight error in an airline coordinating system may cause air crashes, and minor leaks

of Internet Banking may lead to misplacement of customers’ money. Since software

systems are simplified models of our real lives, no one can claim that they are perfect

and free of defects. The correctness of the functions of a system depends not only on

the exact, unambiguous and complete capture of the customer requirements, but also

on how thoroughly the system is tested before being put into use. It goes without

saying that software testing is critical for providing quality-software related products.

Nowadays, a Graphical User Interface (GUI) is widely used as a way for users to

2

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

interact with software systems. More than 45% of the total source code is used for

implementing a GUI which makes GUI testing inevitable. Due to the characteristics of

the GUI, GUI testing is much more difficult than conventional software testing. This

thesis focuses principally on providing solutions to tackle the difficulties in GUI

testing. Before presenting our work, this chapter will introduce conventional software

testing and the state-of-art of GUI testing researches.

This chapter is organized as follows. First, the background of conventional software

testing is reviewed in Section 1.1. In Sections 1.2 and 1.3, outlines of research on GUI

testing and automation are given. Section 1.4 lists the issues in GUI testing automation

and summarises our solution. The structure of this thesis will be presented in Section

1.5.

1.1 Conventional software testing.

Software testing is one of the most important parts of the life cycle of software system

development and costs more than any other part. Software testing is labour and

resource intensive. Usually software testing accounts for 50-60% of the total cost of

software development [1]. As shown in table 1.1[2], the earlier the faults are found, the

less the repair will cost.

Table 1.1 Relative cost of repairing software faults.

Stage Relative cost of repair

Requirements 0.1 ~ 0.2
Design 0.5

3

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Coding 1
Unit testing 2
Acceptance testing 5
Maintenance 20

It is impossible to exhaustively test an application. The reasons for this noted by Kaner,

Falk, and Hguyen [3] are as follows: (1) the domain of program inputs is too large; (2)

there are too many possible input paths, and (3) design and specification issues are

difficult to test. In software testing, only a small percentage of possible input

combinations can be selected to generate test cases, and these are selected based on

certain coverage criteria. Test cases are executed either manually or automatically and

check whether the outputs conform to the software specifications.

A conventional software testing procedure encapsulates a number of steps. These steps

include test planning, test case generation, test check with oracles, and analysis of the

results. Figure 1.1 shows the typical process of conventional software test case

execution.

In Figure 1.1, input test cases are usually generated according to certain coverage

criteria. Manually executing the test cases one by one is laborious and very inefficient.

In conventional software testing, testing tools (executors) can be used to perform the

execution automatically. An automatic executor may perform thousands of test cases

in one minute. The expected outputs are supposed to be worked out for each test case,

normally by analysing the specifications. After each test case is executed, the test

oracle will compare the real output with the expected output and report the results.

4

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Figure 1.1 Process of conventional software test case execution

1.2 GUI Testing

Today, most software products provide GUIs as the main interface for users to access

their functions. GUIs have become dominant in comparison with other kinds of

interfaces such as command line based consoles. A GUI is a type of user interface that

allows users to interact with programs in more ways. A GUI offers graphical icons,

and visual indicators to fully represent the information and actions available to a user.

The actions are usually performed through direct manipulation of graphical elements.

In a typical GUI, instead of laboriously typing commands to tell a computer what to do,

a user can simply choose commands by activating or manipulating the pictures. For

example, a user may click on a button or drag an icon with an input device such as a

mouse. GUIs are intended to make computers "user friendly" by simplifying tasks and

Input
(Test cases) Executor

Software
under Test

Output

Expected
Output Specifications

Test
oracle

Reports

5

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

decisions, and by creating a visual representation of a computer system to which

people can more easily relate. A significant aspect of GUIs is that they are not merely

different to look at, but can increase the efficiency of learning and usage over text-

based interfaces. GUIs can also lead to higher productivity because they lend

themselves better to performing multiple tasks simultaneously. Well-designed GUIs

not only represent files, programs, and procedures visually, but also provide

streamlined methods for completing tasks and take into account users' needs and

expectations.

The ease of using computers through GUIs makes computers ubiquitous in our daily

lives. People with little knowledge of computers can thereby use them to perform tasks

with only a small amount of training, or without any training at all. In order to provide

quality GUIs, testing them before they are put into use therefore becomes crucial.

Recognizing the importance of the GUI, today’s software developers are dedicating an

increasingly large portion of software code to implementing them. On the one hand,

GUIs provide users with a convenient and intuitive way of operating software and

richer information on limit display area. They facilitate users’ experiences of these

applications. On the other hand, to avoid defects, software providers have to dedicate

much greater effort to testing the GUIs and GUI related codes. Because GUIs face the

terminal users directly, slight inconveniences or small faults will lead to complaints to

refusal to use the software. Obviously, to ensure the software quality and usability,

6

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

comprehensive testing of GUIs must be implemented before the software is delivered

to the terminal users.

Unlike conventional non-GUI software testing, the distinct characteristics of a GUI

make testing it much more difficult. While some GUI development frameworks such

as Swing make GUI development easier, they unfortunately make GUI testing much

harder. In contract to traditional non-GUI applications, GUI based applications are

written in an event-based style, where the application needs to handle a diverse set of

events representing user inputs such as mouse movements, object manipulations, menu

selections, and opening or closing of windows. A GUI is implemented as a single large

program handling all user interactions, and is also connected to the underlying

business logic. When a user interacts with the software by using the GUI, the

underlying code will be executed to perform the functionality (see Figure 1.2).

Sometimes different views of GUI may be related to the same code. For example, a

“Save” button may share the same background codes with a “Save” menu item.

Objects can also be linked to each other by underlying code without explicit visual

connection. Normally when an interface appears, widgets on the GUI such as buttons,

menu items, check boxes, and radio buttons will be exposed to the user at the same

time. A user may trigger the events in any sequence. The number of permutations of

the event sequences is infinite or extremely large which makes it impossible to

perform exhaustive testing of the GUI even on one single and simple window. A GUI

test case includes a series of events which can only be performed one after another

7

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

with time spans for the GUI to react. Execution of test cases on GUIs is time-

consuming. As compared to unit logic, in which 10,000 cases can often be

automatically tested within a minute - 10,000 simple GUI test cases need more than 10

hours, which at a cost of 600 times of the former.

Figure 1.2 GUI and its underlying codes

8

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Due to the characteristics of GUIs, which are different from those of traditional

software, techniques typically applied to software testing are not adequate for GUI

testing. In comparison with conventional software testing, GUI testing involves more

effort, such as event simulation. A typical GUI test case execution process is shown in

Figure 1.3.

Figure 1.3 Process of GUI test case executions

GUI performer

Specifications

Test
oracle

Reports

Select patient:

Simple Clinic Software

Penny Anderson

New Ok Close

even
t 1

o
u
tp
u
t1

even
t 2

o
u
tp
u
t2

One test case

even
t n

o
u
tp
u
t n

G
U
I Scrap

er

o
u
tp
u
t

9

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

In Figure 1.3, in contrast to the conventional test case execution shown in Figure 1.1,

each test case includes a series of events. Each event needs to be performed on the

given GUI by simulating a user’s operation. Unlike conventional software, GUI based

software takes time to react to each event. After the GUI finishes the reaction, a GUI

scraper reads the status of all the components and compares them with the pre-stored

expected information linked to the event by using a test oracle. Any mismatches in the

results may be fed-back to the GUI performer so that it can decide whether the other

events of this test case need to be performed or not. All mismatches will be put into a

defects report for later analysis. If the GUI performer works manually, each test case

needs a long time to execute, normally more than 15 seconds. If the result checking is

also done manually, about another 20 seconds are requied. Supposing there are 10,000

cases, the total testing time is about 100 hours. If the test cases are executed

automatically by mimicking user operations, it takes about 3 seconds for each test case

to be performed and about another 1 second for the oracle check. 10,000 cases need

about 10 hours to be executed. Apparently, automatic GUI testing is about 10 times

more efficient than manual GUI testing and saves human resources. GUI testing

automation has therefore been attracting more and more researchers in recent years.

1.3 GUI Testing Automation

GUI testing automation involves several steps. Firstly, a set of test cases needs to be

generated automatically according to certain coverage criteria. Because of the

difficulties, especially the huge number of possible test cases, it is impossible to

10

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

perform exhaustive testing. Many GUI objects, properties and events are related to

each other. Without the knowledge of how these parts are connected and how they

work, test cases can only be generated manually. In other words, to automatically

generate test cases, comprehensive models are needed to model the whole GUI system

of an application. Secondly, after the test cases are generated, they need to be

executed automatically. Each test case comprises an event sequence with GUI state

and object information linked to them. An executor is used to mimic a user to perform

all the events automatically in sequence. Thirdly, the aim of executing the test cases is

to check whether the GUI performs as intended. This needs proper mechanisms called

‘test oracles’ to check and report the incongruences. Automatically generating test

oracle information for the checking is very difficult for GUI applications. The oracle

information can either come from application specifications or from a base version of

the application under test. Regressive GUI testing may automatically generate oracle

information by executing the same test cases on the base version and recording the

corresponding GUI states for comparisons. Some defects may cause incorrect GUI

states which can also lead to unexpected events, which can also make further execution

of the test cases useless. Consequently, the execution of the test case must be

terminated when an error is detected [6]. Furthermore, the test results need to be

analysed and reported. The major steps of GUI testing automation are as follows [13].

Step 1: Coverage criteria design. Because it is impossible to carry out exhaustive

testing, certain coverage criteria are needed to determine how to select test cases and to

11

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

what extent the test will be done. In GUIs, a user may click on a window randomly and

a different order of clicks may lead to different results. Since the number of all

permutations is extremely huge, only a small number of the sequences may be selected

as test cases.

Step 2: Test cases generation. Test cases in GUIs are actually sequences of user inputs.

Each test case is represented as a series of events, such as clicks, keys, or menu

selections. According to the given criteria, test cases are selected to perform actions on

the GUIs of an application.

Step 3: Test oracles development. Without a mechanism to predict the right output, one

can never tell whether there are faults after performing a test case. Test oracles are

used to check the output after each test case is executed. Developing test oracles is

tedious and time consuming.

Step 4: Test case execution and output verification. Executing test cases can be done

automatically with a proper GUI state model by simulating a user’s operations on a

given GUI. After each step of a test case is executed, the GUI state is retrieved by a

GUI Scraper and compared by the oracles. Any faults will be recorded for later

analysis.

Step 5: Test results analysis. Once all the test cases have been executed and the

comparisons have been performed between the expected outputs and actual outputs,

the report of the test will be analysed. Not every test suite can test all the parts of the

12

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

software. Which parts of the software are tested and which are not tested should be

reported as well.

Step 6: Regression testing. Regression testing is used to help ensure the correctness of

the modified parts of the software as well as to establish confidence that changes have

not adversely affected previously tested parts.

All the six steps mentioned above are indispensible to GUI testing. It is so difficult to

fulfil GUI testing automation for all the steps that many researchers have been trying

partially GUI testing automation [7-13].

GUI testing automation is traditionally through the Capture and Replay (CR) technique

[14-15]. CR tools provide a basic automation solution by recording mouse coordinates

and user actions as scripts. A major problem of using mouse coordinates is that the

scripts can break with even minor changes to the GUI layout [42].

To overcome the difficulties associated with recording mouse actions and coordinates,

a series of modern CR tools have been developed. Among these are the popular Quick

Test Professional (QTP) [16], Abbot [17], Selenium [18], Rational Functional Tester

(RFT) [19], Win runner [20], SilkTest [21], and IBM Rational Robot [22]. These CR

and visual test tools capture values of various properties of GUI objects rather than

mouse coordinates. The recorded events are connected to GUI objects (widgets such as

Textbox, Button, etc.) by using unique names. Unique names can be identified with

collections of values of the properties of GUI objects. When interacting with the

13

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

application, the unique name will be used to obtain the reference to the real object in

the GUI and recorded events will be performed on the designated object.

CR tools are very useful, but inadequate for performing true automation tasks such as

GUI testing. They can only record user actions on the GUIs of the given applications

and replay these actions. Test automation requires knowledge of the logic or workflow

of the GUIs. Researchers have developed a series of techniques for GUI test

automation [23-27]. However, these proposals are based on models manually created

from the application’s specifications [10, 28-30] which involve much time and

resources. This specifications based GUI automation has been proven to be impractical

and not really feasible [31-32].

To automate the process of GUI testing, many researchers have tried to use model

based GUI testing [6, 9, 24, 26, 33-41]. Of these models, a graph-traversal model, the

event flow graph (EFG), and its later version, the event interaction graph (EIG) [28-29,

37, 42-51] and the event sequence graph (ESG) [6, 33, 52] have been known to be

successful to some extent in recent years in generating sequences of events for creating

test cases. The EFG based test automation [37] has been claimed as the first practical

GUI automated smoke test and much subsequent research was based on EFG [28, 29,

31, 32, 37, 46, 47, 49, 53-55]. This was followed by research on automated black-box

GUI testing. In this research, the event flow graph (EFG) was proposed as the core-

enabling model. In EFG, each vertex represents an event. All events which can be

executed immediately after this event are connected with directed edges from it. A

14

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

path in EFG is a legal executable sequence which can be used as a test case. EFGs can

be generated automatically using a tool called GUI Ripping [44]. Traversing the EFG

with certain strategy can generate test cases.

The Event Sequence Graph (ESG) [56] is also an event focused model. ESG represents

the system behaviour and the facilities from the user’s point of view while interacting

with the system. ESGs are directed graphs; their nodes represent events and edges

represent valid, correct sequences of events. Two pseudo vertices, ‘[‘and ‘]’,

symbolize entry and exit where any node can be reached by entry, and any node can

reach the exit. Any sequence of vertices connected by an edge is called a legal event

sequence (ES). Two events connected by an edge are called an event pair (EP). An ES

starting at the pseudo vertex ‘[‘and ending with the pseudo vertex ‘]’ is called a

complete event sequence (CES). CESs are considered to perform successful runs

through the ESG, i.e., they are expected to arrive at the exit of the ESG that models an

application. In other words, they deliver desirable events. For (positive) testing, CESs

are used as test inputs [6].

Both EFGs and ESGs are event-oriented models which ignore the actual state of the

GUI. All these models can only provide basic GUI automation functions which focus

on part of the GUI testing automation steps. To the best of my knowledge, no solutions

or techniques can fully automate the entire GUI testing automation steps mentioned

above. Current GUI testing techniques are still incomplete and labour-intensive.

15

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

1.4 Challenges in GUI Testing Automation

The characteristics of GUI make GUI testing very difficult. Firstly, event-driven

architecture ensures the uncertainty of user inputs. In conventional command line

software, inputs can be simply described as strings. In GUI applications, inputs are

much more complex. A user may click on any pixel on the screen in any order. Key

presses may happen while the mouse is being clicked or pressed. The input space is

huge. Secondly, an automatic test suite has to simulate these events somehow. To

automate, an automation tool needs to be able to mimic a user performing events.

Thirdly, the state of the GUI is a combination of the states of all its components. Even

the simplest components have a large number of attributes and methods. A distinct set

of a combination of all the attributes constitutes a GUI state. The number of states

increases exponentially as the number of components in a GUI increases.

Due to the difficulties of GUI testing, GUI testing automation therefore faces a number

of challenges:

1) GUI states explosion. A GUI state comprises of a set of objects and their

property values. Any difference in number of objects or property values may mean a

different state. Some property values have huge or even infinite domains of possible

distinct values which make the number of GUI states in turn huge or infinite. Without

a proper method to limit the explosion of GUI states, it is infeasible to perform testing

automation for GUIs.

16

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

2) Test case generation. Given the combinatorial explosion due to arbitrary event

interleaving, selecting a feasible number of event sequences is paramount. To reduce

the number of test cases, some methods try to limit the length of test cases to a certain

number of steps. How to automatically generate efficient test cases is a big challenge

for all existing GUI Testing Automation models.

3) Oracles development. In GUI testing, the outputs are manifested by the values

of properties of widgets in the GUI. The expected values need to be prepared before

testing. One of the difficulties is how to arrive at the expected values. Besides, one

test case may contain a number of events. After each event is executed, the GUI state

needs to be checked. If all the values of the properties of all the widgets are selected,

the storage needed is remarkable. How to select values of properties of the widgets for

user collecting and checking is another difficulty in oracle development.

4) Coverage of test case suite: Conventional coverage methods are not suitable for

GUI testing. GUI behaviours are represented by components statuses and events. The

challenges include how to decide what part of the GUI, what kind of behaviour of the

GUI or what group of events to be covered and tested. How to define coverage criteria

is also a challenge.

5) Regression testing: Regression testing is used to help ensure the correctness of

the modified parts of the software as well as to establish confidence that changes have

not adversely affected previously tested parts. How to make use of old test cases for

17

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

generating new test suites and how much the previous versions of applications can be

used is very important.

This thesis effectively addresses the challenges of existing GUI testing methods and

provides a unified solution to GUI testing automation. The three main contributions of

this research are the proposal of the Graphic User Interface Testing Automation Model

(GUITAM), the development of the GUI Defect Classification and defect

classification directed test case generation, and the proposal of the Long Use Case

Closure Envelope Model for task-oriented long test case generation.

1.5 Thesis structure

The remainder of this thesis is organized as follows. Chapter 2 introduces some basic

concepts and definitions used in this thesis, and surveys some technologies which are

related to both conventional and GUI testing. Chapter 3 presents the novel Graphic

User Interface Testing Automation Model (GUITAM) to automate the procedure of

GUI testing. Chapter 4 presents defect classification and defect classification directed

automatic test case generation for focused GUI testing. Chapter 5 develops the Long

Use Case Closure Enveloping Model which makes use of use cases to automatically

generate task-oriented test cases. Finally, Chapter 6 concludes the thesis and outlines

possible future work.

18

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Chapter 2

Background and Related Work

The research presented in this thesis focuses on providing a unified solution to GUI

modelling and testing automation, which includes GUI representation, GUI testing

automation models, defect classification and a knowledge model for task oriented test

case generation. This chapter will introduce the background, relevant terminologies,

and related research in the area of software testing and GUI testing automation.

2.1 Software Testing Principles

To better understand the whole process of software testing and avoid ambiguity in

presentation, some underlying principles in software testing will be introduced in this

section.

2.1.1 Terminologies

The purpose of software testing is to reveal software faults in order to correct errors

made during the implementation of the application under test (AUT) and to ensure the

quality of the AUT [58]. We say that a program’s execution is correct when its

behaviour matches the functional and non-functional requirements in the AUT’s

specifications [57]. An error is a mistake made by a programmer during the

implementation of a software system [58]. If the implementation is not as described in

the specifications of the AUT, this is an error implementation. A fault is a collection of

19

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

program source code statements that cause a failure. A failure of an application is an

external, incorrect behaviour of a program [58]. A defect generally refers to any of

these concepts, including faults, errors and failures.

According to A.M. Memon, M.E. Pollack, G.M. Kapfhammer and M.L. Soffa [43, 59],

test suites are used to assess the quality of an AUT. A test suite includes a series of test

cases and states.

Definition 2.1[43,49]: A test suite T is a triple (∆0, <T1,…,Te >, <∆1,…, ∆e >),

consisting of an initial external test state, ∆0, a test case sequence <T1,…, Te>for state

∆0, and expected external test states <∆1,…, ∆e>,

where ∆f = Tf(∆f-1) for f = 1,…,e. ∆f = {(var∆, val∆) ϵ U∆ × V∆ | value (var∆, f) =val∆}

∆f denotes the externally visible state of the AUT. ∆f can be viewed as a set of pairs

where the first of each pair is a variable name and the second is a value. U∆ and V∆

denote the universe of valid variable names and variable values respectively.

Definition 2.2[43,49]: A test case Tf ∈ <T1,…,Te> is a triple<δ0, <o1,…,og>, <δ1,…,

δg>> consisting of an initial internal test state, δ0, a test operation sequence <o1,…,og>,

for state δ0, and expected internal test <δ1,…, δg> , where δh = oh(δh-1) for h = 1, … , g.

δh = {(varδ, valδ) ∈ Uδ × Uδ | value (varδ, h) = valδ }

Tf ϵ <T1,…,Te> can be viewed as a sequence of test operations that cause the AUT to

enter into states that are only visible to Tf. δh denotes the internal state that is created

after the execution of Tf’s test case operation oh.

20

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Definition 2.3[60]: A test suite T is independent if and only if for all γ ∈ {1… e}, ∆ γ

= ∆0. Independent suite is a restricted type of suite, where each test case returns the

AUT back to the initial state, ∆0, before it terminates.

Software testing can be divided into two categories: execution based software testing

and non-execution-based testing. Execution-based software testing techniques are

either program-based, or specification-based, or combined [61, 62]. Non-execution-

based software testing can be performed through software inspections [63]. During a

software inspection, software engineers manually examine the source code of a system

and any document that accompanies the system. The inspection can be guided by a

software inspection checklist [64] or by using scenario-based reading techniques [65,

66]. Figure 2.1 shows the types of software testing.

Non-execution based software testing is usually done manually which is not our focus.

The executions in execution-based software testing can be automated to some extent.

Many testing automation models are for execution-based testing.

2.1.2 Representation of program source code

Conventional program source codes are made up of a set of methods (procedures or

functions). Before generating test cases, the test case adequacy criteria need to be

analysed. To analyse the adequacy of the AUT, the structure of the program needs to

be modelled. There are many different graph-based representations for programs. For

example, the class control flow graph (CCFG) represents the static control flow

21

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

between the methods within a specific class [67-70]. Inter-procedural Control Flow

Graph (ICFG) [71] represents the control flows of each method within an AUT.

Different representations for the AUT influence the measurement of the quality of

existing test suites and the generation of new tests. These graph-based representations

can be generated automatically by scanning the source codes. Here we just introduce

the ICFG.

Figure 2.1 Types of software testing

An ICFG is a collection of control flow graphs (CFGs) G1,G2,…, Gu which correspond

with the CFGs for the program’s methods m1, m2,…,mu, respectively. We define

So
ftw

are Testin
g

Exe
cu
tio

n
‐b
ased

Testin
g

N
o
n
‐exe

cu
tio

n
‐b
ased

 Testin
g

Program‐based Testing

Specification‐based Testing

Combined Testing

Program‐based Testing

Specification‐based Testing

Combined Testing

In
sp
ectio

n
s

22

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

control flow graph Gv so that Gv = (Nv, Ev) and we use Nv to denote a set of CFG nodes

and Ev to denote a set of CFG edges. Furthermore, we assume that each n ∈ Nv

represents a statement in method mv and each e ∈ Ev represents a transfer of control in

method mv. Also, we require each CFG Gv to contain unique nodes entryv and exitv that

demarcate the entrance and exit points of method mv, respectively. We use the sets

pred(nτ) = { nρ | (nρ, nτ) ϵ Ev} and succ(nρ) = { nτ | (nρ, nτ) ϵ Ev} to denote the set of

predecessors and successors of node nτ and nρ, respectively. Finally, we require

ܰ ൌ ሼ ௩ܰ |ݒ א ሾ1, ሿሽݑ and ܧ ൌ ሼܧ௩ |ݒ א ሾ1, ሿሽݑ| to contain all of the nodes and

edges in the inter-procedural control flow graph for a program.

Figure 2.2 A sample program

From the sample program in Figure 2.2, an ICFG can be created for the program which

is shown in Figure 2.3.

 1 class Testing

 2 {

 3 int MaxOfTwo(int x, int y)

 4 {

 5 int max = x;

 6 if (x < y)

 7 {

 8 max = y;

 9 }

10 return y;

11 }

12 int MaxOfThree(int x, int y, int z)

13 {

14 int max = MaxOfTwo(x, y);

15 max = MaxOfTwo(max, z);

16 return max;

17 }

18 }

23

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Figure 2.3 ICFG of the sample program in Figure 2.2

2.1.3 Coverage Criteria

Selection of representation of the AUT source code affects the definition of coverage

criteria. For reasons of simplicity, in this section ICFG is used as source code

representation.

Definition 2.4[74]: A test suite T for control flow graph Gv = (Nv, Ev) satisfies the all-

nodes test coverage criterion if and only if the tests in T create a set of complete paths

ПNv that include all n ∈ Nv at least once.

Definition 2.5[74]: A test suite T for control flow graph Gv = (Nv, Ev) satisfies the all-

edges test coverage criterion if and only if the tests in T create a set of complete paths

ПEv that include all e ∈ Ev at least once.

5

6

8

10

Entry of
MaxOfTwo

Exit of
MaxOfTwo

14

15

16

Entry of
MaxOfThree

Exit of
MaxOfThree

24

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Definition 2.6[74]: A test suite T for control flow graph Gv = (Nv, Ev) satisfies the all-

paths test coverage criterion if and only if the tests in T create a set of complete paths

Пv that include all the execution paths beginning at the unique entry node entryv and

ending at the unique exit node exitv.

In a standard program, the occurrence of a variable on the left-hand side of an

assignment statement is called a definition of this variable. The occurrence of a

variable on the right hand side of an assignment statement is called a computation-use

(or c-use) of this variable. When a variable appears in the predicate of a conditional

logic statement or an iteration construct, this is called a predicate-use (or p-use) of the

variable. A definition clear path for variable varv is a path <nρ,…,nτ> in Gv, such that

none of the nodes nρ,…,nτ contain a definition or undefinition of program variable varv .

Def-c-use association is a triple <nd, nc-use, varv> where a definition of variable varv

occurs in node nd and a c-use of varv occurs in node nc-use. Def-p-use association as the

two triples <nd, (np-use, t), varv>, and <np-use, f), varv> where a definition of variable

varv occurs in node nd and a p-use of varv occurs during the true and false evaluations

of a predicate at node np-use [72, 73, 75-77].

All-du-paths coverage criterion requires the coverage of all the paths from the

definition to a usage of a program variable [76, 77].

Definition 2.7[76,77]: A test suite T for control flow graph Gv = (Nv, Ev) satisfies the

all-c-uses test coverage criterion if and only if for each association <nd, nc-use>,

25

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

where varv ∈ Uv and nd, nc-use ∈ Nv, there exists a test Tf ∈ <T1,.., Te> to create a

complete path ߨ௩ೡ in Gv that covers the association.

Definition 2.8[76,77]: A test suite T for control flow graph Gv = (Nv, Ev) satisfies the

all-p-uses test coverage criterion if and only if for each association (nd, (np-use, t), varr)

and (nd, (np-use, f),varv),

 where varv ∈ Uv and nd, np-use ∈ Nv, there exists a test Tf ∈ <T1,…, Te> to create a

complete path ߨ௩ೡ in Gv that covers the association.

Definition 2.9[76,77]: A test suite T for control flow graph Gv = (Nv, Ev) satisfies the

all-uses test coverage criterion if and only if for each association <nd, nc-use, varv>,

<(nd, (np-use, t), varv> and <nd, (np-use, f), varv>,

 where varv ∈ Uv and nd, nc-use, np-use ∈ Nv, there exists a test Tf ∈ <T1,…, Te> to

create a complete path ߨ௩ೡ in Gv that covers the association.

Definition 2.10[76,77]: A test suite T for control flow graph Gv = (Nv, Ev) satisfies the

all-du-paths test coverage criterion if and only if for each association < nd, nc-use,

varv>, <nd, (np-use,t), varv> and <nd, (np-use, f), varv>,

 where varv ∈ Uv and nd, nc-use, np-use ∈ Nv, the tests in T create a set of complete paths

П௩
௩ೡthat include all of the execution paths that cover the associations.

2.1.4 Test Case Generation

26

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

The generation of test cases can be performed in a manual or automated fashion.

Manual test generation involves the construction of test cases by analysing the source

code and specifications. Test cases generated manually are usually more purpose

intended in finding certain kind of faults. Manual test case generation involves

strenuous labour as software systems are becoming more and more complex. This

makes manual test cases generation infeasible. Alternatively, in some GUI based

software, test cases can be “recorded” or “captured” by simply using the AUT and

monitoring the actions that are taken during usage [78].

An automated solution to the test case generation problem attempts to automatically

create a test suite that will fulfil selected coverage criterion when it is used to test an

AUT. By using certain coverage criteria, algorithms may be developed to traverse the

structured model of the AUT, such as ICFG, and generate corresponding test case

suites.

2.1.5 Test Execution

The execution of a test suite can occur in a manual or automated fashion. For example,

the test case descriptions that are the result of the test selection process could be

manually executed against the AUT.

2.1.6 Regression Testing

Regression testing can be used to determine whether there are any changes that

introduce defects after an AUT is updated for bug fixing or adding additional

27

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

functionality. Regression test suites help to ensure that the evolution of an application

does not result in lower quality software. Regression testing often has a strong positive

influence on software quality [79]. Regression testing is also costly. A complete

regression testing of a 20,000 line software system required about seven weeks of

continuous execution [70]. Selecting an appropriate subset of the existing test suite,

prioritizing the execution of a regression test suite and regression test distribution help

reduce the cost of regression testing by [69, 80, 81].

2.2 GUI Testing

It is estimated that an average of 48% of the application code and 50% of the time

spent with implementation are dedicated to the user interface [82]. The testing phase of

the software life cycle may consume around 50% of the total time of the project [83 -

85]. Checking an AUT can be performed by static or dynamic analysis. Static analysis

is usually by way of code review and formal analysis such as model checking and

formal proofs. This is based only on the experience and sensibility of the tester, which

makes the process unsystematic, unmanageable and ad hoc. Dynamic analysis is

performed by executing the application under test. Given that the specification is

formal, the construction and execution of the test cases can be automated and the

overall process becomes more systematic.

In general, conventional testing strategies are applicable to GUI testing. However, the

characteristics of the GUI, such as time constraints, test case explosion problems, the

28

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

need for combining testing techniques, and test automation raises specific challenges.

GUIs are becoming more and more complex, which makes manual GUI testing

impractical.

2.2.1 Manual GUI Testing

Even though manual GUI testing is becoming more and more impractical, in the initial

stage, it is useful to find errors from either real users or trained specialists. The bugs

found can provide hints for finding other bugs, i.e., the tests can be adapted to look for

bugs similar to the ones found (adaptability). Besides the real users, trained specialists

can use formal methods to do the manual testing. These methods include inspection,

inquiry, and usability tests [128].

Manual tests are appropriate for finding usability problems and making general

assessments about usability [86], but the results/errors found by manual tests are very

dependent on the capabilities of the tester. Human errors can also be injected into the

results. Constructing, executing, and analysing the results of the test cases involves too

much human effort. This research mainly focuses on automated GUI testing.

2.2.2 Automated GUI Testing

GUI testing represents a significant amount of the overall testing effort. To automate

GUI testing, several kinds of testing tools have been developed. These tools vary from

those that only support the automatic execution of test cases, to those that support test

29

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

case execution, test case generation, and construction of the GUI model by a reverse

engineering process.

1) Capture/Replay (C/R)

A GUI is constituted from widgets. Each widget has some properties and related

events. This information about GUI components is programmatically readable. By

hooking the system event handling, actions taken by a user can be captured and the

corresponding information about the GUI widgets can be read. The captured sequences

of the actions can be replayed many times on the same GUI of an AUT. Some tools,

such as WinRunner [20] and Rational Robot [22], have been developed for this

purpose. Test scripts can be constructed by interacting with the AUT but

capture/replay tools give no support for their design and coverage criteria analysis. The

lack of structure of the scripts makes their maintenance very difficult. Some

researchers have tried to solve the problems by the adoption of methodologies that

entail more structure in the test scripts [87-91].

C/R technology has many advantages in other applications such as demonstrations,

remote support, analysis of user behaviour, macro functionality, and educational

scenarios. However, for testing purposes, it is still subject to severe criticism. The

disadvantages of C/R in GUI testing are

 C/R tools can be used only when the GUI, or part of it, is already available.

30

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

 The whole process of a test case needs to be re-captured if a mistake or a failure

happens in the middle of the capture. All that is being tested are things that already

work [92].

 Test case design and evaluation are not supported according to coverage criteria.

 Minor changes to the implementation usually require the re-capturing of all

affected test scripts.

 Low level of abstraction, such as mouse positions, may be hard coded in generated

scripts. A small change on the layout of the user interface might invalidate all test

cases.

2) Random Input Testing

Generating test cases is difficult for GUI testing. In the early era of GUI testing

research, inputs were generated randomly for crash testing. Random input testing is

also referred to as monkey testing [93]. Mouse movements, clicks and keys are

randomly generated and performed on the GUI. Microsoft reported that 10-20% of the

bugs in their software projects are found by a monkey test tool [94]. Besides finding

defects which crash the system, this method cannot even recognize a software error

without knowledge of the system, which makes it not particularly useful.

The coverage of random input testing is very weak. Due to the huge space of the input

domain, important actions can be selected with very low probability. Although some

31

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

errors can be found by this approach, it is rather arbitrary and does not provide reliable

coverage criteria [95].

3) Unit Testing Framework

By using certain framework such as JUnit [96] and NUnit [97], test cases can be

constructed / programmed manually with high-level flexibility. This unit testing is

particularly suitable for API testing, but not for GUI testing. Strenuous labour of

testers is involved to adequately test GUI behaviour. In unit testing, because the test

action sequences are usually written manually, the sequences tend to be too short to

uncover bugs which need long particular sequences of actions. Thus, these kinds of

errors are very likely to be missed. There are some GUI libraries, such as Abbot [17],

or Jemmy [127], which provides methods to simulate user actions, but GUI testing still

requires a lot of extra programming effort to be effective.

4) Model based GUI Testing

Model-based GUI testing tools normally focus on the GUI testing automation process.

To test GUI automatically, the GUI states and events are usually described with certain

kinds of model. With the models, test cases can be generated automatically to some

extent. The generation of test cases can be either random or according to certain

coverage criteria. Test cases execution and output checking can also be automatic to

some extent. Automatic test cases and oracle generation usually needs knowledge

32

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

models to take advantage of the information in AUT’s specifications. The next section

will introduce some popular existing GUI testing models.

2.3 Existing GUI testing models

2.3.1 Event Sequence Graph

Belli et al [33] proposed an event sequence graph (ESG) model, and introduced

decision tables to refine a node of the ESG where the test cases are generated

according to the rules of the decision table.

Definition 2.11[98]: An event sequence graph ESG = (V, E, I, Γ) is a directed graph,

 where V ≠ Ø is a finite set of vertices (nodes), E V×V is a finite set of arcs (edges), I,

Γ V are finite sets of distinguished vertices with ξ ∈ I, and γ Γ∈ , called entry

nodes and exit nodes, respectively, wherein ݒ א ܸ there is at least one sequence of

vertices <ξ,v0,…,vk>　from each ξ ∈ I to vk = v and one sequence of vertices

<v0,…,vk, γ>　from v0 = v to each γ Γ∈ with (vi,vi+1) ∈ E, for i = 0,…,k-1 and v ≠ξ,

γ .

I (ESG), Γ (ESG) represent the entry nodes and exit nodes of a given ESG, respectively.

To mark the entry and exit of an ESG, all ξ ∈ I are preceded by a pseudo vertex ‘[’ ∉

V and all γ Γ∈ are followed by another pseudo vertex ‘]’ ∉ V. The semantics of an

ESG is as follows: any v V∈ represents an event. For two events v, v’ V∈ , the event v’

must be enabled after the execution of v iff (v, v’) E∈ . The operations on identifiable

components of the GUI are controlled and/or perceived by input/output devices, i.e.,

33

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

elements of windows, buttons, lists, checkboxes, etc. Thus, an event can be a user

input or a system response; both of them are elements of V and lead interactively to a

succession of user inputs and expected desirable system outputs. To illustrate the

model, RealJukebox (RJB) has been selected, more precisely the basic, English version

of RJB 2 (Build: 1.0.2.340) of RealNetworks. Figure 2.4 shows the GUI of RJB, and

Figure 2.5 is an example of ESG representation of RJB. Table 2.1 shows the RJB

system functions as responsibilities of the system to interact with the user.

Figure 2.4 GUI of Real Juke Box [56]

34

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Table 2.1 Real Juke Box System functions [56]

1. Play and record a CD or track
2. Create and play a playlist
3. Edit playlists and/or autoplaylists
4. View lists and/or tracks
5. Edit a track
6. Visit the sites

7. Visualization
8. Skins
9. Screen sizes
10. Different views of
11. Find music
12. Configure RJB

Figure 2.5 ESG representation of Play and Record a CD system function [56]

Definition 2.12[98]: Let V, E be defined as in Definition 2.11. Then any sequence of

vertices <v0,…,vk> is called an event sequence (ES) iff (vi,vi+1) E∈ , for i=0,…,k-1.

Moreover, an ES is complete (or, it is called a complete event sequence, CES), iff v0 ∈

I and vk Γ∈ .

Note that the pseudo vertices ‘[’, ‘]’ are not included in ESs. An ES = <vi,vk> of

length 2 is called an event pair (EP). A CES may invoke no interim system responses

during user-system interaction, i.e., it may consist of consecutive user inputs and a

final system response.

Legend:

[: Entry

L: Load a CD

S: Select track

P: Play track

M: Mode

R: Remove CD

]: Exit

[L S P M R]

35

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Graphically speaking, missing edges of the ESG represent undesirable user-system

interactions, i.e., faulty event pairs (FEP). FEPs can systematically be constructed by

either (1) adding arcs in the opposite direction wherever only one-way arcs exist, or (2)

adding two-way arcs between vertices wherever no arcs connect them, or finally, (3)

adding self-loops to vertices wherever none exist.

Definition 2.13[98]: Let ES = <v0,…,vk> be an event sequence of length k+1 of an

ESG and FEP = <vk,vm> a faulty event pair. The concatenation of the ES and FEP

then forms a faulty event sequence FES = <v0,…,vk,vm>. FES is complete (or, it is

called a faulty complete event sequence, FCES) iff v0 ∈ I. The ES as part of a FCES is

called a starter.

According to Definition 2.13, the red doted lines shown in figure 2.6 are FEPs, CES

and FCES form test cases to the SUC. The SUC is supposed to accept test inputs

described by CESs in the specified order whereas test inputs described by FCESs

should result in a warning.

Figure 2.6 ESG with FP

[L S P M R]

36

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Modelling input data, especially concerning causal dependencies between each other

as additional nodes, inflates the ESG model. To avoid this, decision tables are

introduced to refine a node of the ESG. Such refined nodes are double-circled.

Definition 2.14[56]: Given an ESG, say ESG1 = (V1,E1), a vertex v V∈ 1, and an ESG,

say ESG2 = (V2,E2), then replacing v by ESG2 produces a refinement of ESG1, say

ESG3 = (V3,E3) with V3 = V1 V∪ 2 \ {v}, and E3 = E1 E∪ 2 E∪ pre E∪ post\E1replaced (\ is

the set difference operation), wherein Epre = N−(v) ×I(ESG2) (connections of the

predecessors of v with the entry nodes of ESG2), Epost = Γ (ESG2) × N+(v) (connections

of exit nodes of ESG2 with the successors of v), and E1replaced = {(vi , v), (v, vk)} with vi

 N∈ − (v) and vk N∈ + (v) (replaced arcs of ESG1).

Figure 2.7 shows the refinement of the vertices S, P, and M of the ESG in Figure 2.5

[Edit

View‐
GoTo/Play
Record CD

Check
All

Checked
One Off

Checked
One ++

Check
None

]

S: Select trackP: Play track

[
Record

Play/Pause
Stop

Jump
Beginning

Track
Position

FF

]
Control

Rew

37

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Figure 2.7 Refinement of the vertices S, P, and M of the ESG in Figure 2.4 [56]

Definition 2.15[98]: A Decision Table DT = {C, A, R} represents actions that depend

on certain constraints where:

 C ≠ Ø is the set of constraints

 A ≠ Ø is the set of actions

 R ≠ Ø is the set of rules that describe executable actions depending on a certain

combination of constraints.

Decision tables [99] are popular in information processing and are also used for testing,

e.g., in cause and effect graphs. A decision table logically links conditions (”if”) with

actions (”then”) that are to be triggered, depending on combinations of conditions

(”rules”) [100].

[

Control

Shuffle Continuous

MuteVolume

]

M: Mode

38

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Definition 2.16[98]: Let R be defined as in Definition 15. Then a rule Ri R∈ is

defined as Ri = (CTrue,CFalse, Ax) where:

 CTrue C is the set of constraints that have to be resolved to be “true”

 CFalse = C\CTrue is the set of constraints that have to be resolved to be “false”

 Ax A is the set of actions that should be executable if all constraints t C∈ True are

resolved to be “true” and all constraints f C∈ False are resolved to be “false” .

Note that CTrue C∪ False = C and CTrue ∩ CFalse = Ø under regular circumstances. In

certain cases it is inevitable to remark conditions with a don't care (symbolized with a

'-' in DT), i.e., such a condition is not to be considered in a rule and CTrue C∪ False ⊂ C.

A DT is used to refine data input of GUI’s.

The most important contribution of the ESG to GUI testing is that it takes into account

not only the desirable behaviour, but also the undesirable behaviour of a GUI. That is

to say, it tests GUIs not only through exercising them by means of test cases which

show that the GUI is working properly during routine operation, but also exercising

potentially illegal events to verify that the GUI behaves satisfactorily in exceptional

situations. However, the ESG model still faces a number of limitations for real GUI

automation. The major limitations of the ESG model include:

 Model is manually created by analysing the specifications and source code,

which involves enormous labour;

39

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

 States explosion. With the algorithm proposed in the ESG model, the vertices

and states may increase drastically, especially when taking into account of

concurrency;

 Procuring test oracle information involves intensive labour;

 Unable to model events which have uncertain follow-ups events.

2.3.2 Event Flow Graph (EFG) and Event-Interaction Graph (EIG)

The event flow graph (EFG), and its later version, the event interaction graph (EIG)

were recently proposed by the team of Professor Atif M. Memon in the University of

Maryland [37, 43, 44, 47]. The EFG-based test automation [37] has been claimed to

be the first practical GUI automated smoke test. This was followed by research on

automated black-box GUI testing. In these researches, the event flow graph (EFG) was

proposed as the core-enabling model. In the EFG, each vertex represents an event. All

events which can be executed immediately after this event are connected with directed

edges from it. A path in the EFG is a legal executable sequence which can be seen as a

test case. EFGs can be generated automatically using a tool called GUI Ripping [44].

Traversing an EFG with a certain strategy can generate test cases.

The EFG was first proposed in 2001 [43]. The definition of the EFG is as follows.

Definition 2.17 [37]: An event-flow graph for a component C is a quadruple <V, E, B,

I> where:

40

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

1. V is a set of vertices representing all the events in the component. Each vV

represents an event in C;

2. E V V is a set of directed edges between vertices. Event ei follows ej iff ej

may be performed immediately after ei. An edge (vx, vy) E iff the event represented

by vy follows the event represented by vx ;

3. B V is a set of vertices representing those events of C that are available to

the user when the component is firstly invoked; and

4. I V is the set of restricted-focus events of the component.

In the definition, a GUI component C is an ordered pair <RF, UF>, where RF

represents a model window in terms of its events and UF is a set whose elements

represent modeless windows also in terms of their events. Each element of UF is

invoked either by an event in UF or RF. Figure 2.8 shows an example of an EFG for

Notepad.

To generate the test cases automatically, events are classified into 5 groups:

1. Restricted-focus events open modal windows;

2. Unrestricted-focus events open modeless windows;

3. Termination events close modal windows;

4. Menu-open events are used to open menus; and

41

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

5. System-interaction events interact with the underlying software to perform some

actions.

Figure 2.8 An example of an EFG [37]

Algorithm GetFollows [43].

1. GetFollows(v: Vertex or Event)

2. {

3. if(EventType(v)=menu-open){

4. if v B of the component that contains v

5. return (MenuChoices(v) {v} B);

42

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

6. else

7. Return

8. (MenuChoices(v) {v} B (Parent(v)));

9. }

10. if(EventType(v)=system-interaction) return (B);

11. if(EventType(v)=termination)

12. return (B of Invoked component);

13. if (EventType(v)=unrestricted-focus)

14. return (B B of Invoked Model Dialogue)

15. if (EventType(v)=restricted-focus)

16. return (B of Invoked component);

17. }

Figure 2.9 Algorithm GetFollows

To create an EFG automatically, finding the follow-up events of each event is critical.

This can be done using an algorithm called GetFollows [37]. Figure 2.9 shows the

algorithm GetFollows.

The set of follows (v) can be determined using the algorithm GetFollows for each

vertex v. The recursive algorithm contains a switch structure that assigns follows (v)

according to the type of each event. If the type of the event v is a menu-open event

(line 3) and v ∈ B (recall that B represents events that are available when a component

is invoked) then the user may either perform v again, its sub-menu choices, or any

event in B (line 5). However, if v B∈ then the user may either perform all sub-menu

choices of v, v itself, or all events in follows (parent (v)) (line 8); parent (v) is defined

as any event that makes v available. If v is a system-interaction event, then after

43

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

performing v, the GUI reverts to the events in B (line 10). If v is a termination event,

i.e., an event that terminates a component, then follows (v) consists of all the top-level

events of the invoking component (line 12). If the event type of v is an unrestricted-

focus event, then the available events are all top-level events of the invoked

component available as well as all events of the invoking component (line 14). Lastly,

if v is a restricted-focus event, then only the events of the invoked component are

available.

Since an EFG models all possible event interactions, it cannot be used directly for

rapid testing. To effectively generate test cases, a new event-interaction graph (EIG)

was introduced in 2005 [37]. System-interaction events are those that interact with the

underlying software, including non-structural events and those that close windows. In

EIG, only system interaction events are selected. An EIG can be transferred from an

EFG.

Definition 2.18: There is an event-flow-path from node nx to node ny iff there exists a

(possibly empty) sequence of nodes nj; nj+1; nj+2; …; nj+k in the event-flow graph E

such that { (nx, nj), (nj+k, ny)} ك edges(E) and {(nj+i, nj+i+1) for 0 ≤ i ≤ (k-1) } ك edges

(E) [37].

Definition 2.19: An event-flow-path < n1; n2; . . . ; nk > is interaction- free iff none of

n2; . . . ; nk_1 represent system-interaction events. [37]

44

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Definition 2.20: A system-interaction event ex interacts-with system-interaction event

ey iff there is at least one interaction-free event-flow-path from the node nx (that

represents ex) to the node ny (that represents ey). [37]

The interacts-with relationship is used to create the EIG which contains nodes, one for

each system-interaction event in the GUI. An edge in EIG from node nx (that

represents ex) to node ny (that represents ey) means that ex interacts-with ey.

An EIG can be converted from an EFG. Algorithm GenerateEIG in Figure 2.10 is

used to convert an EFG to an EIG.

Algorithm GenerateEIG [37]

1. Ṅ /* Nodes set of EIG */
2. Ḕ /* Edges set of EIG */
3. GenerateEIG(EFG(N,E))
4. {
5. Ṅ = N;
6. Ḕ = E;
7. For all n ϵ N
8. {
9. Start(n) = { ni | (n, ni) ϵ E, and n ≠ ni }
10. End(n)={ni | (ni, n) ϵ E, and n ≠ ni }
11. }
12. For all n ϵ N
13. {
14. If(EventType(n) ≠ System-interaction)
15. {
16. For all nx ϵ end(n)
17. For all ny ϵ start(n)
18. {
19. Ḕ = Ḕ ∪ (nx, ny)
20. If (nx ≠ ny)
21. {
22. Start(nx) = start (nx) ∪ {ny}

23. End(ny)=end(ny) ∪ {nx}
24. }

45

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

25. }
26. For all nx ϵ end(n)
27. Remove n from start(nx)
28. For all ny ϵ start(y)
29. Remove n from end(ny)
30. Remove n from Ṅ
31. Remove all edges (n, ni) from Ḕ
32. Remove all edges(ni, n) from Ḕ
33. }
34. }
35. }

Figure 2.10 Algorithm GenerateEIG

The algorithm GenerateEIG takes as input an EFG, represented as a set of nodes N and

a set of edges E. It removes all non-system-interaction event nodes and their associated

edges from the given EFG. At the termination of the procedure, the event-interaction

graph is obtained, represented as a set of nodes Ṅ and a set of edges Ḕ. Ṅ and Ḕ are

initialized to N and E (lines 5-6). When traversing all edges of the EFG, a list of nodes

start (n) on the edges that start from the node n (except itself) is obtained for all nodes.

Similarly, a list of nodes end (n) that end with the node n (except itself) for all nodes

(lines 9-10) is computed. For each node n of the EFG (line 12), all new edges (nx, ny)

are added to Ḕ if there is an interaction-free path < nx; n; ny > in the EFG (lines 14-

19); start(nx) and end(ny) are updated to add ny and nx in the lists, respectively, if nx and

ny are not the same node (lines 20-23). Accordingly, n is removed from the start and

end lists (lines 26-29). Finally, n is removed from Ṅ (line 30); all edges associated with

n are removed from Ḕ (lines 31-32). The space of event sequences in EIG can be

reduced considerably since only the system interaction event interactions are modelled

in this graph. Figure 2.11 is the EIG converted from the EFG in Figure 2.8.

46

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Figure 2.11 EIG for the EFG in Figure 2.7 [37]

The EFG model is so far the most popular and practical GUI testing automation model.

The research team led by Professor Atif M. Memon also provided a unified solution to

GUI testing automation. The solution includes automatic EFG generation with a tool

called GUI Ripping, architecture of smoking test which is called Daily Automated

47

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Regression Tester (DART), and Automatic test oracle generation in regression testing.

However, the EFG model still faces a number of limitations. These limitations include:

 The EFG cannot model all GUI behaviours. In an EFG, one event has a fixed

set of follow-up events. In fact, very commonly, many events such as button

clicks may have uncertain follow-up events when the ambient conditions

change.

 To avoid the explosion of test cases, test case generation with EFG usually

reduces the number of test cases by limiting the length of each test case.

 Lack of user’s knowledge makes long test cases generation impractical.

 The EFG model focuses on events instead of GUI states, which limits the

ability of characterizing the full feature of GUIs.

2.4 Conclusion

This chapter has presented an overview of the research serving as the foundation for

some of the concepts developed in this thesis. Conventional testing solutions do not

fully suit GUI based software testing, but can be extended to GUI testing environments.

The code coverage criterion of generating test cases and adequacy evaluation can be

extended to events and the states coverage criterion in GUIs. Although test case

execution in GUI testing is quite different from in conventional software testing, new

GUI operation tools help to perform test cases on GUIs. These tools provide basic

operation functions such as reading widget information, recording user actions,

48

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

performing mouse clicks, etc. To automatically test GUI based software, various

models are used to model the GUI events or states so that test cases generation, oracle

information generation, test case execution and evaluation can be automated to some

degree. Among the existing models, the event sequence graph (ESG) proposed by Belli

and his team [6, 33, 34, 56, 57, 100, 101,102], event flow graph (EFG) proposed by

Memon and his team are most popular for GUI testing automation. However, an ESG

needs to be generated from an AUT’s specification and the generation of the model

involves too much human effort. The EFG is the most practical GUI automation model

so far. An EFG can be generated automatically by a tool called GUI Ripping [44].

Both the ESG and EFG models provide basic GUI testing automation, but because the

models are all entirely focused on events rather than on GUI states, especially that

each event is represented as a node and all the follow-ups are connected to it with

directed edges, they are not able to model scenarios in which one event may have

uncertain follow-ups.

This thesis will present a GUI testing automation model which models both the GUI

states and events and provides a unified solution to GUI testing automation. Details are

to be presented in the next chapters.

49

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Chapter 3

Graphic User Interface Testing Automation Model

GUIs are very different from conventional command-based interfaces. They present a

much more complex structure and more complex event-driven behaviour. GUI testing

is laborious, boring, and time and resource consuming. The approaches and tools

available to aid the testing process are not satisfactory. As compared to the

conventional source code modelling, a proper representation of GUI is needed to

model its behaviour.

3.1 What is a GUI?

Instead of using a command line, most of today’s software comes with a graphic user

interface which users can interact with. A GUI uses a collection of objects (widgets)

which are familiar from real life such as, buttons and menus items which make the

system more user-friendly. These objects include elements such as windows, pull-

down menus, buttons, scroll bars, iconic images, and wizards. Instead of using a key

board, as with command line software, GUIs support point devices, such as mouses

and touch screens, which allow users to operate any part of a window on the screen in

any sequence. Software users can perform tasks by manipulating GUI objects as they

do in the real world. Dragging an item, discarding an object by dropping it in a trash-

50

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

can, and selecting items from a menu are all familiar actions available in today’s GUI.

Figure 3.1 shows a set of GUIs of simplified clinic software.

Figure 3.1 GUIs of Simple Clinic Software

The actions performed by users are called events. These events cause deterministic

changes to the state of the software that may be reflected by a change in the

appearance of one or more GUI objects. For example, in Figure 3.1, clicking on the

‘New’ button in window w1 will lead to the opening of window w2; When w2 is open,

Select patient:

Simple Clinic Software

Xuebing Yang

New Ok Close

W1

New patient

Mary Anderson Name:

22 Mansion St. Addr:

Ok Cancel

W2

Medication

Simple Clinic Software

Edit info

Close

W3

Edit patient

Xuebing Yang Name:

22 Gordon St. Addr:

Ok Cancel

W4

Edit Medication

02/08/09 Date:

 VC Drug:

Ok Cancel

3 Dose:

W7

New medication

22/10/09Date:

MODrug:

Ok Cancel

2.5Dose:

W6

Date

05/09/09

Drug

TB

Dose

1.5

02/08/09 VC 3

23/05/09 PENI 5

08/05/08 ST 3

Edit

Medications

New Close

W5

51

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

and the ‘Name’ Editbox is focused, typing a string will cause the text to change in the

edit area of the object.

At any given moment, a GUI is a certain collection of windows and objects built in the

windows. Windows and their objects are hierarchically organized. Each object has its

own collection of properties, exposes a collection of events and owns a collection of

sub-objects. Property values of an object constitute a state of the object. All states of

objects constitute the state of the GUI. Figure 3.2 shows the hierarchically organized

objects of w1 in Figure 3.1 and some of their property values.

Figure 3.2 Hierarchical objects of w1 in Figure 3.1

52

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

The important characteristics of GUIs include their graphical orientation, event driven

input, hierarchical structure, the objects they contain, and the properties (attributes) of

those objects. Formally, a GUI can be defined as follows:

Definition 3.1: A Graphical User Interface (GUI) is a hierarchical, graphical front-end

to a software system that accepts as input user-generated and system-generated events

which are from a fixed set of events, and produces deterministic graphical output. A

GUI contains graphical objects; each object has a fixed set of properties. At any time

during the execution of the software, these properties have discrete values, the set of

which constitutes the state of the GUI.

The above definition specifies a class of GUI which have a fixed set of events with

deterministic outcomes which can be performed on objects with discrete valued

properties.

3.2 GUI states

There are many ways to define the states of a GUI application. To facilitate GUI

testing automation, we shall focus on GUI-related state and state transitions. The

graphical user interface of a given application is treated as a series of interfaces. Each

interface may be regarded as a state. The states are to be used to construct a finite state

machine for GUI test automation.

 Definition 3.2: A GUI state is modelled as a set of opened windows and the set of

objects (labels, buttons, edits, etc.) contained in each window. Hence, at a particular

53

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

time t, the GUI can be represented by its constituent windows W ={w1, w2, …, wn}

and their objects O ={ O1, O2, …, On },

where

Oi={o(i,1), o(i,2),…o(i, mi)}, i=1, 2, …, n;

Each object contains properties

 P = { P(1,1), P (1,2), …, P (1, ml),

P (2,1), P (2,2), …, P (2, m2),

….,

P (n,1), P(n,2), …., P(n, mn)},

where

P(i,j) = { p(i,j,1), p(i,j,2), …., p(i,j, kij) }; i=1, 2, …, n; j= 1, 2, …., mi ;

and their corresponding values V(i,j) = { V(i,j,1), V(i,j,2), …., V(i,j, kij) };

where

V(i,j, k) = { v(i,j, k, 1) , v(i,j, k, 2) , …, v(i,j, k, Lijk) ,},

i=1, 2, …, n;

 j= 1, 2, …., mi ;

k= 1, 2, …., kij ;

54

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

At a certain time t, the set of windows and their objects constitute the state of the GUI.

All the objects are organized as a forest. A GUI state is then modelled as a quadruple

(W,O, P, V). Events {e1, e2… eq} performed on the GUI may lead to state transitions.

The function notation Sj = ei(Si) is used to denote that Sj is the state resulting from the

execution of event ei at state Si. Such a state and transition can be considered as a finite

state machine. However, such an FSM would contain too many states and transitions

which would make the test automation impractical. Traditional FSM differentiates all

the minor changes of the states. It leads to exponential increased number of GUI states.

Figure 3.3 shows a GUI editing interface in Medical Director 3 [110], of a type which

is very common employed in many other applications. In Figure 3.3, there are 15

radio buttons and two editboxes. Even we confine ourselves to the radio buttons, each

can have one of two statuses (checked or unchecked). This simple form can be 215 =

32768 GUI states. If combined with other interfaces, the number of statuses for the

whole application will be prodigious. Therefore, the test cases for full permutation of

all the states can easily require over a million years to execute. However, because none

of the value changes of the radio buttons will affect other GUI states, there is no need

to see the different sets of values of this form as different states. To tackle this problem,

in the next section a GUI Testing Automation Model is proposed, within which object

and property selection criteria are used to differentiate GUI states in order that the

number of states can be drastically reduced.

55

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Figure 3.3 Patient details editing GUI in Medical Director 3

56

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

3.3 GUI Testing Automation Model

Definition 3.3: A GUI Testing Automation Model (GUITAM) is a quadruple (Σ, S, s0,

T), where:

 Σ is a finite, non-empty set of all possible input events of the application under

test (AUT),

 S is a finite, non-empty set of GUI states of the AUT,

 s0 is an initial state, an element of S, and

 T is the state-transition function set: T: S × ΣS.

In this model, all possible events of an AUT constitute the input set Σ, and s0 is the

first state of the AUT when it is invoked. Sometimes, use s0 to denote the state when

an application is not started yet (Before Start). S is composed of all possible states of

the AUT. For each s S is a tuple <Q,E>, where Q is the GUI state (W,O, P, V) as

defined in definition 3.2 and E is the set of possible events in this state, E . For

each t T, s’=t(s, ê), where s is the current state, s’ is the next state, ê is either an

event or a small set of elementary events in s. ê is also called an operator. We can also

simply use <s,s’, ê > to describe a transition. By performing event ê on s, the state will

be changed to s’. It is possible for s’ ≠ s, and also for s’=s. Figure 3.4 (b) shows the

GUITAM states of the simple clinic software shown in Figure 3.1 (or Figure 3.4 (a)).

In Figure 3.4 (b), many unimportant events are ignored to ensure simplicity.

57

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

(a)

(b)

Figure 3.4 GUITAM states

t7

t6

t2 t1

t3(B,New)

t4(B,Ok)

t5(B,Cancel)

t30(B,Close)

t8(B,Ok)

t9(B,Close)

t10(B,Edit)

t11(B,Ok)

t12(B,Cancel)

t15(B,Med)

t16(B,Close)

t17(B,New)

t18(B,Ok) t19(B,cancel)

t24(B,Edit)

e25(B,Ok)

t26(B,Cancel)

S2

S0 Se

S1

S3

S5
S7

S6
S4 t13

t14

t20

t21

t22

t23

t27

t28

t29

W1

W2

W3

W4

W6

W5

W7

Medications

Date Drug

New Close

Dose

Edit

05/09/09 TB 1.5

02/08/09 VC 3

22/10/09 ST 5

Edit Patient

Name:

 Addr:

Xuebing Yang

22 Gordon St.

Ok Cancel

Edit Info

Medication

Close

Simple Clinic Software

New Medication

Date:

 Drug:

22/10/09

MO

Ok Cancel

 Dose: 2.5

Edit Medication

Date:

 Drug:

22/08/09

VC

Ok Cancel

 Dose: 3

Simple Clinic Software

Select patient:

Xuebing Yang

New Ok Close

New Patient

Name:

 Addr:

Mary Anderson

22 Mansion St.

Ok Cancel

58

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

In Figure 3.4 (b), s0 stands for the state before the application is started, se stands for

the state after the application is quitted. Actually, in this case, se is the same state as s0.

Each other state stands for a set of windows. Each window has its objects (see Figure

3.2). Events such as clicks on a button may lead to a state transition but some may not.

For example, if the content of the edit box is not used for distinguishing states, typing a

string in an edit box doesn’t cause a state transition. t6 and t7 in Figure 3.4 just lead to

transition to the same state. Table 3.2 shows the events and states transition

information. Table 3.1 shows the states and their corresponding windows. Because the

simple clinic software is just a simplified dialog-based demonstration application,

when a dialog opens, the window or dialog that opens it is still open.

Table 3.1 GUITAM states and their corresponding windows in simple clinic software

State Open windows

S0

S1 w1

S2 w1, w2

S3 w1,w3

S4 w1,w3,w4

S5 w1,w3,w5

S6 w1,w3,w5,w6

S7 w1,w3,w5,w7

S8

Table 3.2 Transitions (events) description for Figure 3.4

Transition Event From To Description

t1 e1 S0 S1 Start application
t2 e2 S1 S1 Select patient
t3 e3 S1 S2 Click button ‘New’

59

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

t4 e4 S2 S1 Click button ‘Ok’
t5 e5 S2 S1 Click button ‘Cancel’
t6 e6 S2 S2 Type on Edit ‘Name’
t7 e7 S2 S2 Type on Edit ‘Addr’
t8 e8 S1 S3 Click button ‘Ok’
t9 e9 S3 S1 Click button ‘Close’
t10 e10 S3 S4 Click button ‘Edit’
t11 e11 S4 S3 Click button ‘Ok’
t12 e12 S4 S3 Click button ‘Cancel’
t13 e13 S4 S4 Type on Edit ‘Name’
t14 e14 S4 S4 Type on Edit ‘Addr’
t15 e15 S3 S5 Click button ‘Medication’
t16 e16 S5 S3 Click button ‘Close’
t17 e17 S5 S6 Click button ‘New’
t18 e18 S6 S5 Click button ‘Ok’
t19 e19 S6 S5 Click button ‘Cancel’
t20 e20 S5 S5 Select grid item
t21 e21 S6 S6 Type on Edit ‘Date’
t22 e22 S6 S6 Type on Edit ‘Drug’
t23 e23 S6 S6 Type on Edit ‘Dose’
t24 e24 S5 S7 Click button ‘Edit’
t25 e25 S7 S5 Click button ‘Ok’
t26 e26 S7 S5 Click button ‘Cancel’
t27 e27 S7 S7 Type on Edit ‘Date’
t28 e28 S7 S7 Type on Edit ‘Drug’
t29 e29 S7 S7 Type on Edit ‘Dose’
t30 e30 S1 Se Click button ‘Close’

Depending on the definition of states, there can be a widely different numbers of states

for the same AUT. For GUI testing automation, ignoring all properties will leave many

cases where the resulting state of some states is not well-defined (not unique).

However, if we differentiate all different property values as different states, the

number of states is too large to be computationally feasible. For example, in Figure 3.1,

if the content of the edit box is considered to distinguish states, the state number

60

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

becomes unlimited due to the unlimited space of possible typing sequences. This

thesis uses selected set of property values to differentiate states. The state selection in

the proposed GUITAM is at a similar level to the EFG model, which is also practical

in terms of storage and computational complexity.

3.4 Automatic construction of GUITAM.

Runtime GUI information is programmatically readable, which provides an

opportunity to automatically generate a GUITAM for an application by traversing its

GUI states - Automatically generating a GUITAM requires reading the widgets

(objects) and performing the events on the GUI of the given AUTs. We have built a set

of fundamental tools that read the widgets (objects), check states and perform events on

the GUI. ReadState reads the current state of a given AUT (see Figure 3.2), Existing(s,

S) tells whether s is contained in S according to certain criteria, GetEquivalentState(s,S)

returns the state in S which is equivalent to s according to certain criteria, and

MoveTerminateEventsToBottom(E) moves all the termination events to the bottom of

the events collection, which is used when a new state is found. TravelTo(s1, s2) will

navigate the AUT from state s1 to s2. In each state s, we used a variable

‘nextEventIndex’ to record the next events to be performed. Algorithm

AutoGenerateGUITAM recursively constructs the GUITAM for a given AUT.

Algorithm AutoGenerateGUITAM

1. AutoGenerateGUITAM (ps : GUIState, pe : Event, M: GUITAM)

2. {

61

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

3. s =ReadState();//read the current state

4. s’ = GetEquivalentState(s,M.S);

5. if(s’=null){ // s is a new state

6. s.E=s.GenPossibleEventList(); s.nextEventIndex=0;

7. M.S = M.S=M.S {s}; M. = M. s.E;

8. If(M.S=Ø) M.s0=s;

9. }

10. else Merge(s, s’)

11. if(ps ≠ null && pe ≠ null){ //Add transition from ps to s.

12. M.T = M.T {<ps, s, pe>};

13. }

14. while (s.HasMoreEvent())

15. {

16. e=s.GetNextEvent;

17. Perform(e);

18. AutoGenerateGUITAM (s,e,M); //Recursively gen for next state

19. s’=readState()

20. if(ts!=s) if(!NavigateTo(s, M)) return;

21. }

22. }

Figure 3.5 Algorithm AutoGenerateGUITAM

AutoGenerateGUITAM Algorithm is a recursive function. It takes 3 parameters: ps is

the previous state; pe is the previously performed event that belongs to ps. Both ps and

pe are null when the algorithm is first invoked. M is a GUITAM model instance. M is

empty when the algorithm is first invoked, and is the final GUITAM when the

algorithm finishes. Before the algorithm is first called, the AUT information, such as

file name and path, is supposed to have been set and the AUT is closed (before start).

62

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Line 3 reads the current runtime state of the AUT. If the AUT has not been started,

ReadState returns a state marked as ‘BeforeStart’. Line 4 is used to check whether the

current state is a new state or a state which has previously occurred. If

GetEquivalentState returns a null, it means current runtime state s is a new state.

GetEquivalentState uses certain state distinguishing criteria to compare the states.

Different criteria may lead to a different collection of states. Lines 6 – 9 initialize the

new state s by generating a list of all possible events in this state and set the

nextEventIdex to 0. This new state is also added to the GUITAM state collection, M.S,

and all the possible events are added to the input collection, M. . When a state is

marked as ‘BeforeStart’, the only possible event on this state is ‘StartApplication’. If

the state s is already in the collection, s is to be merged with s’ by line 10 for having

both the runtime status and other information. If the previous state ps and previous

event pe are not null, that means the current state is transited from the previous state

and the corresponding transition <ps, s, pe> is added to the transition collection. Line

14 – 20 check all possible events in the current state and perform them in order. After

each event is performed, the algorithm recursively checks the next state by using the

same procedure. After the recursive call to AutoGenerateGUITAM, the runtime state

may or may not be the same state as s. Line 19 re-reads the runtime state and checks it.

If it is not the same state, a NavigateTo procedure is invoked to navigate the AUT to

the state recorded in s. Figure 3.6 shows the details of the algorithm NavigateTo. The

63

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

failure of NavigateTo means a failure of the AUT and the algorithm can’t go any

further.

The output of this algorithm is an instance M of GUITAM model for the given AUT.

Algorithm NavigateTo

1. bool NavigateTo(s: GUIState)
2. {
3. cs=ReasdState();
4. path=FindPath(cs, s);
5. if(path=null){
6. path=FindPath(s0,s);
7. if(path=null) return false;
8. KillAUTProcess();
9. }
10. ts=NavigateAlongPath(path)
11. if(ts!=s) return false;
12. else return true;
13. }

Figure 3.6 Algorithm NavigateTo

In the GUITAM, the states and transitions constitute a graph of which the nodes

represent states and the edges represent transitions. FindPath is a normal graph path

search method. The algorithm NavigateTo first reads the current runtime state and

searches whether there is a path from the runtime state (cs) to the given state (s) (lines 3

– 4). If there is a path, it then navigates the AUT from cs to s along the path (line 10).

A path is a series of edges which record the corresponding events to be performed. If

there is no path found from cs to s, it then quits the AUT by killing the process and

finds the path from s0 (before start) to s (there is at least one path from s0 to s) (lines 5 –

64

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

9). Line 10 navigates the AUT to s. If this navigation is not successful, it means the

AUT crashes or a failure occurs which stops the navigation. Figure 3.7 illustrates the

detailed procedure of automatically generating a GUITAM for the simple clinic

software shown in Figure 3.4 (a) and generating the GUITAM shown in Figure 3.4 (b).

(Nil,Nil,M) M={}
M={s0}, s0.E={<e0,0, “StartApplication”>}
={e0,0},
 T={}
 (s0,e0,0,M)
M={s0,s1},
s1.E={<e1,0, “TypeString”, Edit1>, <e1,1, “New”, Button>, <e1,2,”Ok”,Button>, <e1,3, “Close”, Button>}
={e0,0, e1,0, e1,1, e1,2,e1,3},
T={<s0,s1,e0,0>}

 (s1,e1,0,M)
M={s0,s1},
T={<s0,s1,e0,0>,<s1,s1,e1,0>}
(s1,e1,1,M)
M={s0,s1,s2},
s2.E={<e2,0,”TypeString”,”Name”, Edit>, <e2,1>, “TypeString”,”Addr”,Edit>,<e2.2, “Ok”,Button>, <e2,3,
“Cancel”, Button>}
={e0,0, e1,0, e1,1, e1,2,e1,3, e2,0, e2,1,e2,2, e2,3}
T={<s0,s1,e0,0>,<s1,s1,e1,0>, <s1,s2,e1,1>}

(s2,e2,0,M)
M={s0,s1,s2},
T={<s0,s1,e0,0>, <s1,s1,e1,0>, <s1,s2,e1,1>, <s2,s2,e2,0>}
 (s2,e2,1,M)
M={s0,s1,s2},
T={<s0,s1,e0,0>, <s1,s1,e1,0>, <s1,s2,e1,1>, <s2,s2,e2,0>, <s2,s2, e2,1>}
 (s2,e2,2,M)
M={s0,s1,s2},
T={<s0,s1,e0,0>, <s1,s1,e1,0>, <s1,s2,e1,1>, <s2,s2,e2,0>, <s2,s2, e2,1>, <s2,s1,e2,2>}

 (s1,e1,2,M)
M={s0,s1,s2,s3},
s3.E={<e3,0,”Edit info”,Button>, <e3,1,”Medication”, Edit>, <e3,2,”Close”, Button>}
={ e0,0, e1,0, e1,1, e1,2,e1,3, e2,0, e2,1,e2,2, e2,3, e3,0, e3,1, e3,2}
T={<s0,s1,e0,0>, <s1,s1,e1,0>, <s1,s2,e1,1>, <s2,s2,e2,0>, <s2,s2, e2,1>, <s2,s1,e2,2>, <s1,s2,e1,2>}

 (s3,e3,0,M)
M={s0,s1,s2,s3, s4},
s4.E={<e4,0,”TypeString”,”Name”, Edit>, <e4,1,”TypeString”,”Addr”, Edit>, <e4,2,”Ok”,
Button>, <e4,3,”Cancel”,Button>}
={ e0,0, e1,0, e1,1, e1,2,e1,3, e2,0, e2,1,e2,2, e2,3, e3,0, e3,1, e3,2, e4,0,e4,1,e4,2,e4,3}
T={<s0,s1,e0,0>, <s1,s1,e1,0>, <s1,s2,e1,1>, <s2,s2,e2,0>, <s2,s2, e2,1>, <s2,s1,e2,2>, <s1,s2,e1,2>,
<s3,s4,e3,0>}

 (s4,e4,0,M)
M={s0,s1,s2,s3, s4},
T={<s0,s1,e0,0>, <s1,s1,e1,0>, <s1,s2,e1,1>, <s2,s2,e2,0>, <s2,s2, e2,1>, <s2,s1,e2,2>,
<s1,s2,e1,2>, <s3,s4,e3,0>, <s4,s4,e4,0>}
 (s4,e4,1,M)
M={s0,s1,s2,s3, s4},

65

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

T={<s0,s1,e0,0>, <s1,s1,e1,0>, <s1,s2,e1,1>, <s2,s2,e2,0>, <s2,s2, e2,1>, <s2,s1,e2,2>,
<s1,s2,e1,2>, <s3,s4,e3,0>, <s4,s4,e4,0>, <s4,s4,e4,1>}
(s4,e4,2,M)
M={s0,s1,s2,s3, s4},
T={<s0,s1,e0,0>, <s1,s1,e1,0>, <s1,s2,e1,1>, <s2,s2,e2,0>, <s2,s2, e2,1>, <s2,s1,e2,2>,
<s1,s2,e1,2>, <s3,s4,e3,0>, <s4,s4,e4,0>, <s4,s4,e4,1>, <s4,s3,e4,2>}

 (s3,e3,1,M)
M={s0,s1,s2,s3, s4,s5},
 s5.E={<e5,0,”SelectRow”,Grid>, <e5,1,”New”,Button>,<e5,2,”Edit”, Button>,
<e5,3,”Close”,Button>}
={ e0,0, e1,0, e1,1, e1,2,e1,3, e2,0, e2,1,e2,2, e2,3, e3,0, e3,1, e3,2, e4,0,e4,1,e4,2,e4,3, e5,0,
e5,1, e5,2,e5,3}
T={<s0,s1,e0,0>, <s1,s1,e1,0>, <s1,s2,e1,1>, <s2,s2,e2,0>, <s2,s2, e2,1>, <s2,s1,e2,2>,
<s1,s2,e1,2>, <s3,s4,e3,0>, <s4,s4,e4,0>, <s4,s4,e4,1>, <s4,s3,e4,2>, <s3,s5,e3,1>}

 (s5,e5,0,M)
M={s0,s1,s2,s3, s4,s5},
T={<s0,s1,e0,0>, <s1,s1,e1,0>, <s1,s2,e1,1>, <s2,s2,e2,0>, <s2,s2, e2,1>,
<s2,s1,e2,2>, <s1,s2,e1,2>, <s3,s4,e3,0>, <s4,s4,e4,0>, <s4,s4,e4,1>, <s4,s3,e4,2>,
<s3,s5,e3,1>, <s5,s5,e5,0>}

(s5,e5,1,M)
M={s0,s1,s2,s3, s4,s5,s6},
s6.E={<e6,0,”TypeString”,”Date”,Edit”>,
<e6,1,”TypeString”,”Drug”,Edit”>, <e6,2, ”TypeString”, ”Dose”, Edit”>,
<e6,3,”Ok”,Button>, <e6,4,”Cancel”,Button>}
={ e0,0, e1,0, e1,1, e1,2,e1,3, e2,0, e2,1,e2,2, e2,3, e3,0, e3,1, e3,2,
e4,0,e4,1,e4,2,e4,3, e5,0, e5,1, e5,2,e5,3, e6,0,e6,1, e6,2,e6,3,e6, 4}
T={<s0,s1,e0,0>, <s1,s1,e1,0>, <s1,s2,e1,1>, <s2,s2,e2,0>, <s2,s2, e2,1>,
<s2,s1,e2,2>, <s1,s2,e1,2>, <s3,s4,e3,0>, <s4,s4,e4,0>, <s4,s4,e4,1>, <s4,s3,e4,2>,
<s3,s5,e3,1>, <s5,s5,e5,0>, <s5,s6,e5,1>}

(s6,e6,0,M)
M={s0,s1,s2,s3, s4,s5,s6},
T={<s0,s1,e0,0>, <s1,s1,e1,0>, <s1,s2,e1,1>, <s2,s2,e2,0>, <s2,s2, e2,1>,
<s2,s1,e2,2>, <s1,s2,e1,2>, <s3,s4,e3,0>, <s4,s4,e4,0>, <s4,s4,e4,1>,
<s4,s3,e4,2>, <s3,s5,e3,1>, <s5,s5,e5,0>, <s5,s6,e5,1>, <s6,s6, e6,0>}
 (s6,e6,1,M)
M={s0,s1,s2,s3, s4,s5,s6},
T={<s0,s1,e0,0>, <s1,s1,e1,0>, <s1,s2,e1,1>, <s2,s2,e2,0>, <s2,s2, e2,1>,
<s2,s1,e2,2>, <s1,s2,e1,2>, <s3,s4,e3,0>, <s4,s4,e4,0>, <s4,s4,e4,1>,
<s4,s3,e4,2>, <s3,s5,e3,1>, <s5,s5,e5,0>, <s5,s6,e5,1>, <s6,s6, e6,0>, <s6,s6,
e6,1>}
 (s6,e6,2,M)
M={s0,s1,s2,s3, s4,s5,s6},
T={<s0,s1,e0,0>, <s1,s1,e1,0>, <s1,s2,e1,1>, <s2,s2,e2,0>, <s2,s2, e2,1>,
<s2,s1,e2,2>, <s1,s2,e1,2>, <s3,s4,e3,0>, <s4,s4,e4,0>, <s4,s4,e4,1>,
<s4,s3,e4,2>, <s3,s5,e3,1>, <s5,s5,e5,0>, <s5,s6,e5,1>, <s6,s6, e6,0>, <s6,s6,
e6,1>, <s6,s6,e6,2>}
(s6,e6,3,M)
M={s0,s1,s2,s3, s4,s5,s6},
T={<s0,s1,e0,0>, <s1,s1,e1,0>, <s1,s2,e1,1>, <s2,s2,e2,0>, <s2,s2, e2,1>,
<s2,s1,e2,2>, <s1,s2,e1,2>, <s3,s4,e3,0>, <s4,s4,e4,0>, <s4,s4,e4,1>,
<s4,s3,e4,2>, <s3,s5,e3,1>, <s5,s5,e5,0>, <s5,s6,e5,1>, <s6,s6, e6,0>,
<s6,s6, e6,1>, <s6,s6,e6,2>, <s6,s5, e6,3>}

(s5,e5,2,M)
M={s0,s1,s2,s3, s4,s5,s6, s7},
T={<s0,s1,e0,0>, <s1,s1,e1,0>, <s1,s2,e1,1>, <s2,s2,e2,0>, <s2,s2,
e2,1>, <s2,s1,e2,2>, <s1,s2,e1,2>, <s3,s4,e3,0>, <s4,s4,e4,0>,
<s4,s4,e4,1>, <s4,s3,e4,2>, <s3,s5,e3,1>, <s5,s5,e5,0>, <s5,s6,e5,1>,

66

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

<s6,s6, e6,0>, <s6,s6, e6,1>, <s6,s6,e6,2>, <s6,s5, e6,3>,
<s5,s7,e5,2>}
S7.E={<e7,0,”TypeString”,”Date”,Edit”>,
<e7,1,”TypeString”,”Drug”,Edit”>,
<e7,2,”TypeString”,”Dose”,Edit”>, <e7,3,”Ok”,Button>,
<e7,4,”Cancel”,Button>}
={ e0,0, e1,0, e1,1, e1,2,e1,3, e2,0, e2,1,e2,2, e2,3, e3,0, e3,1, e3,2,
e4,0,e4,1,e4,2,e4,3, e5,0, e5,1, e5,2,e5,3, e6,0,e6,1, e6,2,e6,3,e6,
4,e7,0,e7,1, e7,2,e7,3,e7,4}
 (s7,e7,0,M)
M={s0,s1,s2,s3, s4,s5,s6, s7},
T={<s0,s1,e0,0>, <s1,s1,e1,0>, <s1,s2,e1,1>, <s2,s2,e2,0>, <s2,s2,
e2,1>, <s2,s1,e2,2>, <s1,s2,e1,2>, <s3,s4,e3,0>, <s4,s4,e4,0>,
<s4,s4,e4,1>, <s4,s3,e4,2>, <s3,s5,e3,1>, <s5,s5,e5,0>, <s5,s6,e5,1>,
<s6,s6, e6,0>, <s6,s6, e6,1>, <s6,s6,e6,2>, <s6,s5, e6,3>,
<s5,s7,e5,2>,<s7,s7,s7,0>}
 (s7,e7,1,M)
M={s0,s1,s2,s3, s4,s5,s6, s7},
T={<s0,s1,e0,0>, <s1,s1,e1,0>, <s1,s2,e1,1>, <s2,s2,e2,0>, <s2,s2,
e2,1>, <s2,s1,e2,2>, <s1,s2,e1,2>, <s3,s4,e3,0>, <s4,s4,e4,0>,
<s4,s4,e4,1>, <s4,s3,e4,2>, <s3,s5,e3,1>, <s5,s5,e5,0>, <s5,s6,e5,1>,
<s6,s6, e6,0>, <s6,s6, e6,1>, <s6,s6,e6,2>, <s6,s5, e6,3>,
<s5,s7,e5,2>,<s7,s7,s7,0>, <s7,s7,s7,1>}
 (s7,e7,2,M)
M={s0,s1,s2,s3, s4,s5,s6, s7},
T={<s0,s1,e0,0>, <s1,s1,e1,0>, <s1,s2,e1,1>, <s2,s2,e2,0>, <s2,s2,
e2,1>, <s2,s1,e2,2>, <s1,s2,e1,2>, <s3,s4,e3,0>, <s4,s4,e4,0>,
<s4,s4,e4,1>, <s4,s3,e4,2>, <s3,s5,e3,1>, <s5,s5,e5,0>, <s5,s6,e5,1>,
<s6,s6, e6,0>, <s6,s6, e6,1>, <s6,s6,e6,2>, <s6,s5, e6,3>,
<s5,s7,e5,2>,<s7,s7,s7,0>, <s7,s7,s7,1>, <s7,s7,s7,2>}

 (s7,e7,3,M)
M={s0,s1,s2,s3, s4,s5,s6, s7},
T={<s0,s1,e0,0>, <s1,s1,e1,0>, <s1,s2,e1,1>, <s2,s2,e2,0>,
<s2,s2, e2,1>, <s2,s1,e2,2>, <s1,s2,e1,2>, <s3,s4,e3,0>,
<s4,s4,e4,0>, <s4,s4,e4,1>, <s4,s3,e4,2>, <s3,s5,e3,1>,
<s5,s5,e5,0>, <s5,s6,e5,1>, <s6,s6, e6,0>, <s6,s6, e6,1>,
<s6,s6,e6,2>, <s6,s5, e6,3>, <s5,s7,e5,2>,<s7,s7,s7,0>,
<s7,s7,s7,1>, <s7,s7,s7,2>, <s7,s5,e7,3>}

(s5,e5,2,M)
M={s0,s1,s2,s3, s4,s5,s6, s7},
T={<s0,s1,e0,0>, <s1,s1,e1,0>, <s1,s2,e1,1>,
<s2,s2,e2,0>, <s2,s2, e2,1>, <s2,s1,e2,2>, <s1,s2,e1,2>,
<s3,s4,e3,0>, <s4,s4,e4,0>, <s4,s4,e4,1>, <s4,s3,e4,2>,
<s3,s5,e3,1>, <s5,s5,e5,0>, <s5,s6,e5,1>, <s6,s6, e6,0>,
<s6,s6, e6,1>, <s6,s6,e6,2>, <s6,s5, e6,3>,
<s5,s7,e5,2>,<s7,s7,s7,0>, <s7,s7,s7,1>, <s7,s7,s7,2>,
<s7,s5,e7,3>, <s5,s3,e5,2>}

(s3,e3,2,M)
M={s0,s1,s2,s3, s4,s5,s6, s7},
T={<s0,s1,e0,0>, <s1,s1,e1,0>, <s1,s2,e1,1>,
<s2,s2,e2,0>, <s2,s2, e2,1>, <s2,s1,e2,2>,
<s1,s2,e1,2>, <s3,s4,e3,0>, <s4,s4,e4,0>,
<s4,s4,e4,1>, <s4,s3,e4,2>, <s3,s5,e3,1>,
<s5,s5,e5,0>, <s5,s6,e5,1>, <s6,s6, e6,0>, <s6,s6,
e6,1>, <s6,s6,e6,2>, <s6,s5, e6,3>,
<s5,s7,e5,2>,<s7,s7,s7,0>, <s7,s7,s7,1>,
<s7,s7,s7,2>, <s7,s5,e7,3>, <s5,s3,e5,2>,
<s3,s1,e3,2>}

67

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

 (s1,e1,3,M)
M={s0,s1,s2,s3, s4,s5,s6, s7},
T={<s0,s1,e0,0>, <s1,s1,e1,0>,
<s1,s2,e1,1>, <s2,s2,e2,0>, <s2,s2, e2,1>,
<s2,s1,e2,2>, <s1,s2,e1,2>, <s3,s4,e3,0>,
<s4,s4,e4,0>, <s4,s4,e4,1>, <s4,s3,e4,2>,
<s3,s5,e3,1>, <s5,s5,e5,0>, <s5,s6,e5,1>,
<s6,s6, e6,0>, <s6,s6, e6,1>,
<s6,s6,e6,2>, <s6,s5, e6,3>,
<s5,s7,e5,2>,<s7,s7,s7,0>, <s7,s7,s7,1>,
<s7,s7,s7,2>, <s7,s5,e7,3>, <s5,s3,e5,2>,
<s3,s1,e3,2>, <s1,se,e1,3>}

 (Not s7, re‐open application and navigate to s7)
 (s7,e7,4,M)
 M={s0,s1,s2,s3, s4,s5,s6, s7},
T={<s0,s1,e0,0>, <s1,s1,e1,0>, <s1,s2,e1,1>, <s2,s2,e2,0>,
<s2,s2, e2,1>, <s2,s1,e2,2>, <s1,s2,e1,2>, <s3,s4,e3,0>,
<s4,s4,e4,0>, <s4,s4,e4,1>, <s4,s3,e4,2>, <s3,s5,e3,1>,
<s5,s5,e5,0>, <s5,s6,e5,1>, <s6,s6, e6,0>, <s6,s6, e6,1>,
<s6,s6,e6,2>, <s6,s5, e6,3>, <s5,s7,e5,2>,<s7,s7,s7,0>,
<s7,s7,s7,1>, <s7,s7,s7,2>, <s7,s5,e7,3>, <s5,s3,e5,2>,
<s3,s1,e3,2>, <s1,se,e1,3>, <s7,s5,e7,4>}

(Not s6, navigate to s6)
 (s6,e6,3,M)

 M={s0,s1,s2,s3, s4,s5,s6, s7},
T={<s0,s1,e0,0>, <s1,s1,e1,0>, <s1,s2,e1,1>, <s2,s2,e2,0>, <s2,s2,
e2,1>, <s2,s1,e2,2>, <s1,s2,e1,2>, <s3,s4,e3,0>, <s4,s4,e4,0>,
<s4,s4,e4,1>, <s4,s3,e4,2>, <s3,s5,e3,1>, <s5,s5,e5,0>, <s5,s6,e5,1>,
<s6,s6, e6,0>, <s6,s6, e6,1>, <s6,s6,e6,2>, <s6,s5, e6,3>,
<s5,s7,e5,2>,<s7,s7,s7,0>, <s7,s7,s7,1>, <s7,s7,s7,2>, <s7,s5,e7,3>,
<s5,s3,e5,2>, <s3,s1,e3,2>, <s1,se,e1,3>, <s7,s5,e7,4>, <s6,s5,e6,4>}

(Not s4, navigate to s4)
 (s4,e4,3,M)

 M={s0,s1,s2,s3, s4,s5,s6, s7},
T={<s0,s1,e0,0>, <s1,s1,e1,0>, <s1,s2,e1,1>, <s2,s2,e2,0>, <s2,s2, e2,1>, <s2,s1,e2,2>,
<s1,s2,e1,2>, <s3,s4,e3,0>, <s4,s4,e4,0>, <s4,s4,e4,1>, <s4,s3,e4,2>, <s3,s5,e3,1>,
<s5,s5,e5,0>, <s5,s6,e5,1>, <s6,s6, e6,0>, <s6,s6, e6,1>, <s6,s6,e6,2>, <s6,s5, e6,3>,
<s5,s7,e5,2>,<s7,s7,s7,0>, <s7,s7,s7,1>, <s7,s7,s7,2>, <s7,s5,e7,3>, <s5,s3,e5,2>,
<s3,s1,e3,2>, <s1,se,e1,3>, <s7,s5,e7,4>, <s6,s5,e6,4>, <s4,s3,e4,3>}

 (Not s2, navigate to s2)
 (s2,e2,3,M)

M={ s0,s1,s2,s3, s4,s5,s6, s7},
T={<s0,s1,e0,0>, <s1,s1,e1,0>, <s1,s2,e1,1>, <s2,s2,e2,0>, <s2,s2, e2,1>, <s2,s1,e2,2>, <s1,s2,e1,2>,
<s3,s4,e3,0>, <s4,s4,e4,0>, <s4,s4,e4,1>, <s4,s3,e4,2>, <s3,s5,e3,1>, <s5,s5,e5,0>, <s5,s6,e5,1>, <s6,s6,
e6,0>, <s6,s6, e6,1>, <s6,s6,e6,2>, <s6,s5, e6,3>, <s5,s7,e5,2>,<s7,s7,s7,0>, <s7,s7,s7,1>, <s7,s7,s7,2>,
<s7,s5,e7,3>, <s5,s3,e5,2>, <s3,s1,e3,2>, <s1,se,e1,3>, <s7,s5,e7,4>, <s6,s5,e6,4>,
<s4,s3,e4,3>,<s2,s1,e2,3>}

Algorithm Finishes.

The GUITAM is:

M={s0,s1,s2,s3, s4,s5,s6, s7},
T={<s0,s1,e0,0>, <s1,s1,e1,0>, <s1,s2,e1,1>, <s2,s2,e2,0>, <s2,s2, e2,1>, <s2,s1,e2,2>, <s1,s2,e1,2>, <s3,s4,e3,0>,
<s4,s4,e4,0>, <s4,s4,e4,1>, <s4,s3,e4,2>, <s3,s5,e3,1>, <s5,s5,e5,0>, <s5,s6,e5,1>, <s6,s6, e6,0>, <s6,s6, e6,1>,
<s6,s6,e6,2>, <s6,s5, e6,3>, <s5,s7,e5,2>,<s7,s7,s7,0>, <s7,s7,s7,1>, <s7,s7,s7,2>, <s7,s5,e7,3>, <s5,s3,e5,2>,
<s3,s1,e3,2>, <s1,se,e1,3>, <s7,s5,e7,4>, <s6,s5,e6,4>, <s4,s3,e4,3>, <s2,s1,e2,3>}
={e0,0, e1,0, e1,1, e1,2,e1,3, e2,0, e2,1,e2,2, e2,3, e3,0, e3,1, e3,2, e4,0,e4,1,e4,2,e4,3, e5,0, e5,1, e5,2,e5,3, e6,0,e6,1,
e6,2,e6,3,e6, 4,e7,0,e7,1, e7,2,e7,3,e7,4}

68

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Figure 3.7 Illustration of AutoGenerateGUITAM algorithm for Simple Clinic

Software

In Figure 3.7, the bold text in parentheses such as (s2,e2,3,M) signifies a call to the

algorithm AutoGenerateGUITAM with given parameters. The algorithm starts from

(nil, nil, M) where M = {} and start state and event are all nil. Each indent on the graph

means a recursive call to AutoGenerateGUITAM. When the algorithm finishes, M

contains the GUITAM generated.

3.5 Analysis of GUITAM

This section will analyze the GUITAM as compared to the EFG test automation. First

the algorithm AutoGenerateGUITAM in Figure 3.4 will be proved to be complete.

Then it will also be proved that for each EFG based test, there exists a GUITAM that

can automate the test, with no further requirements on storage and computational

power. This section will also illustrate that for the two scenarios of “non-fixed events

set” and “expandable panel”, GUITAM is able to automate tests, while EFG cannot.

3.5.1 Completeness of the Algorithm AutoGenerateGUITAM

Given certain criteria for comparing different states, AutoGenerateGUITAM is able to

generate a GUITAM which models all runtime states and possible events of an AUT.

Theorem 3.1 AutoGenerateGUITAM can generate all possible states and transitions

of an AUT.

69

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Proof: Let us use finite induction to prove the completeness of the algorithm

AutoGenerateGUITAM. Let S be the set of all states in GUITAM M.

1) s0 is the state before the AUT is started. This state has only one transition called

‘StartApplication’ to the next state s1. Line 14-21 ensures thate א sଵ. E , e will be

executed once and once only. Let Ns1 be the collection of states that transited from

s1 after lines 14-21 finishe, then Ns1 contains all possible states that can be from

state s1.

 ݏ א ௦ܰଵ , line 18 ensures that each s in Ns1 will be treated the same as s1

recursively.

2) Lines 4-9 ensure that all new states are added to S. Let sk be any state already in S,

let Nsk be the collection of states that transited from sk after lines 14-21 finish, Nsk

contains all possible states from Sk.

Obviously, ݏାଵ א ௦ܰ, ௦ܰೖశభ contains all possible states that can be transited

from sk+1.

3) From 1) and 2), all possible states of the AUT are included after the algorithm

finishes. □

From the proof, it can also be proved that all possible events are included as transitions

in the GUITAM.

3.5.2 Inclusive Mapping between EFG and GUITAM.

70

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

In this section it will be proved that there exists an inclusive mapping between the EFG

and the GUITAM, that is, for each EFG, there exists at least one GUITAM that is able

to automate all the EFG automated tests.

Theorem 3.2: For each EFG, there exists at least one GUITAM, which can automate

the tests of the EFG.

Proof: Let C =<V, E, B, I> be an EFG. Let Σ=V be the input domain which contains

all the possible events. Because an event is always related to a GUI object, we can

generate a state from any set of events. Suppose there is a function GenState(X) which

can generate a state from a set of events X. S0=GenState(B). s0.E=B is the initial state

which contains the set of events of C that are available to the user when the component

is first invoked; T = S × Σ S is a set of transitions t=<s,s',v>, where s,s' S, v s.E.

s' is the state when s’.E={v' | <v,v'> E}. Starting from s0, all the transitions and their

next states can be generated recursively. Thus, GUITAM M=< Σ,S,s0,T > can

automate all tests of the EFG. □

The proof of Theorem 3.2 also provides an approach for converting an EFG into a

GUITAM. A drawback of this method is that there are often a number of unnecessary

states in S, i.e., many states in S contain the same set of events. The number of states

equals the number of events in Σ. The number of transitions in T equals the number of

events in Σ as well. If we unite all the states, i.e., those states with the same set of

events being considered as one state, the number of states will be greatly reduced. The

71

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Theorem 3.2 also provides an algorithm to construct a more effective GUITAM of a

given EFG. Figure 3.8 shows the details of the algorithm TransformEFGtoGUITAM.

Algorithm TransformEFGtoGUITAM

1. TransformEFGtoGUITAM (efg: EFG,M: GUITAM)

2. {

3. M.Init();

4. M. Σ=efg.V;

5. M. T = Ø;

6. M.s0=GenState(B);

7. M.S = M.S s0;

8. Convert(efg, M, s0);

9. }

10. Convert(efg: EFG, M : GUITAM,s:State)

11. {

12. For each v in s{

13. X={v' | <v,v'> ϵ efg.E} ;

14. s'=GenState(X);

15. s'.E=X;

16. t=(s,s',v)

17. M.S= M.S {s’};

18. M. T = M. T {t};

19. M. = M. X;

20. Convert(efg, M, s');

21. }

22. }

Figure 3.8 Algorithm TransformEFGtoGUITAM

72

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

(a)

(b)

Figure 3.9 A GUITAM model converted from EFG in Figure 2.7

S0
S1

S2

S3

S4

S5

Legend

Transitions:
t(s0,s0,FindNext)
t(s0,s0,Replace)
…
t(s0,s1,File)
t(s0,s2,Edit)
t(s0,s3,Format)
t(s0,s4,view)
t(s0,s5,help)
…
t(s1,s1,File)
t(s1,s0,FindNext)
t(s1,s2,Edit)
t(s1,s3,Format)

73

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

In Figure 3.9 (b), each state si is converted from the event set i of the EFG in Figure

3.9 (a). Figure 3.9 (a) is from Figure 2.8. All events in the EFG become transitions in

this GUITAM.

3.5.3 Storage Analysis

To automate the GUI test which an EFG is able to perform, the GUITAM needs less

storage than the EFG. The storage analysis is provided in Theorem 3.3.

Theorem 3.3: The space requirement of M created by algorithm 3.3 is not greater than

the given EFG.

Proof:

In the given EFG (see section 2), vertices: = number of events. The order of storage

requirement is ܱሺ݊ሻ.

 Different types of events have a different number of edges (B is defined in the EFG):

 Menu-open: let l= number of events in B in EFG, m=number of menu-choices,

the number of edges for these events is ܥ
ଶ ݉ ൌ ܱሺ݈ଶሻ .

 System-interaction: let l=number of events in B, then the number of edges for

these events is ܥ
ଶ ൌ ܱሺ݈ଶሻ .

 Termination: let k=number of events of B of invoked components, then the

number of edges for these events is k. The order is ܱሺ݇ሻ.

74

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

 Unrestricted-focus: let l = number of events in B, j = number of events in

invoked modalless window, then the number of edges of the events is ܥା
ଶ ൌ

ܱሺሺ݈ ݆ሻଶሻሻ .

 Restricted-focus: let q=number of events in invoked modalless dialog, and then

the edges of these events are q. The order is ܱሺݍሻ.

Because the number of events in B is much larger than the number of events of

termination and invoking modal dialog, in each component, the number of events in B

is very close to the total number n. On average, the number of edges in the EFG is

ܱሺ݊ଶሻ.

In the constructed M, according to the definition of the EFG, every event has a fixed set

of follow-up events, which means the values of properties are ignored. The number of

states in M is approximately equal to the number of windows and possible popup

menus, which is much less than the total number of events. In one component C, the

state is about the number of top level menu items plus one.

Number of inputs in Σ equals the number of events, which is of O(n).

Number of transitions T equals the number of events, which is of O(n).

On average, the space complexity of M is of O(n), which is one order less than that of

the given EFG. □

3.5.4 Computational Complexity Analysis

75

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Both the EFG and GUITAM can be presented as directed graphs. Once the test cases

are generated, the execution of the tests is the same with both models. Therefore, we

only need to analyze the computational complexity for generating test cases from the

models. The computational complexity of generating test cases depends on the

requirement coverage of the test cases, the length of each test case and the number of

test cases to be generated. A test case is an events sequence (e1,e2, …, ek) where k is the

length of the test case.

Theorem 3.4: Given the same length of each test, the computational complexity of

generating test cases from the two models are of the same order.

Proof: Let n be the number of all events, and k be the test case length.

In the given EFG, except for a small number of events, most of the events have edges

between each other, so the directed graph can be seen as a complete connected graph.

Let q be the edge number of the graph, then ݍ ൌ ଶ. To generate the test cases, traverseܥ

the graph and collect all the cases with length k, then the computational complexity

is ܥ.

In the GUITAM, each edge is related to an event, so the number of edges is n. To create

a test case with length k, k edges need to be selected from the edge collection. The total

number of possible combinations is ܥ.

Thus, the computational complexity of generating test cases for both of the two models

is of the same order. □

76

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

3.5.5 Dynamic GUI Interactions Modelling

According to the definition of the EFG and the algorithm GetFollows (Algorithm 2.1),

we can see that EFGs are not able to model some dynamic situations when the

underlying code changes the GUI object dynamically. For example:

 Non-fixed events set. GUIs exist in many applications where the visibility of some

objects is changed by the underlying code according to another object’s state (e.g.,

the ‘Checked’ property value of a checkbox). In this case, the event leads to these

GUIs being undefined or ill-defined in the following event set. They are dependable

on the property of the checkbox.

 Expandable panel. Such GUIs also exist widely in many applications such as

Microsoft Office 2007, where some panels (or modeless windows) are sometimes

visible and sometimes invisible. Toggling the visibility-property value of a panel can

cause some events to be exposed or hidden (controls in the newly-enabled panel or

modeless window). According to the core algorithm of the EFG model, GetFollows,

these events are not able to be modeled, and thus cannot be tested.

However, the GUITAM is able to model these situations. Two scenarios will be used to

illustrate this.

 Scenario 1: Non-fixed events set.

Let’s show an example code first (suppose CheckReferralClick is in Form f1):

77

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

1. CheckReferralClick ()

2. {

3. Form2 f2=new Form2();

4. if(cbSpecialist.Checked) f2.BAccept.Visible=true;

5. else f2.BAccept.Visible=false;

6. f2.ShowDialog();

7. }

(a) (b)

Figure 3.10 Non-fixed follow-up event set of event ‘CheckReferralClick’

In Figure 3.10 (a), when cbSpecialist.Checked is true, clicking on button ‘Check

Referral’ opens a dialog with the ‘Accept’ button which means a specialist has the right

to accept a referral. In Figure 3.10 (b), when cbSpecialist.Checked is false, clicking on

the same button ‘CheckReferralClick’ opens a dialog without the ‘Accept’ button which

means non-specialist doesn’t have the right to accept a referral. Obviously, the same

event ‘CheckReferralClick’ may have different sets of follow-up events.

According to the definition of the EFG, and the algorithm GetFollows, there will

possibly be an edge from event CheckReferralClick to “Accept” in Form f1. If there is

78

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

an edge, then when ‘Checked’ is false, executing the edge leads to failure. If there is not

an edge, when ‘Checked’ is true, this case will never be executed. An EFG, therefore,

cannot model this scenario.

With the GUITAM model, the value of the ‘Checked’ property of cbSpecialist is used

to differentiate states, so the form f1 will have states which are called stateChecked and

stateUnChecked respectively. f2 has two states as well, named as stateWithAccept and

StateNoAccept respectively. Then the state graph can be given as Figure 3.11.

Figure 3.11 Non fixed events set in GUITAM

In Figure 3.11, two transitions, e1 and e2 are related to the checkBox1Changed event.

e1:<stateChecked, stateUnChecked, cbSpecialistChanged>

e2:<stateUnChecked, stateChecked,cbSpecialistChanged>

e3:<stateChecked, stateWithAccept, CheckReferralClick >

e4:<stateUnChecked, stateNoAccept, CheckReferralClick >

It can be checked that all the execution flows of the application are modeled and this

can be automated by GUITAM.

 Scenario 2: Expandable panel

stateUnChecked

stateChecked stateWithAccept

stateNoAccept

e1 e2

e3

e4

79

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Again, let me show a piece of code first. Suppose there are two panels. Panel1 is always

visible and, has two buttons: See signature and View Referral. Panel2 can be either

visible or not, affected by the event of SeeSignatureClick. Penel2 has two buttons,

Verify and Print. The two panels are in one form (Figure 3.12).

1. SeeSignatureClick ()

2. {

3. panel2.visible=!panel2.visible;

4. }

(a)

(b)

Figure 3.12 Expandable panel

In an EFG, event SeeSignatureClick has uncertain follow-ups. According to the

algorithm, GetFollows can have different results and thus is undefined after

80

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

SeeSignatureClick, if panel2 is visible, only VerifyClick and PrintClick are connected to

SeeSignatureClick. However, a lot more needs to be done:

- VerifyClick, PrintClick should be connected to ViewReferralClick

- SeeSignatureClick, ViewReferralClick should be connected to VerifyClick

- SeeSignatureClick, ViewReferralClick should be connected to PrintClick

EFGs are not well defined in this situation.

Figure 3.13 Panel visible changes state in the GUITAM

In the GUITAM, the two possible values of panel2’s property ‘Visible’ are seen as two

different states. Figure 3.13 illustrates the states and the transitions. The transitions are:

- e1 <Panel2Visible, panel2Invisible, SeeSignatureClick>

- e2 <Panel2InVisible, panel2Visible,SeeSignatureClick>

- e3 <Panel2Visible, panel2Visible, ViewReferralClick>

- e4 <Panel2Visible, panel2Visible, VerifyClick>

- e5 <Panel2Visible, panel2Visible, PrintClick>

Panel2Visible

e2

Panel2InVisible

e1

e3

e4

e6

e5

81

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

- e6<Panel2InVisible, panel2InVisible, ViewReferralClick>

3.6 Representation of Test Cases

To test a GUI, test cases must be provided and executed. A test case for GUI testing is a

series of actions. For convenience, some terminologies are introduced first.

In the GUITAM, S ={s1,s2,…, sn} is the set of all states, T={t1,t2, …, tm} is the set of all

transitions. We use the set pred(si)={sp | (np, ni) ϵ S}, succ(si)= { sp | (sρ, si) ϵ S}.

from(ti) = sp iif sk=ti(sp), to(ti) = sp iif sp=ti(sk).

 A sequence τ =< t1, …, tk>, ti=(si, si+1,ei), 1≤ i ≤k of consecutive transitions of M is

called a walk and has an initial state, init(τ)=s1, and a final state, fin(τ)=sk+1. If init(τ)

=fin(τ), τ is closed, a closed walk is a tour. If init(τ)=s0, τ is initially rooted. A tour is

rooted if it is initially rooted. An empty sequence will be denoted by Ԑ. If τ = Ԑ or s1 to

sk are distinct, τ is a path. A closed path is a circuit. A circuit with k=1 is a loop. If t1,

…, tk are distinct, τ is a route. Notice that in a path, t1, …, tk are also distinct, but in a

route, s1,…,sk+1 are not necessarily distinct.

A GUI test case is a rooted walk together with states information. A formal

representation of a GUI test case is defined in Definition 3.4.

Definition 3.4: A GUI test case Ѓ is a triple <s0, τ, S>,

where s0 is the initial state, τ =< t1, …, tn> is a rooted walk, S=< s1; s2; . . . ; sn> is a

set of expected states, where si = ti(si−1) for i = 1, . . ., n.

82

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

The expected state information is used for testing validation. To validate the test, the

runtime GUI state is read and compared to the expected state after each event in the

corresponding transaction t is executed. This comparison is taken by a mechanism

called a test oracle. The expected state information is also called oracle information.

Definition 3.5: For a given test case Ѓ = <s0, τ, S>, the test oracle information is a

sequence <S1, S2, . . . , Sn >, such that Si is the (possibly partial) expected state of the

GUI immediately after event ei∈ τ has been executed on it.

3.7 GUI Test Coverage Criteria

As in a rooted walk τ =< t1, …, tn>,as long as it is a legal sequence, there is no limit to

the number of the occurrences of any ti in the sequence. The number of possible test

cases is actually infinite. Exhaustively executing all possible test cases during software

testing is not therefore realistic, which means that we need to select test cases.

Practically, only a small subset of all possible test cases is selected to form a test suite.

Definition 3.6: A GUI test suite Ť is a set of test cases (Ѓ1,…, Ѓe); each Ѓ1 א Ť is a test

case. All test cases have the same initial state s0.. e is the size of the suite.

To create test suites, coverage criteria of test cases are paramount for test cases

selection. Different criteria serve different test purposes. Test coverage criteria are a set

of rules which guide the generation of a test suite determining when to stop the

generation, whether enough testing has been performed or further tests are needed, and

provide an objective measure of the test suite quality. An ideal test criterion would be

83

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

capable of generating the smallest test suite possible for finding (if not all) the

maximum number of errors of a software system. Common examples of coverage

criteria for conventional software are structural, and include statement coverage, branch

coverage, and path coverage, which require that every statement, branch and path in the

program’s code be executed by the test suite respectively. Existing coverage criteria

developed for traditional software do not address the adequacy of GUI test cases. GUIs

are typically developed using instances of precompiled elements stored in a library. The

source code of these elements may not always be available to be used for coverage

evaluation based on code. Moreover, GUI test cases are composed of events which may

be performed in a random order. Event-based logic is hard to obtain from the code.

Code based coverage is not suitable for testing GUI events.

In developing GUI testing coverage criteria, one needs to take account of different

aspects to those in traditional software testing. Firstly, since GUIs consists of functional

components, coverage criteria must be developed for covering the components.

Secondly, since all operations to a GUI are through events, coverage criteria must be

developed for covering the events routes. Thirdly, since GUI states contain information

about an AUT, coverage criteria must be developed for covering the GUI states.

Finally, the test designer should recognize whether a coverage criterion can be fully

satisfied [73].

A GUITAM M model contains all possible GUI states and events in light of the given

criteria of differentiating states. Because each event is related to a transition in the

84

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

GUITAM, the transition is equivalent to an event or a small set of events. Some

coverage criteria are defined for test case generation and adequacy verification of an

GUITAM.

Definition 3.7: For a GUITAM M, a test suite Ť satisfies the state coverage criterion if

and only if ݏ א .ܯ ܵ, Ѓ א Ť ٿ ݐ א Ѓ. ߬ ٿ ሺ .ݐ 1ݏ ൌ .ݐڀ ݏ 2ݏ ൌ .ሻݏ

To minimize the number of test cases, the paths which cover all the states can be

selected. Each path constitutes a test case. All the test cases constitute the test suite Ť.

Definition 3.8: For a GUITAM M, a test suite Ť satisfies the event coverage criterion if

and only if ݁ א .ܯ ,ߑ Ѓ א Ť ٿ ݐ א Ѓ. ߬ ٿ .ݐ ݁ ൌ ݁.

Event coverage criterion is also called transition criterion in GUITAM testing. To

reduce the suite size and meet this criterion, routes which cover all the transitions are

selected. Each route constitutes a test case. All the test cases constitute the test suite Ť

that satisfies the event coverage criterion.

Definition 3.9: For a GUITAM M, a test suite Ť satisfies the component coverage

criterion if and only if א ܱ, Ѓ א Ť ٿ ݐ א Ѓ. ߬ ٿ ሺ݉ܿ .ݐ ݁ሻ ൌ ,

where O is the set of all components in the GUIs, and comp(e) denotes the component

which contains the event e.

85

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Definition 3.10: For a GUITAM M, a test suite Ť satisfies the length-n coverage

criterion if and only if Ѓ א Ť, ݈݁݊൫Ѓ. ߬൯ ൌ ݊, where ݈݁݊൫Ѓ. ߬൯ denotes the number of

transitions in Ѓ. ߬.

3.8 Test Case Generation

With a GUITAM model, say M, test cases can be automatically generated by traversing

the states in M. Any walk in M is an executable sequence of events. In principle, an

infinite number of event sequences may be performed on a GUI. Depending on the

resources available, a manageable number of these event sequences should be generated

as test cases and tested on the GUI. Note that, unlike a traditional directed graph, there

may exist more than one transition from one state to another (including to itself) in a

GUITAM, which means more than one directed arcs from one state to another. There

are various possible approaches to automatically generate test cases for GUIs, including

the following:

1) Randomly select from walks in GUITAM

Since any walk in a GUITAM is an executable sequence, test cases can be generated by

selecting a given number of walks randomly from the full set of the walks. Although

straightforward to implement, this approach may yield a test suite without any control

over choice and thus the test coverage is not predictable.

2) Criteria-based test case generation

86

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

According to given criteria, test cases can be generated by traversing the states and

transitions in a GUITAM. For example, to meet the state coverage criterion, an

algorithm can select the paths from the GUITAM until all states are covered. The paths

can be as long as possible so that the minimum number of test cases can be generated

which satisfy the criterion. Figure 3.14 shows a general algorithm of criteria-based test

cases generating.

Algorithm GeneralGeneratingTestCase
1) GeneralGeneratingTestCase (M :GUITAM, C :Criterion, Ť :TestSuite)
2) {
3) Ť=Ø;
4) For each ݐ א .ܯ ܶ ٿ ሻݐሺ݉ݎ݂ ൌ ݏ
5) GenerateTestCase(M, C, Ť,w, t, 0);
6) }
7) GenerateTestCase(M :GUITAM, C :Criterion, Ť :TestSuite, w :walk, t :transition,

len:int)
8) {
ݓ (9 ൌ ݓ ሼݐሽ;
10) if(w is proper){
11) Testcase Ѓ = createtestcase(w);
12) Ť ൌ Ť ሼЃሽ ;
13) }
14) if(meetcriterion(Ť, C)) return;
15) for each ݐ א .ܯ ܶ ٿ ሻݐሺ݉ݎ݂ ൌ ሻݐሺݐ
16) {
17) generateTestCase(M, C, Ť, w, t, len+1);
18) }
19) w=w-{t};
20) }

Figure 3.14 General algorithm of criteria-based test cases generating

3) Defect classification orientated test case generation

87

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Defects in GUI applications have many different types. Different types of defects are

related to different kinds of events. The size of a test suite is often very large if it tries to

cover all kinds of defects. The suite size is related to combinations of involved events.

It may increase exponentially when the number of involved events increases. Normally,

a certain type of defects involves a certain type of events which are only a part of the

whole event set. The smaller number of events involved, defect classification directed

test suite sizes will also decrease exponentially. This thesis systematically establishes a

GUI defect classification, which includes criteria of classifying defects, distribution of

defects and defect classification directed test case generation. The classification of

defects will be presented in Chapter 4.

4) Use case oriented test case generation

An application was built for providing functions for users to perform tasks. In most

cases, a user uses the application through typical scenarios. These typical scenarios are

usually designed before the implementation of the application and treated as part of the

application specifications. These typical scenarios are called use cases. Although use

cases cannot cover all the possible actions on an AUT, they serve the most important

functions of the AUT. Due to the huge permutations of events sequences, many existing

methods try to reduce the number of test cases by limiting the length of each test case to

certain steps, normally three to finish the tests in a practical time. Three steps are

normally far from sufficient to cover a task. To efficiently test tasks, long test cases are

inevitably needed. By using a use case as the backbone, an envelope model was

88

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

developed to encapsulate all possible branches of states and events related to a task.

Corresponding to the backbone within the envelope, task-oriented test cases can be

generated automatically for effective and efficient testing within a practical time frame.

Use case oriented test case generation will be discussed in Chapter 5.

3.8 Test Oracles

Once test cases have been generated, they can be executed on the GUI automatically.

Obviously, if the verification of test results is done manually, the process cannot be

called ‘automatic’. Checking whether the GUI behaves correctly is usually done by a

mechanism called a test oracle.

In GUI testing, the inputs are events, but there are no special outputs. The state of the

GUI can be seen as an output. Each event in the test case affects the state of the GUI.

To check the expected states, state information needs to be compared after each event is

performed. Otherwise, incorrect GUI behavior for one event may result in a state in

which future events in the sequence cannot be executed at all. Automated oracles need

to be developed to answer the question of whether a GUI execution under a test case

behaves as expected. Both the derivation of the expected state information and the

comparison between the expected and actual states are supposed to be automated.

Generating the expected state after each event is critical for automated oracle

development. Expected state can be either generated from the AUT’s specifications or

89

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

gathered from a base version of the software for regression testing. Figure 3.15 and

Figure 3.16 show the two mechanisms of generating expected states respectively.

Figure 3.15 Mechanism of generating expected states from specifications

Figure 3.16 Mechanism of generating expected states from base version of AUT

3.8.1 Expected states generation from AUT’s specifications

Events in the GUITAM are modeled as state transitions. Each transition t = <s, s’, ê >

is related to one event or a small set of events which indicates an operator. For example,

a transition is related to an operator called “Move an Icon”, it may involve a set of

elementary events including ‘press mouse left button on the icon’, ‘move mouse’,

s
1

s
2

s
n

GUI Scraper

B
ase versio

n
 G
U
I

e
1

e
2

e
n

S
0 Event executor

G
U
I Sp

ecificatio
n

Even
ts rep

resen
tatio

n

e
1

e
2

e
n

S
0 Expected states

Inference Engine

s
1

s
2

s
n

90

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

‘release mouse button’. An event is usually linked to an object, which is a widget or

component in the GUI. To enable the automatic expected states generation, each

possible operator needs to be well represented in the specifications of the AUT.

Definition 3.10: An operator is a 5-tuple <ϰ, ρ, ê, pre, post > where:

 ϰ is the name of the operator. It can be an empty string because an operator will

be identified by ê.

 ρ is a set of parameters. For example, “Move an Icon” may need the coordinates

and distance.

 ê is one or a set of events.

 pre is a set of literals. Each literal is an assertion <o, p, v, true|false>. Where o

is an object, p is the property name of the o, v is the value of the p, true|false indicates

the assertion must be true or false. For example, a literal l=<Lable1, Text, “Name”,

true> means the value of property ‘Text’ of object “Label1’ needs to be “Name”. pre

represents the set of preconditions. Before an operator is performed, the literals in pre

must be satisfied in the state s.

 post is also a set of literals. Each literal is an assertion <o, p, v, true|false>.

After the operator is performed, the state s’ needs to satisfy all the literals in post. If

there are any literals which are not satisfied, there is a potential defects.

91

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

From Definition 3.10, the expected states s’ can be derived from s. Algorithm

GenerateExpectedStateFromSpecifications in Figure 3.17 shows the procedure of

deriving s’ from s.

Algorithm GenerateExpectedStateFromSpecifications

1) GenerateExpectedState(s:GUIState, op:Operator, s’:GUIState)

2) {

3) foreach literal l in op.pre

4) if(s doesn’t satisfy l) return error.

5) s’ =DeriveFrom(s);

6) foreach literal l in op.post

7) if l satisfies <_,_,_,true>

8) if(s’ contains l.o)

9) Set (s’, l.o, l.p, l.v);

10) else

11) AddTo(s’, l.o, l.p, l.v);

12) if l satisfies <_,_,_,false>

13) if(s’ contains l.o)

14) SetIgnore (s’, l.o);

15) }

Figure 3.17 Algorithm of generating expected states from specification

In Figure 3.17, lines 3-4 check the pre-conditions to see if the state s is the state that op

needs. Line 5 derives basic information of s’ from s. Lines 7-11 read all the positive

literals and make modifications to existing objects in or add new objects to s’. Lines 12-

14 set ignorance of comparing the corresponding property values.

3.8.2 Expected states generation from the base version of the AUT

92

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Regressive GUI testing is used for testing an AUT over a series of the AUT’s versions.

When an AUT is modified, to ensure that the modifications don’t affect other parts of

the AUT which are not modified, a regressive test is needed to perform test cases on

both the previous version (base version) and the later version. In regressive GUI testing,

the expected states can be easily generated from the base version by performing the test

case on it and retrieving the expected state information. Figure 3.18 shows the

algorithm of generating expected states from a base version of an AUT.

Algorithm GenerateExpectedStateFromBaseVersion

1) GenerateExpectedState(Ѓ :TestCase)

2) {

3) NavigateTo(Ѓ.s0);

4) for i=1 to n

5) {

6) Perform (ti in Ѓ .τ);

7) si=readState();

8) }

9) }

Figure 3.18 Algorithm of generating expected states from base version of AUT

3.9 Implementation and Experiment

To evaluate the effectiveness and efficiency of the GUITAM model for GUI testing

automation, a system called GUITAM Runner was implemented. GUITAM Runner is

implemented in Microsoft C# in the platform of Microsoft Visual Studio .Net 2008.

This system contains several modules:

93

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

1) The GUI Scraper is a module that automatically scrapes information from an

application’s GUI and gathers all information of the widgets (objects), including the set

of open windows, the hierarchical organized object trees and the corresponding values

of properties of each object. This module provides the basic techniques for reading

information of a GUI, creating a GUITAM model for an AUT, generating regressive

test oracles etc.

2) The Event Performer is a module that can perform events on behalf of a real

user automatically. Given an event, e.g., Click on Button ‘B1’ in Window ‘Form1’, the

Event Performer will automatically find out the button captured ‘B1’, calculate the

clickable area and perform the mouse click on the object. This is the elementary module

for traversing the GUIs of an AUT, executing test cases or whatever.

3) The GUITAM Generator is a module that automatically generates a GUITAM

model for an AUT.

4) The Test Case Generator uses the GUITAM model and certain coverage criteria

to create test cases

5) The Test-Oracle Generator automatically executes the generated test cases on

the latest GUI version and stores the captured states related to the test cases for

regressive testing. Test-oracle information can also be generated by deriving the

expected states from specifications.

94

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

6) The Test Executor executes an entire test suite automatically on the AUT. It

performs all the events recorded in the transitions of the test cases and compares the

captured live state information with the corresponding oracle information. The

difference between the states will be reported as potential defects.

Most current GUI testing tools are based on Capture/Replay(C/R) techniques, with the

support of test scripts. The C/R technique is based on the GUI object level rather than

just mouse coordinates, which increases the stability of the testing. However, without a

GUI model, these C/R based tools cannot support real GUI testing automation. Highly

skilled professionals are needed to prepare the test scripts, and manual work is needed

for recording the test cases. The generation of test cases and test oracles is still

laborious in these C/R based tools. After many years research, the team led by Professor

Atif M. Memon at the University of Maryland developed GUITAR, which is now an

open source project on source forge [129]. GUITAR is an EFG model based tool which

is developed in Java environment. As EFG is claimed to be the first practical GUI

testing model, GUITAR is also seen as the first practical model based GUI testing tool.

GUITAM is the core of this research and also provides a comprehensive method for

modeling GUIs. GUITAM Runner is a GUITAM based GUI testing platform which

provides a unified solution to GUI testing automation. GUITAM Runner was developed

in the Microsoft Visual .Net environment in C#. It is currently still in the laboratory

stage. To the best of my knowledge, there are no mature commercial products in the

software market yet which support a comprehensive GUI testing model.

95

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

To illustrate the difference between C/R based tool and GUITAM Runner, a typical

C/R based tool, Automation Anywhere [130], is selected for the comparison. Table 3.3

compares the differences between GUITAM Runner and Automation Anywhere.

Table 3.3 Comparison between GUITAM Runner and Automation Anywhere

Testing
stage

GUITAM Runner Automation Anywhere

GUI Model
 Creation

GUITAM model of an given AUT is
generated automatically

Doesn’t have this stage

Test case
 Generation

1) Automatic generation
2) One test case is a route of
transitions in the model.
3) Coverage criteria are used

1) Manual generation by
recording user operations
2) Manual editing
3) No coverage criteria

Test oracle
Generation

Automatically generated from the base
version of the given AUT.

Manually edited or assigned.

Test case
Execution

Automatic Automatic

Test Reporting Automatic Automatic

3.9.1 Subject Applications

Four subject applications are used in this study. Two of them are from an online code

source named CodeProject. Calculator [103] is implemented in C++ and EasyWriter

[104] is implemented in C#. The other two are from my previously built applications.

EnglishStudy is implemented in C# and ScreenDrawer is implemented in C++. Table

3.4 shows the information for the subject applications.

Table 3.4 Subject applications

Subject application Windows Objects LOC
Calculator 2 73 1580
EasyWriter 9 804 988
EnglishStudy 3 217 3729
ScreenDrawer 2 127 3423

96

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

In Table 3.4, LOC means Lines of Codes. A brief introduction is given to each of the

subject applications.

1) Calculator is an application which provides calculations and mathematic

functions. In the main interface, besides one textbox for showing the calculation result,

other components are mainly buttons. These buttons can be divided into groups:

parameter buttons which include ‘0’ ~ ‘9’, ‘A’~’F’, operators which include ‘+’,’-‘,’*’,

‘/’ and the like, mathematical functions including ‘sin’, ‘cos’ etc. and some statistics

functions which include ‘stat’, ‘avg’, ‘sum’ and so on. Figure 3.19 shows the main GUI

of Calculator.

Figure 3.19 Main interface of Calculator

97

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

2) EasyWriter is a text editor which is much more powerful than Microsoft

Notepad. Besides basic text editing functions, it also provides many other useful

functions for easy writing. These functions include: auto indent, auto colored key words

for certain programming languages, zooming, and text encoding selection. Figure 3.20

shows the main interface of EasyWriter.

Figure 3.20 Main interface of EasyWriter

3) EnglishStudy is an application to help Chinese pupils study English, especially for

studying words and sentences. Functions provided by this application include

creating new books, management words and sentences for each book, auto

importing from text files, hiding or showing certain language while studying, and

98

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

speaking the sentences using TTS (Text to Text Speech). Figure 3.21 shows the

main interface of EnglishStudy.

Figure 3.21 Main interface of EnglishStudy

4) ScreenDrawer is an application which was developed for presenting information on

computer screens to large audiences. For example, it is used by teachers to

introduce particular part on the screen of running software, such as a statistics tool,

a programming platform, a specific part of a video and so on. It appears as an icon

as shown in Figure 3.22. You can use your computer in any way you want, and

when you need to present a certain part of the screen, you just need to click on the

99

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

icon or press hot key ‘Ctrl-F1’ to start free drawing mode on the screen. The main

functions of this application include free drawing, selecting any part, moving the

selected part or enlarging the part, typing words on the place you last clicked the

mouse button, drawing lines, rectangles, circles, diamonds and so on. You can also

use it as a screen capture tool to copy a selected part or the whole screen to the

clipboard. By pressing ‘Ctrl-F1’ again, the computer will go back to normal mode

for performing common tasks. Figure 3.22 shows the drawing mode of

ScreenDrawer.

Figure 3.22 the Icon of ScreenDrawer

Figure 3.23 The drawing mode interface of ScreenDrawer

100

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

 3.9.2 Automatic GUITAM generation

GUITAM Generator is used to automatically create GUITAM models for each subject

application. Table 3.5 shows the information for GUITAM for each subject application.

Table 3.5 GUITAM information of subject applications

Subject application States Transitions Size (MB)
Calculator 42 586 1.2
EasyWriter 32 222 0.5
EnglishStudy 12 362 0.4
ScreenDrawer 13 136 0.26

3.9.3 Test case generation

The test case generator uses a given GUITAM model of a certain subject application

and coverage criteria to generate test cases for each subject application. Table 3.6

shows the number of test cases generated from the GUITAM models of the subject

applications. These test cases are generated using the length-n coverage criterion which

is defined in Definition 3.10.

Table 3.6 Test cases generated for each subject application

Subject
application

Length Total
Selected1 2 3 4

Full Sel Full Sel Full Sel Full Sel

Calculator 74 74 4989 1022 327648 2356 21484904 4554 8006

EasyWriter 10 10 84 84 752 752 6580 1125 1971

EnglishStudy 68 68 2850 853 543332 2682 23657452 4248 7851

ScreenDrawer 7 7 382 382 4852 1016 974258 3762 5167

In Table 3.6, the column ‘Full’ indicates the number of all possible test cases with the

given length (in one test case, no repeated events) and the column ‘Sel’ indicates the

101

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

actual number of test cases generated. Due to the large space of all possible test cases,

only a practical number of test cases are selected. Note that so many events are used for

editing, changing font, changing color, etc., when selecting the test cases, only one or

two typical events of the type are kept for test case generation.

3.9.4 Oracle information

Because all the subject applications have source code, the original version of the

application is seen as the base version and oracle information is generated from the base

version automatically. Test-Oracle Generator executes all test cases in a given suite, and

reads and records the GUI real time state information after each event in the test case is

performed. The recorded state information is linked to certain test cases as the test

oracle information for comparison with the state when the same test case is executed on

the modified version of the application. Table 3.7 shows the oracle information of each

subject application for the test suite shown in table 3.6.

Table 3.7 Oracle information for each subject application

Subject application Test cases Oracles size (MB)
Calculator 1 74 3.5

2 1022 65

3 2356 162

4 4554 412

Total 8006 642.5

EasyWriter 1 10 0.12

2 84 1.75

102

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

3 752 19

4 1125 42

Total 1971 62.87

EnglishStudy 1 68 1.8

2 853 17

3 2682 134

4 4248 378

Total 7851 530.8

ScreenDrawer 1 7 0.1

2 382 7.1

3 1016 31

4 3762 126

Total 5167 164.2

3.9.5 Test Executor

Test executor is used to execute all test cases in a given test suite for an AUT. Since the

oracles of test cases have been generated, when test cases are performed on a modified

version of the AUT, real time state information will be captured by the GUI Scraper

and compared to the corresponding state information described in the oracles. Fault

seeding technique is used to seed faults into the source codes for evaluating the

effectiveness and efficiency of our approach. Figure 3.24 shows the number of faults

seeded for each subject application.

To compare with the faults detection effectiveness of EFG presented by Memon and

Xie [37], we seeded the faults using the same classes and criteria. The classes for fault

103

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

seeding are shown in Table 3.8 and the numbers of faults seeded for each class listed

above are shown in Figure 3.25.

Table 3.8 Types of seeded faults

Type No. Type Description Related Operators
1 Modify relational operator >, <, >=, <=, ==, !=
2 Invert the condition statement
3 Modify arithmetic operator +, -, *, /, =, ++, -, +=, -=, *=,

/=
4 Modify logical operator &&, ||
5 Set/return different Boolean value (true, false)
6 Invoke different (syntactically similar) method
7 Set/return different attributes
8 Modify bit operator &, |, ^, &=, !=, ^=
9 Set/return different variable name
10 Set/return different integer value
11 Exchange two parameters in a method
12 Set/return different string value

Figure 3.24 Number of faults seeded to the subject applications

EasyWriter

80

60

40

20

0

N
u
m
b
er
 o
f
fa
u
lt
s
se
ed

ed

Calculator EnglishStudy ScreenDrawer

104

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Figure 3.25 Number of faults seeded to each type

When comparing between oracle state information and runtime state, any mismatches

will be reported. Some property values are ignored due to their dynamic characteristics.

For example, an object such as a textbox for showing a timer changes overtime. A

window position changes every time when it is opened. In an online media player, or

share prices from the Internet, and the like, contents change over time. If all these

dynamic contents are compared, mismatches are inevitable. All these kinds of objects

are ignored for comparing before the test cases are executed.

2

100

80

60

20

0

N
u
m
b
er
 o
f
fa
u
lt
s
se
ed

ed

1 3 4

40

5 6 7 8 9 10 11 12

Fault type

105

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Figure 3.26 Faults detected by different length of cases

Figure 3.26 shows the fault detection results for each subject application with different

collection of test cases. We found that the test cases with length 1 had the least ability to

detect faults. The reason for this is not only the steps, but also the small number of test

cases. Because every test case starts from the initial state, many other states cannot be

reached by only one step. From the test case information in Table 3.5, we can see that

more test cases were generated for longer test cases. Longer test cases can reach more

states so that more defects are detected. In the Calculator testing, test cases with lengths

2 and 3 had similar fault detecting ability, while the test cases with length 4 had much

better fault detection effect. This is because most of the functions provided in

Calculator need at least 4 steps, for example, 3 + 5 = 8, which needs at least 4 clicks to

80

60

40

20

0

Len 1 detected

Len 2 detected

Len 3 detected

Len 4 detected

Total seeded

N
u
m
b
er
 o
f
fa
u
lt
s

Calculator NotePad EnglishStudy ScreenDrawer

106

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

get the result 8. EasyWriter and EnglishStudy are MDI based applications in which

most of the states can be reached by fewer steps from the initial state. In these two

applications, test cases with lengths 2, 3 and 4 had similar effectiveness for detecting

faults. Screen drawer is a dialog-based application, which means that the states are in a

hierarchical manner (dialogs are opened by other dialogs and monopolize the focus),

and longer test cases can reach more states than shorter test cases. From the results

shown in figure 3.27, longer test cases have significantly more effect in detecting

defects. Figure 3.28 shows the fault detection effects for different lengths of test case

for each subject application.

Figure 3.27 Faults detect effects for different length of cases

The detected faults may also be classified by fault type. Figure 3.28 summarizes the

results. The yellow part of each column shows the number of faults detected, and the

gray part of each column shows the number of faults not detected. The result shows that

0

20

40

60

80

1 2 3 4

Calculator

EasyWriter

EnglishStudy

ScreenDrawer

N
u
m
b
er
 o
f
fa
u
lt
s

Length of test case

107

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

GUITAM-based testing is able to detect all types of the faults as long as the defects lead

to property value changes of GUI objects. Because not all seeded faults reflect their

changes to the GUI object property values, some of them cannot be detected. This was

not an exhaustive test. Not all paths of the codes were tested, and some faults were

missed due to coverage reasons.

Figure 3.28 Faults detected for each fault type

In contrast with test the results presented by Memon and Xie in [37], GUITAM is able

to find all types of defects. For the first three types, the proportion of detected faults to

all the seeded faults in this experiment is about 15% better than the proportion of

detected faults shown by Momon and Xie [37]. Figure 3.29 shows the results of

comparison between percentages of each fault type detected by GUITAM and EFG.

The data of faults detected by EFG is from Memon and Xie [37].

2

100

80

60

20

0

N
u
m
b
er
 o
f
fa
u
lt
s
se
ed

ed

1 3 4

40

5 6 7 8 9 10 11 12

Fault classes

Detected

Not Detected

108

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Figure 3.29 Percentage of detected faults for each type of faults

3.10 Conclusion

This chapter presented a GUI Testing Automation Model (GUITAM). In this model,

both GUI states and events are considered. It has been proved that GUITAM is not only

able to automate all testing that an EFG can automate, but it is also able to model a

series of important scenarios which an EFG cannot. The efficiency of GUITAM, in

terms of storage and computational complexity, has also been proved to be at least as

good as that of the EFG model.

This chapter also presented the GUI testing automation procedure with GUITAM. This

procedure includes GUI test coverage criteria, GUI test case generation, test oracle

creation and test execution automation. The corresponding principles and algorithms

were also provided for GUITAM based testing automation.

0

20

40

60

80

1 2 3 4

GUITAM

EFG

P
er
ce
n
ta
ge
 o
f
fa
u
lt
s
d
et
e
ct
ed

Type of Fault

100

5 6 7 8 9 10 11 12

109

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Empirical study also shows the ability for and efficiency of automatically testing GUI-

based applications with the GUITAM model. GUITAM models were generated

automatically for four subject applications. Test cases with different lengths were also

generated automatically from the generated GUITAM model. Test oracle information

was generated by executing the test cases on the original applications and capturing the

runtime state information. To test the effectiveness of detecting faults, faults were

seeded to the source codes of the applications and test cases were executed on the

modified applications automatically. The test results show that the automatic process of

GUI testing is not only practical but also effective. From the results, we also found that

the efficiency and effectiveness of GUI testing are greatly dependent on the set of test

cases. The following chapters will present new methods of generating more efficient

and effective test cases.

110

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Chapter 4

Defect Classification

Today’s GUIs are becoming more and more complex and contain a large number of

objects and events. The number of permutations of all possible event sequences

increases exponentially as the number of events increases. Defect classification can

allow the GUI testing to focus on certain types of defect, and greatly reduce the number

of test cases needed. Some researchers have carried out software defect classification

for different reasons [105-109], but few of them have linked defect classification to

GUI testing automation. Defects can be classified into different groups and each group

is usually linked to a certain set of events and objects. By classifying the defects, test

cases can be generated specifically for finding certain types of defect. The total number

of test cases needed will decrease exponentially as number of the relevant objects and

events become smaller.

4.1 Introduction to Defect Classification

GUI defects can be roughly classified into three groups: directly detectable defects,

undetectable defects and comparably detectable defects.

Directly detectable defects are those which can be detected without involving an AUT’s

specifications and base version information. These defects usually include crashes, and

recognizable error messages. Crashes cause the AUT to stop responding to inputs.

111

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Recognizable error messages are usually the system error dialogs or specifically

customized message boxes which pop up while the AUT is running. This type of defect

can be detected by random testing tools. When these types of defect occur, they can be

easily recognized, and no specifications or regression information are needed. Random

input testing is also referred to as “stochastic” testing or “monkey” testing [93]. The

latter designation is used to impart the idea of someone without a brain, or without

knowing what he's doing, seated in front of a computer and interacting randomly with

the keyboard or mouse. Microsoft has reported that 10-20% of the bugs in their

software projects are found by monkey test tools [93].

Undetectable defects are those defects that GUI testing automation is not able to detect.

Because GUI defects are manifested as failures observed through the GUI, and only the

effects on the GUI can be extracted, the defects whose results are not reflected in the

GUI are not detectable. Examples of this type of defect include wrong files being saved

with a successful process, emails being sent successfully but failing to reach their

destinations, wrong data being saved into background databases with successful

responses, and background thread execution without outputs to the foreground GUI.

These types of defects require testing via direct methods and are primarily conducted

manually.

Comparably detectable defects are the type which GUI testing automation principally

deals with. This kind of defect can be detected by comparing the actual state affected by

the defects with the expected state. The expected state can be a state from a base

112

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

version in regressive testing, or derived from the specifications of an AUT. When a test

case is executed, the actual states will be compared with the expected results and the

differences will be reported.

Some researchers have worked on defect classification with particular focuses. L.

Briand and Y. Labiche, and I. Krsul [111, 112] have addressed defect classes at

different phases of the development life cycle, e.g., defects in the requirements

specification document. K. Weidhenhaupt et al. [113] have focused on defects in e-

commerce applications. M. L. Lough and G. J. Meyers [114, 115] have focused on

taxonomies for security issues. In general, typical defect classes of an AUT are listed as

follows [105]:

 Completeness defects subsume all defects related to an incomplete implementation

of the specified functionality. This usually includes missing functionality defects

and undesired functionality.

 Input/Output (I/O) defects subsume all defects related to wrong input respectively to

wrong output data of the AUT. Boundary defects, defects concerning wrong size,

shape or format of the data or combination defects are typical I/O defects.

 Calculation defects subsume all defects resulting from wrong formula or algorithms

in the AUT.

 Data handling defects subsume all defects related to the lifecycle and the order of

operations performed on data. This usually includes duplicated data or dataflow

113

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

defects (defects related to the sequence of accessing a data object (e.g., a data

update before the data has been created).

 Control flow and sequencing defects subsume all defects related to the control flow

or the order of actions. Typical control flow defects concern wrong sequencing of

the actions performed or iteration and loop defects, which subsume all defects

related to the control flow of iterations and loops.

 Concurrency defects subsume all defects related to the concurrent execution of parts

or of multiple instances of the AUT.

 Display and navigation defects subsume all defects related to the user interface,

which are not usability defects. Typical defects of this class are display defects and

navigation defects.

 NFR (non-functional requirement) defects subsume all defects related to the quality

of the AUT. This usually includes defects concerning reliability, usability,

efficiency, maintainability and portability.

 Inter-Software defects subsume all defects concerning the interface of the AUT with

other software systems. Typical defects of this class are input/output defects,

concurrency defects or completeness defects such as missing third-party software.

 Other defects subsume all other defects including hardware defects, test design

defects, OS and compiler defects etc.

The defect classes are not orthogonal, i.e., a defect can be categorized into more than

one class. Additionally, a defect can also be associated to a combination of defect

114

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

classes. Different types of defects accounts for different percentages of the total defects

in software systems. By analyzing and re-organizing the results of Brooks, Robinson

and Memon [53, 108], the distribution of different types of defects is shown in Table

4.1. Not all classes of defects mentioned above are detectable during GUI testing

automation.

Table 4.1 Distribution of defect types

Fault Type Defects (%)
Completeness 13.53
I/O 6.5
Calculation 11.69
Data handling 17.34
Control flow and sequencing 17.86
Concurrency 5.18
Display and Navigation 8.52
NFR 4.26
Inter-software 4.85
Other 10.27

Among these classifications, Completeness defects, Calculation defects, Input/Output

(I/O) defects, Display and navigation defects are detectable using GUI testing

automation. Inter-Software defects are not, unless they manifest as crashes or typical

error messages. Data handling defects, control flow and sequencing defects,

concurrency defects and, NFR defects are usually detected by traditional software

testing methods which involve large amounts of manual analysis and observation. My

taxonomy will be restricted to defects which can be detected during GUI testing

automation, about 40% of all the software defects listed in Table 4.1. Other types of

non-GUI relevant defects are supposed to be dealt with by other testing techniques. For

115

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

example, traditional variable boundary value testing shall be tested with conventional

white-box testing techniques rather than with GUI testing techniques.

4.2 Types of Objects

GUI defects may be detected by executing GUI test cases. Each GUI test case is

composed of a series of events. Each event is linked to an object. Take, for example, a

test case τ = < “(Edit1, Focus), (Edit1, Type String), (Edit1, SelectAllText),

(CopyButton, Click), (Edit2, Focus), (PasteButton, Click) >. In this test case, each event

is linked to a GUI object. After the test case is executed, object properties will be

examined to ensure the correctness of the effects. Objects are the basic and important

elements of a GUI. Different types of object are usually linked to different kinds of

function, and thus different kinds of defect. Obviously, it is straightforward to classify

GUI defects according to GUI objects.

Although the number of object types keeps changing, as new types of objects being

introduced into developing environments, the set of basic types of objects is relatively

stable. By analyzing popular software and development tools, a summary of objects

used nowadays in GUI-based applications is presented. Table 4.2 lists the most

commonly used types of object and their corresponding events.

Table 4.2 Object types and their related events

Object Type Main possible events Class Possible test actions
Form
(Window) ○1 ○2 ○3 ○4 ○5 ○6

○7 ○8

Top container ○1 ○2

116

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Dialog ○1 ○2 ○3 ○4 ○5 ○6

○7 ○8

Top container ○1 ○2

Open File Dialog ○1 ○2 ○3 ○4 ○5 ○6

○7 ○8 ○14○37

Common Dialog ○1 ○2

Save File Dialog ○1 ○2 ○3 ○4 ○5 ○6

○7 ○8 ○14○37

Common Dialog ○1 ○2

Color Dialog ○1 ○2 ○3 ○4 ○5 ○6

○7 ○8

Common Dialog ○1 ○2

Font Dialog ○1 ○2 ○3 ○4 ○5 ○6

○7 ○8

Common Dialog ○1 ○2

ReBar ○15○38 Static

Button ○7 ○8 ○16 Functional ○7

Tool Button ○7 ○8 ○16 Functional ○7

Edit ○7 ○8 ○14○16○18○19

○20○37

Interactive ○14○18○19○20

Pane ○3 ○7 ○8 ○9 ○15 Static ○8

ComboBox ○14○25○13 Composite
interactive ○14○25○13

List ○7 ○8 ○9 ○13○25 Functional
container ○13

ListItem ○7 ○8 ○9 ○13 Functional
responsive ○7 ○8

Text (Label) ○7 ○8 Static ○8

DataGrid ○7 ○8 ○13○22○23○24

○26○25○27

Functional
responsive ○7 ○8 ○13○22○27

Check Box ○7 ○8 ○28○29 Interactive ○7

Radio Button ○7 ○8 ○28○29 Interactive ○7

Tab Control ○7 ○8 ○13 Container ○13

TabItem ○7 ○13 Container ○7

117

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Scroll Bar ○7 ○30 GUI adjustment ○30

Group Box ○7 ○8 Static

Title Bar ○7 ○8 ○38 GUI adjustment

MenuBar ○7 ○16 Functional
container ○7

Context Menu ○7 ○16 Functional
container ○7

Menu Item ○7 Functional ○7

Status Bar ○7 ○8 Responsive

Document(multi-
line Edit, Rich
box)

○7 ○8 ○9 ○14○18○19

○20○37

Composite
interactive ○7 ○8 ○9 ○14○18○19

○20○37

PictureBox ○7 ○8 ○10○11○12 Responsive ○7 ○8

TreeView ○7 ○8 ○9 ○13○31○32 Functional
container ○7 ○8 ○9

TreeNode ○7 ○8 ○9 Functional
responsive

Split, Split
Container ○38 GUI adjustment

TabLayout ○3 GUI adjustment

Track Bar ○30○35 Composite
interactive ○30

ProgressBar ○7 ○8 Responsive

Spinner ○14○7 Composite
interactive

DateTime
Picker ○7 ○8 ○14 Composite

interactive ○14

In the columns entitled “Main possible events “and “Possible test actions, circled

numbers are used to list the events. Each number represents a type of event:

○1 Open ○2 Close ○3 Resize ○4 Maximize ○5 Minimize ○6 Restore ○7 Mouse

Click ○8 Mouse Double Click ○9 Mouse Right Click ○10 Mouse Press ○11 Mouse

118

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

up ○12 Mouse Move ○13 Select item ○14 type string ○15 Dock ○16 Hover ○17 Focus

○18 copy ○19 cut ○20 paste ○21 Scroll ○22 Header Click (Row, column) ○23 Row

Resize ○24 Column Resize ○25 Scroll ○26 Row Click ○27 Row DB Click ○28

Check ○29 UnCheck ○30 Change Position ○31 Expand ○32 collapse○33 Move the

Splitter○34 Move the track ○35 Drag ○36 Drop ○37 Select ○38 Move

The objects listed in Table 4.2 are divided into several classes. Different classes of

objects play different roles and are related to different kinds of GUI defects. Some

objects play functional roles which interact with users by providing immediate function.

Most functional objects such as buttons and menu items are related to underlying codes

which provide important functions with complex enterprise logic. Defects within these

codes are much more significant than other defects. On the contrary, most static objects

such as labels and panes are not related to any functional codes at all. They are

normally dragged from the object repository to the forms on the design stage without

the need of writing any codes. In GUI testing, these kinds of objects are less important

for detecting GUI defects. Table 4.3 show the classification of objects and their

importance in GUI testing. Numbers from 0 to10 are used to show the importance,

where 0 signifies the least importance and 10 the most.

119

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Table 4.3 Classification of objects

Class of objects Type of objects Importance

Functional Button, Tool Button, Menu Item 10

Interactive Edit, Check Box, Radio Button 9

Composite interactive ComboBox, Document, Track Bar, Spinner, Datetime Picker 9

Functional responsive ListItem, DataGrid, TreeNode 6

Top container Form , Dialog 3

Common Dialog Open File, Save File, Color, Font 3

Responsive Status Bar, PictureBox, ProgressBar 1

Container Tab Control, TabItem, 2

Functional container Functional container, Context Menu, TreeView 2

GUI adjustment Scroll Bar, Title Bar, Split, Split Container, TabLayout 1

Static Text (Label), Group Box, Pane 0

The functional, interactive, composite interactive, and functional responsive objects are

given more importance because most codes are linked to these objects. Forms and

dialogs are also important, but less so, because they are just objects containers. On the

one hand they are usually opened by a button, menu item or a double click on a list

item. On the other, after they are opened, their functions are provided by the objects

contained in them. Functions such as ‘Close window or dialog’ are usually triggered by

buttons or menu items within them. Functional objects are always provided with

underlying codes to perform certain tasks. Unless disabled, functional objects will be

useless without underlying codes. Interactive and composite interactive objects provide

ways for users to exchange information with the underlying codes. They expose the

software data to users visually, and accept inputs from users which will become

120

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

parameters of the functional underlying codes. Usually some of them are provided with

validation codes and many others work with the default functionality without any extra

codes at all. Different from responsive objects, functional responsive objects usually

play multiple roles. Although they are used for displaying data in organized groups such

as lists or tables (grids), they are also provided with functional codes. For example,

when selecting a list item, the underlying codes change the other objects’ properties

accordingly. When double clicking on a list item, it may open a dialog for further

information. To analyze the objects, information for objects contained in software from

Microsoft Office and clinic software Medical Director 2 (MD2) and 3 (MD3) from

Health Communication Network [110] was collected. From the results, we found that

functional and interactive objects account for about 50% of all the objects in this

software. Table 4.4 and Table 4.5 show the details of the objects information in the

subject applications.

Table 4.4 Object statistics for Microsoft Offices software

 Word Excel PowerPoint Total Class Percentage

BUTTON 81 63 73 217 Functional 43%

TOOL Button 14 10 9 33

MENU ITEM 14 14 2 30

EDIT 2 1 0 3 Interactive 1%

CHECKBOX 0 3 0 3

Document 1 1 1 3 Composite

interactive

2%

COMBO BOX 2 4 2 8

LIST ITEM 19 0 20 39 Functional

responsive

7%

LIST 1 1 2 4

121

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

WINDOW 1 1 2 4 Top

container

1%

PICTURE 1 3 1 5 Responsive 1%

TAB 1 1 1 3 Container 4%

TAB ITEM 7 9 8 24

MENU BAR 2 2 2 2

SPLIT 43 52 28 123 GUI

adjustment

21%

TITLE BAR 3 3 3 9

SCROLL BAR 2 2 1 5

PANE 22 21 18 61 Static 11%

LABEL 5 1 5 11

Total 260 219 178 657

Table 4.5 Object statistics for MD2 and MD3

 MD3 MD2 Total Class Percentage

BUTTON 196 247 443 Functional 22%

TOOL Button 0 0 0

MENU ITEM 126 123 249

EDIT 80 73 153 Interactive 12%

Spinner 0 1 1

Radio Button 29 31 60

CHECKBOX 86 96 182

Document 15 12 27 Composite

interactive

2%

COMBO BOX 26 19 45

LIST ITEM 192 181 373 Functional

responsive

14%

Data Grid 15 6 21

LIST 27 22 49

WINDOW 2 2 4 Top

container

1%

Dialog 7 9 16

PICTURE 6 10 16 Responsive 1%

Status Bar 2 1 3

122

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

TAB 3 3 6 Container 2%

TAB ITEM 18 27 45

MENU BAR 10 8 18

SPLIT 19 9 28 GUI

adjustment

4%

TITLE BAR 9 11 20

Thrumb 13 21 34

SCROLL BAR 21 34 55

PANE 24 30 54 Static 42%

GroupBox 14 34 48

LABEL 761 490 1251

Total 1701 1500 3201

4.3 GUI object based Defect Classification

According to Tables 4.4 and 4.5, about half of the objects in a GUI application are static

objects, GUI adjustment objects and simply responsive objects. This kind of object is

usually not related to any underlying codes. To reduce the test case space for more

efficient GUI testing, the test cases should mainly focus on the functional and

interactive objects. Suppose there are n functional and interactive objects, then the

number of total objects is about 2n. Using the component coverage criterion together

with the length-k criterion, and supposing only one event will be selected from an

object, then the number of all the possible test cases is ܰ ൌ ଶܥ
 ൌ

ሺଶሻ!

!ሺଶିሻ!
ൌ

ሺଶሻሺଶିଵሻሺଶିଶሻ…ሺଶିାଵሻ

!
.

Because inputs such as clicks and double clicks on the static and responsive objects

normally don’t lead to any change to the state, testing these objects won’t help find any

123

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

defects. If only the functional and interactive objects are considered, then the number of

total possible test cases is

 ܰ ൌ ܥ ൌ
!

!ሺିሻ!
ൌ ሺିଵሻሺିଶሻ…ሺିାଵሻ

!
.

To show the difference, let’s analyze an example. Suppose there are 10 objects in one

form, say 5 buttons and 5 labels, and k=3. If bout 5 of them are functional and

interactive objects, then

N
Nౢౢ

ൌ ୬ሺ୬ିଵሻሺ୬ିଶሻ…ሺ୬ି୩ାଵሻ

ሺଶ୬ሻሺଶ୬ିଵሻሺଶ୬ିଶሻ…ሺଶ୬ି୩ାଵሻ
ൌ ହൈସൈଷ

ଵൈଽൈ଼ൈൈൈହൈସൈଷ
ൌ ଵ

ଷଶସ

The number of all possible test cases for buttons is only 1 in 30240 of the number of all

possible test cases for both buttons and labels. Obviously, the bigger the number n is,

the bigger the difference between Nf and Nall. Focusing on a certain type of defect will

exponentially reduce the domain space of test cases.

Because in a GUI application, functions are normally triggered by events from

functional objects, completeness defects and calculation defects can be detected by test

cases with coverage of functional GUI objects. In a GUI application, I/Os are

performed through interactive GUI objects such as textboxes, radio buttons etc. Input

domain and boundary information can be obtained from the specifications of the AUT.

Test cases with coverage of all interactive objects will ensure the efficiency of detecting

I/O defects. Display and navigation defects involve responsive, interactive and

functional objects. Most display defects reside in responsive and interactive objects.

124

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Navigations are usually led by buttons and menu items. Test cases that cover all

functional objects are able to detect most navigation defects.

To simplify the classification of defects, this chapter focuses on the GUI testing

automation detectable defects. Considering the characteristics of GUI testing

automation, this research focused mainly on three major defect groups based on the

types of GUI object: functional defects, interactive defects, and GUI adjustment defects.

Other types of defects are ignored in this research because they account for a minor

proportion of all defects.

Functional defects subsume all defects that reside in the underlying codes which can be

invoked by events from functional objects and have their results reflected in GUI

objects and their properties.

Functional defects include defects which are related to functional objects. These objects

include Buttons, Tool Buttons, Menu Items, List Items, Data Grid Rows and Cells, and

Tree Nodes. Most objects are implemented to perform certain functions and are

connected with underlying codes.

Interactive defects subsume all defects which occur during the interaction between a

user and the AUT. These include data editing, data automatic validation, etc.

Interactive defects include defects which are related to interactive objects. These objects

include EditBoxes, ComboBoxes, CheckBoxes, RichEdits, TrackBars, Spinners, and

DateTime Pickers. These objects are usually used for displaying internal variable values

125

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

and receive inputs from users. Most of the time, these objects are provided with

stereotyped functions without the need for any coding. The values of the properties of

these objects are also seen as parameters of the functions related to the functional

objects.

GUI adjustment defects subsume all defects which occur during the GUI adjustments

such as resizing, re-grouping, scrolling, and changing tab etc.

GUI adjustment defects include defects which relate to GUI adjustment objects. These

objects include Scroll Bars, Title Bars, Splits and Split Containers, and Tab Layouts.

These objects are normally used to resize the windows or components, scroll the

content, or re-arrange the area of the windows. Because the functions provided by these

objects are usually provided by the system as standard functions which are well tested

before they are deployed, very few defects are related to these objects.

Besides the defects listed above, few defects are related to static objects such as Panes

and Labels, and some responsive objects such as ProgressBars. Because this kind of

defect accounts for a very minor proportion of the total, we ignored them in this thesis

to reduce the test case space. The defects related objects are listed in Table 4.6.

Table 4.6 Defect Classes and their related object types

Defects Class Related Object Type Percentage of Total
Functional
defects

Button, Tool Button, Menu Item, List Item, Data Grid,
TreeView

63%

Interactive
defects

EditBox, ComboBox, CheckBox, RichEdit, TrackBar,
Spinner, DateTime Picker

29%

GUI adjustment Scroll Bar, Title Bar, Split, Split Container, Tab Layouts 8%

126

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

defects

Having re-grouped the defect types, the distribution of these three types among all GUI

testing automation detectable defects is shown in Figure 4.1.

Figure 4.1 Distribution of GUI detectable defects

4.4 Classification directed test case generation

GUI detectable defects are those that occur during the use of GUI-based AUTs and

appear in observable GUI behaviours such as error messages, wrong windows or

dialogs, and wrong object property values. These uses of an AUT include starting,

configuring, performing task on, and closing the AUT. All the interactions taken by

users through the GUI, such as starting an AUT by clicking on a system menu item or

double clicking on an icon, opening a window by clicking on a button or a menu item,

inputting information by typing on a focused text box, resizing a window by pressing

the left mouse button and dragging the mouse, will eventually get down to events on

certain GUI objects. In contrast to traditional software testing methods such as unit

testing, GUI defects are usually found by performing actions on the GUI and observing

Defects

Functional

Interactive

GUI adjustment

127

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

the behaviours and manifests of the GUI. By focusing on a certain class of defects, as

the related objects, properties and events are confined within certain groups, the number

of all possible test cases can be exponentially reduced without losing the ability to

detect defects.

4.3.1 Functional defects directed test cases generation

Functional defects principally reside in codes which can be invoked from functional

objects and functional responsive objects. To generate functional defects directed test

cases, a coverage criterion which covers all functional objects and functional responsive

objects is described in Definition 4.1.

Definition 4.1: A test suite Ť satisfies the functional object coverage criterion if and

only if א ܱ, Ѓ א Ť ٿ ݐ א Ѓ. ߬ ٿ ሺ݉ܿ .ݐ ݁ሻ ൌ ,

 where Of is the set of all functional and functional responsive objects in the GUIs, and

comp(e) denotes the component which contains the event e.

Figure 4.2 shows the algorithm for generating functional defects directed test cases.

Functional object coverage criterion is parameter of Criterion.

Algorithm FunctionDefectsTestCaseGenerating

1) FunctionDefectsTestCaseGenerating (M :GUITAM, C:Fun_Obj_Criterion,

Ť :TestSuite)

2) {

3) Ť=Ø;

128

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

4) For each ݐ א .ܯ ܶ ٿ ሻݐሺ݉ݎ݂ ൌ ݏ

5) {

6) GenerateFunctionalTestCase(M, C, Ť,w, t, 0);

7) }

8) }

9) GenerateFunctionalTestCase(M: GUITAM, C: Fun_Obj_Criterion, Ť :TestSuite, w:

walk, t :transition, len:int)

10) {

11) if(߬ א ߬ ٿ ݓ ് ݓ ሻݐ ൌ ݓ ሼݐሽ;

12) else return;

13) If(ݐ א .ݐሺ݉ܿٿ ݓ ݁ሻ א ܱ ߱ٿ א Ť߱ٿ ് (ݓ

14) {

15) Testcase Ѓ = createtestcase(w);

16) Ť ൌ Ť ሼЃሽ ;

17) }

18) if(meetcriterion(Ť, C)) return;

19) for each ݐ א .ܯ ܶ ٿ ሻݐሺ݉ݎ݂ ൌ ሻݐሺݐ

20) GenerateFunctionalTestCase (M, C, Ť, w, t, len+1);

21) w=w-{t};

22) }

Figure 4.2 Algorithm for generating functional defects directed test cases

The procedure GenerateFunctionalTestCase in Figure 4.2 is a recursive function. It

depth-firstly traverses all the routes in a GUITAM model and collects all the routes

that contain at least one event whose related object is a functional or a functional

responsive object. Once the test suite covers all functional and functional responsive

objects, the procedure exits and the output parameter Ť contains the resulting test suite

which satisfies the functional object coverage criterion.

129

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Figure 4.3 Example of Functional Object Coverage

To illustrate the functional object coverage criterion and functional defects directed test

case generation, we have used the Simple Clinic Software GUITAM to explain. Figure

4.3 is the graphic model of the GUITAM of Simple Clinic Software. In Figure 4.3, the

thick red transitions are related to functional objects. The test suite generated by the

FunctionDefectsTestCaseGenerating algorithm in Figure 4.2 needs to cover all these

transitions.

4.3.2 Interactive defects directed test case generation

Interactive defects are mainly related to interactive objects and composite interactive

objects. To generate interactive defects directed test cases, a coverage criterion which

e7

t6

t2 t1

t3(B,New)

t4(B,Ok)

t5(B,Cancel)

t30(B,Close)

t8(B,Ok)

t9(B,Close)

t10(B,Edit)

t11(B,Ok)

t12(B,Cancel)

t15(B,Med)

t16(B,Close)

t17(B,New)

t18(B,Ok) t19(B,cancel)

t24(B,Edit)

t25(B,Ok)

t26(B,Cancel)

S2

S0 Se

S1

S3

S5
S7

S6
S4 t13

t14

t20

t21

t22

t23

t27

t28

t29

130

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

covers all interactive objects and composite interactive objects is described in

Definition 4.2.

Definition 4.2: A test suite Ť satisfies the interactive object coverage criterion if and

only if א ܱ, Ѓ א Ť ٿ ݐ א Ѓ. ߬ ٿ ሺ݉ܿ .ݐ ݁ሻ ൌ ,

where Oi is the set of all interactive and composite interactive objects in the GUIs, and

comp(e) denotes the component which contains the event e.

In Figure 4.4, the doted blue transitions are related to interactive objects. Figure 4.5

shows the algorithm for generating interactive defects directed test cases. The test case

suite generated needs to cover all these transitions.

Figure 4.4 Example of Interactive Object Coverage

t7

t6

t2 t1

t3(B,New)

t4(B,Ok)

t5(B,Cancel)

t30(B,Close)

t8(B,Ok)

t9(B,Close)

t10(B,Edit)

t11(B,Ok)

t12(B,Cancel)

t15(B,Med)

t16(B,Close)

t17(B,New)

t18(B,Ok) t19(B,cancel)

t24(B,Edit)

t25(B,Ok)

t26(B,Cancel)

S2

S0 Se

S1

S3

S5
S7

S6
S4 t13

t14

t20

t21

t22

t23

t27

t28

t29

131

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Procedure GenerateInteractiveTestCase in Figure 4.5 is a recursive function. It also

depth-firstly traverses all the routes in a GUITAM model and collects all routes that

contain at least one event whose related object is an interactive or a composite

interactive object. Once the test suite covers all interactive and composite interactive

objects, the procedure exits and the output parameter Ť contains the resulting test suite

which satisfies the interactive object coverage criterion.

Algorithm InteractiveDefectsTestCaseGenerating
1) InteractiveDefectsTestCaseGenerating (M :GUITAM, C:Fun_Obj_Criterion, Ť :TestSuite)

2) {

3) Ť=Ø;

4) For each ݐ א .ܯ ܶ ٿ ሻݐሺ݉ݎ݂ ൌ ݏ

5) {

6) GenerateFunctionalTestCase(M, C, Ť,w, t, 0);

7) }

8) }

9) GenerateInteractiveTestCase(M :GUITAM, C:Interactive_Obj_Criterion, Ť :TestSuite, w:

walk, t:transition, len: int)

10) {

11) if(߬ א ߬ ٿ ݓ ് ݓ ሻݐ ൌ ݓ ሼݐሽ;
12) else return;

13) if(ݐ א .ݐሺ݉ܿٿ ݓ ݁ሻ א ܱ ߱ٿ א Ť߱ٿ ് (ݓ

14) {

15) Testcase Ѓ = createtestcase(w);

16) Ť ൌ Ť ሼЃሽ ;
17) }

18) if(meetcriterion(Ť, C)) return;

19) for each ݐ א .ܯ ܶ ٿ ሻݐሺ݉ݎ݂ ൌ ሻݐሺݐ
20) GenerateInteractiveTestCase (M, C, Ť, w, t, len+1);

21) w=w-{t};

22) }
Figure 4.5 Algorithm of generating interactive defects directed test cases

132

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

4.3.3 GUI adjustment defect directed test case generation

GUI adjustment defects are related mainly to GUI adjustment objects. To generate GUI

adjustment defects directed test cases, a coverage criterion which covers all GUI

adjustment objects is described in Definition 4.3.

Definition 4.3: A test suite Ť satisfies the GUI adjustment object coverage criterion if

and only if א ܱ, Ѓ א Ť ٿ ݐ א Ѓ. ߬ ٿ ሺ݉ܿ .ݐ ݁ሻ ൌ ,

where Oa is the set of all GUI adjustment objects in the GUIs, and comp(e) denotes the

component which contains the event e.

Figure 4.6 shows the algorithm for generating GUI adjustment defects directed test

cases. GUI adjustment object coverage criterion is the criterion parameter.

The algorithms in Figures 4.2, 4.5 and 4.6 are similar. The main difference between

them is the criterion and the subject object collection. Each algorithm selects test cases

which cover the given criterion. The generated suite size does not necessarily have the

smallest number of test cases. Actually there are many shorter test cases which are

subsets of longer test cases. Removing these can greatly reduce the suite size without

violating the coverage criterion. Figure 4.6 shows the algorithm for refining the test

suite.

The algorithm TestSuiteRefining (in Figure 4.7) is straight-forward. Line 3 sorts the test

cases in ascending mode by transition sequence. Lines 5-12 check each test case and its

following test case. If a test case is a subset of another test case, it must be a subset of

133

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

the test case which is just next to it. If a test case is a subset of another test case, this test

case shall be removed from the suite.

Algorithm GUIAdjustmentDefectsTestCaseGenerating

1) GUIAdjustment DefectsTestCaseGenerating (M :GUITAM, C:Fun_Obj_Criterion,

Ť :TestSuite)

2) {

3) Ť=Ø;

4) For each ݐ א .ܯ ܶ ٿ ሻݐሺ݉ݎ݂ ൌ ݏ

5) GenerateGUIAdjustmentTestCase(M, C, Ť,w, t, 0);

6) }

7) GenerateGUIAdjustmentTestCase (M :GUITAM, C :GUIAdjustment_Obj_Criterion,

Ť :TestSuite, w: walk, t:transition, len: int)

8) {

9) if(߬ א ߬ ٿ ݓ ് ݓ ሻݐ ൌ ݓ ሼݐሽ;

10) else return;

11) if(ݐ א .ݐሺ݉ܿٿ ݓ ݁ሻ א ܱ ߱ٿ א Ť߱ٿ ് (ݓ

12) {

13) Testcase Ѓ = createtestcase(w);

14) Ť ൌ Ť ሼЃሽ ;

15) }

16) if(meetcriterion(Ť, C)) return;

17) for each ݐ א .ܯ ܶ ٿ ሻݐሺ݉ݎ݂ ൌ ሻݐሺݐ

18) GenerateGUIAdjustmentTestCase (M, C, Ť, w, t, len+1);

19) w=w-{t};

20) }

Figure 4.6 Algorithm for generating GUI adjustment defects directed test cases

Algorithm TestSuiteRefining

1) TestSuiteRefining (Ť :TestSuit)

134

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

2) {

3) SortByTransitionSequenceAscending(Ť)

4) i=0;

5) while(i< Ť.size-1)

6) {

7) Ѓ1= Ť[i];

8) Ѓ2= Ť[i+1];

9) if(Ѓ1 is subset of Ѓ2)

10) Remove(Ť ,Ѓ1);

11) else i=i+1;

12) }

13) }

Figure 4.7 Algorithm for refining test suite

4.3.4 Functional-interactive defects directed test case generation

Sole defect classification directed test cases suite size is much smaller and also useful

for finding related common defects, especially when the functions related to the

functional objects are independent. For example, an “open file” menu item opens an

open file dialog; a ‘C’ button clears the contents of the textbox in a calculator. If there

are some malfunctions under these buttons, a mouse click on the button will find the

faults. Unfortunately, this is not always the case. Many functional objects function

differently when the contents of interactive objects are different. For example, when a

‘File name’ text box is empty and you click ‘Open’ button, it behaves differently from

when the ‘File name’ text box is filled with a file name. To find these kinds of defects,

compound coverage of both interactive and functional objects is needed to generate test

135

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

cases which take account of different valued interactive objects. It is possible to test all

value combinations for bi-valued objects whereas it is not possible to test all value for

other objects such as text boxes, spinners etc. For input fields with large or unlimited

domain sizes, the specifications of the AUT must be used for boundary information.

With the boundary information for each field, the test cases can be generated within all

these combinations. The number of combinations will increase exponentially as the

number of interactive objects increases. Suppose that there are m bi-valued objects, n

large-domain objects and k functional objects, and for each large-domain object three

values are used: lower boundary, upper boundary and mid-value, then the total number

of possible test cases is2 ൈ 3 ൈ ݇. Obviously, it is such a prodigious number that

testing all the possibilities is impractical.

To generate functional-interactive test cases, a functional-interactive coverage criterion

is given in Definition 4.4. Since it is impractical to test all the possible combinations,

this coverage criterion requires covering all possible states for each object at least once

and each test case’s last transition is an event of one of the functional object.

Definition 4.4: A test suite Ť satisfies the functional-interactive coverage criterion if

and only if א ܱ, ݒ א ܸ, ′ א ܱ, Ѓ א Ť ٿ ݐ א Ѓ. ߬ ٿ ሺ݉ܿ .ݐ ݁ሻ ൌ ݁ٿ ൌ

′Ѓ ٿሻݒሺ݁ݑ݈ܽݒݐ݁ݏ א Ť ٿ ′ݐ א Ѓ′. ߬ ٿ ሺ݉ܿ .′ݐ ݁ሻ ൌ , ′

where Oi is the set of all interactive or composite interactive objects in the GUIs, and

comp(e) denotes the component which contains the event e, Of is the set of all

136

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

functional objects in the GUIs, Vo is the set of all possible statuses of object o, and Ѓ′ is

the last transition of Ť .

Figure 4.8 Example of Functional-Interactive Object Coverage

In Figure 4.8, the solid red lines are the functional object related transitions and the blue

dotted lines are the interactive object related transitions. Functional-Interactive object

coverage needs the test suite to cover all the solid and dotted transitions. Each test case

needs to include both functional transitions and interactive transitions. Figure 4.9 shows

the algorithm for generating functional-interactive compound test cases.

Algorithm Functional-InteractiveTestCaseGenerating

1) Functional-InteractiveTestCaseGenerating (M :GUITAM,

C :Functional_interactive_Criterion, Ť :TestSuite)

2) {

e7

t6

t2 t1

t3(B,New)

t4(B,Ok)

t5(B,Cancel)

t30(B,Close)

t8(B,Ok)

t9(B,Close)

t10(B,Edit)

t11(B,Ok)

t12(B,Cancel)

t15(B,Med)

t16(B,Close)

t17(B,New)

t18(B,Ok) t19(B,cancel)

t24(B,Edit)

t25(B,Ok)

t26(B,Cancel)

S2

S0 Se

S1

S3

S5
S7

S6
S4 t13

t14

t20

t21

t22

t23

t27

t28

t29

137

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

3) Ť=Ø;

4) For each ݐ א .ܯ ܶ ٿ ሻݐሺ݉ݎ݂ ൌ ݏ

5) Generate Functional-Interactive TestCase(M, C, Ť,w, t, 0);

6) }

7) Generate Functional-InteractiveTestCase (M :GUITAM,

C :Functional_interactive_Criterion, Ť :TestSuite, w :walk, t :transition, len: int)

8) {

9) if(߬ א ߬ ٿ ݓ ് ݓ ሻݐ ൌ ݓ ሼݐሽ;

10) else return;

11) if(ݐ א ٿ ݓ ൌ .ݐሺ݉ܿ ݁ሻ א ܱ ݒٿ א ܸ ݐٿ. ݁ ൌ ߱ٿ ሻݒሺ݁ݑ݈ܽݒݐ݁ݏ א Ť ߱ٿ ്

ٿ ݓ .ݐሺ݉ܿ ݁ሻ א ܱ)

12) {

13) Testcase Ѓ = createtestcase(w);

14) Ť ൌ Ť ሼЃሽ ;

15) }

16) else return;

17) if(meetcriterion(Ť, C)) return;

18) for each ݐ′ א .ܯ ܶ ٿ ሻ′ݐሺ݉ݎ݂ ൌ ሻݐሺݐ

19) Generate Functional-InteractiveTestCase (M, C, Ť, w, t’, len+1);

20) w=w-{t};

21) }

Figure 4.9 Algorithm for generating functional-interactive compound test cases

The algorithm Functional-InteractiveTestCaseGenerating in Figure 4.9 traverses the

graph in a given GUITAM model and selects the routes which contain events that set

the interactive objects’ main property values. For bi-valued objects such as check

boxes, it can be either setvalue(true) or setvalue(false). For a large-domain object such

as a spinner, it can be either setvalue(minimum), setvalue(maximum) or

138

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

setvalue((maximum+minimum)/2). Functional-interactive test cases see the value set

of the interactive and composite interactive objects as the parameters of the functions

which can be triggered by functional objects. Each test case generated by this

algorithm ends with a functional event.

4.4 Experiment

This experiment was based on the experiment in Chapter 3. The same four subject

applications and the generated GUITAM models were used. For each subject

application, functional defects directed test cases, interactive defects directed test cases

and functional-interactive defects directed test cases were generated. Test oracle

information was generated as described in Chapter 3. Because the four subject

applications are different kinds of applications, the distributions of each kind of object

are different. In Calculator, all inputs are made by buttons, and functional objects

account for the majority of the objects. In ScreenDrawer, because functions are mainly

brought out by buttons and menu items, functional objects also account for the

majority of the objects. In the other two applications, functional objects still account

for significant proportions of the objects, but there are comparatively less of them.

Table 4.7 shows the distributions of different kinds of objects in the subject

applications.

Table 4.7 Distribution of different kinds of objects in subject applications

Subject application Object number

139

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Functional Interactive Component
Interactive

Others

Calculator 54 75% 4 5% 0 0% 15 20%
EasyWriter 54 36% 22 14% 8 5% 68 45%
EnglishStudy 45 21% 23 11% 13 7% 129 61%
ScreenDrawer 84 60% 8 6% 4 3% 44 31%

Defect classification directed test cases for certain applications were generated

according to a given type of defects and coverage criterion. Because the number of any

given type of object is much smaller than the total number of objects, the combinations

of events related to the given type of objects were exponentially decreased and

therefore the required number of defect classification directed test cases was much

smaller than the general generated test cases in Chapter 3. Table 4.8 shows the number

of different kinds of test cases generated for each of four subject applications

respectively.

Table 4.8 Number of defect classification directed test cases

Subject
application

Test case number
Functional Interactive Functional-

Interactive
Total

Calculator 265 26 662 953
EasyWriter 224 165 326 715
EnglishStudy 162 172 586 920
ScreenDrawer 326 56 462 844

Test oracle information was also generated automatically from the base versions of the

subject applications. By executing the selected test cases on the base version of each

application, the state information was retrieved and saved after each event in each test

140

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

case was performed. Table 4.9 shows the oracle information for each subject

application.

Table 4.9 Oracle information for each subject application

Subject application Test cases Oracles size (MB)
Calculator Functional 265 14.5

Interactive 26 1.8
Functional-
Interactive

662 62.3

Total 953 78.6

EasyWriter Functional 224 3.6

Interactive 165 3.4

Functional-
Interactive

326 6.9

Total 715 13.9
EnglishStudy Functional 162 4.6

Interactive 172 4.9

Functional-
Interactive

586 20.3

Total 920 29.8

ScreenDrawer Functional 326 8.2

Interactive 56 1.6
Functional-
Interactive

462 12.5

Total 844 22.3

Because the total number of test cases generated by the defect classification directed

method was much smaller than that in Chapter 3, the oracle size of the test suite for

each application was consequently much smaller. Figure 4.10 shows the comparison

141

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

of oracle sizes used between the Length-n method used in Chapter 3 and the

Classification Directed method used in this chapter.

Figure 4.10 Comparison of oracle sizes generated by different methods

Different kinds of test cases were executed separately on the subject applications to

check the effectiveness of the detecting faults. Figure 4.11 shows the numbers of faults

detected by the different kinds of test case. The solid bar stands for the total number of

faults detected by the three kinds of test case.

From the results shown in Figure 4.11, we can conclude that functional directed test

cases can find more faults than interactive-only directed test cases. The joint

functional-interactive directed test cases have the best ability to detect faults. From

Table 4.8, we know that the number of functional-interactive test cases is larger than

0

600

400

200

Length‐n

generated

Classification

Directed

O
ra
cl
e
si
ze
 (
M
B
)

Calculator NotePad EnglishStudy ScreenDrawer

800

142

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

the number of other kinds of test case, which is one of the reasons why it is able to

detect more faults.

Figure 4.11 Number of faults detected by defect classification directed test cases

In comparison with the results shown in Figure 3.26, even though the ability of a

specific type of cases to detect faults varies, the number of total faults detected by all

the types of test case is similar to the number of faults detected by the general

generated test case. The results show that defect classification directed test cases have

a similar ability to detect faults as do general generated test cases, but with much fewer

test cases. Figure 4.12 shows the numbers of test cases used for the testing, where the

grey bar shows the number of test cases generated with the length-n coverage criterion

80

60

40

20

0

functional detected

interactive detected

Functional‐interactive

detected

Total detected

Total seeded

N
u
m
b
er
 o
f
fa
u
lt
s

Calculator NotePad EnglishStudy ScreenDrawer

143

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

in Chapter 3 and the yellow bar shows the number of test cases generated with the

defect classification directed method described in this chapter.

Figure 4.12 Comparison of numbers of test cases generated by different methods

From Figures 4.12 and 4.13, we can see that even the numbers of test cases used in

defect classification directed generation method are fewer - 10% of the length-n

method used in Chapter 3. However, the numbers of faults found with the smaller

number of test cases was almost the same. Apparently, the defect classification

directed test cases generating method can generate more efficient test cases.

10000

6000

4000

2000

0

Length‐n

generated

Classification

Directed

N
u
m
b
er
 o
f
te
st
 c
as
es

Calculator NotePad EnglishStudy ScreenDrawer

8000

144

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Figure 4.13 Comparison of numbers of faults detected by different methods

4.5 Conclusion

This chapter analyzed the classification of defects. Defect classification is based on the

classification of objects. According to the characteristics of object functionality, defects

are divided into three main classes: functional defects, interactive defects, and GUI

adjustment defects. The distribution of different classes of defects in popular software

was also presented. To reduce the number of test cases without losing the quality of

detecting defects, defect classification directed test case coverage criteria and test case

generation algorithms were presented as well. The test case coverage criteria included

functional object coverage criterion, interactive object coverage criterion, GUI

adjustment object coverage criterion, and functional-interactive coverage criterion.

Corresponding test case generating algorithms included Functional Defects Directed

60

40

20

0

Length‐n

generated

Classification

Directed

N
u
m
b
er
 o
f
fa
u
lt
s
d
e
te
ct
e
d

Calculator NotePad EnglishStudy ScreenDrawer

80

145

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Test Case Generating, Interactive Defects Directed Test Case Generating, GUI

Adjustment Defects Directed Test Case Generating, and Functional-interactive defects

directed test case generating. By focusing on certain classes of defects, the

corresponding algorithms can generate efficient test cases with a very small test suite

size.

An experiment was also carried out for evaluating the effectiveness of defect

classification directed test cases. In the experiment, functional directed, interactive

directed and functional-interactive directed test cases were generated respectively for all

four subject applications. The results showed that, with a much smaller number of test

cases, defect classification directed test cases can effectively and efficiently detect

faults.

146

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Chapter 5

Long Use Case Closure Envelope Model

In principle, an infinite number of event sequences may be performed on a GUI. As

discussed in previous chapters, exhaustive testing on GUIs is impossible. It is very

important to generate a manageable number of effective test cases in the light of the

resources available. Various approaches may be used to automatically generate test

cases for GUIs such as random test case generation and model-based structural test

case generation. Due to the prodigious number of possible test cases, conventional

methods usually try to avoid test cases explosion by limiting the length of each test

case to certain steps, normally three to finish the tests in a practical time. Three steps

are normally far from enough to cover a task. Chapter 4 presented defect classification

and defect classification directed test cases generating algorithms which greatly reduce

the number of test cases without losing the ability to detect GUI faults. However, lack

of human knowledge about business logic of applications limits the defect

classification directed methods from efficiently detecting defects that reside in the

logic of long tasks. Tasks are typical scenarios which are most often used by software

users. Errors in these typical tasks may lead to fatal interruption or even the disaster of

losing important data. Some research has been done on software testing by using use

cases [116, 117, 118, 119, 11], but few of them integrate use cases into GUI testing

automation. In this chapter, by making use of the use cases which are either from

147

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

AUTs’ specifications or from the records of user actions of performing typical tasks, a

Long Use Case Closure Envelope Model is proposed in order to generate highly task-

oriented test cases.

5.1 Use cases representation

Use cases are used to describe the behaviour of a system. System functionalities are

identified and described with a set of use cases during the analysis phase of a project.

Actors are used to represent parties outside the system which interact with the system.

Actors can be either humans or any other systems such as computers, hardware etc.

Actors must be external to the use cases of the system and supply stimulus to the use

cases. Use cases capture who (actor) does what (interaction) with the system, for what

purpose (goal), without dealing with system internals. A complete set of use cases

specifies all the different ways to use the system, and therefore defines all behaviour

required of the system, bounding the scope of the system.

Usually use cases are described in use case diagrams with Unified Modelling

Language (UML) [122]. UML (1999) provides three relationships that can be used to

structure use cases. These are generalization, include and extends. An include

relationship between two use cases means that the sequence of behaviour described in

the included (or sub) use case is included in the sequence of the base (including) use

case. Including a use case is thus analogous to the notion of calling a subroutine [121].

148

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

The extends relationship provides a way of capturing a variant to a use case.

Extensions are not true use cases but changes to steps in an existing use case. Typically

extensions are used to specify the changes in steps that occur in order to accommodate

an assumption that is false [121]. The extends relationship includes the condition that

must be satisfied if the extension is to take place, and references to the extension points

which define the locations in the base (extended) use case where the additions are to be

made.

A generalization relationship between use cases “implies that the child use case

contains all the attributes, sequences of behaviour, and extension points defined in the

parent use case, and participates in all relationships of the parent use case.” The child

use case may define new behaviour sequences, as well as add behaviour into and

specialized existing behaviour of the parent [122]. Figure 5.1 is an example of a use

case diagram for an online shopping system.

Formally, a Use Case Diagram can be defined as Definition 5.1.

Definition 5.1 (Use Case Diagram) A use case diagram UCD = (n,ACT,UC, , ,

and) consists of a diagram name n; a finite set ACT of actor’s names which can be

users and external systems; a finite set UC of use cases; and three relations , ,

and , where (ACT × ACT) (UC × UC)∪ ; ACT × UC; and
<<i>><<i>>

<<i>>

149

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

UC × UC; as usual we write p q, rather than (p, q) ∈ , and analogously for

 and [120].

Figure 5.1 Online shopping use case diagrams

Each use case should have a unique name suggesting its purpose. The name should

express what happens when the use case is performed. It is convenient to include a

reference number to indicate how it relates to other use cases. The name field should

also contain the creation and modification history of the use case preceded by the

keyword history [121]. Each use case can be detailed with an activity diagram.

Activity diagrams are graphical representations of workflows of stepwise activities and

actions with support for choice, iteration and concurrency. This chapter uses activity

Customer

<<include>>

<<include>>

<<include>>

<<include>>

<<include>><<include>>

<<include>>

<<include>>

Purchase

Notify empty shopping cart

Query catalogue

Shopping Cart

Confirm remove article

Add article

Manage catalogue

Modify article

Delete article

Give Shipping Info Give Payment Info

System Manager

<<i>>

150

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

diagrams to describe the operational step-by-step workflows of components in a use

case. Activity diagrams are constructed from a limited repertoire of shapes, connected

with arrows. The most important shape types are [120]:

 : a black circle, representing the start (initial state) of the use case;

 : an encircled black circle, representing the end (final state) of the use case.

 : rounded rectangles, representing stereotyped states or other activity diagrams. If

another activity diagram is represented, this diagram can either represent the behaviour

of another use case or simply a way of allowing a hierarchical decomposition of the

original activity diagram.

: diamonds, representing conditions. Conditions can represent user choices or

business / data logic. User choices are a condition of the user’s interaction with a

graphical component. Business / data logic is an internal checking condition.

 :bars, representing the start (split) or end (join) of concurrent activities;

 :arrows running from the start towards the end and representing the order in

which activities happen. Each arrow is also called a transition. A transition can be a

stereotype, condition or both together.

When describing a use case with an activity diagram, the states and transitions are

mainly considered. In an activity diagram, , , represent initial state, final state

and intermediate state respectively. An intermediate state can be either a stereotyped

151

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

state or not. Stereotyped states represent atomic states which can be labelled and

directly mapped to a set of GUI components. A non-stereotyped state means that the

state is described in another activity diagram which can either represent the behaviour

of another use case or simply a way of allowing a hierarchical decomposition of the

original activity diagram. Transitions () can be labelled by means of stereotypes,

conditions or both together. A stereotyped transition can usually be directly connected

to an event on the GUI such as a button click. Conditions can represent user choices or

internal business / data logic. A user choice condition is a condition of the user’s

interaction with a GUI component such as selecting a radio button. A business /data

logic condition is an internal checking condition in an internal process such as whether

a shopping cart is empty. Figure 5.2 is an example activity diagram describing a

purchase use case. Definition 5.2 formally defines a use case activity diagram.

Figure 5.2 Activity diagram of a purchase use case

Check out

Return

[Not empty]

Close Exit

Accept

Close
Add

Show

Query
catalogue

Input card

shopping cart
empty

Input postal
address

Shopping
cart

Accept

Exit

[Empty]

Exit

152

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Definition 5.2 (Use Case activity diagram) A use case activity diagram (UCAD) u =

(n, S, SI, IN, OUT,COND,→) consists of: a use case name n; a finite set S of states

which consist of: (1) a finite set UC of use cases activity diagram; (2) a finite set SS of

stereotyped states of the form (sn, p) where sn is a state name and p ∈ OUT; (3) three

special states SP, the initial, end and branching states; a finite set SI of stereotyped

interactions of the form [C]/(in, i) where C COND∈ , in is an interaction name, and i

 IN∈ . The condition [C] is optional; a finite set IN of input stereotypes; a finite set

OUT of output stereotypes; a finite set COND of conditions; a transition relation →

S × (SI ∪ COND) × S. As usual we write A B rather than (A, λ, B) →∈ , where λ

can be [C] or [C]/(in, i).[120]

A scenario is an instance of a use case, and represents a single path through the use

case. Thus, one may construct a scenario for the main flow through the use case, and

other scenarios for each possible variation of flow through the use case (e.g., triggered

by options, error conditions, security breaches, etc.). Scenarios may be depicted using

sequence diagrams.

A Sequence Diagram shows interactions among a set of objects in temporal order. It

depicts the objects by their lifelines and shows the messages they exchange in time

sequence. For GUI-based software, the message sequence can be converted into an

events sequence on the GUI which represents a task execution procedure. A Sequence

Diagram has two dimensions: the vertical dimension represents time, and the

λ

153

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

horizontal dimension represents the objects. Messages are shown as horizontal solid

arrows from the lifeline of the object sender to the lifeline of the object receiver. A

message may be guarded by a condition, annotated by iteration or concurrency

information, and/or constrained by an expression. Each message can be labelled by a

sequence number representing the nested procedural calling sequence throughout the

scenario, and the message signature. A use case sequence diagram is formally defined

in Definition 5.3. Figure 5.3 is a sequence diagram of a use case “Submit a cart”.

Figure 5.3 “Submit a cart” use case sequence diagram

Cart Submitted

Cart id

Save Cart

Each item cost

Checkout items

Calculate item cost

For each item

Customer Cart Cart Item Database

Submit a cart

154

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Definition 5.3 (Use Case Sequence Diagram) A use case diagram UCSD = (O, M, E)

where:

 O = (o1, o2, ..., om), is a collection of objects. Each object can be also an actor.

 M = (m1, m2, …, mk), is a collection of messages. Each message is a tuple: m =

(oi : Ci; oj : Cj ; action; order) where oi is the source object of the message with

class type Ci. oj is the target object of the message with class type Cj. action is a

guarded method call. order is the number of the message in the corresponding

sequence.

 E = M (s, r), is the event set. Event is to send and receive messages. [120]

A sequence diagram describes a series of ordered messages which indicate the

operations and data flow between objects. Apparently, a sequence diagram is more for

humans rather than for computers to understand. The lack of detailed information

limits the capacity for automation. Both object and message are abstract concepts

which can be better understood by a human being than by machines. For testing

purpose, the series of messages need to be linked to concrete events and parameters,

and the objects need to be linked to GUI states and widgets. Each object can be either

an actor or a concrete set of GUI objects (widgets). For examples, a customer in Figure

5.3 is an actor. A cart may be a set of GUI objects: a label named ‘Cart’, a listbox

showing the list of items, and a textbox showing the amount of total price. When a

non-actor object is linked to GUI objects, it is easy to find the corresponding states

which contain the GUI objects. Each message in a sequence diagram must be

155

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

generated under certain context, which is called a state. Each message can be

embodied with a series of events on a GUI. To add detailed information into a

sequence diagram, a new model called Detailed Use Case Sequence Diagram (DUCSD)

was created, which can be easily used for automatic task oriented test case generating.

DUCSD is formally defined in Definition 5.4.

Definition 5.4 (Detailed Use Case Sequence Diagram) A use case diagram DUCSD =

(O, M, E, S) where:

 O = (o1, o2, ..., om), is a collection of objects. Each object can be either an actor

or not. If an object is not an actor, it can be lined with a set GUI objects. א ܱ ,

o = (t, W) where t is the type of an object. The value of t can be either “actor” or

“non-actor”. W is a set of GUI objects. W= Ø if t=”actor”.

 M = (m1, m2, …, mk), is a collection of messages. Each message is a tuple: m =

(oi : Ci; oj : Cj ; action; order; s, E;) where oi is the source object of the message

with class type Ci. oj is the target object of the message with class type Cj. action

is a guarded method call. order is the number of the message in the corresponding

sequence. s is the initial state which describes the initial context of starting the

message. E is a set of events which depict the detailed process of the generating

and sending the message.

 E is the union of all event sets in messages in M

156

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

 S=(s1,s2,…,sn) is all GUI states that are involved in events in E. ݏ א ܵ, s is

basically a GUI state defined in GUITAM with an additional Boolean mark:

IsStateLess. If the IsStateLess = true, the state is stateless which means no matter

how it comes to this state, the results of any other sequences that start from this

state won’t be affected.

Figure 5.4 “Submit a cart” detailed use case sequence diagram

Cart Submitted

Cart id

Save Cart

Each item cost

Checkout items

Calculate item cost

For each item

Customer Cart Cart Item Database

Submit a cart

Object List:
Label:’Cart’
Listbox:Items

Object List:
Label:’Name’
Label:Name
Label:’Type’
Text:Count

S3
S4

S4 S5

S6

S6

157

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

The detailed information for a DUCSD cannot be retrieved from the specifications of

an AUT because conventional UML doesn’t support this new model. Thus manual

work is needed to put the detailed information into an existing use case. Figure 5.4

shows the detailed use case sequence diagram of use case “Submit a cart”. In this

diagram, two shapes are added to the existing UML model, which are a round

rectangle and circle. A round rectangle is used to list the detailed GUI objects related

to an abstract object, e.g., a Cart. A circle is used to mark the real GUI state to a

message. A rectangle can be edited with the GUITAM tool by pointing the mouse to

certain GUI objects, and adding them to a related abstract object. A circle can be edited

by navigating the AUT to certain state and connecting the state to a related abstract

message. With the GUITAM edit tool, a detailed use case sequence diagram can be

easily generated from an existing use case sequence diagram.

5.2 Backbone of a use case

Use cases cannot be directly used in GUITAM automation because the objects and

messages described in a use case or a use case sequence diagram are not explicitly

linked to states, transitions and objects in GUITAM created from the run time AUT.

Conversion algorithms are needed to translate a use case or a use case sequence

diagram into a sub-set of GUITAM. A well defined use case is supposed to use the

same terminologies as those used in the real GUI implementation which enables the

automatic translation from a use case or a use case sequence diagram into a subset of

GUITAM. Because each use case has distinct final states, a new model named Use

158

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Case Backbone (UCBB) was specifically defined to describe use cases as a subset of

GUITAM. Use Case Backbone is formally defined in Definition 5.5. The conversion

from a Use Case Activity Diagram (UCAD), a Use Case Sequence Diagram (UCSD)

and a Detailed Use Case Sequence Diagram (DUCSD) to a UCBB will be discussed in

the following paragraphs.

Definition 5.5 A Use Case Backbone (UCBB) Ms is 5-tuple (Σ,S,s0,T, G), is basically a

subset of another GUITAM M where

Ms.s0 M.S is the initial state of the use case,

 Ms. Σ M.Σ is the set of all inputs (events),

 Ms.S M.S with each s in Ms.S, s has an additional Boolean mark named IsStateLess,

Ms.T M.T is the set of transitions,

 Ms.G M.S is the set of goal states of the use case, and

ݏ א .௦ܯ ܵ, there exists at least one path from Ms.s0 to s. G.

In a use case activity diagram, a stereotyped state is usually reflected in a state in

GUITAM. This state should include one or more active windows or dialogs which

have either the title with the name of the stereotyped state or have labels with the name.

With the stereotyped state name and its description, a fuzzy search can be used to get

the corresponding state in GUITAM. For example, a stereotyped state called ‘Open

File’ can be interpreted as an ‘Open file’ dialog which is supposed to be one of the

159

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

states in GUITAM. If this mapping fails, manual work must be involved to select the

corresponding state. Sometimes, one name may be found in more than one state in

GUITAM. In this circumstance the related transitions and conditions in the use case

can be used to differentiate the specified state from others. We used

‘SearchCorrespondingState’ to denote the process of looking for the corresponding

state in GUITAM of a given name in a use case state. Likewise, we used

‘SearchCorrespondingTransition’ to denote the process of looking for the

corresponding transition in GUITAM of a given message in a use case. Figure 5.5

shows the algorithm ConvertUseCaseActivityDiagramToUCBB.

Algorithm ConvertUseCaseActivityDiagramToUCBB initializes the subset Ms (line 3),

and then looks for the use case’s initial state’s corresponding state in M. This state is

set as the initial state s0 in Ms (lines 4-5). Line 6 starts the recursive

ConvertActivityDiagramToUCBB procedure. Lines 7-8 adds the goal state in the use

case to Ms.G.

The ConvertActivityDiagramToUCBB procedure depth-firstly visits each node through

the transitions. Each transition will be visited once and only once (lines 11 – 25). Each

use case transition’s corresponding GUITAM transition will be found and added to

Ms.T. Each node can be either a stereotyped state or not. If it is a stereotyped state, the

corresponding state in the given GUITAM will be found and added to Ms.S. (lines 17-

19). If it is a use case, a recursive call to ConvertUseCaseActivityDiagramToUCBB

160

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

will be invoked to generate a sub UCBB Ms’ for this use case and then the generated

sub UCBB Ms’ will be merged into Ms (lines 20 – 23).

Algorithm ConvertUseCaseActivityDiagramToUCBB

1. ConvertUseCaseActivityDiagramToUCBB (u: UseCase, M: GUITAM, Ms: UCBB)

2. {

3. Ms. = Ø; Ms.S = Ø; Ms.T = Ø; visited= Ø;

4. su=GetInitialState(u);

5. s= SearchCorrespondingState(M, su); Ms.s0= s; Ms.S = Ms.S {s}

6. ConvertUseCaseToGUITAMSub(u, M, Ms, su);

7. g=GetUseCaseGoalState(u);

8. Ms.G = Ms.G {SearchCorrespondingState(g)};

9. }

10. ConvertActivityDiagramToUCBB(u: UseCase, M: GUITAM, Ms: UCBB, s:

UseCaseState , visited:UseCaseTransition)

11. {

12. for each t u.SI∈ from(t)=s t visited

13. {

14. τ = SearchCorrespondingTransition(t, M);

15. Ms.T=Ms.T { τ}

16. s’=to(t); visited = visited {t}

17. if(s’ is stereotyped) {

18. s= SearchCorrespondingState(M, su); Ms.S = Ms.S {s}

19. }

20. else{ //s is another use case

21. ConvertUseCaseActivityDiagramUCBB (s’, M, Ms’);

22. Ms = Ms Ms’

23. }

24. ConvertActivityDiagramToUCBB (u,M,Ms,s’,visited);

25. }

26. }

Figure 5.5 Algorithm Convert Use Case to UCBB

Use case activity diagrams detail the logic of a use case and therefore completely

describe the flow of the use case. Fully detailed use cases are often not available due to

161

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

the uncertainty of user requirements. Many designers use sequence diagram to describe

the use cases instead. From a sequence diagram, we can also create a UCBB which is

very practical and efficient for producing test cases. The objects in a sequence diagram

are not so straightforward to be mappable to a state in GUITAM. The core information

which is important for the conversion is the messages. Because each message is

encoded with the name, objects involved and function description, this information can

be used for looking for the corresponding transitions in a given GUITAM. We also use

‘SearchCorrespondingTransition’ to search a corresponding transition in the GUITAM

by the information in a message. Figure 5.6 shows the algorithm for converting a use

case sequence diagram to a subset of a GUITAM.

Algorithm ConvertUCSDToUCBB is straightforward. It uses the first message to find

the transition in a GUITAM and uses the source state of the transition as the initial

state s0. It also adds transition to Ms.T and both the source and destination states of the

transition to Ms.S. For each of the rest of the messages, it searches for the

corresponding transition in the GUITAM and adds the transition to Ms.T and both the

source and destination states to Ms.S. Line 41 adds the last state in the sequence

diagram to the goal state set Ms.G.

Algorithm ConvertUCSDToUCBB

1. ConvertUCSDToUCBB (d: SequenceDiagram, M: GUITAM, Ms: UCBB)

2. {

3. Ms. = Ø; Ms.S = Ø; Ms.T = Ø;

4. SortMessagesByMessageOrderAscending(d);

5. msg=d.M[0];

162

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

6. τ = SearchCorrespondingTransition(msg, M);

7. Ms.T= Ms.T { τ };

8. ssrc= from(τ); sdst=to(τ); Ms.s0= ssrc; Ms.S = Ms.S {ssrc,sdst};

9. for i=1 to d.M.length-1

10. {

11. msg=d.M[i];

12. τ = SearchCorrespondingTransition(msg, M);

13. Ms.T= Ms.T { τ };

14. ssrc= from(τ); sdst=to(τ); Ms.S = Ms.S {ssrc,sdst};

15. if(i=d.M.length-1) Ms.G= Ms.G { sdst };

16. }

17. }

Figure 5.6 Algorithm of converting use case sequence diagram to UCBB

Because of the lack of detailed information in both raw activity diagrams and raw

sequence diagrams, it is in practice very hard to convert them automatically into

UCBB without any human effort. The new detailed use case sequence diagram

DUCSD has detailed information which helps automate the process of the conversion

to an UCBB. Figure 5.7 shows the algorithm for converting a DUCSD to a UCBB.

Algorithm ConvertDUCSDToUCBB

1. ConvertDUCSDToUCBB (d: DUCSD, M: GUITAM, Ms: UCBB)
2. {

3. Ms. = Ø; Ms.S = Ø; Ms.T = Ø;

4. SortMessagesByMessageOrderAscending(d);
5. for i=0 to d.M.length-1
6. {

7. msg=d.M[i];
8. for j=0 to msg.E.length-1
9. {

10. τ =SearchTransition(msg.E[j]);
11. if(i=0 and j=0) Ms.s0= from(τ);

12. Ms.T= Ms.T { τ };

13. ssrc= from(τ); sdst=to(τ);

163

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

14. tssrc=from(msg.E[j]); tsdst=to(msg.E[j]);
15. ssrc.IsStateLess=tssrc.IsStateLess; sdst.IsStateLess=tsdst.IsStateLess

16. Ms.S = Ms.S {ssrc,sdst};

17. if(i=d.M.length-1 and j=msg.E.length-1) Ms.G= Ms.G { sdst };

18. }
19. }
20. }

Figure 5.7 Algorithm for converting DUCSD diagram to UCBB

Tha algorithm ConvertDUCSDToUCBB in Figure 5.7 makes full use of the detailed

information in a DUCSD and generates a corresponding UBCC. Line 3 initializes the UCBB

Ms, and then sorts the messages in d.M (line 4). The algorithm traverses all the events in each

message and looks for all corresponding transitions and states in the given GUITAM M. The

first event of the first message is used to find the first transition of the use case sequence

diagram and the initial state is retrieved from the transition (line 11). The value of ‘IsStateLess’

property of each state recorded in the DUCSD will be copied to the corresponding destination

state. (line 15). The last event of the last message will be used to find the last transition and

this transition will be used to retrieve the goal state of the UCBB (line 17). The quality of the

conversion relies on the detailed information given in the DUCSD. This algorithm will fail to

convert if the messages are not encoded with detailed event sequences.

5.3 Encapsulating the UCBB with an envelope

Both activity diagram and sequence diagram describe the expected procedures for

terminal users to use the systems. These procedures are supposed to be the processes

most often used by users. Defects that reside in these procedures are often fatal to the

functionality of the software. But users don’t always use the software in exactly the

same ways as described in use cases. Very commonly, software users perform a task

164

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

proximately to the given procedure. Most defects reside in the by-side routes which are

close to the main route of the given procedure. Generating test cases for testing task

related defects needs to take into account the by-side routes which are close to the

main expected route. The backbone of a use case in a UCBB, which is generated from

either an activity diagram, sequence diagram or detailed use case sequence diagram

contains only the main route of a given use case which doesn’t include the by-side

routes. To generate effective use case orientated test cases, the UCBB needs to be

extended to include the related by-side routes. A method called ‘Closure’ was used to

extend the use case to a larger set of events and states. We call this extended UCBB an

envelope, encapsulating all possible branches of states and events possibly related to a

given task.

States in a UCBB are called base nodes. The event sequence and corresponding states

in the UCBB form the backbone of the use case. To extend a UCBB to a broader set,

events and states in the AUT’s GUITAM which are close to the backbone will be

added to the UCBB. A by-side is a path that starts from one of the base nodes and ends

with one of the base nodes. Any other nodes in the by-side path don’t belong to the

base nodes. To distinguish different types of events, we give a weight λ to each type of

events. We used length to measure the by-sides. The length of a by-side ݈ ൌ , eߣ∑

belongs to the events that make up the path. We used ‘closure set’ to denote all the

expanded notes and transitions.

165

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Definition 5.6 A closure set Mc of UCBB Ms is a 3-tuple (Σ,S,T), where Σ, S, T are

composed of all the events, states and transitions that are contained in all by-sides of

Ms with length less or equal to a given threshold d respectively. The length of each by-

side ݈ ൌ ∑ λୣ , ݅ ൌ .ei is the ith event from the backbone; λei is the weight of ei ,݇ ݐ 0

from(e0) ϵ Ms.S ٿto(ek) ϵ Ms.S 0|݅ ٿ ൏ ݅ ݇, from(ei) Ms.S 0|݅ ٿ ݅ ൏ ݇, to(ei)

 Ms.S.

Figure 5.8 shows a GUITAM for the popular clinic software Medical Director 3 (MD3)

[110] and illustrates the backbone (UCBB) and closure set of sending a referral letter.

Figure 5.9 shows the typical interfaces of MD3. Figure 5.9 (a) is the first GUI showing

the user agreement, (b) is the login GUI, (c) is the GUI for selecting a patient, and (d)

is the main GUI for treating a patient. (d) shows the state of ‘Current Medication’.

Many other main states such as ‘Progress’, ‘Results’, ‘Letters’, and ‘Old Scripts’ are

organized in different tabs which can be easily changed by clicking on the related tab.

(e) is the GUI for editing patient details and (f) is a GUI for writing a new referral

letter. In Figure 5.8, the red states and transitions represent the UBCC of the use case,

which includes opening MD3, selecting a patient, doing medication, creating a new

letter, sending the letter, closing the patient and closing MD3.

166

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Figure 5.8 UCBB and Closure Set of Sending a Referral in MD

Progress

Open
Visit

View
Diagram

Edit
Note

Append
Notes

Current
Medication

Alternative
Brands

Change
Strength

Change
Dose

Change
Quantity

Old
scripts

View
script

New
Item

Print
list

Results

Remove

View

Add

Letters

Print

Edit
New

Send

Select
Recipien

S0

Agree

Select
Patient

PWD

Quit

New
Details

New
Notes

Edit
Details

Edit
Notes

Y/N

Patient
closed

Se

167

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

(a) (b)

(c)

168

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

(d)

(e) (f)

Figure 5.9 Typical GUIs of Medical Director 3

169

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Depending on the weight assigned to the transitions and the threshold length, the

closure set of the UCBB may be different. Some transitions lead to opening a new

window or dialog, some transitions lead to a tab change, and some other transitions

just do editing without changing the state they belong to. In Figure 5.8, the five states,

Current Medication, Progress, Results, Letters and Old Scripts are separated by tabs

(Figure 5.9 (d)) and can be changed by selecting the corresponding tab. To explain the

procedure of generating the closure set for the UCBB in Figure 5.8, the weight λ is

assigned for each group of transitions (events) as follows:

 λe = 3 if e opens a new window or dialog or closes a windows or dialog;

 λe = 2 if e is a selection of a tab;

 λe = 1 if e is other events.

According to Definition 5.6, if we set the threshold length as 3, then only the blue

transitions in Figure 5.8 will be included in the closure set. If we set the threshold

length as 4, then the blue transitions, the dotted green transitions and the dotted green

states will be included in the closure set.

With the closure set and UCBB of a use case, we can form a new set which contains

highly relevant states and events to the use case. This set is called an envelope of the

use case.

170

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Definition 5.7 An envelope Me of a use case is a 5-tuple (Σ,S,s0,T, G), which is a

combination of a UCBB Ms and a Closure Set Mc, where Me.s0 =Ms.s0, Me.G=Ms.G,

Me.S = Ms.S ∪ Mc.S , Me.T = Ms.T ∪ Mc.T and Me. Σ = Ms.Σ ∪ Mc. Σ.

Definitions 5.6 and 5.7 also present the method of generating an envelope from a

GUITAM model and a UCBB of a use case. Figure 5.10 shows the algorithm for

generating the closure set of a use case from a UCBB and a GUITAM model. Figure

5.11 shows the algorithm for generating the envelope of a use case.

Algorithm GenerateClosureSetOfUsecase

1. GenerateClosureSetOfUsecase (Ms: SubSet, M: GUITAM, d: double, Mc:

ClosureSet)

2. {

3. Mc. = Ø; Mc.S = Ø; Mc.T = Ø;

4. for each s∈Ms.S{

5. s’=GetRelevantState(s,M);

6. GenClosureSet(Ms, M, d, s’, Mc’);

7. Mc. =Mc. Mc’. ; Mc.S= Mc.S Mc’.S; Mc.T = Mc.T Mc’T

8. }

9. }

10. GenClosureSet(Ms:Subset, M:GUITAM, d:double, s:GUIState, Mc:ClosureSet, w:

Walk)

11. {

12. for each ݐ א .ܯ ܶ ٿ ሻݐሺ݉ݎ݂ ൌ ݏ

13. {

14. w’= ݓ ሼݐሽ ;

15. if (∑ߣ௧′ ′ݐٿ ݀ א ሻ′ݓ

16. if(to(t) ∈ Ms.S) AddWalkToEnvelope(Mc, w’)

171

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

17. else GenClosureSet(Ms, M, d, to(t), w’, d, Mc);

18. }

19. }

Figure 5.10 Algorithm for Generating Closure Set of a use case

In Figure 5.10, GenClosureSet is a recursive procedure which starts from a GUIState s,

then depth-firstly traverses all possible paths which start from this state. A path with

length less or equal to a given threshold d and with the last node is one of the states in

the backbone will be considered as a by-side of the backbone. All corresponding states

and transitions in the by-side are added to the ClosureSet Mc by calling the function

AddWalkToEnvelope. When the GenClosureSet procedure finishes, the parameter Mc

will contain all the by-sides that meet the requirement which are from the given state s.

Function GenerateClosureSetOfUsecase calls the procedure GenClosureSet for each

GUI state in the base set and unions all the ClosureSets together to form the full

collection of by-sides which are close to the backbone.

Algorithm GenerateEnvelopeOfUsecase

1. GenerateEnvelopeOfUsecase (Ms: SubSet, Mc: ClosureSet, Me: Envelope)

2. {

3. Me. = Ø; Me.S = Ø; Me.T = Ø; Me.G = Ø;

4. Me.s0 =Ms.s0,

5. Me.G=Ms.G,

6. Me.S = Ms.S U Mc.S ,

7. Me.T = Ms.T U Mc.T

8. Me. Σ = Ms.Σ U Mc. Σ.

9. }

Figure 5.11 Algorithm for generating envelope of a use case

172

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

The algorithm GenerateEnvelopeOfUsecase in Figure 5.11 is used to generate an

envelope for a use case. It takes a base set Ms as the backbone, a ClosureSet Mc and

simply unions the corresponding collections to form the envelope of a use case Me.

In Figure 5.8, the envelope of the use case for sending a referral letter in Medical

Director 3 depends on the weight λ and the threshold length. If we use the assignment

of the weight λ and threshold lengths, the envelopes of the use case are as follows.

 Length=3, the envelope includes all red transitions, red states, green transitions.

See the part enclosed by the purple dashed line.

 Length=4, the envelope includes all red transitions, red states, blue transitions,

blue transitions and blue states.

 With the envelope of a use case, we can generate task oriented test cases. Each test

case starts from the initial state s0 in the envelope and ends at one of the goal states in

G.

5.4 Use case envelope based test case generation

Apart from the goal set of states, other parts of an envelope of a use case constitute a

subset of GUITAM. The purpose of creating envelopes of use cases is to generate task

oriented long test cases. In an envelope, there is an initial state s0 and a goal state set G.

Any route from s0 to a state in G can be seen as a test case. In comparison with the full

GUITAM model of an AUT, the numbers of both transitions and states within an

envelope is much smaller. Many typical scenarios contains only less than 10 steps with

173

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

which the generated envelope contains only very small numbers of transitions and

states. The extremely small numbers of transitions and states even make it possible to

test all paths which start from s0 and end in one of the goal states in G within the

envelope. All test cases generated from the envelope are related to the use case and are

very effective for detecting defects which relate to the corresponding task.

For small envelopes, test cases can be all the different paths that start from s0 and end

in one of the goal states. The algorithm in Figure 5.12 depth-firstly traverses all paths

which start from s0 in the given envelope and takes all the different paths which end in

one of the states in the goal state set G. These full paths form the set of task-oriented

test cases.

Algorithm EnvelopeFullPathsTestCaseGenerating
1. EnvelopeFullPathTestCaseGenerating(Me:Envelope, Ť :TestSuite)

2. {

3. Ť=Ø; w=Ø;

4. EnvelopeFullPathTraverse(Me, Me.s0, w, Ť)

5. }

6. EnvelopeFullPathTraverse(Me:Envelop, s:GUIState, w:Walk, Ť :TestSuite)

7. {

8. for each ݐ א .݁ܯ ܶ ٿ ሻݐሺ݉ݎ݂ ൌ ݏ

9. {

10. if (t w){

′ݓ .11 ൌ ݓ ሼݐሽ;
12. if(to(t) ∈Me.G){

13. Testcase Ѓ = createtestcase(w’); Ť ൌ Ť ሼЃሽ
14. }

15. else EnvelopeFullPathTraverse(Me, to(t), w’, Ť)

16. }

17. }

174

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

18. }

Figure 5.12 Algorithm for envelope based full path test case generating

The algorithm in Figure 5.12 exhaustively traverses all possible paths which start from

s0 and end in one of the goal states. This is only suitable for small envelopes. Not all

envelopes of use cases are small. As a matter of fact, in many GUI-based applications

such as clinic software systems, typical scenarios of use cases for different tasks may

need tens of steps and involve many GUI states. The number of exhaustive paths of

events grows exponentially as the number of states increases. Practically, only a subset

of paths can be selected from the full collection, according to given coverage criteria.

Since each test case generated from the envelope needs to go from s0 to a goal state,

the length-n coverage criterion in Definition 3.10 cannot be used in envelope based test

case generation. Other criteria in Definitions 3.7, 3.8, 3.9, 4.1 and 4.2 can be used for

the generation algorithm. The functional object coverage criterion and interactive

object coverage criterion defined in Definitions 4.1 and 4.2 are preferable due to their

large possible proportion of defects. To make use of these coverage criteria, the

function EnvelopeFullPathTraverse in Figure 5.12 is simply modified to check the

coverage criterion. It exits when the given coverage criterion is satisfied. Figure 5.13

shows the modified algorithm.

Algorithm EnvelopeTestCaseGeneratingWithCriterion
1. EnvelopeTestCaseGeneratingWithCriterion(Me:Envelope, Ť :TestSuite, C:Criterion)
2. {
3. Ť=Ø; w=Ø;
4. EnvelopeFullPathTraverse(Me, Me.s0, w, Ť, C)

175

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

5. }
6. EnvelopeFullPathTraverse(Me:Envelop, s:GUIState, w:Walk, Ť :TestSuite, C:Criterion)
7. {

8. for each ݐ א .݁ܯ ܶ ٿ ሻݐሺ݉ݎ݂ ൌ ݏ
9. {
10. if(meetcriterion(Ť, C)) return;
11. if (t w){
′ݓ .12 ൌ ݓ ሼݐሽ;
13. if(to(t) ∈Me.G){
14. Testcase Ѓ = createtestcase(w’); Ť ൌ Ť ሼЃሽ
15. }
16. else EnvelopeFullPathTraverse(Me, to(t), w’, Ť)
17. }
18. }
19. }

Figure 5.13 Algorithm for Envelope Test Case Generating With Coverage Criterion

5.5 Experiment

For each subject application, some typical use cases were selected. Use cases were

then turned into UCBB and encapsulated into envelopes. Due to the difference

between the subject applications, the number of test cases generated varies

significantly. Because there is only one window in Calculator, only two use cases were

selected: normal calculation and statistics. Normal calculation is in the form of

“operand1 operator operand2 =”, with which the buttons are divided into groups.

Operands constitute buttons with captions of ‘0’ to ‘9’ and ‘A’ to ‘F’. Operators are

those buttons with “+”, “-“, “*”, “/”, “sin”, “cos” and the like. When using the

“Closure” method to generate the closure set, we used length=3, and λ=1 as parameters.

Because events in normal calculation scenarios don’t change the GUI state, the

backbone of the use case was unclear which made the closure method unable to collect

176

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

an efficient subset. Almost all the events were selected for the closure set, which made

the envelope of this use case almost the same size as the full GUITAM model. When

generating test cases with this envelope, the number of test cases was still very large.

In ScreenDrawer, 10 use cases were used. While much more than in Calculator, only

324 test cases were generated for testing. The reason is that the scenarios of the use

cases cover more states which form distinguishing backbones in the GUITAM model.

With the clear backbone, envelopes of the use cases are much more efficient for

generating effective test cases. Detailed information for the selected use cases and test

cases is shown in Tables 5.1 and 5.2

Table 5.1 Use cases selected for each subject application

Subject application Number of use cases Use case names
Calculator 2 1. Calculation

2. Statistics
EasyWriter 9 1. Open file

2. Save file
3. Save as
4. Print
5. Print Setup
6. Copy-Paste
7. Set font
8. Set font color
9. Set background color

EnglishStudy 9 1. Select book-words
2. Select book-sentence
3. Maintain books
4. Maintain words
5. Maintain sentences
6. Import words
7. Import sentence
8. Delete words
9. Delete sentences

177

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

ScreenDrawer 10 1. Adjust Icon position
2. Set alarm
3. Calculator
4. Draw pencil
5. Draw rectangle
6. Select/Copy/Paste
7. Select/Move/Resize
8. Open saved image
9. Save image to file
10. Change pen size

Table 5.2 Use case and test case information for subject applications

Subject application Number of use cases Number of test cases
Calculator 2 5623
EasyWriter 9 724
EnglishStudy 9 626
ScreenDrawer 10 312

Test oracle information was also generated automatically from the base versions of the

subject applications. By executing the selected test cases on the base version of each

application, the state information was retrieved and saved after each event in each test

case was performed. Table 5.3 shows the oracle information for each subject

application.

Table 5.3 Oracle information for each subject application

Subject application Test cases Oracles size (MB)

Calculator 5623 582

EasyWriter 724 39

EnglishStudy 626 26

ScreenDrawer 312 16

178

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Because the total number of test cases generated by the task-oriented method is much

smaller than those used in Chapter 3, the oracle size of each test suite for each

application was consequently much smaller, with the exception of Calculator. This is

because most objects used in Calculator are buttons and the functions are mainly

contained in one form which makes the envelope of each use case almost the same size

as the whole GUITAM. The test case space cannot be reduced noticeably. Obviously,

the task-oriented method proposed in this chapter is not suitable for applications such

as Calculator, which provide only one form for all functionalities. Figure 5.14 shows

the comparison between oracle sizes used in the Length-n method used in Chapter 3,

the Classification Directed method used in Chapter 4 and the task-oriented method

used in this chapter.

Figure 5.14 Comparison of oracle sizes generated by different methods

600

400

200

Length‐n

generated

Classification

Directed

O
ra
cl
e
si
ze
 (
M
B
)

Calculator NotePad EnglishStudy ScreenDrawer

800

Task Oriented

0

179

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

The effectiveness of task-oriented test cases depends on the use cases selected.

Because the test cases are near the given task, the defects that are at a remove from the

task usually won’t be detected. If the use cases selected don’t cover sufficient area of

the subject application, the test cases generated from the envelopes of the use cases

will be insufficient for testing. In Calculator, we only selected two use cases, but

because most events don’t lead to state transition, in the GUITAM of Calculator, most

transitions are just a circle to the main state. The lengths from one event to another are

almost all just one step, which is close enough to any backbone of the use case. The

envelope of the given use case actually encapsulated almost all states and transitions in

the GUITAM. The test cases generated for this envelope were similar to the test cases

generated from the whole GUITAM. The defects detecting effect for Calculator in this

chapter is also similar to the result detected by the method used in Chapter 3. Figure

5.15 shows the results of defects detected by the use case envelope based test cases.

This experiment still used the same faults seeded into the four subject applications.

From Figure 5.15, even though only two use cases were used in Calculator, the fault

detecting effect is almost the same as the results in Chapter 3. From Table 5.2, we

found the reason why the test cases generated for Calculator have little relation to the

use cases. The number of test cases selected for Calculator is almost the same as the

number used in Chapter 3. This number is much larger than the numbers for the other

applications. For EasyWriter and EnglishStudy, the faults detected in this experiment

were fewer than the faults detected in Chapter 3. The reason for this is that the use

180

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

cases selected for these two applications didn’t have sufficient coverage of all

functions of the applications. In ScreenDrawer, the functions are organized in dialogs

which make the paths in the GUITAM more distinct from each other. The use cases

selected cover almost all the functions of the application. The results show that, even

though the number of test cases is very small, the number of faults detected in this

experiment was higher than that detected in Chapter 3. The comparison of test cases

used and faults detected by different methods are shown in Figure 5.16 and Figure 5.17

respectively.

Figure 5.15 Envelope based test case faults detecting results

EasyWriter

80

60

40

20

0

Not detected

Detected

N
u
m
b
er
 o
f
fa
u
lt
s

Calculator EnglishStudy ScreenDrawer

181

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Figure 5.16 Numbers of test cases generated by different methods

Figure 5.17 Number of faults detected by different methods

5.6 Conclusion

60

40

20

0

Length‐n

generated

Classification

Directed

N
u
m
b
er
 o
f
fa
u
lt
s
d
e
te
ct
e
d

Calculator NotePad EnglishStudy ScreenDrawer

80

Task oriented

10000

6000

4000

2000

0

Length‐n

generated

Classification

Directed

N
u
m
b
er
 o
f
te
st
 c
as
es

Calculator NotePad EnglishStudy ScreenDrawer

8000

Task oriented

182

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

This chapter presented Long Use Case Closure Envelope Model for generating task-

oriented long test cases by making use of use cases. By analysing traditional UML

based use case activity diagrams and sequence diagrams, the corresponding formal

definitions of a use case, use case activity diagram and use case sequence diagram

(UCSD) were presented. To facilitate more efficient conversion, by modifying UCSD,

this chapter also proposed a new model which is called detailed use case sequence

diagram (DUCSD) to build in more detailed information about GUI states and events.

Based on UCSD, a software engineer can easily create DUCSDs with a tool provided

with the GUI Runner platform. From either an activity diagram, sequence diagram, or

detailed sequence diagram, a small subset of GUITAM can be generated by selecting

use case relevant states and transitions from the complete GUITAM of an AUT. This

subset constitutes a use case backbone (UCBB). Algorithms were proposed to make

these conversions. Because a use case is just an episode of an AUT, in general, the

UCBB describing the corresponding use case contains much smaller numbers of states

and transitions, which lead to exponentially decreased space of combinations of test

cases. A UCBB simply contains the states and transitions that are described in an

activity diagram, a sequence diagram, or a detailed sequence diagram, which are not

enough for covering all possible user operations around the task. Based on the UCBB,

a method called ‘Closure’ is used to collect the possible transitions and states which

are ‘close’ to the backbone and form a broader set of UCBB. All the base set and the

183

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

expanded closure set are encapsulated in one envelope which contains an initial state, a

set of goal states, intermediate states and transitions which connect the states.

An envelope is a self contained mini GUITAM with a set of goal states. Use case

based test cases can be generated from the use case envelope rather than from the full

GUITAM of the whole AUT. Each test case must cover a path that starts from the

initial state and end in one of the goal states. Each test case is long enough to cover

the full task from the beginning to the end. For a small envelope, exhaustive paths

from initial state to goal state can be generated for test cases. For a larger envelope,

test cases can be generated by applying certain coverage criteria.

Experiments were also carried out for generating task-oriented test cases. The results

show that task-oriented test cases are effective and efficient for detecting task-related

defects, especially for those applications which have distinct long use cases.

184

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

Chapter 6

Conclusions and Future Work

Graphic User Interfaces (GUIs) are widely recognized as a critical component of

today’s software. GUIs account for more than 45% of software code, which makes

GUI testing paramount for providing quality software. Due to the characteristics of

GUIs, conventional software testing methods are not suitable for GUI testing. GUI

testing automation is needed because manual GUI testing is very laborious. This thesis

has presented a unified solution to GUI testing automation. This solution includes the

GUI modelling and testing automation model (GUITAM) for characterizing GUI states

and its inherent logic, generating test cases based on given coverage criteria, creating

test oracles, executing test cases, and verifying the execution results. To reduce the

number of test cases without losing the testing quality, this research has also proposed

Defect Classification Directed Test Cases Generation and a Long Use Case Closure

Model for task oriented test case generation. The following sections will give a

summary of our major contributions and future work.

185

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

6.1 Major contributions

The thesis presented a unified solution to GUI Testing Automation and proposed

various models for effective test case generation. The main contributions of the thesis

are as follows:

1) GUI Representation and GUI Testing Automation Model (GUITAM). At any

given time, a GUI is represented as a forest of objects. The root of each tree in the

forest is a window or a dialog. Other objects (widgets) are organized in a hierarchical

manner and each object forms a node in the tree. Each object has properties and its

corresponding values.

At a given moment, the GUI of an application is called a state. A GUI based

application has a series of GUI states. Events can be performed on GUIs and trigger

the transitions between GUI states. In this thesis, GUI states and transitions between

states were modelled in the GUITAM, which characterizes the intrinsic logic of an

application. The GUITAM of an application can be generated automatically. The

GUITAM model is the critical element for the whole testing automation process. Our

test cases generation, test oracle information creation and test case execution were all

based on the GUITAM model.

2) Defect Classification Directed Test Case Generation. Because of the huge

permutations of events, the space for all possible test cases is extremely large. This

makes it impossible to exhaustively test GUI-based applications. To generate more

effective test cases, defect classification and defect classification directed test case

186

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

generating algorithms have been proposed. This greatly reduces the number of test

cases needed without losing the ability to detect GUI faults.

3) Long Use Case Closure Envelope Model for task oriented test case generation.

Typical tasks provided in an application are usually made up of a number of steps.

Existing methods limit the length of each test case to certain steps, normally three, to

finish the tests at a practical time. Three steps are normally not enough to cover a task.

This thesis proposed a Long Use Case Closure Enveloping Model to generate task-

oriented long test cases for efficiently testing tasks. The model is especially efficient

for long use cases. Each test case generated within the envelope covers at least a route

from the initial state to one of the goal states. The test cases are very effective for

detecting functional defects lurking inside the tasks.

4) To evaluate the effectiveness and efficiency, a system called GUITAM Runner

has been implemented as a platform for GUITAM based testing. The system provides

modules of GUITAM generation, test cases generation, test oracle generation, test case

execution and validation. Four subject applications were selected for the evaluation

and the results show that GUITAM based testing is practical and efficient. The testing

results also show that the defect classification directed test cases method can greatly

reduce the number of test cases without losing effectiveness. The use case envelope

model was also proven to be practically efficient and effective for long task-oriented

testing.

The contributions address two major challenges in GUI testing.

187

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

1) GUI testing is known to be laborious, costly, extremely time-consuming and

difficult to automate. A unified solution has been provided to automate the GUI testing

procedure which includes automatic GUITAM generation, automatic test case

generation, automatic test oracle information generation, and automatic test case

execution and validation.

2) Test case explosion. Defect Classification and the Long Use Case Closure

Envelope Model were proposed in order to generate defect classification directed test

cases and task-oriented test cases, which reduces the number of test cases

exponentially without losing effectiveness.

6.2 Future work

Although GUITAM based testing achieves a high level of testing automation, there are

still many obstacles to overcome in order to make it widely accepted, especially by

software industries. The main obstacles to GUITAM-based testing are:

1) GUI reading techniques. GUITAM relies on the technique of reading GUI

widgets information. In our platform, we use Microsoft C# in Microsoft Visual

Studio .Net and the UIAutomation library to access the components of GUIs. We

tested this method on other software, such as Genie and ZedMed (both of them are

clinic software used in Australia), and found that not all the information for the GUIs

can be read properly. To read GUI information for these kinds of software, we need to

188

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

find another method of scraping the GUI. Fortunately, the GUITAM uses highly

abstract concepts which can be easily fitted with different GUI reading techniques.

2) Specification based oracle and test case generation. Languages used in

specifications are not designed for testing purpose which makes it very difficult to

automatically harness the information in the specifications. Manual work is still

involved to convert them to an intermediate description for the automatic conversions.

3) State space explosion. In a GUITAM, a state-comparing function is used to

distinguish states from each other. Judging whether two states are the same depends on

the criteria of comparison. Different criteria lead to drastic changes in the number of

states. For example, if any difference in any object’s property values are considered,

the number of possible states in a GUITAM can be infinite. In this thesis, only the bi-

valued properties were considered, such as the ‘Checked’ value of checkboxes or radio

buttons, and the continuous-valued properties were ignored, such as “Text’ value in

editboxes, ‘Value’ of a track-bar. Even just considering the bi-valued objects, the

number of states may still be very large. Supposing there are n bi-valued objects, the

combination of all possible values will be 2n. When there are too many bi-valued

objects, the number of states in a GUITAM will become extremely large, which is

impractical for real testing.

Our future research work will focus principally on finding solutions to the obstacles

listed above.

189

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

BIBLIOGRAPHY

[1] J. Gray, “What next? A few remaining problems in Information Technology”,

ACM Federated Research Computer Conference, Atlanta, GA, May 1999

[2] A. M. Davis, Software requirements: objects, functions, and states. NJ, USA:

Prentice-Hall, Inc., 1993.

[3] C. Kaner, J. Falk, and H. Q. Hguyen, "Testing Computer Software," in

International Thompson Computer Press. London, UK, 1993.

[4] R. Mahajan and B. Shneiderman, "Visual & textual consistency checking tools

for graphical user interfaces", University of Maryland, College Park May 1996

1996.

[5] B. A. Myers, "User Interface Software Technology", ACM Computing Surveys,

vol. 28, pp. March 1996.

[6] F. Belli, A. Hollmann, and N. Nissanke, "Modeling, analysis and testing of

safety issues – an event-based approach and case study", presented at

Proceedings of the 26th Int. Conf. Computer Safety, Reliability, and Security,

2007.

[7] T.-H. Chang and R. C. Miller, "GUI testing using computer vision", presented

at Proceedings of the 28th international conference on Human factors in

computing systems, New York, USA 2010.

[8] O. E. Ariss, D. Xu, and B. Vender, "A Systematic Capture and Replay Strategy

for Testing Complex GUI Based Java Applications", presented at Proceedings

190

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

of the 2010 Seventh International Conference on Information Technology, Las

Vegas, Nevada, USA, 2010.

[9] I. Alsmadi, "Automatic Model Based Methods to Improve Test Effectiveness",

Universal Journal of Computer Science and Engineering Technology, vol. 1, pp.

41-49, 2010.

[10] C. Bertolini and A.Mota, "Using ProbabilisticModel Checking to Evaluate GUI

Testing Techniques", presented at 7th IEEE International Conference on

Software Engineering and Formal Methods (SEFM), 2009.

[11] C. Bertolini and A. Mota, "A Framework for GUI Testing Based on Use Case

Design", presented at Proceedings of the 2010 Third International Conference

on Software Testing, Verification, and Validation Workshops, Paris 6-10 April

2010, 2010.

[12] K.-Y. Cai, L. Zhao, and F. Wang, "A Dynamic Partitioning Approach for GUI

Testing", presented at 30th Annual International Computer Software and

Applications Conference (COMPSAC'06), Chicago, Illinois September 17-

September 21, 2006.

[13] C. Lowell and J. Stell-Smith, "Successful Automation of GUI Driven

Acceptance Testing", Lecture Notes in Computer Science, vol. 2675-2003,

1011-1012, 2003.

[14] J. Andersson and G. Bache, "The Video Store Revisited Yet Again: Adventures

in GUI Acceptance Testing", presented at Proceedings of the 5th International

Conference on eXtreme Programming and Agile Processes in Software

Engineering, LNCS 3092, 2004.

[15] S. Dutta, "Abbot – A friendly JUnit extension for GUI testing", Java Developer

Journal, vol. 8, pp. 8-12, 2003.

[16] QTP, http://qtp.blogspot.com/

191

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

[17] Abbot, http://sourceforge.net/projects/abbot/

[18] Selenium, http://seleniumhq.org/

[19] RFT, http://www-01.ibm.com/software/awdtools/tester/functional/

[20] Win Runner http://www.loadtest.com.au/Technology/winrunner.htm

[21] Silk Test http://www.borland.com/us/products/silk/silktest/index.html

[22] Robot, http://www-01.ibm.com/software/awdtools/tester/robot/

[23] R. K. Shehady and D. P. Siewiorek, "A method to automate user interface

testing using variable finite state machines", presented at Proceedings of The

Twenty-Seventh Annual International Symposium on Fault-Tolerant

Computing (FTCS'97), Washington - Brussels - Tokyo, 1997.

[24] L. White and H. Almezen, "Generating test cases for GUI responsibilities using

complete interaction sequences", presented at ISSRE ’00: Proceedings of the

11th International Symposium on Software Reliability Engineering (ISSRE’00),

Washington, DC, USA, 2000.

[25] A. J. Offutt and J. H. Hayes, "A semantic model of program faults", presented

at ISSTA ’96: Proceedings of the 1996 ACM SIGSOFT international

symposium on Software testing and analysis, New York, NY, USA, 1996.

[26] A. C. R. Paiva and J. C.P, "A Model-to-Implementation Mapping Tool for

Automated Model-Based GUI Testing", Lecture Notes in Computer Science,

vol. 3785/2005, 2005.

[27] A. C. R. Paiva, "Automated GUI Testing in Informática", XIII Convención Y

Feria Internacional, 2009.

[28] X Yuan, A. M. Memon, "Generating Event Sequence-Based Test Cases Using

GUI Runtime State Feedback", IEEE Transactions on Software Engineering,

vol. 36, no. 1, pp. 81-95, Jan./Feb. 2010

192

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

[29] X. Yuan and A. M. Memon, "Generating Event Sequence-Based Test Cases

Using GUI Runtime State Feedback", IEEE Transactions on Software

Engineering, pp. 81 - 95, 2010.

[30] A. C. R. Paiva, J. C. P. Faria, and P. M. C. Mendes, "Reverse Engineered

Formal Models for GUI Testing", Formal Methods for Industrial Critical

Systems, Lecture Notes in Computer Science, vol. 4916, pp. 218-233, 2008.

[31] A. M. Memon, "An Event-Flow Model to Test EDS", Software Engineering

and Development, (Enrique A. Belini, ed.), 2009.

[32] A. M. Memon, "Using Reverse Engineering for Automated Usability

Evaluation of GUI-Based Applications", Software Engineering Models,

Patterns and Architectures for HCI, 2009.

[33] F. Belli, "Finite-State Testing and Analysis of Graphical User Interfaces",

presented at 12th International Symposium on Software Reliability Engineering

(ISSRE'01), Hong Kong, China. November 27-November 30, 2001.

[34] F. Belli, C. J. Budnik, and N. Nissanke, "Finite-State Modeling, Analysis and

Testing of System Vulnerabilities", presented at Proc. of Organic and Pervasive

Computing Workshops (ARCS) 2004, Lecture Notes in Informatics (LNI),

Augsburg, Germany, 2004.

[35] T. Tuglular, C. A. Muftuoglu, O. Kaya, F. Belli, and M. Linschulte, "GUI-

Based Testing of Boundary Overflow Vulnerability", presented at 33rd Annual

IEEE International Computer Software and Applications Conference, Seattle,

Washington, USA, 2009.

[36] B. Das, D. Sarkar, and S. Chattopadhyay, "Model Checking on State Transition

Diagram", presented at ASP-DAC '04 Proceedings of the 2004 Asia and South

Pacific Design Automation Conference, Piscataway, NJ, USA 2004.

193

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

[37] A. M. Memon and Q. Xie, "Studying the fault-detection effectiveness of GUI

test cases for rapidly evolving software", IEEE Transactions on Software

Engineering, vol. 31, pp. 884-896, 2005.

[38] M. Vieira and o. Leduc, "Automation of GUI testing using a model-driven

approach", presented at AST '06 Proceedings of the 2006 international

workshop on Automation of software test, NY, USA, 2006.

[39] A. Kervinen and M. Maunumaa, "Model-Based Testing Through a GUI",

Lecture Notes in Computer Science, vol. 3997/2006, pp. 16-31, 2006.

[40] A. C. R. Paiva, J. C. P. Faria, and R. F. A. M. Vidala, "Towards the Integration

of Visual and Formal Models for GUI Testing", Electronic Notes in Theoretical

Computer Science, vol. 190, pp. 99-111, 2007.

[41] H. Reza, S. Endapally, and E. Grant, "A Model-Based Approach for Testing

GUI Using Hierarchical Predicate Transition Nets", presented at ITNG '07.

Fourth International Conference on Information Technology, Las Vegas, NV 2-

4 April, 2007.

[42] A. M. Memon, "A Comprehensive Framework for Testing Graphical User

Interfaces", in Department of Computer Science. Pittsburgh: University of

Pittsburgh, 2001.

[43] A. M. Memon, M. L. Soffa, and M. E. Pollack, "Coverage Criteria for GUI

Testing", presented at Proceedings of the 8th European software engineering

conference held jointly with 9th ACM SIGSOFT international symposium on

Foundations of software engineering, Vienna, Austria, 2001.

[44] A. M. Memon, I. Banerjee, and A. Nagarajan, "GUI Ripping: Reverse

Engineering of Graphical User Interfaces for Testing", presented at Proceeding

of 10th Working Conference in Reverse Engineering., 2003.

194

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

[45] A. Memon, O. Banerjee, N. Hashmi, and A. Nagarajan, "DART: a framework

for regression testing "nightly/daily builds" of GUI applications", presented at

Proceedings of International Conference on Software Maintenance, 2003. 22-

26 Sept. 2003. pp.410 - 419, 2003.

[46] A. Memon, I. Banerjee, and A. Nagarajan, "What Test Oracle Should I Use for

Effective GUI Testing?", presented at 18th IEEE International Conference on

Automated Software Engineering, Montreal, Quebec, Canada 2006.

[47] A. M. Memon, "Automatically repairing event sequence-based GUI test suites

for regression testing", ACM Transactions on Software Engineering and

Methodology (TOSEM), vol. 18, 2008.

[48] Q. Xie and A. M. Memon, "Automated model-based testing of community-

driven open source GUI applications", presented at ICSM ’06: Proceedings of

the 22nd IEEE International Conference on Software Maintenance, Washington,

DC, USA, 2006.

[49] Q. Xie and A. M. Memon, "Designing and comparing automated test oracles

for GUI-based software applications", Transactions on Software Engineering

and Methodology (TOSEM) vol. 16, 2007.

[50] Q. Xie and A. M. Memon, "Using a pilot study to derive a GUI model for

automated testing", ACM Trans. on Softw. Eng. And Methodology, vol. 18, pp.

1-35, 2008.

[51] X. Yuan and A. M. Memon, "Using GUI Run-Time State as Feedback to

Generate Test Cases", presented at 29th International Conference on Software

Engineering, Minneapolis, MN 20-26 May 2007, 2007.

[52] H. Zhu, W. E. Wong, and F. Belli, "Advancing test automation technology to

meet the challenges of model-driven software development", in report on the

3rd workshop on automation of software test, ICSE, 2008.

195

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

[53] P. Brooks, B. Robinson, and A. M. Memon, "An Initial Characterization of

Industrial Graphical User Interface Systems", presented at International

Conference on Software Testing Verification and Validation, 2009. ICST '09. ,

Denver, CO, 2009.

[54] J. Strecker and A. M. Memon, "Testing Graphical User Interfaces",

Encyclopedia of Information Science and Technology, Second ed, 2009.

[55] S. Huang, M. Cohen, and A. M. Memon, "Repairing GUI Test Suites Using a

Genetic Algorithm", presented at Proceedings of the 3rd IEEE International

Conference on Software Testing, Verification and Validation, Washington, DC,

USA, 2010.

[56] F. Belli, C. J. Budnik, and L. White, "Event-based modelling, analysis and

testing of user interactions: approach and case study", SOFTWARE TESTING,

VERIFICATION AND RELIABILITY, vol. 16, pp. 3-32, 2006.

[57] F. Belli and M. Linschulte, "Event-Driven Modeling and Testing of Web

Services", presented at Annual IEEE International Computer Software and

Applications Conference. Software Engineering. Addison-Wesley, 6th edition,

Sommerville Ian, 2000.

[58] IEEE., "IEEE Standard Glossary of Software Engineering Terminology",

ANSI/IEEE Std 610.12-1990, 1996.

[59] G. M. Kapfhammer and M. L. Soffa, "A family of test adequacy criteria for

database-driven applications", presented at Proceedings of the 9th European

software engineering conference held jointly with 11th ACM SIGSOFT

international symposium on Foundations of software engineering New York,

NY, USA, 2003.

196

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

[60] B. Pettichord, "Seven steps to test automation success", presented at

Proceedings of the International Conference on Software Testing, Analysis, and

Review, San Jose, CA, 1999.

[61] H. Zhu, P. A. V. Hall, and J. H. R. May, "Software unit test coverage and

adequacy", ACM Computing Surveys (CSUR) Surveys Homepage archive, vol.

29, 1997.

[62] R. V. Binder, "Testing object-oriented software: a survey", Software Testing,

Verification and Reliability, vol. 6, pp. 125-252, 1999.

[63] M. E. Fagan, "Design and Code Inspections to Reduce Errors in Program

Development", IBM Systems Journal, vol. 15, pp. 182-211, 1976.

[64] B. Brykczynski, "A survey of software inspection checklists", ACM SIGSOFT

Software Engineering Notes, vol. 24, pp. 82, 1999.

[65] O. Laitenberger and C. Atkinson, "Generalizing perspective-based inspection to

handle object-oriented development artefacts", presented at Proceedings of the

21st international conference on Software engineering, 1999.

[66] F. Shull, I. Rus, and V. Basili, "Improving software inspections by using

reading techniques", presented at Proceedings of the 23rd International

Conference on Software Engineering, 2001.

[67] M. J. Harrold and G. Rothermel, "Performing data flow testing on classes",

presented at Proceedings of the 2nd ACM SIGSOFT symposium on

Foundations of software engineering, New York, USA 1994.

[68] G. Rothermel and M. J. Harrold, "Experience With Regression Test Selection",

Empirical Software Engineering, vol. 2, pp. 178-188, 1996.

197

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

[69] G. Rothermel and M. J. Harrold, "A safe, efficient regression test selection

technique", ACM Transactions on Software Engineering and Methodology

(TOSEM), vol. 6, Issue 2, pp. 173 – 210, 1997.

[70] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, "Test Case

Prioritization: An Empirical Study", Proc. Int'l Conf. Software Maintenence, pp.

179-188, 1999.

[71] G. M. Kapfhammer, "Software Testing", in Department of Computer Science:

Allegheny College, 2004.

[72] E. J. Weyuker, "The applicability of program schema results to programs",

International Journal of Computer and Information Sciences vol. 8, pp. 387-403,

1979.

[73] E. J. Weyuker, "Translatability and decidability questions for restricted classes

of program schemas", SIAM Journal on Computing vol. 8, pp. 587–598, 1979.

[74] E. J. Weyuker, "The evaluation of program-based software test data adequacy

criteria", Communications of the ACM, vol. 31, Issue 6, pp.668-675, 1988.

[75] E. J. Weyuker, "Evaluating Software Complexity Measures", IEEE

Transactions on Software Engineering, vol. 14, pp. 1357-1365, 1988.

[76] S. Rapps and E. J. Weyuker, "Data flow analysis techniques for test data

selection", presented at ICSE '82: Proceedings of the 6th international

conference on Software engineering, 1982.

[77] S. Rapps, E.J. Weyuker, "Selecting Software Test Data Using Data Flow

Information", IEEE Transactions on Software Engineering, vol. 11, no. 4, pp.

367-375, Apr. 1985.

[78] J. Steven, P. Chandra, B. Fleck, and A. Podgurski, "jRapture: A

Capture/Replay tool for observation-based testing", presented at Proceedings of

198

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

the 2000 ACM SIGSOFT international symposium on Software testing and

analysis, New York, USA, 2000.

[79] A. K. Onoma, W.-T. Tsai, and H. Suganuma, "Regression testing in an

industrial environment", Communications of the ACM, vol. 41, 1998.

[80] T. Ball, "On the limit of control flow analysis for regression test selection",

presented at Proceedings of the 1998 ACM SIGSOFT international symposium

on Software testing and analysis, New York, USA 1998.

[81] F. I. Vokolos and P. G. Frankl, "Empirical evaluation of the textual

differencing regression testing technique", presented at Proceedings.

International Conference on Software Maintenance, Bethesda, MD, USA 1998.

[82] B. A. Myers and M. B. Rosson, "Survey on user interface programming",

presented at Proceedings of the SIGCHI'92, 1992.

[83] E. Bernard, B. Legeard, X. Luck, and F. Peureux, "Generation of test sequences

from formal specifications: GSM 11-11 standard case study", Software Testing,

Verification and Reliability, vol. 34, pp. 915-948, 2004.

[84] K. Bogdanov, et al., “Working together: Formal Methods and Testing”,

FORTEST landscapes document, December 2003

[85] S. Rayadurgam and M. P. E. Heimdahl, "Test-Sequence Generation from

Formal Requirements Models", presented at Proceedings of the Sixth IEEE

High Assurance in Systems Engineering Workshop, Florida, 2001.

[86] M. Y. Ivory and M. A. Hearst, "The State of the Art in Automating Usability

Evaluation of User Interfaces", ACM Computing Surveys, vol. 33, pp. 470-516,

2001.

199

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

[87] C. Kaner, "Improving the Maintainability of Automated Test Suites", presented

at Proceedings of the Tenth International Quality Week, San Francisco, CA,

1997.

[88] C. Kaner, J. Bach, and B. Pettichord, "Lessons Learned in Software Testing: A

Context-Driven Approach", John Wiley & Sons, 2002.

[89] C. Kaner, "Cem Kaner on Scenario Testing: The Power of ‘What-If…’ and

Nine Ways to Fuel Your Imagination", Better Software, vol. 5, pp. 16-22, 2003.

[90] C. Kaner, "What is a Good Test Case? ", STAR East Conf. 2003, May 2003.

Online: http://www.testingeducation.org/a/testcase.pdf, 2003.

[91] C. Kaner, J. Falk, and H. Q. Hguyen, “Testing Computer Software”, New York,

NY, USA: John Wiley & Sons, Inc, 1999.

[92] K. Zambelich, "Totally Data-Driven Automated Testing",

Whitepaper(http://www.sqa-test.com/White_Paper.doc), conferred in October,

2010.

[93] N. Nyman. “Using monkey test tools", Software Testing and Quality

Engineering, January/February: 18-21, 2000.

[94] N. Nyman, "In Defense of Monkey Testing", conferred in May, 2006.

[95] T. Dabóczi, I. Kollár, G. Simon, and T. Megyeri, "How to test Graphical User

Interfaces", IEEE Instrumentation & Measurement Magazine, pp. 27-33, 2003.

[96] JUnit. www.junit.org

[97] NUnit. www.nunit.org

[98] T. Tuglular, C. A. Muftuoglu, F. Belli, and M. Linschulte, "Event-Based Input

Validation Using Design-by-Contract Patterns", presented at the 20th annual

International Symposium on Software Reliability Engineering (ISSRE 2009),

Mysuru, India, 2009.

200

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

[99] M. Zitser, "Securing Software: An Evaluation of Static Source Code

Analyzers", in Massachusetts Institute of Technology. MA: Cambridge, 2003.

[100] F. Belli and M. Linschulte, "On Negative Tests of Web Applications", Annals

of Mathematics, Computing & Teleinformatics, vol. 1, pp. 44-56, 2007.

[101] F. Belli and M. Beyazit, "Mutation of Directed Graphs – Corresponding

Regular Expressions and Complexity of Their Generation", EPTCS, vol. 3, pp.

69-77, 2009.

[102] F. Belli and B. Güldalı, "Software Testing via Model Checking", Computer and

Information Sciences - ISCIS 2004,Lecture Notes in Computer Science, vol.

3280, pp. 907-916, 2004.

[103] Calculator, http://www.codeproject.com/KB/applications/caclulater.aspx

[104] EasyWriter , http://www.codeproject.com/KB/cs/notepad.aspx

[105] T. Illes and B. Paech, "An Analysis of Use Case Based Testing Approaches

Based on a Defect Taxonomy", in IFIP International Federation for Information

Processing, vol. 227, Software Engineering Techniques: Design for Quality, ed.

K. Sacha, (Boston: Springer), pp. 211-222, 2006.

[106] T. Illes and B. Paech, "An Analysis of Use Case Based Testing Approaches

Based on a Defect Taxonomy", Software Engineering Techniques: Design for

Quality IFIP International Federation for Information Processing, vol. 227, pp.

211-222, 2007.

[107] S. Ramanna, R. Bhatt, and P. Biernot, "Software Defect Classification- A

Comparative Study with Rough Hybrid Approaches", Rough Sets and

Intelligent Systems Paradigms. Lecture Notes in Computer Science, vol. 4585,

2007.

201

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

[108] B. Robinson and P. Brooks, "An Initial Study of Customer-Reported GUI

Defects", presented at Proceedings of the IEEE international Conference on

Software Testing, Verification, and Validation Workshops, 2009.

[109] R. Chillarege, I. S. Bhandari, and J. K. Chaar, "Orthogonal defect

classification-a concept for in-process measurements", IEEE Transactions on

Software Engineering, vol. 18, 1992.

[110] Medical Director, http://www.hcn.com.au/

[111] L. Briand and Y. Labiche, "A UML-based Approach to System Testing",

Carleton University 2002.

[112] I. Krsul, "Software Vulnerability Analysis", in Department of Computer

Sciences, vol. Ph.D. COAST TR 98-09: Purdue University, 1998.

[113] K. Weidenhaupt, L. Pohl, J. Jarke, and P. Haumer, "Scenario Usage in System

Development. A Report on Current Practice", presented at Third International

Conference on Requirements Engineering, Colorado Springs, CO , USA, 1998.

[114] M. L. Lough, "A Taxonomy of Computer Attacks with Applications to

Wireless", vol. PhD: Virginia Polytechnic Institute, 2001.

[115] G. J. Meyers, "The Art of Software Testing", John Wiley & Sons, New York,

1979.

[116] C. Phillips, E. Kemp, and S. M. Kek, "Extending UML Use Case Modelling to

Support Graphical User Interface Design", presented at Proceedings of

Software Engineering Conference, Canberra, ACT , Australia, 2001.

[117] A. Jain and B. D. Chaudhary, "A Use Case Driven Formal Approach to Check

Consistency between UI Requirement and Implementation", in IEEE Region 10

and the Third international Conference on Industrial and Information Systems

(ICIIS). Kharagpur INDIA 2008.

202

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

[118] M. Smit, E. Stroulia, and K. Wong, "Use Case Redocumentation from GUI

Event Traces", in 12th European Conference on Software Maintenance and

Reengineering. Athens, 2008.

[119] P. Mateo, D. Sevilla, and G.Mart´ınez, "Automated GUI testing validation

guided by annotated use cases", presented at Proceedings of the 4th Workshop

on Model-Based Testing (MoTes ’09) in Conjunction with the Annual National

Conference of German Association for Informatics (GI ’09), L¨ubeck,

Germany, 2009.

[120] J. M. Almendros-Jimenez and L. Iribarne, "Designing GUI components from

UML use cases", presented at Proceedings of the 12th IEEE International

Conference and Workshops on the Engineering of Computer-Based Systems

(ECBS’05), 2005.

[121] D. Coleman, "A Use Case Template: Draft for discussion", Fusion Newsletter,

April 1998. Available at http://www.hpl.hp.com/fusion/news/apr98.ppt., 1998.

[122] "UML Specification", http://www.rational.com/ referenced in March 2010.

[123] E. Hendrickson. “Making the right choice: The features you need in a GUI test

automation tool", STQE Magazine, pages 20–25, November/December 2003.

[124] B. A. Myers, "User interface software tools", ACM Transactions on Computer-

Human Interaction, vol. 2, pp. 64-103, 1995.

[125] A. C. R. Paiva, N. Tillmann, J. C. P. Faria, and F. A. M. Vidal, "Modeling and

Testing Hierarchical GUIs", presented at Proceedings of the 12th International

Workshop on Abstract State Machines, University of Paris 2005.

[126] B. Robinson and P. Brooks, "An Initial Study of Customer-Reported GUI

Defects.Software Testing", presented at International Conference on

Verification and Validation Workshops, Denver, CO 2009.

203

Xuebing Yang
May 2011

Graphic User Interface Modelling and Testing Automation

[127] Jemmy. www.jemmy.netbeans.org

[128] PIMENTA, ANA CRISTINA. “Automated Specification-Based Testing of

Graphical User Interfaces", PhD Thesis, 2006

[129] GUITAR, http://guitar.sourceforge.net.

[130] Automation Anywhere, http://www.automationanywhere.com.

