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AN INEQUALITY OF OSTROWSKI’S TYPE FOR
CUMULATIVE DISTRIBUTION FUNCTIONS

N.S. BARNETT AND S.S. DRAGOMIR

Abstract. The main aim of this paper is to establish an Ostrowski type
inequality for the cumulative distribution function of a random variable taking
values in a finite interval [a, b]. An application for a Beta random variable is
given.

1 Introduction

In [1], S.S. Dragomir and S. Wang proved the following version of Ostrowski’s
inequality for differentiable mappings whose derivatives belong to L1 (a, b) :

Theorem 1.1. Let f : [a, b] → R be a differentiable mapping on (a, b) whose
derivative f ′ : (a, b)→ R belongs to L1 (a, b) . Then we have the inequality:∣∣∣∣∣∣f (x)− 1

b− a

b∫
a

f (t) dt

∣∣∣∣∣∣ ≤
[

1
2

+

∣∣x− a+b
2

∣∣
b− a

]
‖f ′‖1(1.1)

for all x ∈ [a, b] .

Note that the classical Ostrowski’s integral inequality states that (see e.g.
[3, p.468]): ∣∣∣∣∣∣f (x)− 1

b− a

b∫
a

f (t) dt

∣∣∣∣∣∣ ≤
[

1
4

+

(
x− a+b

2

)2
(b− a)2

]
(b− a) ‖f ′‖∞(1.2)

for all x ∈ [a, b] provided f ′ ∈ L∞ (a, b) .
In the above paper [1], the authors have applied inequality (1.1) to Numerical

Integration obtaining estimations for the error bounds of general Riemann’s
quadrature formulae in terms of ‖f ′‖1.

Applications of Ostrowski’s inequality for the same problems in Numerical
Integration have been pointed out by the same authors in [2].

The main aim of the present work is to establish an Ostrowski like inequality
for the cumulative distribution function and expectation of a random variable.
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4 Barnett and Dragomir

2 The Results

Let X be a random variable taking values in the finite interval [a, b], with cu-
mulative distribution function F (x) = Pr (X ≤ x) .

The following theorem holds

Theorem 2.1. Let X and F be as above. Then we have the inequality∣∣∣∣Pr (X ≤ x)− b− E (X)
b− a

∣∣∣∣(2.1)

≤ 1
b− a

[2x− (a+ b)] Pr (X ≤ x) +

b∫
a

sgn (t− x)F (t) dt



≤ 1
b− a

[(b− x) Pr (X ≥ x) + (x− a) Pr (X ≤ x)]

≤ 1
2

+

∣∣x− a+b
2

∣∣
(b− a)

for all x ∈ [a, b] . All the inequalities in (2.1) are sharp and the constant 1
2 is the

best possible.

Proof. Consider the kernel p : [a, b]2 → R given by

p (x, t) :=

 t− a if t ∈ [a, x]

t− b if t ∈ (x, b]
.(2.2)

Then the Riemann-Stieltjes integral
b∫
a

p (x, t) dF (t) exists for any x ∈ [a, b]

and the formula of integration by parts for Riemann-Stieltjes integral gives:

b∫
a

p (x, t) dF (t) =

x∫
a

(t− a) dF (t) +

b∫
x

(t− b) dF (t)(2.3)

= (t− a)F (t)|xa −
x∫
a

F (t) dt+ (t− b)F (t)|bx −
b∫
x

F (t) dt

= (b− a)F (x)−
b∫
a

F (t) dt.
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On the other hand, the integration by parts formula for Riemann-Stieltjes
integral also gives:

E (X) :=

b∫
a

tdF (t) = tF (t)|ba −
b∫
a

F (t) dt(2.4)

= bF (b)− aF (a)−
b∫
a

F (t) dt = b−
b∫
a

F (t) dt.

Now, using (2.3) and (2.4) , we get the equality

(b− a)F (x) + E (X)− b =

b∫
a

p (x, t) dF (t)(2.5)

for all x ∈ [a, b] .
Now, assume that ∆n : a = x

(n)
0 < x

(n)
1 < ... < x

(n)
n−1 < x

(n)
n = b is a

sequence of divisions with ν (∆n)→ 0 as n→∞, where

ν (∆n) := max
{
x

(n)
i+1 − x

(n)
i : i = 0, ..., n− 1

}
.

If p : [a, b] → R is continuous on [a, b] and ν : [a, b] → R is monotonous

nondecreasing, then the Riemann-Stieltjes integral
b∫
a

p (x) dν (x) exists and

∣∣∣∣∣∣
b∫
a

p (x) dν (x)

∣∣∣∣∣∣ =

∣∣∣∣∣ lim
ν(∆n)→0

n−1∑
i=0

p
(
ξ

(n)
i

) [
ν
(
x

(n)
i+1

)
− ν

(
x

(n)
i

)]∣∣∣∣∣(2.6)

≤ lim
ν(∆n)→0

n−1∑
i=0

∣∣∣p(ξ(n)
i

)∣∣∣ (ν (x(n)
i+1

)
− ν

(
x

(n)
i

))

=

b∫
a

|p (x)| dν (x) .

Using (2.6) we have:∣∣∣∣∣∣
b∫
a

p (x, t) dF (t)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
x∫
a

(t− a) dF (t) +

b∫
x

(t− b) dF (t)

∣∣∣∣∣∣(2.7)

≤

∣∣∣∣∣∣
x∫
a

(t− a) dF (t)

∣∣∣∣∣∣+

∣∣∣∣∣∣
b∫
x

(t− b) dF (t)

∣∣∣∣∣∣ ≤
x∫
a

|t− a| dF (t) +

b∫
x

|t− b| dF (t)
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6 Barnett and Dragomir

=

x∫
a

(t− a) dF (t) +

b∫
x

(b− t) dF (t)

= (t− a)F (t)|xa −
x∫
a

F (t) dt− (b− t)F (t)|bx +

b∫
x

F (t) dt

=

[2x− (a+ b)]F (x)−
x∫
a

F (t) dt+

b∫
x

F (t) dt



= [2x− (a+ b)]F (x) +

b∫
a

sgn (t− x)F (t) dt.

Using the identity (2.5) and the inequality (2.7), we deduce the first part of
(2.1) .

We know that

b∫
a

sgn (t− x)F (t) dt = −
x∫
a

F (t) dt+

b∫
x

F (t) dt.

As F (·) is monotonous nondecreasing on [a, b] , we can state that

x∫
a

F (t) dt ≥ (x− a)F (a) = 0

and

b∫
x

F (t) dt ≤ (b− x)F (b) = b− x

and then

b∫
a

sgn (t− x)F (t) dt ≤ b− x for all x ∈ [a, b] .

Consequently, we have the inequality

[2x− (a+ b)]F (x) +

b∫
a

sgn (t− x)F (t) dt

RGMIA Research Report Collection, Vol. 1, No. 1, 1998
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≤ [2x− (a+ b)]F (x) + (b− x) = (b− x) (1− F (x)) + (x− a)F (x)

= (b− x) Pr (X ≥ x) + (x− a) Pr (X ≤ x)

and the second part of (2.1) is proved.
Finally,

(b− x) Pr (X ≥ x) + (x− a) Pr (X ≤ x)

≤ max{b− x, x− a} [Pr (X ≥ x) + Pr (X ≤ x)]

=
1
2

(b− a) +
∣∣∣∣x− a+ b

2

∣∣∣∣
and the last part of (2.1) is also proved.

Now, assume that the inequality (2.1) holds with a constant c > 0 instead
of 1

2 , i.e., ∣∣∣∣Pr (X ≤ x)− b− E (X)
b− a

∣∣∣∣(2.8)

≤ 1
b− a

[2x− (a+ b)] Pr (X ≤ x) +

b∫
a

sgn (t− x)F (t) dt


≤ 1
b− a

[(b− x) Pr (X ≥ x) + (x− a) Pr (X ≤ x)]

≤ c+

∣∣x− a+b
2

∣∣
b− a

for all x ∈ [a, b] .
Choose the random variable X such that F : [0, 1]→ R,

F (x) :=

 0 if x = 0

1 if x ∈ (0, 1]
.

Then we have:

E (X) = 0,

1∫
0

sgn (t)F (t) dt = 1

and by (2.8) , for x = 0, we get

1 ≤ c+
1
2

which shows that c = 1
2 is the best possible value.
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Remark 2.1. Taking into account the fact that

Pr (X ≥ x) = 1− Pr (X ≤ x) ,

then from (2.1) we get the equivalent inequality∣∣∣∣Pr (X ≥ x)− E (X)− a
b− a

∣∣∣∣(2.9)

≤ 1
b− a

[2x− (a+ b)] Pr (X ≤ x) +

b∫
a

sgn (t− x)F (t) dt



≤ 1
b− a

[(b− x) Pr (X ≥ x) + (x− a) Pr (X ≤ x)]

≤ 1
2

+

∣∣x− a+b
2

∣∣
b− a

for all x ∈ [a, b] .

Remark 2.2. The following particular cases are also interesting:∣∣∣∣Pr
(
X ≤ a+ b

2

)
− b− E (X)

b− a

∣∣∣∣ ≤
b∫
a

sgn

(
t− a+ b

2

)
F (t) dt ≤ 1

2
(2.10)

and ∣∣∣∣Pr
(
X ≥ a+ b

2

)
− E (X)− a

b− a

∣∣∣∣ ≤
b∫
a

sgn

(
t− a+ b

2

)
F (t) dt ≤ 1

2
.(2.11)

The following corollary could be useful in practice

Corollary 2.2. Under the above assumptions, we have

1
b− a

[
a+ b

2
− E (X)

]
(2.12)

≤ Pr
(
X ≤ a+ b

2

)
≤ 1
b− a

[
a+ b

2
− E (X)

]
+ 1.

Proof. From the inequality (2.10) , we get

−1
2

+
b− E (X)
b− a

≤ Pr
(
X ≤ a+ b

2

)
≤ 1

2
+
b− E (X)
b− a

.

But

−1
2

+
b− E (X)
b− a

=
−b+ a+ 2b− 2E (X)

2 (b− a)
=

1
b− a

[
a+ b

2
− E (X)

]
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and

1
2

+
b− E (X)
b− a

= 1 +
b− E (X)
b− a

− 1
2

= 1 +
2b− 2E (X)− b+ a

2 (b− a)

= 1 +
1

b− a

[
a+ b

2
− E (X)

]
and the inequality is proved.

Remark 2.3. Let 1 ≥ ε ≥ 0, and assume that

E (X) ≥ a+ b

2
+ (1− ε) (b− a)(2.13)

then

Pr
(
X ≤ a+ b

2

)
≤ ε.(2.14)

Indeed, if (2.13) holds, then by the right-hand side of (2.12) we get

Pr
(
X ≤ a+ b

2

)
≤ 1
b− a

[
a+ b

2
− E (X)

]
+ 1 ≤ (ε− 1) (b− a)

b− a
+ 1 = ε.

Remark 2.4. Also, if

E (X) ≤ a+ b

2
− ε (b− a)(2.15)

then, by the right-hand side of (2.12) ,

Pr
(
X ≤ a+ b

2

)
≥
[
a+ b

2
− E (X)

]
· 1
b− a

≥ ε (b− a)
(b− a)

= ε

i.e.,

Pr
(
X ≤ a+ b

2

)
≥ ε (ε ∈ [0, 1]) .(2.16)

The following corollary is also interesting:

Corollary 2.3. Under the above assumptions of Theorem 2.1, we have the in-
equality:

1
b− x

b∫
a

[
1 + sgn (t− x)

2

]
F (t) dt ≥ Pr (X ≥ x)(2.17)

≥ 1
x− a

b∫
a

[
1− sgn (t− x)

2

]
F (t) dt

for all x ∈ (a, b) .
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Proof. From the inequality (2.1) we have:

Pr (X ≤ x)− b− E (X)
b− a

≤ 1
b− a

[2x− (a+ b)] Pr (X ≤ x) +

b∫
a

sgn (t− x)F (t) dt


which is equivalent to:

(b− a) Pr (X ≤ x)− [2x− (a+ b)] Pr (X ≤ x)

≤ b− E (X) +

b∫
a

sgn (t− x)F (t) dt,

i.e.,

2 (b− x) Pr (X ≤ x) ≤ b− E (X) +

b∫
a

sgn (t− x)F (t) dt.

As (see the Proof of Theorem 2.1 ):

b− E (X) =

b∫
a

F (t) dt

then from the above inequality we deduce the first part of (2.17) .
The second part of (2.17) follows by a similar argument from

Pr (X ≤ x)− b− E (X)
b− a

≥ − 1
b− a

[2x− (a+ b)] Pr (X ≤ x) +

b∫
a

sgn (t− x)F (t) dt


and we shall omit the details.

Remark 2.5. If we put x = a+b
2 in (2.17) , then we get

1
b− a

b∫
a

[
1 + sgn

(
t− a+ b

2

)]
F (t) dt ≥ Pr

(
X ≥ a+ b

2

)
(2.18)

≥ 1
b− a

b∫
a

[
1− sgn

(
t− a+ b

2

)]
F (t) dt.
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3 Applications for a Beta Random Variable

A Beta random variable X with parameters (p, q) has the probability density
function

f (x; p, q) :=
xp−1 (1− x)q−1

B (p, q)
; 0 < x < 1

where Ω = {(p, q) : p, q > 0} and B (p, q) :=
1∫
0
tp−1 (1− t)q−1

dt.

Let us compute the expectation of X.
We have

E (X) =
1

B (p, q)

1∫
0

x · xp−1 (1− x)q−1
dx =

B (p+ 1, q)
B (p, q)

,

i.e.,

E (X) =
p

p+ q
.

The following proposition holds:

Proposition 3.1. Let X be a Beta random variable with parameters (p, q) .
Then we have the inequalities:∣∣∣∣Pr (X ≤ x)− q

p+ q

∣∣∣∣ ≤ 1
2

+
∣∣∣∣x− 1

2

∣∣∣∣
and ∣∣∣∣Pr (X ≥ x)− p

p+ q

∣∣∣∣ ≤ 1
2

+
∣∣∣∣x− 1

2

∣∣∣∣
for all x ∈ [0, 1] and particularly:∣∣∣∣Pr

(
X ≤ 1

2

)
− q

p+ q

∣∣∣∣ ≤ 1
2

and ∣∣∣∣Pr
(
X ≥ 1

2

)
− p

p+ q

∣∣∣∣ ≤ 1
2

respectively.

The proof follows by Theorem 2.1 applied for a Beta random variable, X.
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