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AN OSTROWSKI'S TYPE INEQUALITY FOR A
RANDOM VARIABLE WHOSE PROBABILITY
DENSITY FUNCTION BELONGS TO L[A, B]

N.S. BARNETT AND S.S. DRAGOMIR

ABSTRACT. An inequality of Ostrowski’s type for a random variable whose
probability density function is in L [a, b] in terms of the cumulative distribution
function and expectation is given. An application for a Beta random variable is
also given.

1 INTRODUCTION

The following theorem contains the integral inequality which is known in the
literature as Ostrowski’s inequality [1, p. 469]

Theorem 1.1. Let f : I C R — R be a differentiable mapping in I° (I°is the
interior of I), and let a,b € I° with a < b. If f' : (a,b) = R is bounded on

(a,b), i.e., ||f'll.. == sup |f'(t)| < oo, then we have the inequality:
te(a,b)
b 2
1 1 (z— )
1.1 — tydt| < |=+—2| (b— !
e g e < | ]( D1l

for all x € [a,b]. The constant % is sharp in the sense that it can not be replaced
by a smaller one.

In [2], S.S. Dragomir and S. Wang applied Ostrowski’s inequality in Numeri-
cal Analysis obtaining an estimation of the error bound for the quadrature rules
of Riemann type in terms of the infinity norm ||-||., . Application for special
means : logarithmic mean, identric mean, p-logarithmic mean etc... were also
given.

The main aim of this paper is to give an Ostrowski’s type inequality for
random variables whose probability density functions are in Lo, [a,b]. An ap-
plication for a Beta Random Variable is also given.

2 THE RESULTS

Let X be a random variable with the probability density function f : [a,b] C
R — R and with cumulative distribution function F (z) = Pr(X < z).
The following theorem holds
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26 Barnett and Dragomir

Theorem 2.1. Let f € Ly [a,b] and put ||f||l,, = sup f(t) < oo. Then we

t€la,b]
have the inequality:
_ 91
b-EX)|_ (1, (#=*5*)
2.1 PriX<z)-——— < |-4+——=—|(b—
N s e e (L
or equivalently,
_ 91
E)—a|_[1 (z-23)
2.2 PriX>2) - —— | < |-+——=—|(b—
@2 [P za) - ST < g e 0= il

for all © € [a,b]. The constant § in (2.1) and (2.2) is sharp.

Proof. Let z,y € [a,b]. Then

|F () - F (y)] = /f(t) dt| < |z — ol Ifll.,

which shows that F is || f]|,, —Lipschitzian on [a,b].
Consider the kernel p : [a,b]* — R given by

t—a if t € [a,z]
p(z,t) = :
t—>b if t € (z,b)

b
Then the Riemann-Stieltjes integral [ p(z,t) dF (t) exists for any = € [a,b]

a
and the formula of integration by parts for Riemann-Stieltjes integral gives:

T

b b
(2.3) /p(a:,t) dF (1) = /(t—a) dF (t)+/(t—b) dF (1)

a

T

b
= (t—a)F(t)|Z—/F(t)dt+ (t—b)F(t)|I;—/F(t)dt

The integration by parts formula for Riemann-Stieltjes integral also gives

b b
(2.4) E(X)= /tdF (t) = tF ()| —/F(t) dt
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Ostrowski Inequality for Random Variable 27

= bF (b) — aF (a /F /bF(t)dt.

Now, using (2.3) and (2.4), we get the equality

b
(2.5) (b—a)F(m)+E(X)—b:/p(m,t)dF(t),

for all x € [a,b].
Now, assume that

An.—a—w(()n)<x§n)< <a:( )1<a:( ) =b

is a sequence of divisions with v (A,) = 0 as n — oo, where

v(Ay) = max{wgz)l — xgn) :9=0,...,n— 1} .

If p : [a,b] — R is Riemann integrable on [a, b] and v : [a, b] — R is L-lipschitzian
(lipschitzian with the constant L), then :

b n—1
0o |[rerwe)|=| i o) () - ()]

a

< lim "z_:l ‘p (5(”)) ‘ (mgi)l 3 x(n)) v (CUiJrl) —v (wgn))

T v(A,)—0 _
v(An)=0 75 Tl — @

i Z p(67)] (2 = 2”) =L [ 1p @)l

a
Applying the inequality (2.6) for the mappings p (z,-) and F (-), we get :

b

/wtdF <l /|pwt|dt
= £l V” (t—a dt+/b b—t)dt| = |fll.. [( a)z;r(b—l‘)z]
:H(b—a)2+<m—“+b>

[1£1loo

for all € [a,b].
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28 Barnett and Dragomir

Finally, by the identity (2.5) we deduce:

a 2
1 (=)

b— E(X)
F(m)——‘ <3+

b—a

] (b—a)[lfll

for all z € [a,b] which is (2.1).
Now, taking into account the fact that

Pr(X>z)=1-Pr(X <ux)

the inequality (2.2) is also obtained.
To prove the sharpness of the constant k = i, assume that the inequality
(2.1) holds with a constant ¢ > 0, i.e.,

( a+b)2

2.7 Pr(X <z) - < le Ton ) b—a
(2.7) (X <uz) + (b= a) ]( ) 1 f 1o

b—E(X)‘
b—a

for all € [a,b].

Assume that X is a random variable having the probability density function
f() : [0,1] - R s f() (t) = 1. Then

Pr(Xo > z) ==, z €10,1],

1
E(XU) = 57

and
I folloo = 1

Consequently, (2.7) becomes

1 1\°
z-3 <c+ z—3 for all z € [0,1].

Choosing x = 0, we get ¢ > % and the sharpness of the constant is thus

proved. i

The above theorem has some interesting corollaries for the expectation of X
as follows:

Corollary 2.2. Under the above assumptions, we have the double inequality:
1 2 1 2
(2.8) b—5b=a)[[fllo <EX)<atg(b-a)|fll-
Proof. We know that
a<E(X)<b.
Now, choose = a in (2.1) to obtain

b—E(X)| 1
‘ﬁ‘ < §(b—a)||f||oo
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Ostrowski Inequality for Random Variable 29

ie.,

b—E(X) < 5(b-a)|Ifll.

N | =

which is equivalent to the first inequality in (2.8).
Also, choose x = b in (2.1) to get

b B(X)

1
< Z(p—
b b_a\_2w @ Ifll

ie.,
1 2
B(X)~a< (-0l
and the inequality (2.8) is proved. I

Remark 2.1. We know that

b

1:/f@mmg@—@wmm

a
which gives us

1l >

®=p—qa’

Now, if we assume that || ]| is not too large, i.e.,

(29) Mo <
then
atyB-a?llfll, <b
and
1

b= 5=’ [fl > a

which shows that the inequality (2.8) is a tighter inequality than a < E (X) <b
when (2.9) holds.

Another equivalent inequality to (2.8) which can be more useful in practice
is the following one:

Corollary 2.3. With the above assumptions, we have the inequality

(2.10) o0 - 25 < O3 (i - 555
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30 Barnett and Dragomir

Proof. From the inequality (2.8) we have :

a—b 1 9 a+b
— — (b= < —
b— 2 - S 0—allflle < B () -2
a+b 1
o= "2 4 -0 |l

ie.,

05 (e - 525 ) < B0 -5

g

which is exactly (2.10). 1

This corollary provides the possibility of finding a sufficient condition in
terms of || f||, for the expectation E (X) to be close to the mean value 2£.

Corollary 2.4. Let X and f be as above and € > 0. If

1 2¢e
2.11 < — 4+
(211) Il < 5= +
then
‘E(X)— “;b‘ <e.

The proof is obvious and we shall omit the details.
The following corollary of Theorem 2.1 also holds:

Corollary 2.5. Let X and f be as above. Then we have the inequality:

a+b 1
: < -
(2.12) ‘Pr(X_ 5 ) 2‘
1 1 a+b
<= (b-— — |E(X) -
<1 0-0lflo 5 [P0 -5

3 1
<Z0-a) Sl -5

Proof. If we choose in (2.1) z = “E2, we get

Pr X<a+b _b-E(X)
- 2 b—a

<j0-al.
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Ostrowski Inequality for Random Variable 31

which is clearly equivalent to

(ee) bt

S (b—a)[[fllo

Now, using the triangle inequality, we get

(s}

2

a+b 1 1 a+b 1 a+b
<lpe(rt57) 3o ima (P03 [+ 5 (0 -232))
b 3 1
<1 0-0lfle 2 [ECO - 50| < Fo- sl - 3

and the desired inequality is proved. I

Remark 2.2. A similar result applies for

Pr (X > 2t b) .
- 2
We shall omit the details.
Finally, the following result holds:

Corollary 2.6. Let X and f be as above. Then we have the inequality:

Pr(Xga;_b>—1‘.

2

(2.13) ‘E(X)—a+b‘<1 2 (b—a)

<1 0= 0’ fll + -

Proof. As in the above corollary, we have:

1

<3 0-a)lfl

from whence we get (2.13). 1
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32 Barnett and Dragomir

Remark 2.3. If we assume that f € C[a,b], then F is differentiable on (a,b)
and by Ostrowski’s inequality (1.1) applied for F we get

1

b 2
F(a:)—b_a/F(t)dt < |2 (= - 45%)

it

] (b—a) [l fll

for all x € [a,b].

Now, using the identity (2.4) we recapture the inequality (2.1) and (2.2) for
random variables whose probability density functions are continuous on [a, b] .

3 APPLICATION FOR A BETA RANDOM VARIABLE

A Beta random variable X, with parameters (p,¢) has the probability density
function

(1 —2) "

; O<e<1
B (p,q)

f(z:pq) =
where

Q={(p,q) : p,qg> 0}

and
1
B(p,q) := /tp’l (1—t)" " dt.
0
We observe that for 0 < p < 1,

||f()p7 q)Hoo = sup
z€(0,1)

P (1 - 1‘)q_1 -
B (p,q) '

Assume that p,q > 1. Then

df (.T,p, q) _ 1 p—2 q—1 p—1 q—2
el T e E R L (R e L

_arP(l-a) ) (a—Dx
= B [(p=1)(1=2) = (¢—-1)]

. P72 (1 —x)q_2
—W[—(PJHJ—?)CEJF(P—I)]-

We observe that

df (z,p,q)

=0
dx
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Ostrowski Inequality for Random Variable 33

iff zy = p:i;iQ € (0,1) (for p,g > 1) and then W > 0 on (0,z0) and

d(@.0) ) on (z9,1) . Consequently,

(p—1" ' (g-D"" _
B(p,q)(p+q—2)""?

On the other hand we have
1

__ ! poapl(1— )ity Bl2+LD) b
E(X)_B(p,q)o/ A=) d B(p,g)  p+q

Now, using Theorem 2.1 we can state the following proposition:

Proposition 3.1. Let X be a Beta random variable with the parameters (p,q),
p,q > 1. Then we have the inequality :

Pr(X <z)— —L—

p+q
- 1+<x_1>2 p-1)"" (-1
N 2 B(p,q)(p+q—2)""""
and
Pr(X>:r)—L
p+gq

L A U 2 Vi U Ve
4+< 2> ] B pra-27 7

where x € [0,1]. Particularly, we have

pr{x<l)__9 |
<3) =54l

(p-1"" (-1
B(p,q) (p+q—2)P""?

> =

and

1 1 )P (g =1t
‘Pr(XZ—)— Pl L (p—1)" (¢ )+_2‘
2) p+aq|” 4 B(pg(p+qg—2""
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