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SOME OSTROWSKI TYPE INEQUALITIES FOR
N-TIME DIFFERENTIABLE MAPPINGS AND
APPLICATIONS

P. CERONE, S.S. DRAGOMIR AND J. ROUMELIOTIS

ABSTRACT. Some generalizations of the Ostrowski inequality for n-time dif-
ferentiable mappings are given. Applications in Numerical Integration and for
power series expansions are also presented.

1 INTRODUCTION

In 1938, Ostrowski (see for example [3, p.468]) proved the following integral
inequality:
Let f : I C R — R be a differentiable mapping on I°( I° is the interior of
I), and let a,b € I° with a < b. If f' : (a,b) = R is bounded on (a,b), i.e
If'lloo :== sup |f' ()| < oo, then we have the inequality:
)

te(a,b
b
! /f (t)dt| <
b—a -
for all € [a,b].

The constant i is sharp in the sense that it can not be replaced by a smaller
one.

For applications of Ostrowski’s inequality to some special means and some
numerical quadrature rules, we refer the reader to the recent paper [2] by S.S.
Dragomir and S. Wang.

In 1976, G.V. Milovanovi¢ and J.E. Pecari¢ (see for example [3, p. 468]),
proved the following generalization of Ostrowski’s result:

Let f [a,b] = R be an n-times differentiable function, n > 1, and such that
||f || = sup |f(”) |< 00. Then

1 (a:—a—“’

2 2) ] (b—a)llfll

4 (b—a)

1 (f<x>+”_ n—k f<k1><a><x—a>k—f<k1>(b>(x—b)’“> =l RACL

k! b—a
k=1
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54 Cerone, Dragomir and Roumeliotis

/. @ =a)™ + (b —a2)H!
< .
~n(n+1)! b—a

for all z € [a,b].
In [1], P. Cerone, S.S. Dragomir and J. Roumeliotis proved the following
Ostrowski type inequality for twice differentiable mappings:
Let f : [a,b] — R be a twice differentiable mapping on (a,b) and f" :
(a,b) = R is bounded, ie., |||, = sup |f"(t)] < co. Then we have the
t€(a,b)

inequality:

- [rwa- (-5 1w

" (b_a)2 "
11l < =22 157

1 , 1 a+b\’
< |=(p= il —
_[24(1) a) +2<a: 2)

for all € [a,b].

In this paper we establish another generalization of Ostrowski inequality
for n-time differentiable mappings which naturally generalizes the result from
[1] and apply it in Numerical Integration and for power series expansions of
functions on an interval.

2 INTEGRAL IDENTITIES
The following lemma holds:

Lemma 2.1. Let f : [a,b] = R be a mapping such that £~V is absolutely
continuous on [a,b]. Then for all x € [a,b] we have the identity:

b

n—1 VL 1V ()R
ey f(t)dtzl;[(b @

a

b
+(—1)”/Kn (z,t) £ (t) dt

where the kernel K, : [a, b]2 — R is given by
t— n
( 'a) if t € [a, 2]
n!
(2.2) K, (z,t) := , T € [a,b]

(t :L!b)" ift € (z,0]

and n s a natural number, n > 1.
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Ostrowski for n-Time Differentiable Mappings 55

Proof. The proof is by mathematical induction.
For n = 1, we have to prove the equality

b b

(2.3) / Fydt=(b—a) f () / Ky (1) £O (1) dt

a a

t—a ifte|a,z]
K1 (Z’,t) = {

t—b ifte(x,b]

where

Integrating by parts, we have:

b z b

/K1 (2,1) O (t)dt:/(t—a) f (t)dt+/(t—b) £ (t) dt

a a T

b

- (t—a>f<t>|z—/f<t>dt+ (t—b)f(t)li—/f(t)dt

T

b b
=(w—a)f(:v)+(b—w)f(w)—/f(t)dtz(b—a)f(w)—/f(t)dt

and the identity (2.3) is proved.
Assume that (2.1) holds for ”n” and let us prove it for ”n + 1”. That is, we
have to prove the equality

b n oV DV (g — )
ey f(t)dtzki;)[(b bl ]f%:)

a

b
+ (=)™ / Ko (w,t) O () dt

a

where, obviously,

—a n+1
KnJrl (t) = _—

We have

T
(t _ a)n+1

b
/Kn+1 (z,8) fO+ (t)dt:/ (n+1)!

a

b n+1
£ (1) dt + / % £ (1) dt
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56 Cerone, Dragomir and Roumeliotis

and integrating by parts gives

b

/Knﬂ (z,t) fO1D (¢) dt = (tza) —

a

(t—b)"t

E="" )
T mrr ! (t)x

z—a)"t L ()2 (p — )L

That is

b

/ Ky (2,1) £ (2) dt =

a

@=a)"" + ()" (=)™

b
- / Kopy (1) 0 (#) dt.

Now, using the mathematical induction hypothesis, we get

b

n—1 — ) ) (e — ) F
/f(t)dt:;l(b MEOMLEL ]fm(@

a

— )"t 1) (z — a)™*!
" (b ) ‘(“n(+11))' ( ) f(n) (z) — (—l)n/Kn+1 (z,1) f(n+1) (t) dt

b
+ (-1 /Knﬂ (z,t) fOF) (1) dt.
That is, the identity (2.4); and the theorem is thus proved. I
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Ostrowski for n-Time Differentiable Mappings 57

Corollary 2.2. With the above assumptions, we have the representation

(b—a)ft? 0 <a + b>

2+ 2

n—1

b k
2.5) /f(t)dt: P
P k=0

(k+1)!

b

(-1 / M, (t) £ (1) d

where

ift € [a, aT*'b]
M, (t) :=

it e (242 0]
The proof follows by Lemma 2.1 by choosing z = “T*b

Corollary 2.3. With the above assumptions, we have the representation:

n—1 _ak+1 *) (g4 L)
(2.6) /f(t)dt:go(lz“)l)! lf ()+(21) £® (b)

a

b
+ / T, (t) f™ (t) dt
where
LTo-)"+(=1)"(t-a)"
Tn(t)—m{ . a ] t € [a, b]
Proof. Firstly, choose in (2.1) z = a to get
/ & (- o)t [ (t—b)"
— — (k) _1)" _ (n)
[rwa S S/ @+ D [ wa

Also, if we put £ =bin (2.1), we get

(b—a)**!

b n—1 b n
[rwa=3 vt et s o [
a k=0 a
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58 Cerone, Dragomir and Roumeliotis

Summing the above two identities and dividing by 2, we get

b

= (=) B (@) + (=1 B (1)
/f(t)dt_kzo &+ 1) [ >

a

b
+ / T, (t) £ (t) dt

and the corollary is proved. i

The following Taylor-like formula with integral remainder also holds:

Corollary 2.4. Let g : [a,y] — R be a mapping such that g™ is absolutely
continuous on [a,y]. Then for all x € [a,y], we have the identity

-+ () @ -0t

(2.7) g =g@+> i+ 1)

g(k+1) (1.)

+(—1)”/Kn (y,t) g™ (t) dt.

The proof is obvious by Lemma 2.1 choosing f = ¢, and b = y.
Remark 2.1. If we choose n =1 in (2.1), we get the identity

b

b
(2.8) / ftydt=(b—a) f(z) / Ky (o) f () dt

a

for all z € [a,b], where

t—a ift€]a,x]
Kl (.’I,',t) =
t—b ifte(x,b]

which is the identity employed by S.S. Dragomir and S. Wang to prove an Os-
trowski type inequality in paper [2].

If in (2.5) we choose n = 1, then we get

“;b> —/le(t)f’(t)dt

(2.9) [rwa= (b—a)f(

where

t—a iftE[a,“T"‘b]
M, (t) =
t—b ifte (%,
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Ostrowski for n-Time Differentiable Mappings 59

which gives the mid-point type inequality useful in Numerical Analysis.
Also, if we put n =1 in (2.6), we get the trapezoid identity

b b
(2.10) /f(t) dt = M (b—a) +/T1 (t) f' (t)dt

a

where

Tl(t):a;b—t, teab.

Finally, if in the Taylor-like formula (2.7) we put n = 1, we get

g() = g(a)+—a)g (@) - / K, (y,1) ¢ () dt

a
where z € [a,y].

Remark 2.2. If we choose n =2 in (2.1), we get the identity:

(2.11) /bf(t)dt: (b—a) f(z) — (a:— 5 )f’ (a:)+/bK2 (x,t) f" (t)dt

where

if t € [a,z]
K2 (.’I,',t) =

if t € (z, b

and x € [a,b], which is the identity employed by P. Cerone, S.S. Dragomir and
J. Roumeliotis to prove some Ostrowski type inequalities for twice differentiable
mappings in the paper [1].

If in (2.5) we choose n = 2, then we get

b

(2.12) /f(t)dt: (b—a)f (”'2”’> +/bM2 () £ (1) dt

a

where

ift € [a, aT*'b]
MQ (t) =

if t € (%52, 0]
which is the classical mid-point identity.
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60 Cerone, Dragomir and Roumeliotis

Also, if we put n =2 in (2.6), we get the identity

b

(2.13) /f(t)dt: M(b_a)Jr (b—2a) _f'(a);f'(b)

a

+ /b To (t) f" (t) dt
where a
TQ(t):%-(b_t)Q;(t_af, t € [ab].
Finally, if we put n = 2 in (2.7), we get
21 =@+ b-0d @ - - (2= )" @)

Y
+ / K> (y,1) g (1) dt,

where K5 is as above and a < z <.

3 SOME INTEGRAL INEQUALITIES FOR ||||,, —NORM

The following theorem holds:

Theorem 3.1. Let f : [a,b] = R be a mapping such that f"~ 1 is absolutely
continuous on [a,b] and f) € Lo, [a,b]. Then for all x € [a,b], we have the
inequality:

b

n—1 L1 (g g)F
(3.1) /f(t)dt—kz%[(b Lol ]f(’“)(w)

a

”f ” nt1 n+1 ||f || _a)nH
= o il (CAT DM ok (n+1)
where
Hf(") = sup ‘f ”) ‘ 0.
t€la,b]

Proof. Using the identity (2.1), we have:

b

n—1 VL 1V ()R
/f(t)dt—gl(b Lol ]f(k)(a:)

a
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Ostrowski for n-Time Differentiable Mappings 61

_ /bKn (v,8) £ (0| < || £ m/blKn (w, 1)] dt
- wa /x(t_n!“)ndwr/b b :L!t)ndt
FER——

and the first part of inequality (3.1) is proved.
To prove the second inequality in (3.1) , we observe that

(3.2) (z—a)"" 4+ (b—2)"T < (b—a)"T",
for all z € [a,0]. N

Taking into account the fact that the mapping h, : [a,b] = R, h, (z) :=
(x —a)"™" + (b—2)"*" , has the property

. a+b\ (b—a)*™!
f n = Nn = 5
@ = (57) = O

then the best inequality we can get from (3.1) is the one for which z = “T+b
In this way, we can state the following corollary.

Corollary 3.2. Assume that f is as in Theorem 3.1. Then we have the in-
equality:

b

[+ (D] - a+b
09 |[rwa- 3 || et ()
B A N (Ol
- 2”(n+1)

Another result which generalizes the trapezoid inequality, is the following
one:

Corollary 3.3. With the above assumptions, we have the inequality:

b

n—1 b_ak+1 (k) a —lk (k) b
(3.4) /f(t)dt_kzjo((k:l)! [f ()+(2 )" f) (b)

a

1 ifn=2r
(b—

<7 X
- (n+1)!

o,

22r+1 -1

o2 ifn=2r+1
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62 Cerone, Dragomir and Roumeliotis

Proof. Using the identity (2.6), we get

b
=) 11 (@) + (=1)" 1 (b)
/f(t)dt_kzzo (k+1)! [ 2 ]
b b

/ £ ( dt<Hf

/|Tn (t)] dt.

a

If n = 2r, then

b

b 2r
(3.5) /|Tn(t)|dt ,/[b_t +(t=a) ]dt

1 1 [(b _ a)2r+1 (b . a)2r+1

(b _ a)2r+1
2r+1)! 7

@l 2| @r+ 2r +1)

For n = 2r+1, put hoppy () := (b— )" —(t — a)w"_1 2 t € [a,b]. Observe
that h2r+1( ) =0iff t = U’TH) and h2r+1( ) >0ifte [ ) and h2r+1( ) <0
if t € (%2, 0]

Then

b
/ (o (1) dt
a

Q
+
o

b
[(b _ t)2r+1 (- 2r+1 / _ 2r+1 - t)2r+1] dt
+b

[l
B \N‘

(b _ a)2r+2 4 (b_)2r+2

_ _ 2
2r + 2 2r + 2
1 b _ 2r+42 b _ 2r42 1
- 2(b—a)’" - (b-9) _b-a 2 -
2r 4+ 2 22r 2r+2 22r

_(b—a)?T? 22l
2r +2 2or

Using (3.4) we get the desired inequality (3.3). I

The following inequality in terms of ||-|| ., — norm for the Taylor like expan-
sion (2.7) also holds:
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Ostrowski for n-Time Differentiable Mappings 63

Corollary 3.4. Let g be as in Corollary 2.4. Then we have the inequality:

=1 |(y — )"+ (1) (z —a)**!
(3.6) 9() —g(a)— kZ:O [ G ]g('““) (z)
g™V, nt1 i1 _ 9 et
<t le-om v e-am ] < g -

foralla<z<y.

Remark 3.1. It is well known that for the classical Taylor expansion around a
we have the inequality

"

n —a k (
s =3 Lt <a>‘ .

n+1
a)
P (n+1)!

(3.7) (y —

for all y > a. It is clear now that the above approzimation (3.6) around the
arbitrary point x € [a,y] provides a better approximation for the mapping g at
the point y than the classical Taylor expansion around the point a.

a+y
2

If in (3.6) we choose z = , then we get

n k-1 )
(3.8) g9 —g@-> [1 " (k!l) } (y ;ka)kg(k) (a ; y)

M( _ )"+1
~ (n+1)27 ’

The above inequality (3.8) shows that for g € C*° [a, b] the series

oo |14 (=1)F _g)Ftt a
g(a) +kz:% [ CESY } (y 2k+)1 gk+D) (%)

converges more rapidly to g (y) than the usual one
i (y—a)"g® (a)
k!

k=0

which comes from Taylor’s expansion. Further, it should be noted that (3.8)
only involves odd derivatives of g.

Remark 3.2. If in the inequality (3.1) we choose n =1 we get

b 2 —1'2
[10di-0-a )| < Ty
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64 Cerone, Dragomir and Roumeliotis

As a simple calculation shows that

%[(x—a)%(b—m)?] :i(b—a)2+<m—a;b>2

consequently we obtain the Ostrowsk: inequality:

adb 2
1, (z—2)

(3.9) TR T

<

b
/f(t)dt—(b—a)f(ﬂf)

] (b= a)* If'llo

for all z € [a,b].

If in (3.2) we put n = 1, we get the mid-point inequality

/bfu)dt—f(“';b) (- a)

From the inequality (3.4), for n = 1, we get the trapezoid inequality

(3.10)

1 2 i
<7 0—a|Ifl-

b
/f(t)dt—w(b—a)

a

Also, from (3.6) we deduce

(3.11) <

(b= a)* If'll -

DN | =

r— oty 2
(3.12) lg(y) —g(a) = (y —a) g (z)] < i -+ Q] "l

forall a <z <uy.

Remark 3.3. If in the inequality (3.1) we choose n = 2, then we get

_a+b

Jo-ar@

/bf(t)dt—(b—a)f(:r)+ (m

<z -+ 0-0 I
for all x € [a,b].

Now, observe that

- + (-2’ = (B-a)|@-0)’+b-2) (@ -a)b-2)

= (b—a) l(b—a)2+3

(=) - (5]
= (b—@[(b;“)zw(m_“;”f
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Ostrowski for n-Time Differentiable Mappings 65

and then we recapture the result obtained in [1], namely

b
(3.13) /f(t)dt—(b—a)f(a:)+(m—a;b>(b—a)f’(:r)

1 l(x_a_er)2 3 "
< ﬂ+§ﬁ (b—a)" If" -

If we put n =2 in (3.3), we get the classical mid-point inequality

b
1
a1 |[10a-0-07 () <3 0-0" 171,
Now, if in (3.4) we put n = 2, then we get the inequality:

b
fa)+ f(b) (b—a)?® f'(a)—f(b)
/f(t)dt—f(b—a)— IR

(3.15)

@

(b—a)’

<21

Finally, if we put n = 2 in (3.6), then we get the inequality:

‘g(y)—g(a)—(y—a)g’ (z) + (y — a) <9:— aQﬂ> g”(ﬂf)‘

oy 2 )
272 (y—ay

] (v —a)*lg" . -

4 APPLICATIONS FOR NUMERICAL INTEGRATION

Consider the partition I, : a = 29 < 1 < ... < Ty—1 < Ty, = b of the interval
[a,b] and the intermediate points & = (fo, "'7£m71) where §; € [zj,2j41] j =
0,...,m — 1. Define the formula

moin=1 (g — &) 4+ (=1)F (& — ;)"
Fm,k (f)Im7£) = Z [ ks ’ (k+1)| ’ ’ ]f(k) (6])
7=0 k=0

where hj :=2;4, —x;, j=0,...m—1
The following theorem holds.
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66 Cerone, Dragomir and Roumeliotis

Theorem 4.1. Let f : [a,b] = R be a mapping such that f"=Dis absolutely
continuous on [a,b] and I, a partitioning of [a,b] as above. Then we have the
quadrature formula

(4.1) [ @)= P (£.10,) + R (1.8
where Fy, 1 is defined above and the remainder R, satisfies the estimation:
(4.2) R (f, Im, &)| < ” ” ) Z [ D" (21 =€) H}
j=
||f Moo & 5 s
~ (n+1)! Z h

for all € as above.

Proof. Apply Theorem 3.1 on the interval [z, z;11] to get

wt [ (e =€) + (<0 (g —a) )]
/f(t)dt—g L k+ 1) | )
E—
w el
~ (n+1)! /

for all j € {0,...,m —1}.
Summing over j from 0 to m—1 and using the generalized triangle inequality,
we deduce the desired estimation (4.2). I

As an interesting particular case, we can consider the following perturbed
mid-point formula

mk f> ZZ

which in effect involves only even k.

We state the following result concerning the estimation of the remainder
term.

-1
k+1

k+1
M gt (Tt T
i 2 ’

Corollary 4.2. Let f andl,, be as in Theorem 4.1. Then we have

b
(4.3) /f(t)dt Mo i (F2T) + R (2 In)
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Ostrowski for n-Time Differentiable Mappings 67

and the remainder term R, . satisfies the estimation

(4.4) | R ke (f 1 )|_2”f Z s

=0

We can consider the following perturbed version of the trapezoid formula:

m—1n—1 hk+1 (k) ) _1\k (k) )
Tk (f, I 2_22_: - fW (@) + ( 21) Y (@jt1)

By the use of Corollary 3.3, we have the following approximation of the
b
integral [ f(¢)dt in terms of Ty, (f, Im) :

Corollary 4.3. Let f and I,,, be as in Theorem 4.1. Then we have
(45) [ £ 0t =T (7, 1) + B (5. 1)
a

and the remainder Ry, . (f, I,,) satisfies the inequality

m—1
o (1. 1)] < g )L S0
n+ 1 o =
where
1 if n = 2r
Cn = 22r+1 -1
o ifn=2r+1

Remark 4.1. a). If we choose n =1 in the above quadrature formulae (4.1)
and (4.3), we recapture some results from the paper [2].

b). If we put n = 2, then by the above Theorem 4.1 and Corollary 4.2, we
recover some results from the paper [1].

We omit the details.

5 APPLICATIONS FOR SOME PARTICULAR MAPPINGS
a) Consider g : R = R, g (z) = e®. Then ¢\ (z) = ¢, n € N and

o+, = up a0 ] = e
tela,y]

Using inequality (3.6), we have

oty - o+ () @ - @)
(5.1) eV —e"—e kZ:O Fr D)
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68 Cerone, Dragomir and Roumeliotis

eY ey

< _ n+1 _ n+1 < _ n+1
il L RO s VA UAD
foralla <z <y.
Particularly, if we choose a = 0, then we get
nt [ -2y + (- b
2 Y—1-—¢€"
(52) ¢ > k+ 1)
k=0
e’ n+1 n+1 e’ n+1
< ——m— — < .
=+ [(y o) e ] =+
Moreover, if we choose z = ¥, then we get
St (—l)k yktt eyynt!
(53) ey_l_GEZ T okt | |
= (k+1)! 2 27 (n + 1)!
for all y > 0.
b) Consider g : (0,00) = R, g (z) =Inz. Then
~1)" 1 (n—1)!
g(n)(l«):()m#, n>1,z>0
and
-1)"n! n!
(n+1) H _ ( _ 0.
Hg oo tgw,)y] gntt antt? "

Using the inequality (3.6) we can state:

n—1 _mk+1+—1km—ak+1 —]_kk"
lny—lna—z(y ) (k(+1))!( ) (wk)+1

k=0

nt n+1 n+1 n! )
SW[(y—x) i +(a:—a) +]SW(y—a) +

which is equivalent to

B = 1 @-o (- (y-a)
ln(ﬁ)_kz%lwrl' LR

k+1
(5.4)

(y — )"

<
- (n+1)ant! ~ (n+1)antt

+ (.’I} — a)n+1 1 (y _ a)n+1

Now, if we choose in (54) y=z+ 1L,z =w+1,a= 1,2 > w > 0, then we get

n—1 1 wk+1 + (_l)k (Z _ w)k+1
=kt (w+ 1)
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Ostrowski for n-Time Differentiable Mappings 69

+1
CGmw™ e 1
- n+1 ~(n+1)

Finally, if we choose in (5.4), y = ua,z = wa with u > w > 1, then we have

w)k+1

lnu—ri:1 L (w=1""+ (=1)" (u~
—k+1 whk+1

- n+1 - (n+1)
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