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A GENERAL DIVERGENCE MEASURE FOR MONOTONIC
FUNCTIONS AND APPLICATIONS IN INFORMATION THEORY

S.S. DRAGOMIR

ABSTRACT. A general divergence measure for monotonic functions is intro-
duced. Its connections with the f—divergence for convex functions are ex-
plored. The main properties are pointed out.

1. INTRODUCTION

Let (X,.A) be a measurable space satisfying |A| > 2 and p be a o—finite mea-
sure on (X, A). Let P be the set of all probability measures on (X,.A) which are
absolutely continuous with respect to u. For P,Q € P, let p = ‘é—’; and ¢ = %
denote the Radon-Nikodym derivatives of P and ) with respect to p.

Two probability measures P, ) € P are said to be orthogonal and we denote this
by @ L P if

P{g=0})=Q{p=0}) =1.

Let f : [0,00) — (—00,00] be a convex function that is continuous at 0, i.e.,

f(0) =limy 0 f(u).

In 1963, I. Csiszar [2] introduced the concept of f—divergence as follows.

Definition 1. Let P,Q € P. Then

(L1) I;(Q.P) = /

X

p(x) f {Zgﬂ dp (x),

is called the f—divergence of the probability distributions Q@ and P.

We now give some examples of f—divergences that are well-known and often
used in the literature (see also [3]).

1.1. The Class of y*—Divergences. The f—divergences of this class, which is
generated by the function x®, a € [1,00), defined by

X (u) =Ju—1|", uel0,0)

have the form

(1.2) I;(Q.P) = / p

X

(0%

q _

-1 du:/ p' % |g —p|® dp.

p X

From this class only the parameter a« = 1 provides a distance in the topologi-
cal sense, namely the total variation distance V (Q,P) = [ |¢ — p| dp. The most

rominent special case of this class is, however, Karl Pearson’s x?— divergence.
p p ) ) X g
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2 S.S. DRAGOMIR

1.2. Dichotomy Class. From this class, generated by the function f, : [0,00) —
R

u—1—Inu for a=0;
fo (u) = ﬁ[au%—l—a—uo‘] for a € R\ {0,1};
l—u+ulnu for a=1;

only the parameter v = 3 (f% (u) =2 (Vu— 1)2) provides a distance, namely, the
Hellinger distance

H(Q,P) = [/X(f—\/ﬁ)Qdur

Another important divergence is the Kullback-Leibler divergence obtained for

a=1,
— 4
KL(Q,P) / gIn (p) dp.

1.3. Matsushita’s Divergences. The elements of this class, which is generated
by the function ¢, a € (0,1] given by

1
0, (u) =1 —u~, ue€l0,00),

are prototypes of metric divergences, providing the distances [I% (Q, P)]

1.4. Puri-Vineze Divergences. This class is generated by the functions ¢, o €
[1,00) given by
11— ul”

(u + 1)0471 ’
It has been shown in [4] that, this class provides the distances [Is, (@, P)}é .

Q. (u) = u € [0,00).

1.5. Divergences of Arimoto-type. This class is generated by the functions

o[ e —2i g for a € (0,00)\ {1};
Vo (u) = I4+uwh2+ulnu—(1+u)ln(l+wu) for a=1;
11—y for a = co.

It has been shown in [5] that, this class provides the distances [Iy, (Q, P)]min(a’é)
for a € (0,00) and 3V (Q, P) for v = oc.

2. SOME CLASSES OF NORMALISED FUNCTIONS

We denote by M ([0,00)) the class of monotonic nondecreasing functions de-
fined on [0, 00) and by Ms ([0, 00)) the class of measurable functions on [0,00). We
also consider Le; ([0, 00)) the class of measurable functions g : [0,00) — R with the
property that
(2.1) g(t)<g(l)<g(s) for 0<t<1<s<o0.

It is obvious that

(2.2) MF([0,00)) & Lex ([0,00)),
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and the inclusion is strict.

We say that a function f : [0,00) — R is normalised if f (1) = 0. We denote
by Mg ([0,00)) the class of all normalised measurable functions defined on [0, c0).
We also need the following classes of functions

Co ([0,00)) := {f € Ms( ([0,00)) | f is continuous convex on [0,00)} ;

Do ([0, 00)) == {f € Mso ([0,00)) |f (1) = (t =1) g (1), ¥t € [0,00), g € MT([0,00))}
and

O ([0,00)) := {f € Msg ([0,00)) [f (t) = (t = 1) g (t), V¢ € [0,00), g € Le1 ([0,00))} .

From the definition of Dy ([0, o)) and Op ([0, 00)) and taking into account that the
strict inclusion (2.2)) holds, we deduce that

(2.3) Dy ([0,00)) & O ([0, 00))

and the inclusion is strict.
For the other two classes, we may state the following result.

Lemma 1. We have the strict inclusion
(2.4) Co ([0, 00)) ; Do ([0,00)) .

Proof. We will show that any continuous convex function f : [0,00) — R that is
normalised may be represented as:

(2.5) f@®)=@—-1)g(t) for any t € [0,00),

where g € M (]0,0)).
Now, let f € Co([0,00)). For A € [D_f(1),D4 f (1)], define

fii it te[0,1)U(1,00),
g)\(t) = o
A if t=1.

We use the following well known result [I, p. 111]:
If ¥ is convex on (a,b) and a < s <t < u < b, then

(2.6) U (s, t) <U(s,u) <V(t,u),
where
U (s,1) = w

If U is strictly convex on (a,b), equality will not occur in (2.6]).
If we apply the above result for 0 < s < ¢t < 1, then we can state
) I
s—1"t-1
Taking the limit over ¢t — 1, t < 1, we deduce
f(s)
—~ L2 <D_f(1
o< r
showing that for 0 < ¢ < 1, we have gy (t) < A.
Similarly, we may prove that for 1 < t < oo, gy (t) > A. If we use the same result
for 0 < t; < to < 1, then we may write

ft) _ S (k)

tl—litg—l’
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which gives gy (t1) < g (t2) for 0 < t; <ty < 1.

In a similar fashion we can prove that for 1 < ¢ < to < 00, gx (t1) < gx (t2),
and thus we may conclude that the function g, is monotonic non-decreasing on the
whole interval [0, 00).

If we consider now the function f(t) = (t —1)e™, t € [0,00), we observe that
ft) = (nt=3)em, f"(t) = 8" (2t — 1) which shows that f is not convex on
[0, 00). Obviously, f € Dg ([0,00)), and thus the inclusion is indeed strict. I

Remark 1. If f € Dy ([0,00)) and g1, 92 € MF([0,00)) are two functions with
fO) =t=1g(t), f)=0E-1)g2(t)
for each t € [0,00), then we get
(=19 (1) —g2(t)] =0

for any t € [0,00) showing that g1 (t) = ga (t) for each t € [0,1)U(1,00). They may
have different values in t = 1.

3. SOME FUNDAMENTAL PROPERTIES OF f—DIVERGENCE FOR f € Co ([0, 00))

For f € Co([0,00)) we obtain the x—conjugate function of f by

£ () = uf (i) u € (0, 00).

It is also known that if f € Co ([0,00)), then f* € Co([0,00)).
The following two theorems contain the most basic properties of f—divergences.
For their proof we refer the reader to Chapter 1 of [6] (see also [3]).

Theorem 1 (Uniqueness and Symmetry Theorem). Let f, fi be continuous convex
on [0, 00).
(i) We have
Iy, (Q’P) =1y (Q’P)v
for any P,Q € P if and only if there exists a constant ¢ € R such that
fr(w)=f(u)+clu—1),
for any u € [0, 00);
(ii) We have
If* (QaP) = If (Q,P),
for any P,Q € P if and only if there exists a constant d € R such that
frw)=f(u)+d(c-1),
for any u € [0, 00).
Theorem 2 (Range of Values Theorem). Let f : [0,00) — R be a continuous

convez function on [0, 00).
For any P,Q € P, we have the double inequality

(3.1) f) <15 (Q,P) < f(0)+ f7(0).

(i) If P = Q, then the equality holds in the first part of (3.1)).
If f is strictly convex at 1, then the equality holds in the first part of

if and only if P = Q;
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(ii) If @ L P, then the equality holds in the second part of .
If £(0) 4+ f*(0) < oo, then equality holds in the second part of if
and only if Q L P.

Define the function f : (0,00) — R, f(u) = 1 (f (u) + f* (u)). The following

result is a refinement of the second inequality in Theorem [2] (see [3, Theorem 3]).
Theorem 3. Let f € Co(]|0,00)) with f(0)+ f*(0) < oo. Then

(3.2) 0< I (Q,P) < f(O)V(Q,P)
for any Q,P € P.

4. A GENERAL DIVERGENCE MEASURE

If f:[0,00) — R is a general measurable function, then we may define the
f—divergence in the same way, i.e., if P,Q € P, then

@ = [ pe7 |10 aw.

For a measurable function g : [0,00) — R, we may also define the d—divergence by
the formula

5,@.P) = [ fae) - pg []‘ﬁm ().

It is obvious that the d—divergence of a function g may be seen as the f—divergence
of the function f, where f (t) = (t — 1) g (¢) for ¢t € [0, c0).
If f €Co([0,00)) and since f (t) = (¢t —1)ga (t), t € [0,00), we have

T iy e 0,101, 00),
(4.1) INOER S

A it =1
and A € [D_f(1),D4f (1)], shows that for any f € Co(]0,00)) we have
(4.2) I1 (Q,P) =69 (Q,P) forany P,Q€P,

i.e., the f—divergence for any normalised continuous convex function f :[0,00) —
R may be seen as the §—divergence of the function gy defined by (4.1)).
In what follows, we point out some fundamental properties of the d—divergence.

Theorem 4. Let g : [0,00) — R be a measurable function on [0,00) and P,Q € P.
If there exists the constants m, M with

(4.3) —oo<m§g[(](x)]§M<oo

p(x)
for p—a.e. x € X, then we have the inequality
1
(4.4) 165 (@, P) < 5 (M =m)V(Q, P).

Proof. We observe that the following identity holds true

49 5@ = [ -p@l|s |0 - "M e

X p(x) 2
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By (4.3), we deduce that

[q(m)] - m+M

1
p () 2 ’SQ(M_M

for p—a.e. z € X.
Taking the modulus in (4.5)) we deduce

15, <Q,P>|s/x|q<x>—p<x>|

g{q(az) - m+M

—~ =

1
<5 0r-m [ la@)-p
X
1
= (M- m)V(@Q.P)
and the inequality (4.4]) is proved. 1

The following corollary is a natural consequence of the above theorem.

)| dp ()

Corollary 1. Let g : [0,00) — R be a measurable function on [0,00). If

m:=ess inf g¢(t)>—oc0, M:=ess sup g¢(t) < oo,
t€[0,00) t€[0,00)

then for any P,Q € P, we have the inequality
1
(4.6) 165 (@, P)| < 5 (M —m)V(Q, P).

Remark 2. We know that, if f : [0,00) — R is a normalised continuous convex
Junction and if limg o f* (£) = limyo [uf ()] =: f* (0), then we have the inequality

[Theorem 2.3]
(@7 (@) < OOy g p),

for any P,Q € P. We can prove this inequality by the use of Corollary[d] as follows.
We have
If (QvP) :59)\ (QaP)a

where

JA0) if t€0,1)U(l,00),
g (t) = b=l
A if t=1,

where X € [D_f(1),D1f(1)] and g» € MT([0,00)). We observe that for any
t € 0,00), we have

g (t) > lim gy (t) = —f(0) =m > —c0

T t—0+
. N S O i )
< = = u
o)< dim on ()= T 77 = g 1T

and

uf ()
= 1. u = * - M .
uﬂ%all_u] Oy =A<
Applying Corollary |1 for m = —f(0) and M = f*(0), we deduce the desired
inequality ,
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The following result also holds.

Theorem 5. Let g : [0,00) — R be a measurable function on [0,00) and P,Q € P.
If there exists a constant K with K > 0 such that

q ($)> q(x)
g —g(

(p (x) o p(x)
for p—a.e. x € X, where a € (0,00) is a given number, then we have the inequality
(49) |6g (Qa P)l S KIXCX+1 (Q7 P) .

Proof. We observe that the following identity holds true

@0 5@P = [ a@-r@ls| 25| o] ).

X p(z)
Taking the modulus in (4.10) and using the condition (4.8]), we have successively

5, @) < [ lat) -] 20] —g<1>\du<x>

= K/x [p ()] |q () — p ()| dpu ()
< Kot (Q,P)
and the inequality (4.9)) is obtained. R

<K

-1

(4.8)

‘ [e3

i

The following corollary holds.

Corollary 2. Let g : [0,00) — R be a measurable function on [0,00) with the
property that there exists a constant K with the property that

(4.11) lg(t) —g (M) <Kt —1]%,

for a.e. t € [0,00), where a > 0 is a given number. Then for any P,Q € P, we
have the inequality

(412) |5q (Q7 P)l S I(IX”‘Jrl (Q7 P) .

Remark 3. If the function g : [0,00) — R 4s Hélder continuous with a constant
H >0 and g € (0,1], i.e.,
gt)—g() <H|t—s|",
for any t, s € [0,00), then obuviously holds with K = H and o = 3.
If g : [0,00) — R is Lipschitzian with the constant L > 0, i.e.,
g (t) —g(s)| < L[t — s,
for any t, s € [0,00), then
(4.13) 104 (Q, P)| < KL= (Q, P),
for any P,Q € P.

Finally, if g is locally absolutely continuous and the derivative ¢’ : [0,00) — R
is essentially bounded, i.e., ||g’\|[0700)7Oo i= €8S SUPye,o0) |9 (t)| < 00, then we have
the inequality
(4.14) 104 (Q, P) < 119 lj0,00),00 Tx2 (@: P)
for any P,Q € P.

The following result concerning f—divergences for f convex functions holds.
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Theorem 6. Let f : [0,00] — R be a continuous convex function on [0,00). If
AeD_fQ),Dif ()] (A= f"(1) if f is differentiable at t = 1), and there ezists
a constant K > 0 and a > 0 such that

(4.15) PO =AE—D < Kt —11"",
for any t € [0,00), then we have the inequality

(4.16) 0< 1/ (@) P) < KLy (Q.P),
for any P,Q € P.

Proof. We have

1@ = [ -p@la |25 | d =0 @),
where
IO e 4 e 0,1)0(1,00)
g (t) — t—1
A =1,

and A € [D_f (1), Dy f (1)].
Applying Corollary 2 for gy, we deduce the desired result. NI

5. THE POSITIVITY OF §—DIVERGENCE FOR g € M7 ([0, 00))

The following result holds.
Theorem 7. If g € M¥ ([0,00)), then §,(Q,P) >0 for any P,Q € P.
Proof. We use the identity
(5.1) &4 (Q, P)

~ [ @ - p(@ls |15 duta)
= [ 565 -1 s[5  axeo
=3 f Jrero 55 -l o] o] ww .

Since g € M¥*(]0,00)), then for any ¢,s € [0,00), we have
(t—s)(g(t)—g(s) =0

{q(x) _ q(y)} [g [qw)] , [quﬂ” >0

p(r) p(y) p () p(y)

giving that

for any z,y € X.
Using the representation (5.1]), we deduce the desired result. I

The following corollary is a natural consequence of the above result.

Corollary 3. If f € Dy ([0,00)), then Iy (Q,P) >0 for any P,Q € P.
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Proof. If f € Dy ([0,00)), then there exists a g € M™ ([0,00)) such that f(t) =
(t—1)g(t) for any t € [0,00). Then

LQP=[ v

X

and the proof is completed. |
In fact, the following improvement of Theorem [7] holds.
Theorem 8. If g € M7*([0,00)), then

(5.2) 3q (Q, P) = |04 (Q. P)| > 0,
for any P,Q € P.

Proof. Since g is monotonic nondecreasing, we have

&2 o5l 1 bl 2 Bl
|G —w) o [s) - [563))
q(x) a4y

for any z,y € X.
Multiplying (5.3) by p (z)p (y) > 0 and integrating on X2, we deduce

[ Jerorar (G = 363) o [5) o [ aneraweo

Y) p(z) p(y)
| [ fror (55 - 50) (5] o 3] et

Using the representation (5.1)) and the same identity for |g|, we deduce the desired
inequality (5.2)).

Before we point out other possible refinements for the positivity inequality d, (Q, P) >
0, where g € M7 ([0,00)), we need the following divergence measure as well:

50(Q.P) = [ lale) =l [gm dn (z)

which will be called the absolute §—divergence generated by the function h :

[0,00) — R that is assumed to be measurable on [0, 00).
The following result holds.

Theorem 9. If g € M¥([0,00)), then
(5:4) 94 (Q,P)

Zmax{}SQ(Q,P)—V(Q,P)IQ(Q,P)
for any P,Q € P.

819 (@, P) =V (Q,P) Iy (Q, P)|} >0,

)
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Proof. Since g is monotonic, we have

oo (- v) (o] o

G-t
|

for any z,y € X.
If we multiply (5.5) by p (z)p (y) > 0 and integrate, we deduce

60 f oo (GG -5) 0[] - ] werw

‘foXp 2)p) |55~ 1| - %*1“
x g [48] - g [28] | due (@) dp (v)|
>
i S @p@) |2 - 1| - |58 —1]]
< (o [£3]] - |o [£3][] du (@) dn ()
for any z,y € X.
Now, observe that
(z) (y) (z) (y) ]
fJerem |55 -1 - [ 1) b [65] - [ ] | o
:/X/Xp(x)p(y) ig;l‘g[igg + ZE‘Z;l‘g ZEZ; ]_du(w)du(y)
- o Jorem [3E5-1lo 25] + 565 -1l 5] e e
=2 [ pwant) [ v |18 1|0 |45 o)
—2/Xp(x) ZE)— du(x)/xp(y)g[lq)gz)} dp (y)

=2 [59(Q7P) - V(va)[g (Q?P)] )
and a similar identity holds for the quantity in the second branch of ([5.6)).
Finally, using the representation (5.1]), we deduce the desired inequality (5.4).

6. THE POSITIVITY OF §—DIVERGENCE FOR ¢ € Le; ([0, 0))

The following result extending the positivity of d—divergence for monotonic func-
tions, holds.

Theorem 10. If g € Le; ([0,00)), then §,4(Q, P) >0 for any P,Q € P.
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Proof. We use the identity

60 5,@P)= [ la@ - pls | L5 dulo)
= Joro [ o 5 e
~ [p@ |52 [o[18] - s )] duto).

Since g € Le; ([0,00)), then for any ¢ € [0, 00) we have

t=1Dlgt)—g@)]=0

G b5 o]0
for any = € X.

Using the representation (6.1)), we deduce the desired result. I

giving that

Corollary 4. If f € Oy ([0,00)), then Iy (Q,P) >0 for any P,Q € P.

Proof. It f € Og ([0,00)), then there exists a g € Le; ([0,00)) such that f(t) =
(t—1)g(t) for any t € [0,00). Then

nQr - [ p(x)f[“"”)} ()

- o
— 5,(Q.P)>0,

and the proof is completed. |

The following improvement of Theorem [10] holds.
Theorem 11. If g € Ley ([0,0)), then
for any P,Q € P.

Proof. Since g € Le; ([0,00)) , we obviously have

@ Lok
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Multiplying by p(z) > 0 and integrating on X, we have
fr@ 5 -1 [o[p] -ow] axo
- [r@|(55 :
>| [ (565 -1) ( [56
— |31 (@. P

and the inequality (6.2)) is proved. I

7. BOUNDS IN TERMS OF THE Y2—DIVERGENCE

I
—_
N—
i
kS
—
ESEE Sl
—
8|8
— | —
I
I
S
—~
—
=
N——
U
=
—
&

The following result may be stated.

Theorem 12. Let g : [0,00] — R be a differentiable function such that there exists
the constants v,I" € R with

(7.1) v<g (t)<T forany te (0,00).
Then we have the inequality
(7'2) 7Dx2 (va) < 59 (Q’P) < FDx2 (Q7P)7

for any P,Q € P.
Proof. Consider the auxiliary function h. : [0,00] = R, hy (t) :=g(t) =y (t —1).
Obviously, h, is differentiable on (0, 00) and since, by (7.1)),
W) =g (t) —v=0
it follows that h. is monotonic nondecreasing on [0, 00).
Applying Theorem [7] we deduce

on, (Q,P)>0 forany P,QcP
and since

(Sh'y (QvP) = 6977(*1) (QvP)

_ q(x) q(x)

~ [ @ -penfo |55 -+ |25 -1 dute)
=04 (Q, P) = 7Dy (Q, P),
then the first inequality in is proved.

The second inequality may be proven in a similar manner by using the auxiliary
function hr : [0,00) = R, hp (¢) :=T (¢t —1) —g(t). I

The following corollary is a natural application of the above theorem.

Corollary 5. Let f :[0,00] — R be a differentiable convex function on (0,00) with
f (1) =0. If there exist the constants v,T' € R with the property that:

(7.3) -1+ fO <O E-1) <O+ (E—1)°
for any t € (0,00), then we have the inequality:
(7.4) YDy (Q, P) < I (@, P) < TDy2 (Q, P)

for any P,Q € P.
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Proof. We know that for any P,Q € P, we have (see for example (4.2])):
I (Q.P) =y, (Q,P),

where
tf—i)l if tef0,1)uU(1,00),
g =
@) if t=1.

We observe that, by the hypothesis of the corollary, g¢ (1) is differentiable on (0, co)
and

9pay () =
for any ¢t € (0,1) U (1, 00).
Using ([7.3]), we deduce that
v < g}/(l) (t) <T
for t € (0,00), and applying Theorem above, for g = gg/(1), we deduce the
desired inequality (7.4)). I
8. BOUNDS IN TERMS OF THE J—DIVERGENCE

We recall that the Jeffreys divergence (or J—divergence for short) is defined as
q(z
(8.) 7@.P)= [ o) = p(olin | 20 | d o).
X p(z)
where P,Q € P.
The following result holds.

Theorem 13. Let g : [0,00] — R be a differentiable function such that there exists
the constants ¢, ® € R with

(8.2) o<ty (t) <® forany te (0,00).

Then we have the inequality

(8.3) pJ(Q, P) <64 (Q,P) <J(Q, P),
for any P,Q € P.
Proof. Consider the auxiliary function hg : [0,00) — R, hg(t) = g(t) — ¢Int.
Obviously, hg is differentiable on (0, 00) and, by (8.2),
o 1

W) =g 0 -5 =S ltg' () - 6] 20,

for any t € (0, 00), showing that the function is monotonic nondecreasing on (0, 00).
Applying Theorem [7, we deduce

on, (Q,P)>0 forany P,QecP

and since

On, (@, P) =d4_om() (@, P)
- [ la@ -pla) [g [;Eﬂ] 4 [Zg;”du(ﬂc)
—5,(Q.P) — 6 (Q. P).
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then the first inequality in (8.3 is proved.
The second inequality may be proven in a similar manner by using the auxiliary
function he : [0,00) = R, he (t) :=PInt —g(¢). I

The following corollary is a natural application of the above theorem.

Corollary 6. Let f :[0,00] — R be a differentiable convez function on (0,00) with
f (1) =0. If there exist the constants ¢, ® € R with the property that:

(8.4) St—1)?+tf () <tt—1)f (1) <tf () +D(t—1)°
for any t € (0,00), then we have the inequality:
(8.5) ¢J (Q,P) <1y (Q,P) < 2J(Q,P)

for any P,Q € P.

The proof is similar to the one in Corollary [5] and we omit the details.
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