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SOME REFINEMENTS OF KY FAN’S INEQUALITY

PENG GAO

Abstract. We give some refinements of Ky Fan’s inequality and also prove some inequalities
involving the symmetric means.

1. Introduction

Let Mn,r(x) be the generalized weighted power means: Mn,r(x) = (
∑n

i=1 ωix
r
i )

1
r , where ωi >

0, 1 ≤ i ≤ n with
∑n

i=1 ωi = 1 and x = (x1, x2, · · · , xn). Here Mn,0(x) denotes the limit of
Mn,r(x) as r → 0+. Unless specified, we always assume 0 < x1 ≤ x2 · · · ≤ xn. We denote
σn =

∑n
i=1 ωi(xi −An)2.

To any given x, t ≥ 0 we associate x′ = (1 − x1, 1 − x2, · · · , 1 − xn),xt = (x1 + t, · · · , xn + t).
When there is no risk of confusion, we shall write Mn,r for Mn,r(x), Mn,r,t for Mn,r(xt) and M

′
n,r

for Mn,r(x′) if xn < 1. The meaning of Ps, P
′
s, Ps,t are similar. We also define An = Mn,1, Gn =

Mn,0,Hn = Mn,−1 and similarly for A′
n, G′

n,H ′
n, An,t, Gn,t,Hn,t.

Recently, the author[7] proved the following result.

Theorem 1.1. For r > s, x1 > 0, the following inequalities are equivalent:
r − s

2x1
σn ≥ Mn,r −Mn,s ≥ r − s

2xn
σn,(1.1)

xn

1− xn
(Mn,r −Mn,s) ≥ M ′

n,r −M ′
n,s ≥ x1

1− x1
(Mn,r −Mn,s),(1.2)

where in (1.2) we require xn < 1.

For extensions and refinements of (1.1), see [2], [9],[12] and [13]. Inequality (1.2) is commonly
referred as the additive Ky Fan’s inequality. We refer the reader to the survey article[1] and the
references therein for an account of Ky Fan’s inequality.

D.Cartwright and M.Field[4] first proved the validity of (1.1) for r = 1, s = 0. Under the
assumption xn ≤ 1/2, it is easy to show(see [6]) if β ≤ α, then Aα

n − Gα
n ≥ A

′α
n − G

′α
n implies

Aβ
n −Gβ

n ≥ A
′β
n −G

′β
n and Aβ

n −Gβ
n ≤ A

′β
n −G

′β
n implies Aα

n −Gα
n ≤ A

′α
n −G

′α
n . Thus if xn ≤ 1/2,

the above Theorem then implies Aα
n − Gα

n ≥ A
′α
n − G

′α
n for α ≤ 1. Alzer[3] has given a counter

example to show that Aα
n −Gα

n and A
′α
n −G

′α
n are not comparable in general for any fixed α > 1.

It is then interesting to seek for certain α > 1, as a function of the weights so that Aα
n − Gα

n and
A

′α
n −G

′α
n are comparable. One motivation is the following result of Pečarić and Alzer[15](see also

[1], Theorem 7.2).

Theorem 1.2. For ωi = 1/n, 0 < x1 ≤ x2 ≤ · · · ≤ xn ≤ 1/2,

(1.3) An
n −Gn

n ≤ A
′n
n −G

′n
n .

Theorem 1.2 suggests that Aα
n − Gα

n ≤ A
′α
n − G

′α
n for α = 1/q with q = min{ωi}. We will show

this is indeed the case in section 3. A similar result is also proved there. The idea of the proof of
(1.3) also allows us to establish some inequalities involving the symmetric means in section 4.
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2. Lemmas

Lemma 2.1. For 0 < q < 1, 0 < Gn ≤ An ≤ 1, f(q) = 2q(A
1
q
n −G

1
q
n ) is an increasing function of q.

Proof. Let x = An, y = Gn, then f ′(q) = 2(x
1
q − y

1
q )− 2(ln(x

1
q )x

1
q − ln(y

1
q )y

1
q ) ≥ 0, since u− u lnu

increases with respect to u for 0 < u ≤ 1. �

Lemma 2.2. For 0 < q ≤ 1, (1−q)1/q−1 is an increasing function of q, in particular, (1−q)1/q−1 ≤
1/2 when 0 < q ≤ 1/2 and the above inequality reverses when 1/2 ≤ q < 1. In either case, equality
holds if and only if q = 1/2.

Proof. It suffices to show f ′(q) ≥ 0 for 0 < q < 1 with f(q) = (1/q − 1) ln(1 − q). Now f ′(q) =
−h(q)/q2 with h(q) = q + ln(1− q) < 0 for 0 < q < 1, we are done. �

3. The Main Results

To motivate our next result, we note that L. Hoehn and I. Niven[10] showed An,t − Gn,t is a
decreasing function of t. It then follows that f(t, α) = Aα

n,t − Gα
n,t is decreasing as a function of

t(See [8], Theorem 2.1) for α ≤ 1. It’s natural to ask whether one can have similar results for α ≥ 1
and we have the following

Proposition 3.1. For 0 < x1 ≤ · · · ≤ xn, q = min{ωi}, t ≥ 0, f(t, α) is a decreasing function of t
for α ≤ (1− q)−1 and f(t, α) is an increasing function for α ≥ q−1.

Proof. We will show the first assertion and the proof for the other one is similar. By Theorem 2.1
in [8], it suffices to prove the above result for α = (1 − q)−1. Let f(t) = A

(1−q)−1

n,t − G
(1−q)−1

n,t , it
suffices to show f ′(0) ≤ 0 which is equivalent to Aq

nH1−q
n ≤ Gn, which is the weighted Sierpiński’s

inequality(See [7] for an extension of this) and this completes the proof. �

Theorem 3.1. For 0 < q ≤ min{ωi},

(3.1) x
1

1−q
−2

1 σn ≥ 2(1− q)(A
1

1−q
n −G

1
1−q
n ) ≥ x

1
1−q

−2
n σn

with equality holding if and only if n = 2, q = 1/2 or x1 = x2 = · · · = xn.

Proof. We prove the right-hand side inequality of (3.1) first. By homogeneity, we may assume
0 ≤ x1 < x2 < · · · < xn = 1 in (3.1) and define

(3.2) Dn(x1, · · · , xn−1) = A
1

1−q
n −G

1
1−q
n − σn/2(1− q).

We want to show Dn ≥ 0. Let a = (a1, · · · , an−1) ∈ [0, 1]n−1 be the point in which the absolute
minimum of Dn is reached.

We may assume a1 ≤ a2 ≤ · · · ≤ an−1 and let an = 1. If ai = ai+1 for some 1 ≤ i ≤ n − 1,
by combining ai with ai+1 and ωi with ωi+1, while noticing increasing q will decrease the value of

(1 − q)(A
1

1−q
n − G

1
1−q
n ) by Lemma 2.1, we can reduce the determination of the absolute minimum

of Dn to that of Dn−1 with different weights. Thus without loss of generality, we may assume
a1 < a2 < · · · < an−1 < 1. If a1 > 0 then a is an interior point of [0, 1]n−1, then we obtain

∇Dn(a1, · · · , an−1) = 0

such that a1, · · · , an−1 solve the equation

(3.3) x2 − (An + A
q

1−q
n )x + G

1
1−q
n = 0.

The above equation has at most two roots(regarding An, Gn as constants), so we are reduced to
the case n = 3. But if a1 < a2 < 1 both satisfy (3.3), we will have

a1a2 = a
ω1/(1−q)
1 a

ω2/(1−q)
2 ,
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which is impossible since ω1 + q ≤ 1, ω2 + q ≤ 1 and the two equalities can’s hold at the same time.
Thus if a1 > 0, we only need to prove D2 ≥ 0. In this case, by letting x = a1 > 0, we get

D2(x) = (ω1x + ω2)
1

1−q − x
ω1
1−q − ω1ω2(x− 1)2

2(1− q)
.

It’s easy to check D2(1) = D′
2(1) = 0 and

1− q

ω1
D′′(x) =

qω1

1− q
(ω1x + ω2)

2q−1
1−q − (

ω1

1− q
− 1)x

ω1
1−q

−2 − ω2

≥ qω1

1− q
+ 1− ω1

1− q
− ω2 = 0.

with equality holding if and only if x = 1 or q = 1/2. Hence by the Taylor expansion at 1, D2(x) ≥ 0
with equality holding if and only if x = 1 or q = 1/2.

If a is a boundary point of [0, 1]n−1, then a1 = 0, (3.2) is reduced to

En(x1 = 0, · · · , xn−1) = A
1

1−q
n − σn/2(1− q).

We now show En ≥ 0. Let (a2, · · · , an−1) ∈ [0, 1]n−2 be the point in which the absolute minimum
of En is reached. Similar to the argument above, we may assume 0 = a1 < a2 < · · · < an−1 < 1
and it’s easy to show by using the method above that we only need to consider the cases n = 2
and n = 3. E2 ≥ 0 is equivalent to q1/(1−q) ≥ q/2 and g(q) = (1 − q)1/(1−q) − q/2 ≥ 0. The
first inequality follows from Lemma 2.2 and one checks g(q) is a decreasing function of q hence
g(q) ≥ g(1/2) = 0. For the case n = 3, we set x = a2 so that

1− q

ω2
E′

3(a2) = A
q

1−q

3 − (a2 −A3) = 0.

Using this we get

(1− q)2A3

ω2
E′′

3 (a2) = qω2A
q

1−q

3 − (1− q)(1− ω2)A3

= qω2(a2 −A3)− (1− q)(1− ω2)A3

= qω2((1− ω2)a2 − ω3)− (1− q)(1− ω2)(ω2a2 + ω3)
= ω2(1− ω2)(2q − 1)a2 − qω2ω3 − (1− q)(1− ω2)ω3 < 0.

This implies E3(x) takes its local maximum at a2 so in order to show E3 ≥ 0, we only need to
show it for the cases a2 = 0 or a2 = 1 and we are then back to the case n = 2 and this completes
the proof for the right-hand side inequality of (3.1).

For the left-hand side inequality of (3.1), we may again assume 0 ≤ x1 < x2 < · · · < xn = 1 and
define

(3.4) Fn(x1, · · · , xn−1) = σn/2(1− q)− x
2− 1

1−q

1 (A
1

1−q
n −G

1
1−q
n ).

We want to show Fn ≥ 0. Let a = (a1, · · · , an−1) ∈ [0, 1]n−1 be the point in which the absolute
minimum of Fn is reached.

Again we may assume a1 < a2 < · · · < an−1 < 1. If a1 > 0 then a is an interior point of [0, 1]n−1,
and we obtain

∇Fn(a1, · · · , an−1) = 0
such that a2, · · · , an−1 solve the equation f(x) = 0 where

f(x) = x2 − (An + a
2− 1

1−q

1 A
q

1−q
n )x + a

2− 1
1−q

1 G
1

1−q
n .

The above equation has at most two roots(regarding a1, An, Gn as constants), so we are reduced

to the case n = 4. But note we also have f(a1) = ω−1
1 (2 − 1

1−q )a
2− 1

1−q

1 (A
1

1−q
n − G

1
1−q
n ) ≥ 0 and

f(1) ≤ 0 since otherwise by decreasing an = 1, we will get a smaller value of Fn, contradicts to our
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assumption. Thus we only need to consider the case n = 3. In this case a2 is a root of f(x) = 0
and the other root b satisfies b ≥ 1 since limx→∞ f(x) = ∞. But then we will have

a2 ≤ ba2 = a
2− 1

1−q

1 a
ω1/(1−q)
1 a

ω2/(1−q)
2 ,

which implies

a
1−ω2/(1−q)
1 ≤ a

1−ω2/(1−q)
2 ≤ a

2− 1
1−q

1 a
ω1/(1−q)
1 ,

which is impossible. Thus if a1 > 0, we only need to prove F2 ≥ 0 and this case can be proved
similarly to our treatment of D2 ≥ 0.

If a is a boundary point of [0, 1]n−1, then a1 = 0, (3.4) follows trivially and this completes the
proof for the left-hand side inequality of (3.1). �

Corollary 3.1. For 0 < q ≤ min{ωi}, 0 < x1 ≤ x2 ≤ · · · ≤ xn < 1, x1 6= xn,

(
1− x1

x1
)2−

1
1−q ≥ A

1
1−q
n −G

1
1−q
n

A
′ 1
1−q

n −G
′ 1
1−q

n

≥ (
1− xn

xn
)2−

1
1−q .

Proof. Apply (3.1) to both x, x′ and take their quotients gives the desired result. �

Theorem 3.2. For 0 < q ≤ min{ωi},

(3.5) x
1
q
−2

n σn ≥ 2q(A
1
q
n −G

1
q
n ) ≥ x

1
q
−2

1 σn

with equality holding if and only if n = 2, q = 1/2 or x1 = x2 = · · · = xn.

Proof. We prove the left-hand side inequality first. By homogeneity, we may assume 0 ≤ x1 < x2 <
· · · < xn = 1 in (3.5) and define

Dn(x1, · · · , xn−1) =
1
2q

σn − (A
1
q
n −G

1
q
n ).

We want to show Dn ≥ 0. Let a = (a1, · · · , an−1) ∈ [0, 1]n−1 be the point in which the absolute
minimum of Dn is reached. As in the proof of Theorem 3.1 and again use Lemma 2.1, we may
assume a1 < a2 < · · · < an−1 < an = 1. If a1 > 0 then a is an interior point of [0, 1]n−1, then we
obtain

∇Dn(a1, · · · , an−1) = 0
such that a1, · · · , an−1 solve the equation

(3.6) x2 − (An + A
1−q

q
n )x + G

1
q
n = 0.

The above equation has at most two roots(regarding An, Gn as constants), so we are reduced to
the case n = 3. But if a1 < a2 < 1 both satisfy (3.6), we will have

a1a2 = a
ω1/q
1 a

ω2/q
2 ,

which is impossible since ω1 ≥ q, ω2 ≥ q and the two equalities can’s hold at the same time. Thus
if a1 > 0, we only need to prove D2 ≥ 0. In this case if x = a1 > 0 and ω1 = 1− q, ω2 = q then

g(x) := x + G
1
q

2 /x = A
1−q

q

2 + A2.

Note for x ≤ u, q ≤ 1/3,

g′(u) = 1−G
1
q

2 /u2 ≥ g′(x) ≥ 0,

since 0 < x < 1 and G2 = x1−q. Since x ≤ A2 in our case, we then have g(x) ≤ g(A2) = A2+G
1
q

2 /A2,
a contradiction.
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Now suppose q > 1/3, then

D′′
2(x) =

1− q

q2
(q2 − (1− q)2A

1−2q
q

2 + (1− 2q)x
1−3q

q ) ≥ 1− q

q2
(q2 − (1− q)2 + (1− 2q)) = 0,

with equality holding if and only if q = 1/2. As D2(1) = D′
2(1) = 0, this shows D2(x) ≥ 0 by

considering the Taylor expansion of D2 at 1.

Now suppose ω1 = q, ω2 = 1 − q, then D′′
2(x) = (1 − q)(1 − A

1−2q
q

2 ) ≥ 0 with equality holding if
and only if q = 1/2. As we also have D2(1) = D′

2(1) = 0, this shows D2(x) ≥ 0.
Finally, we consider the case when Dn reaches its absolute minimum at a with a1 = 0. Define

En(x1 = 0, · · · , xn−1) =
1
2q

σn −A
1
q
n .

We show now En ≥ 0. E2 ≥ 0 is equivalent to g(q) = (1−q)/2−q1/q ≥ 0 and (1−q)/2−(1−q)1/q ≥ 0,
the second inequality follows from Lemma 2.2 and one checks g(q) is a decreasing function of q so
that g(q) ≥ g(1/2) = 0 with equality holding if and only if q = 1/2.

Suppose now n ≥ 3 and let a = (a2, · · · , an−1) ∈ [0, 1]n−3, 0 < a2 < · · · < an−1 < 1 be the point
in which the absolute minimum of En is reached. Then

∇En(a2, · · · , an−1) = 0

such that a2, · · · , an−1 solve the equation

x−An −A
1−q

q
n = 0.

The above equation has at most one root(regarding An, Gn as constants). Thus it suffices to

show E3 ≥ 0 under the condition ωi ≥ q. Now a2 −A3 = A
1−q

q

3 and

E3 =
3∑

i=1

ωi(ai −A3)2/2q −A
1/q
3 ≥ A

2−2q
q

3 + A2
3/2−A

1/q
3

≥ 2

√
A

2−2q
q

3 ·A2
3/2−A

1/q
3 = (

√
2− 1)A1/q

3 ≥ 0.

This completes the proof for the left-hand side inequality of (3.5) and for the right-hand side
inequality of (3.5), we may again assume 0 ≤ x1 < x2 < · · · < xn = 1 and define

(3.7) Fn(x1, · · · , xn) = (A
1
q
n −G

1
q
n )− x

1
q
−2

1 σn/2q.

We want to show Fn ≥ 0. Let a = (a1, · · · , an−1) ∈ [0, 1]n−1 be the point in which the absolute
minimum of Fn is reached.

Again we may assume a1 < a2 < · · · < an−1 < 1. If a1 > 0 then a is an interior point of [0, 1]n−1,
and we obtain

∇Fn(a1, · · · , an−1) = 0
such that a2, · · · , an−1 solve the equation f(x) = 0 where

f(x) = a
1
q
−2

1 x2 − (A
1
q
−1

n + a
1
q
−2

1 An)x + G
1
q
n .

The above equation has at most two roots(regarding a1, An, Gn as constants), so we are reduced

to the case n = 4. But note we also have f(a1) = −ω−1
1 (1

q − 2)a
1
q
−2

1 σn ≤ 0 and f(0) ≥ 0. Thus
we only need to consider the case n = 3. In this case a2 is a root of f(x) = 0 and the other root c
satisfies 0 < c ≤ a1. But then we will have

a1a2 ≥ ca2 = a
ω1
q

1 a
ω2
q

2 a
2− 1

q

1 ,
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which implies
a

1−ω2/q
2 ≥ a

1+(ω1−1)/q
1 ,

which is impossible. Thus if a1 > 0, we only need to prove F2 ≥ 0. By renormalizing a1 = 1, a2 > 1,
this case follows similarly to our treatment of D2 ≥ 0.

If a is a boundary point of [0, 1]n−1, then a1 = 0, (3.7) follows trivially and this completes the
proof for the right-hand side inequality of (3.5). �

The following corollary generalizes Theorem 1.2, the proof is similar to that of Corollary 3.1.

Corollary 3.2. For 0 < q ≤ min{ωi}, 0 < x1 ≤ x2 ≤ · · · ≤ xn < 1, x1 6= xn,

(
xn

1− xn
)

1
q
−2 ≥ A

1
q
n −G

1
q
n

A
′ 1
q

n −G
′ 1
q

n

≥ (
x1

1− x1
)

1
q
−2

.

4. Some Inequalities among Symmetric Means

Let s ∈ {0, 1, · · · , n}, the s-th symmetric function Es of x and its mean Ps are defined by

Es(x) =
∑

1≤i1<···<is≤n

s∏
j=1

xij , E0 = 1;Ps(x) =
Er(x)(

n
2

) .

As mentioned in section 1, we shall write Ps for Ps(x) and the meaning of P ′
s, Ps,t are similar.

Theorem 1.2 can be generalized to inequalities involving the symmetric means.

Theorem 4.1. For n > 1, ωi = 1/n, 0 < x1 ≤ x2 ≤ · · · ≤ xn, t ≥ 0, 2 ≤ r ≤ n.

(
x1

1− x1
)r−2(A

′r
n − P ′

r) ≤ Ar
n − Pr ≤ (

xn

1− xn
)r−2(A

′r
n − P ′

r),(4.1)

(
x1

t + x1
)r−2(Ar

n,t − Pr,t) ≤ Ar
n − Pr ≤ (

xn

t + xn
)r−2(Ar

n,t − Pr,t),(4.2)

r(r − 1)xr−2
1

2(n− 1)
σn ≤ Ar

n − Pr ≤ r(r − 1)xr−2
n

2(n− 1)
σn,(4.3)

where we need xn < 1 in (4.1).

Proof. We note (4.3) is a result of Dinghas[5], originally written as

r(r − 1)xr−2
1

2n(n− 1)

n∑
k=1

(1− 1
k
)(xk −Ak−1)2 ≤ Ar

n − Pr ≤
r(r − 1)xr−2

n

2n(n− 1)

n∑
k=1

(1− 1
k
)(xk −Ak−1)2.

By using the relation (k − 1)Ak−1 + ak = Ak, one shows easily by induction that
∑n

k=1(1 −
1
k )(xk − Ak−1)2 = nσn and (4.3) then follows. Applying (4.3) to both Ar

n − Pr and A
′r
n − P ′

r and
take their quotients, we obtain (4.1). To show (4.2), we use another identity of Dinghas[5]:

(4.4) Ar
n − Pr =

(
n−2
r−s

)(
n
r

) n∑
k=2

k∑
i=2

(i− 1)
(xk −Ak−1)2

k2
P i−2,k−i

r−2,n−2(Ak−1;Ak;xk+1, · · · , xn)

where P i−2,k−i
r−2,n−2(Ak−1;Ak;xk+1, · · · , xn) denotes the (r−2)-th symmetric mean of the n−2 numbers

Ak−1(i− 2 times), Ak(k − i times) and xk+1, · · · , xn.
Now use (4.4) for (Ar

n − Pr)/xr−2
n and (Ar

n,t − Pr,t)/(xn + t)r−2 and consider their differences,
the right-hand side inequality of (4.2) follows from this and the observation

xi

xn
≤ xi + t

xn + t
, 1 ≤ i ≤ n;

Ai

xn
≤ Ai,t

xn + t
, i = k − 1, k.

The left-hand side inequality of (4.2) can be shown similarly and this completes the proof. �
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We note here (4.2) also implies (4.3). This can be seen by noticing limt→∞((xn + t)2−r(Ar
n,t −

Pr,t) = r(r − 1)σn/2(n− 1).

Corollary 4.1. For r ≥ 2,

(4.5) rx1(Ar−1
n − Pr−1) ≤ (r − 2)(Ar

n − Pr) ≤ rxn(Ar−1
n − Pr−1).

Proof. Let f(t) = x2−r
n,t (Ar

n,t − Pr,t). By (4.2), f is an increasing function of t and f ′(0) ≥ 0 gives
the right-hand inequality of (4.5) and the left-hand inequality of (4.5) follows similarly. �

Theorem 4.2. For n > 1, ωi = 1/n, 0 < x1 ≤ x2 ≤ · · · ≤ xn, t ≥ 0, 1 ≤ r ≤ n− 1.

(
x1

1− x1
)2r−2(P

′2
r − P ′

r−1P
′
r+1) ≤ P 2

r − Pr−1Pr+1 ≤ (
xn

1− xn
)2r−2(P

′2
r − P ′

r−1P
′
r+1),(4.6)

(
x1

t + x1
)2r−2(P 2

r,t − Pr−1,tPr+1,t) ≤ P 2
r − Pr−1Pr+1 ≤ (

xn

t + xn
)2r−2(P 2

r,t − Pr−1,tPr+1,t),

x2r−2
1

(n− 1)
σn ≤ P 2

r − Pr−1Pr+1 ≤ x2r−2
n

(n− 1)
σn,

where we need xn < 1 in (4.6).

Proof. The proof is similar to the proof of Theorem 4.1, once we note the following identity of
Muirhead[14](see also [11], Theorem 54).

P 2
r − Pr−1Pr+1 = (r(r + 1)

(
n

r

)(
n

r + 1

)
)−1

r−1∑
i=0

(
2i

i

)
(r, i)
i + 1

,

where (r, i) =
∑

x2
1 · · ·x2

r−i−1xr−i · · ·xr+i−1(xr+i − xr+i+1)2, the summation extending over all
products formed from the x and of the type shown. �

We leave the proof of the following corollary to the reader since it is similar to the one of Corollary
4.1.

Corollary 4.2. For 2 ≤ r ≤ n− 1,

x1(PrPr−1 − Pr−2Pr+1) ≤ 2(P 2
r − Pr−1Pr+1) ≤ xn(PrPr−1 − Pr−2Pr+1).

5. Further Discussions

Theorem 5.1. For −1 ≤ r 6= 1 ≤ 2,

(5.1) |An −Mn,r| ≥
|1− r|σn

2(dxn + (1− d)x1)
,

For −1/2 ≤ r < 1,

(5.2) An −Mn,r ≤ (
d

x1
+

1− d

xn
)
(1− r)σn

2
,

where d = max{(2− r)/3, (1 + r)/3} and equality hold in both cases if and only if x1 = · · · = xn.

Proof. A close look at the proof of Theorem 3.1 in [8] shows that the first inequality holds. Similarly
to the argument in the proof of Theorem 3.1 in [8], the proof of (5.2) can be reduced to the case
n = 2. By setting 0 < x1 = x ≤ x2 = 1, ω1 = q, ω2 = 1− q, f(x) = x(qx+1− q− (qxr +1− q)1/r)−
(1− r)q(1− q)(d + (1− d)x)(x− 1)2/2. We need to show f(x) ≤ 0 for −1/2 ≤ r < 1. It’s easy to
check that f(1) = f ′(1) = f ′′(1) = 0 and

f ′′′(x) = q(1− q)(1− r)[(q + (1− q)x−r)
1−3r

r x−r−1((1− q)(1 + r)x−r + q(2− r))− 3(1− d)].
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Note (q + (1− q)x−r)
1−3r

r x−r−1 = (qxr + (1− q))
1−3r

r x2r−2 ≥ 1 for −1 ≤ r < 1. For 0 ≤ r ≤ 1/2,
(1−q)(1+r)x−r+q(2−r) ≥ 1+r+(1−2r)q ≥ r+1 and for 1/2 < r < 1, (1−q)(1+r)x−r+q(2−r) ≥
1 + r + (1− 2r)q ≥ 2− r, (5.2) holds for our choice of d. When −1/2 ≤ r < 0, we write f ′′′(x) as

f ′′′(x) = q(1− q)(1− r)[(q + (1− q)x−r)
1−3r

r x−2r−1((1− q)(1 + r) + q(2− r)xr)− 3(1− d)],

and the conclusion follows similarly. �

We note here when r = 0, (5.2) implies (5.1). By writing f(t) = (d(xn + t) + (1 − d)(x1 +
t))(An,t − Gn,t) and noticing limt→∞ f(t) = σn/2, it suffices to show f ′(t) ≤ 0 or equivalently
An − Gn + (dxn + (1 − d)x1)(1 − Gn/Hn) ≤ 0 since x is arbitrary. Now by repeating the same
method we see that (5.2) implies (5.1).

We end this paper by proving the following theorem, part of which was a conjecture of the author
in [8].

Theorem 5.2. For 0 < x1 ≤ · · · ≤ xn, q = min{ωi}
((1− q)/2x1 + q/2xn)σn ≥ (An −Gn) ≥ σn/2((1− q)xn + qx1)

Proof. For the right-hand side inequality, (5.1) shows

2(2xn + x1)(An −Gn) ≥ 3σn.

Thus when q ≤ 1/3 we are done. But if q > 1/3, one must have n = 2 and one checks by direct
calculation(see the proof of Theorem 3.1 in [8], replacing c by 2q there) that the above conjecture
holds for n = 2. The proof for the left-hand side inequality is similar. �
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