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SPECTRAL RADII OF OPERATORS AND HIGH-POWER
OPERATOR INEQUALITIES

C.-S. LIN AND S.S. DRAGOMIR

Abstract. For some different types of operators on a Hilbert space, we present

new high-power operator inequalities, and their corresponding operator in-
equalities involving spectral radii of operators. We prove that each such oper-

ator inequality is equivalent to the Cauchy-Schwarz inequality. In particular,

we show that Halmos’ two operator inequalities, Reid’s inequality, and many
others hold easily. We obtain a new generalized Löwner inequality, and a short

proof of the classical Löwner-Heinz inequality is given.

1. Introduction

The Cauchy-Schwarz inequality is a powerful inequality which states that the
relatio

(1.1) |(x, y)| ≤ ‖x‖ ‖y‖
holds for every x and y in a pre-Hilbert space. Every inequality in this space is
either derived from the Cauchy-Schwarz inequality, or equivalent to it. For recent
developments on inequalities related to (1.1) see [1] an the references therein.

In this paper we use capital letters to denote bounded linear operators on a
complex Hilbert space H, and I denotes the identity operator. A positive operator
T is written as T ≥ 0, the zero operator. We shall consider four types of high-
power operator inequalities, and their corresponding operator inequalities involving
spectral radii of operators. Four types are: a positive operator, two arbitrary
operators, mixed operators, and two selfadjoint operators. Indeed, our results are
motivated by Halmos’ two operator inequalities in [2, p. 51 and 244]. He proved
that if T ≥ 0, S is arbitrary and TS is selfadjoint operators, then, for every x ∈ H,
the following high-power operator inequality holds

(1.2) |(TSx, x)|2
n

≤ (TS2n

x, x)(Tx, x)2
n−1

for n ≥ 0. From this he concluded that the inequality involving spectral radius

(1.3) |(TSx, x)| ≤ r(S)(Tx, x)

holds, where r(S) means the spectral radius of S. It is a stronger version of a result
due to Reid [6]; Reid had ‖S‖ instead of r(S) (that r(S) ≤ ‖S‖ is known [2, p.
45]). Actually, we prove that some generalizations of inequalities (1.2), (1.3), Reid’s
inequality, and many others are all equivalent to the Cauchy-Schwarz inequality.
In particular, it is shown that inequalities (1.2), (1.3), Reid’s inequality, and many
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others hold easily. We also obtain a new generalized Löwner inequality, and a proof
that the Cauchy-Schwarz inequality implies the classical Löwner-Heinz inequality,
which is essential in operator inequalities on H. Finally we pose a question.

2. Results

First of all, recall that the inequality |(Tx, y)|2 ≤ (Tx, x)(Ty, y) holds for T ≥ 0
and for all x, y ∈ H (consider the unique positive square root of T ). In fact, it is
known to be equivalent to the Cauchy-Schwarz inequality, and this is crucial in the
proof of our results. Next, we need a well known relation: r(S) = limn ‖Sn‖1/n for
any operator S [2, Problem 74].

Theorem 1. Let T ≥ 0, and S and C be arbitrary operators. Also let TS, TC, A
and B be all selfadjoint operators. If n is a positive integer, then for all x, y ∈ H,
y 6= x, the following are equivalent to one another and to the Cauchy-Schwarz
inequality (1.1):

|(Tx, y)|2
n

≤ (T 1+2n−1
x, x)(Tx, x)2

n−1−1 ‖y‖2
n

for n ≥ 1; and(2.1)

|(Tx, y)|2 ≤ r(T )(Tx, x) ‖y‖2 ;(2.2)

|(Sx, Cy)|2
n

≤ ((S∗S)2
n−1

x, x)((C∗C)2
n−1

y, y) ‖x‖2
n−2 ‖y‖2

n−2(2.3)
for n ≥ 1; and

|(Sx, Cy)|2 ≤ r(S∗S)r(C∗C) ‖x‖2 ‖y‖2 ;(2.4)

|(TSx,Cy)|2
n

≤ (TS2n

x, x)(Tx, x)2
n−1−1(TC2n

y, y)(Ty, y)2
n−1−1(2.5)

for n ≥ 1; and

|(TSx,Cy)| ≤ r(S)r(C)(Tx, x)
1
2 (Ty, y)

1
2 ;(2.6)

|(Ax, By)|2
n

≤ (A2n−1+2x, x)(B2n−1+2y, y) ‖Ax‖2
n−1−2 ‖By‖2

n−1−2(2.7)

× ‖x‖2
n−1

‖y‖2
n−12n−1−1 for n ≥ 2; and

|(Ax, By)|2 ≤ r(A)r(B) ‖Ax‖ ‖By‖ ‖x‖ ‖y‖ .(2.8)

Proof. It is trivial to show that any one of statements (2.2), (2.4), (2.6) and (2.8)
implies (1.1); just letting T = S = C = A = B = I will suffice.

(1.1)⇒(2.1). We shall prove it inductively as follows, and start with n = 1
first.

|(Tx, y)|2 ≤ (T 2x, x) ‖y‖2 .

As
(T 2x, x)2 ≤ (TTx, Tx)(Tx, x) = (T 3x, x)(Tx, x),

we have
|(Tx, y)|4 ≤ (T 3x, x)(Tx, x) ‖y‖4

for n = 2. Since

(T 1+2n−1
x, x)2 ≤ (TT 2n−1

x, T 2n−1
x)(Tx, x) = (T 1+2n

x, x)(Tx, x),
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we obtain

|(Tx, y)|2
n+1

≤
[
|(Tx, y)|2

n
]2

≤
[
(T 1+2n−1

x, x)(Tx, x)2
n−1−1 ‖y‖2

n
]2

≤ (T 1+2n

x, x)(Tx, x)2
n−1 ‖y‖2

n+1

,

and the induction process is completed.

(2.1)⇒(2.2). The inequality (2.1) gives

|(Tx, y)|2
n

≤ ‖T‖
∥∥∥T 2n−1

∥∥∥ ‖x‖2 (Tx, x)2
n−1−1 ‖y‖2

n

.

Taking the 2n−1-th root of both sides of the inequality above yields

|(Tx, y)|2 ≤ ‖T‖
1

2n−1

∥∥∥T 2n−1
∥∥∥ 1

2n−1
‖x‖

2
2n−1 (Tx, x)1−

1
2n−1 ‖y‖2 .

Passing to the limit as n →∞ we have the desired conclusion.

We mention before we continue that the methods of the proof of all others are
similar to above.

(1.1)⇒(2.3). |(Sx, Cy)|2 ≤ (S∗Sx, x)(C∗Cy, y) for n = 1.
For the inductive step, note first that

((S∗S)2
n−1

x, x)2 ≤ ((S∗S)2
n

x, x) ‖x‖2 .

So,

|(Sx, Cy)|2
n+1

≤
[(

(S∗S)2
n−1

x, x
) (

(C∗C)2
n−1

y, y
)
‖x‖2

n−2 ‖y‖2
n−2

]2

=
(
(S∗S)2

n

x, x
)

((C∗C)2
n

y, y) ‖x‖2
n+1−2 ‖y‖2

n+1−2
,

and the process is completed.

(2.3)⇒(2.4). The inequality (2.3) gives

|(Sx, Cy)|2
n

≤
∥∥∥(S∗S)2

n−1
∥∥∥∥∥∥(C∗C)2

n−1
∥∥∥ ‖x‖2n

‖y‖2
n

,

which yields

|(Sx, Cy)|2 ≤
∥∥∥(S∗S)2

n−1
∥∥∥ 1

2n−1
∥∥∥(C∗C)2

n−1
∥∥∥ 1

2n−1
‖x‖2 ‖y‖2 .

(2.4) follows immediately if we take the limit in above as n →∞.

(1.1)⇒(2.5). As T is positive and both TS and TC are selfadjoint, we see that
S∗TS = (TS)∗S = TS2. And by induction we get (S∗)iTSi = TS2i (for i = 1, 2, ...) .
Similary, (C∗)iTCi = TC2i (for i = 1, 2, ...) . It follows, for n = 1, that

|(TSx,Cy)|2 ≤ (TSx, Sx)(TCy,Cy) = (TS2x, x)(TC2y, y).

Since
(TS2n

x, x)2 ≤ ((S∗)2nTS2n

x, x)(Tx, x) = (TS2n+1
x, x)(Tx, x),
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we have

|(TSx,Cy)|2
n+1

≤ (TS2n

x, x)2(Tx, x)2
n−2(TC2n

y, y)2(Ty, y)2
n−2

≤ (TS2n+1
x, x)(Tx, x)2

n−1(TC2n+1
y, y)(Ty, y)2

n−1.

This proves, by induction, the inequality (2.5).

(2.5)⇒(2.6). (2.5) yields

|(TSx,Cy)|2
n

≤ ‖T‖2
∥∥∥S2n

∥∥∥∥∥∥C2n
∥∥∥ ‖x‖2 ‖y‖2 (Tx, x)2

n−1−1(Ty, y)2
n−1−1,

which implies, by taking the 2n-th root,

|(TSx,Cy)| ≤ ‖T‖
1

2n−1

∥∥∥S2n
∥∥∥ 1

2n
∥∥∥C2n

∥∥∥ 1
2n

× ‖x‖
1

2n−1 ‖y‖
1

2n−1 (Tx, x)
1
2−

1
2n (Ty, y)

1
2−

1
2n .

Thus, we have the inequality (2.6) after passing to the limit as n →∞.

(1.1)⇒(2.7). Since |(Ax, By)|2 ≤ (A2x, x)(B2y, y),

|(Ax,By)|4 ≤ (A2x, x)2(B2y, y)2

≤ (A2x, A2x)(B2y, B2y) ‖x‖2 ‖y‖2

= (A4x, x)(B4y, y) ‖x‖2 ‖y‖2

for n = 2. Note that A2 ≥ 0, and

(A2n−1+2x, x)2 = (A2A2n−1
x, x)2 ≤ (A2n+2x, x) ‖Ax‖2 ,

and similarly for B2 ≥ 0. Therefore,

|(Ax, By)|2
n+1

≤ (A2n+2x, x)(B2n+2y, y) ‖Ax‖2
n−2 ‖By‖2

n−2 ‖x‖2
n

‖y‖2
n

,

and (2.7) holds by induction.

(2.7)⇒(2.8). The inequality (2.7) gives

|(Ax,By)|2
n

≤ ‖A‖2
∥∥∥A2n−1

∥∥∥ ‖Ax‖2
n−1−2

× ‖B‖2
∥∥∥B2n−1

∥∥∥ ‖By‖2
n−1−2 ‖x‖2

n−1+2 ‖y‖2
n−1+2

.

The next step is taking the 2n−1-th root, and then passing to the limit as n →
∞; the same as we did many times before. The proof of the theorem is now
completed.

By a well-known result that if E is a normal operator (selfadjoint operator, in
particular) on a complex Hilbert space, then r(E) = ‖E‖ [7, Theorem 6.2-E]. Thus,
the proofs of (1.1)⇔(2.2), (1.1)⇔(2.4) and (1.1)⇔(2.8) in Theorem 1 are trivial.
However, our proofs do not rely on this result. It should be pointed out that (2.5)
and (2.6) in Theorem 1 are generalizations of Halmos’ inequalities (1.2) and (1.3),
respectively. The next result, a generalization of Reid’s inequality, is obviously a
consequence of (2.6) in Theorem 1 and the proof should be omitted.
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Corollary 1. Let T ≥ 0, and S and C be arbitrary operators. If TS and TC
are selfadjoint operators, then for all x, y ∈ H, y 6= x, the following inequality is
equivalent to (1.1):

(2.9) |(TSx,Cy)| ≤ ‖S‖ ‖C‖ (Tx, x)
1
2 (Ty, y)

1
2 .

The Cauchy-Schwarz inequality (1.1) can produce various kinds of inequalities
which are not immediately apparent. The next results are consequences of Theorem
1 and Corollary 1. This also shows why the condition y 6= x is imposed in both
results.

Corollary 2. Let T ≥ 0, and S and C be arbitrary operators. Also let TS, TC, A
and B be all selfadjoint operators. If n is a positive integer, then for every x ∈ H
the following hold:

(2.10) (Tx, x)2
n−1+1 ≤ (T 1+2n−1

x, x) ‖x‖2
n

for n ≥ 1;

(2.11) (Tx, x) ≤ r(T ) ‖x‖2 ;

|(Sx, Cx)|2
n

≤ ((S∗S)2
n−1

x, x)((C∗C)2
n−1

x, x) ‖x‖2
n+1−4 for n ≥ 1;(2.12)

|(Sx, x)|2
n

≤ ((S∗S)2
n−1

x, x) ‖x‖2
n+1−2 for n ≥ 1;(2.13)

|(Sx, Cx)|2 ≤ r(S∗S)r(C∗C) ‖x‖4 ;(2.14)

|(Sx, x)|2 ≤ r(S∗S) ‖x‖4 ;(2.15)

|(TSx,Cx)|2
n

≤ (TS2n

x, x)(Tx, x)2
n−2(TC2n

x, x) for n ≥ 1;(2.16)

|(TSx, x)|2
n

≤ (TS2n

x, x)(Tx, x)2
n−1 for n ≥ 0(2.17)

(Halmos’ inequality (1.2));

|(TSx,Cx)| ≤ r(S)r(C)(Tx, x);(2.18)

|(TSx, x)| ≤ r(S)(Tx, x) (Halmos’ inequality (1.3));(2.19)

|(Ax,Bx)|2
n

≤ (A2n−1+2x, x)(B2n−1+2x, x)(2.20)

× ‖Ax‖2
n−1−2 ‖Bx‖2

n−1−2 ‖x‖2
n+1−2 for n ≥ 2;

|(Ax, x)|2
n

≤ (A2n−1+2x, x) ‖Ax‖2
n−1−2 ‖x‖5(2

n−1)−2 for n ≥ 2;(2.21)

|(Ax, Bx)|2 ≤ r(A)r(B) ‖Ax‖ ‖Bx‖ ‖x‖2 .(2.22)

|(Ax, x)|2 ≤ r(A) ‖Ax‖ ‖x‖3 ;(2.23)

|(TSx,Cx)| ≤ ‖S‖ ‖C‖ (Tx, x);(2.24)

|(TSx, x)| ≤ ‖S‖ (Tx, x) (Reid’s inequality).(2.25)

Proof. The proof is simple. Let, in particular, y = x in Theorem 1 and Corollary
1 above, so that the Cauchy-Schwarz inequality, (1.1) and (2.10) in Corollary 2,
becomes the trivial case (x, x) = ‖x‖2.
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The classical Löwner-Heinz inequality was initiated in [4] and established in [5],
which is a basic tool in theory of operator inequalities on H. More precisely, the
inequality Pα ≥ Qα holds if P ≥ Q ≥ 0, where α ∈ [0, 1]. There are known
examples showing that the inequality does not hold in general if α > 1. The proof
of the inequality was neither elementary nor short. However, there is a classical
characterization of the inequality, namely P

1
2 ≥ Q

1
2 holds if P ≥ Q ≥ 0, which is

known as the Löwner inequality. We propose next a new proof that the Löwner-
Heinz inequality may follow by way of the Cauchy-Schwarz inequality (Corollary 3
below). First of all, more generally we have

Theorem 2. The Cauchy-Schwarz inequality implies a generalized Löwner inequal-
ity, i.e.,

r(C)P
1
2 ≥ C∗Q

1
2

if P ≥ Q ≥ 0, both P
1
2 C and C∗Q

1
2 are selfadjoint for some operator C.

Proof. It suffices to show that a slightly generalized Reid’s inequality (2.18) in
Corollary 2 implies the required inequality. Now, we may assume without loss of
generality that P is invertible, then P− 1

2 QP− 1
2 ≤ I as P ≥ Q ≥ 0. Let S = P− 1

2 Q
1
2 .

Then SS∗ = P− 1
2 QP− 1

2 ≤ I, i.e., S is a contraction. Next, let T = P
1
2 ≥

0, then C∗TS = C∗Q
1
2 . As both P

1
2 C and C∗Q

1
2 are selfadjoint by assumption

(thus, T ≥ 0, and both TS and TC are selfadjoint), it follows from the inequality
|(TSx,Cx)| ≤ r(S)r(C)(Tx, x) that(

C∗Q
1
2 x, x

)
≤ r(S)

(
r(C)P

1
2 x, x

)
≤

(
r(C)P

1
2 x, x

)
for every x ∈ H.

Corollary 3. The Cauchy-Schwarz inequality implies the Löwner-Heinz inequality.

Proof. It suffices to ahow that (2.19) (Halmos’ inequality (1.3)) in Corollary 2
implies the Löwner inequality. This is precisely the inequality in Theorem 2, where
we let C = I.

As usual, let |E| mean the positive square root of the positive operator E∗E.

Corollary 4. Let T ≥ 0 and TS be a selfadjoint operator. Then the following are
equivalent.

(1) |(|TS|x, x)| ≤ ‖S‖ (Tx, x) for every x ∈ H;
(2) |(TSx, x)| ≤ ‖S‖ (Tx, x) for every x ∈ H (Reid’s inequality);
(3) P

1
2 ≥ Q

1
2 if P ≥ Q ≥ 0 (Löwner inequality).

Proof.
(1)⇒(2). We use a familiar relation that − |A| ≤ A ≤ |A| holds if A is selfadjoint.
In other words, |(Ax, x)| ≤ (|A|x, x) for every x ∈ H.

(2)⇒(3). In the proof of Theorem 2 let C = I and use (2.25) in Corollary 2 instead
of (2.18).

(3)⇒(1). Since S/ ‖S‖ is a contraction, i.e., SS∗ ≤ ‖S‖2 I, we have

0 ≤ (TS)2 = TS(TS)∗ = TSS∗T ≤ ‖S‖2 T 2.

It follows from (2.12) that |TS| ≤ ‖S‖T . Therefore,

(|TS|x, x) ≤ (‖S‖Tx, x) = ‖S‖ (Tx, x).
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Notice that the equivalence of the Reid’s inequality and the Löwner-Heinz in-
equality has been pointed out in [8]. In conclusion, in view of Corollary 4, let us
pose a question:

Problem: Could we prove that the generalized Löwner inequality in Theorem 2
implies the inequality (2.18) in Corollary 2? In other words, are the two inequalities
equivalent?
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