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SPECTRAL RADII OF OPERATORS AND HIGH-POWER
OPERATOR INEQUALITIES

C.-S. LIN AND S.S. DRAGOMIR

ABSTRACT. For some different types of operators on a Hilbert space, we present
new high-power operator inequalities, and their corresponding operator in-
equalities involving spectral radii of operators. We prove that each such oper-
ator inequality is equivalent to the Cauchy-Schwarz inequality. In particular,
we show that Halmos’ two operator inequalities, Reid’s inequality, and many
others hold easily. We obtain a new generalized Lowner inequality, and a short
proof of the classical Lowner-Heinz inequality is given.

1. INTRODUCTION

The Cauchy-Schwarz inequality is a powerful inequality which states that the
relatio

(L.1) (@, y)l < [l {lyl

holds for every x and y in a pre-Hilbert space. Every inequality in this space is
either derived from the Cauchy-Schwarz inequality, or equivalent to it. For recent
developments on inequalities related to (1.1) see [1] an the references therein.

In this paper we use capital letters to denote bounded linear operators on a
complex Hilbert space H, and I denotes the identity operator. A positive operator
T is written as T" > 0, the zero operator. We shall consider four types of high-
power operator inequalities, and their corresponding operator inequalities involving
spectral radii of operators. Four types are: a positive operator, two arbitrary
operators, mixed operators, and two selfadjoint operators. Indeed, our results are
motivated by Halmos’ two operator inequalities in [2, p. 51 and 244]. He proved
that if T > 0, S is arbitrary and T'S is selfadjoint operators, then, for every z € H,
the following high-power operator inequality holds

(1.2) (TSz,2)[* < (TS z,2)(Tx,z)* !
for n > 0. From this he concluded that the inequality involving spectral radius
(1.3) (T Sz,z)| < r(S)(Tx,x)

holds, where r(.S) means the spectral radius of S. It is a stronger version of a result
due to Reid [6]; Reid had ||S]| instead of r(S) (that »(S) < ||S] is known [2, p.
45]). Actually, we prove that some generalizations of inequalities (1.2), (1.3), Reid’s
inequality, and many others are all equivalent to the Cauchy-Schwarz inequality.
In particular, it is shown that inequalities (1.2), (1.3), Reid’s inequality, and many
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others hold easily. We also obtain a new generalized Lowner inequality, and a proof
that the Cauchy-Schwarz inequality implies the classical Lowner-Heinz inequality,
which is essential in operator inequalities on H. Finally we pose a question.

2. REsSuULTS

First of all, recall that the inequality |(7T'z, y)\2 < (Tz,z)(Ty,y) holds for T > 0
and for all z,y € H (consider the unique positive square root of T). In fact, it is
known to be equivalent to the Cauchy-Schwarz inequality, and this is crucial in the
proof of our results. Next, we need a well known relation: r(S) = lim,, ||S”||1/ " for
any operator S [2, Problem 74].

Theorem 1. Let T > 0, and S and C be arbitrary operators. Also let TS, TC, A
and B be all selfadjoint operators. If n is a positive integer, then for all z,y € H,
y # x, the following are equivalent to one another and to the Cauchy-Schwarz
inequality (1.1):

(2.1) (Tz, )" < (T2 '2,2)(Tz,2)>" " |yl||>" forn>1; and
(2.2) (T, y)* < r(T)(Ta,z) ||y|*;
(2.3) (Sz,Cy))*" < ((5*9)*"  z,2)((C*C)*" g, y) l=* 2 Iy >

form>1; and
(2.4) |(Sz, Cy)|* < r(S*S)r(CC) ||| [lyll* ;

(2.5) (TSz,Cy)|* < (TS z,2)(Tz, )2 ~HTC y,y)(Ty,y)*
form>1; and

(2.6) (TSz, Cy)| < r(S)r(C)(Tz, ) (Ty, y)*;

on n—1 n—1 27171_2 271—1_2
(27)  [(Az, By)|” < (A* Pz,a)(B* Fyy) | Az 1Byl

Tl

X ||:vH2n - form >2; and

(2.8) |(Az, By)|* < r(A)r(B) || Ax|| | Byl ||l Iy -
Proof. It is trivial to show that any one of statements (2.2), (2.4), (2.6) and (2.8)
implies (1.1); just letting T'=5 = C = A = B = I will suffice.

(1.1)=(2.1). We shall prove it inductively as follows, and start with n = 1
first.

(Tz,y)* < (T%z,2) |ly||”.
As
(T?z,2)? < (TTz,Tx)(Tx,z) = (T3z,2)(Tx, x),
we have
(Tz.y)|" < (TP,)(Tz,) |y’

for n = 2. Since

(T2 2, 2)? < (0T 2, T2 ) (T, 2) = (T2 2, 2) (T, ),
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we obtain

on+1 2

(Ta,y) < (T2 )|

< [@ " a )@, ]
< (T2, 2)(Ta,2)” |y
and the induction process is completed.
(2.1)=(2.2). The inequality (2.1) gives
(o) < ITN||72 " |l (T, ) )

Taking the 2"~ !-th root of both sides of the inequality above yields

1
T ]| T (T, ) T |y

1 n—1
(T, y)* < ||T|> |17

Passing to the limit as n — oo we have the desired conclusion.

We mention before we continue that the methods of the proof of all others are
similar to above.

(1.1)=(2.3). |(Sz,Cy)|* < (5*Sz,2)(C*Cy,y) for n = 1.
For the inductive step, note first that

((5*9)" @, 2)? < ((5°9)* @, ) |||

So,

|2n+l

n—1 n—1 n__ n__ 2
(s, oy < (578w w) (€0 y) Il = Jyll> ]
" n N n ntl ntl
= ((5"8)"2,2) (C™C) o) Il 2 > 2,
and the process is completed.
(2.3)=(2.4). The inequality (2.3) gives

27’L—1

(5w, Cy) " < | (579)

[[centes /N R PTG

which yields

1 1

on—1 * n—1 n—1 2 2
(o) | T (7

gn—1||2n—1

(8w, Cy)l* < |(58)

(2.4) follows immediately if we take the limit in above as n — oo.

(1.1)=-(2.5). As T is positive and both T'S and T'C are selfadjoint, we see that
S*TS = (T'S)*S = TS?. And by induction we get (S*)'T'S* = T'S? (for i = 1,2,...).
Similary, (C*)'TC* = TC? (for i = 1,2,...). It follows, for n = 1, that

(TSz,Cy)|*> < (T'Sz, Sz)(TCy, Cy) = (TS%x, ) (TC?y,y).

Since
(TS 2, 2)2 < ((S*)"TS¥ 2, 2)(Tx,z) = (TS 2, 2)(Tx, ),



4 C.-S. LIN AND S.S. DRAGOMIR

we have

(TSz,Cy)|

2n+1

<(TS* 2, 2)*(Ta,x)* *(TC*" y,y)*(Ty,y)*
< (15”" a,@)(Tw,2)” HTCY ) (Ty,9) "
This proves, by induction, the inequality (2.5).

(2.5)=(2.6). (2.5) yields

mn 2 n 2 2 n—1__ n—1__
(Tsz,Cy)l*” < 7] |52 ol Ilyl* (T, ) = (T, ),

e

which implies, by taking the 2™-th root,

L 1
Pig o

(TSz,Cy)| < ||| ||5* c*

1 L 1_ 1 1_ 1
x x|z lyllzn =" (Tw, )2 727 (Ty, y)> 2.
Thus, we have the inequality (2.6) after passing to the limit as n — oo.
2
" < (A%2,2)(B%, ),
A%z, x) (B2y y)°

(2
(1.1)=(2.7). Since |(Az, By)
<(
(A% A2z)(B%y, B%) ||z)|* |lylI”
= (A

(A, By)[*

,2)(By, ) ||| lyl®
for n = 2. Note that A2 > 0, and
(A2n71+2m,x)2 = (A2A2n71$,$)2 < (A2n+2x,x) ||Aac\|27
and similarly for B2 > 0. Therefore,
nt1 n n n_ n_ n n

(Az, By)|* " < (A" "22,2)(B¥ P2y, y) | Az||* 2Byl 2= vl
and (2.7) holds by induction.

2.7)=(2.8). The inequality (2.7) gives

( quality g

Az, By)P" < A |42 | 4w

2 n—1 on—l_o 2149 an—149
< BIP||B2 | 1Byl 2 el PR

The next step is taking the 2"~ !-th root, and then passing to the limit as n —
oo; the same as we did many times before. The proof of the theorem is now
completed. NI

By a well-known result that if F is a normal operator (selfadjoint operator, in
particular) on a complex Hilbert space, then r(E) = || E|| [7, Theorem 6.2-E]. Thus,
the proofs of (1.1)<(2.2), (1.1)<(2.4) and (1.1)<(2.8) in Theorem 1 are trivial.
However, our proofs do not rely on this result. It should be pointed out that (2.5)
and (2.6) in Theorem 1 are generalizations of Halmos’ inequalities (1.2) and (1.3),
respectively. The next result, a generalization of Reid’s inequality, is obviously a
consequence of (2.6) in Theorem 1 and the proof should be omitted.
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Corollary 1. Let T > 0, and S and C be arbitrary operators. If TS and TC
are selfadjoint operators, then for all z,y € H, y # x, the following inequality is
equivalent to (1.1):

(2.9) (TS, Cy)| < IS |C| (T, )% (Ty, y)2.

The Cauchy-Schwarz inequality (1.1) can produce various kinds of inequalities
which are not immediately apparent. The next results are consequences of Theorem
1 and Corollary 1. This also shows why the condition y # z is imposed in both
results.

Corollary 2. Let T > 0, and S and C be arbitrary operators. Also let T'S, TC, A
and B be all selfadjoint operators. If n is a positive integer, then for every r € H
the following hold:

(2.10) (Tz,z)2" L < (T2 "z 2) 2| for n>1;
(2.11) (T, z) < r(T) ||=|*;
(212)  |(Sz,C2)*" < ((S*9)2" ', 2)((C*C)? 'z, 2) ||zlF Y for n>1;
(213)  |(Sz2)[" < (579w, o) for n> 1
2.14) ((Sz,Cx)|* < r(S*S)r(C*C) ||z|*;
(2.15) (S, 2)[* < r(S*S) ||| ;
(2.16) (TSz,Cx)|*" < (TS 2, 2)(Tx,2)> "2(TC* z,2) for n>1;
(2.17) (TSz,2)[*" < (TS 2, 2)(Tx,2)>" "' for n>0
(Halmos’ inequality (1.2));
(2.18) (T'Sz,Ca)| < r(S)r(C)(Tx, x);
(2.19) [(TSz,x)| <r(S)(Tx,xz) (Halmos’ inequality (1.3));

(2.20)  |(Az, B2)|*" < (A¥" 22 2)(BY 21, 2)

271,71_2 2n71_2 2n+1_2
x || Az| | Bx|| ] for n>2;

221) Az < (A ) AT T 2P0 for n> 2
(2.22) |(Az, Ba)[* < r(A)r(B) || Az || Bz |l]*.

(2.23) (A, 2)[* < r(A) || Az ||=]*;

(2.24) [(T'Sz, Cx)| < IS|[IC][ (T2, 2);

(2.25) [(TSz,z)| < ||S|| (Tz,x) (Reid’s inequality).

Proof. The proof is simple. Let, in particular, y = = in Theorem 1 and Corollary
1 above, so that the Cauchy-Schwarz inequality, (1.1) and (2.10) in Corollary 2,
becomes the trivial case (z,z) = ||lz||*. 1
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The classical Lowner-Heinz inequality was initiated in [4] and established in [5],
which is a basic tool in theory of operator inequalities on H. More precisely, the
inequality P® > Q% holds if P > @ > 0, where a € [0,1]. There are known
examples showing that the inequality does not hold in general if o > 1. The proof
of the inequality was neither elementary nor short. However, there is a classical
characterization of the inequality, namely P3 > Q% holds if P > @ > 0, which is
known as the Lowner inequality. We propose next a new proof that the Lowner-
Heinz inequality may follow by way of the Cauchy-Schwarz inequality (Corollary 3
below). First of all, more generally we have

Theorem 2. The Cauchy-Schwarz inequality implies a generalized Léwner inequal-
ity, i.e.,

r(C)P? > C*Q?
if P> @Q >0, both P:C and C’*Q% are selfadjoint for some operator C.

Proof. It suffices to show that a slightly generalized Reid’s inequality (2.18) in
Corollary 2 implies the required inequality. Now, we may assume without loss of
generality that P is invertible, then P~2QP~2 < TasP > Q > 0.Let § = P~2Qs2.
Then SS* = P’%QP*% < I, i.e., S is a contraction. Next, let T = Pz >
0, then C*T'S = C*Q%. As both P2C and C*Q% are selfadjoint by assumption
(thus, T' > 0, and both T'S and T'C are selfadjoint), it follows from the inequality
(T Sz, Cx)| < r(S)r(C)(Tx,x) that

<C*Q%x,x) <r(S) (r(C’)P%x,x) < (r(C)P%x,x)
for every z € H. 1

Corollary 3. The Cauchy-Schwarz inequality implies the Lowner-Heinz inequality.

Proof. Tt suffices to ahow that (2.19) (Halmos’ inequality (1.3)) in Corollary 2
implies the Lowner inequality. This is precisely the inequality in Theorem 2, where
welet C=1.1

As usual, let |E| mean the positive square root of the positive operator E*E.

Corollary 4. Let T > 0 and T'S be a selfadjoint operator. Then the following are
equivalent.

(1) (TS|, )| < ||S|| (Tz,z) for every x € H;
(2) (TSz,z)| <||S|| (Tx,x) for every x € H (Reid’s inequality);
(3) P:>Q2ifP>Q>0 (Lowner inequality).

Proof.

(1)=(2). We use a familiar relation that — |A| < A < |A] holds if A is selfadjoint.
In other words, |(Axz,z)| < (|A| z, z) for every x € H.

(2)=(3). In the proof of Theorem 2 let C' = I and use (2.25) in Corollary 2 instead
of (2.18).

(3)=(1). Since S/||S|| is a contraction, i.e., $5* < ||S||* I, we have
0 < (TS)? =TS8(TS)* =TSS*T < ||S|* T2
It follows from (2.12) that |T'S| < ||S||T. Therefore,
(7S], z) < (|S]| Tz, 2) = [IS]| (T, z).



SPECTRAL RADII OF OPERATORS AND HIGH-POWER OPERATOR INEQUALITIES 7

Notice that the equivalence of the Reid’s inequality and the Léwner-Heinz in-
equality has been pointed out in [8]. In conclusion, in view of Corollary 4, let us
pose a question:

Problem: Could we prove that the generalized Lowner inequality in Theorem 2
implies the inequality (2.18) in Corollary 29 In other words, are the two inequalities
equivalent?
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