

Grüss Inequality in Inner Product Spaces

This is the Published version of the following publication

Dragomir, Sever S (1998) Grüss Inequality in Inner Product Spaces. RGMIA research report collection, 1 (1).

The publisher's official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/17103/

RGMIA Research Report Collection, Vol. 1, No. 1, 1998 http://sci.vut.edu.au/~rgmia/reports.html

GRÜSS INEQUALITY IN INNER PRODUCT SPACES

S.S. DRAGOMIR

Dedicated to the memory of my grandfather Teodor Radu.

ABSTRACT. A generalization of Grüss integral inequality in inner product spaces is given.

1 INTRODUCTION

In 1935, G. Grüss proved the following integral inequality:

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x)g(x)dx - \frac{1}{b-a} \int_{a}^{b} f(x)dx \cdot \frac{1}{b-a} \int_{a}^{b} g(x)dx \right|$$
$$\leq \frac{1}{4} (\Phi - \phi)(\Gamma - \gamma)$$

provided that f and g are two integrable functions on $\left[a,b\right]$ and satisfying the condition

$$\phi \leq f(x) \leq \Phi$$
 and $\gamma \leq g(x) \leq \Gamma$ for all $x \in [a, b]$.

The constant $\frac{1}{4}$ is the *best possible* and is achieved for

$$f(x) = g(x) = sgn\left(x - \frac{a+b}{2}\right).$$

For other similar results, generalizations for positive linear functionals, discrete versions, determinantal versions etc. see the Chapter X of the book [1] by Mitrinović, Pečarić and Fink where further references are given.

In this paper we point out a version of Grüss' inequality in inner product spaces.

2 The Results

The following theorem holds

Date. October, 1998

¹⁹⁹¹ Mathematics Subject Classification. Primary 26 D 15; Secondary 46 C xx. Key words and phrases. Grüss Inequality, Inner Product Spaces.

Theorem 2.1. Let (X; (.,.)) be a real inner product space and $e \in X$, ||e|| = 1. If $\phi, \gamma, \Phi, \Gamma$ are real numbers and x, y are vectors in X so that the condition

(2.1)
$$(\Phi e - x, x - \phi e) \ge 0 \quad and \quad (\Gamma e - y, y - \gamma e) \ge 0$$

holds, then we have the inequality

(2.2)
$$|(x,y) - (x,e)(e,y)| \le \frac{1}{4} |\Phi - \phi| \cdot |\Gamma - \gamma|.$$

The constant $\frac{1}{4}$ is the best possible.

Proof. Firstly, let observe that

$$(x,y) - (x,e)(e,y) = (x - (x,e)e, y - (y,e)e)$$

Using Schwarz's inequality in inner product spaces, we have

(2.3)
$$|(x - (x, e)e, y - (y, e)e)|^2$$

$$\leq ||x - (x, e)e||^2 \cdot ||y - (y, e)e||^2$$

$$= \left(\|x\|^{2} - |(x,e)|^{2} \right) \left(\|y\|^{2} - |(y,e)|^{2} \right).$$

On the other hand, a simple computation shows that

$$(\Phi - (x, e)) \cdot ((x, e) - \phi) - (\Phi e - x, x - \phi e)$$

= $||x||^2 - |(x, e)|^2$

and

$$(\Gamma - (y, e)) \cdot ((y, e) - \gamma) - (\Gamma e - y, y - \gamma e)$$

$$= ||y||^{2} - |(y,e)|^{2}.$$

From the condition (2.1) we deduce now

(2.4)
$$||x||^2 - |(x,e)|^2 \le (\Phi - (x,e)) \cdot ((x,e) - \phi)$$

and

(2.5)
$$||y||^2 - |(y,e)|^2 \le (\Gamma - (y,e)) \cdot ((y,e) - \gamma)$$

Using the elementary inequality $4ab \le (a+b)^2$ holding for each real numbers a, b; for $a := \Phi - (x, e)$ and $b := (x, e) - \phi$, we get

(2.6)
$$(\Phi - (x, e)) \cdot ((x, e) - \phi) \le \frac{1}{4} (\Phi - \phi)^2$$

RGMIA Research Report Collection, Vol. 1, No. 1, 1998

Grüss Inequality in Inner Product Spaces

and, similarly,

(2.7)
$$(\Gamma - (y, e)) \cdot ((y, e) - \gamma) \le \frac{1}{4} (\Gamma - \gamma)^2.$$

Consequently, using the inequalities (2.3) - (2.7), we have successively

$$\begin{aligned} |(x,y) - (x,e)(e,y)|^2 &\leq \left(||x||^2 - |(x,e)|^2 \right) \left(||y||^2 - |(y,e)|^2 \right) \\ &\leq (\Phi - (x,e)) \cdot ((x,e) - \phi) \cdot (\Gamma - (y,e)) \cdot ((y,e) - \gamma) \\ &\leq \frac{1}{16} \left(\Phi - \phi \right)^2 (\Gamma - \gamma)^2 \end{aligned}$$

from where we get the desired inequality (2.2).

To prove that the constant $\frac{1}{4}$ is sharp, let $e, m \in X$ with $||e|| = ||m|| = 1, e \perp m$ and assume that $\phi, \gamma, \Phi, \Gamma$ are real numbers. Define the vectors

$$x := \frac{\phi + \Phi}{2}e + \frac{\Phi - \phi}{2}m$$

and

$$y := \frac{\Gamma + \gamma}{2}e + \frac{\Gamma - \gamma}{2}m.$$

Then

$$(\Phi e - x, x - \phi e) = \left(\frac{\Phi - \phi}{2}\right)^2 (e - m, e + m) = 0$$

and, similarly,

$$(\Gamma e - y, y - \gamma e) = 0,$$

i.e., the condition
$$(2.1)$$
 holds

Now, let observe that

$$(x,y) = \left(\frac{\phi+\Phi}{2}\right) \cdot \left(\frac{\Gamma+\gamma}{2}\right) + \left(\frac{\Phi-\phi}{2}\right) \cdot \left(\frac{\Gamma-\gamma}{2}\right)$$

and

$$(x,e)(e,y) = \left(\frac{\phi+\Phi}{2}\right) \cdot \left(\frac{\Gamma+\gamma}{2}\right).$$

Consequently,

$$|(x,y) - (x,e)(e,y)| = \frac{1}{4} |\Phi - \phi| \cdot |\Gamma - \gamma|$$

which shows that the constant $\frac{1}{4}$ is sharp. \blacksquare

RGMIA Research Report Collection, Vol. 1, No. 1, 1998

3 Some Applications

Let (Ω, Σ, μ) be a measure space consisting of a set Ω , a σ -algebra Σ of subsets of Ω and a countably additive and positive measure μ on Σ with values in $\mathbf{R} \cup \{\infty\}$. Denote $L^2(\Omega)$ the Hilbert space of all real valued functions x defined on Ω and 2-integrable on Ω , i.e., $\int_{\Omega} |x(s)|^2 d\mu(s) < \infty$.

Proposition 3.1. Let $f, g \in L^2(\Omega)$, $m, M, n, N \in \mathbf{R}$ and $e \in L^2(\Omega)$ is so that $\int_{\Omega} |e(s)|^2 d\mu(s) = 1$. If the following condition holds

$$me \leq f \leq Me$$
, $ne \leq g \leq Ne$ a.e. on Ω ,

then we have the Grüss type inequality

(3.1)
$$\left| \int_{\Omega} f(s)g(s)d\mu(s) - \int_{\Omega} f(s)e(s)d\mu(s) \cdot \int_{\Omega} e(s)g(s)d\mu(s) \right|$$
$$\leq \frac{1}{4} \left(M - m \right) \left(N - n \right).$$

The constant $\frac{1}{4}$ is the best possible.

Proof. Consider the inner product

$$(f,g) = \int_{\Omega} f(s)g(s)d\mu(s).$$

Then we have

$$(Me - f, f - me) = \int_{\Omega} (Me(s) - f(s)) (f(s) - me(s)) d\mu(s) \ge 0$$

and, similarly,

$$(Ne - g, g - ne) \ge 0.$$

Applying Theorem 2.1 for the Hilbert space $L^2(\Omega)$, we get the desired inequality (3.1).

Now, if we assume that $\mu(\Omega) < \infty$, then we can obtain the following Grüss inequality for integral means:

Proposition 3.2. Let $L^2(\Omega)$ be as above and $\mu(\Omega) < \infty$. If $f, g \in L^2(\Omega)$ and p, P, q, Q are real numbers so that

$$p \leq f \leq P, \qquad q \leq g \leq Q \qquad \text{ a.e. on } \Omega,$$

then we have the inequality

$$\begin{aligned} \left| \frac{1}{\mu(\Omega)} \int_{\Omega} f(s) g(s) d\mu(s) - \frac{1}{\mu(\Omega)} \int_{\Omega} f(s) d\mu(s) \cdot \frac{1}{\mu(\Omega)} \int_{\Omega} g(s) d\mu(s) \right| \\ & \leq \frac{1}{4} \left(P - p \right) \left(Q - q \right). \end{aligned}$$

The constant $\frac{1}{4}$ is sharp.

RGMIA Research Report Collection, Vol. 1, No. 1, 1998

Proof. The proof follows by the above proposition choosing

$$e = \frac{1}{\left[\mu\left(\Omega\right)\right]^{1/2}},$$

and

$$M = [\mu(\Omega)]^{1/2} P, \quad m = [\mu(\Omega)]^{1/2} p, \quad N = [\mu(\Omega)]^{1/2} Q \quad \text{and} \quad n = [\mu(\Omega)]^{1/2} q.$$

We omit the details.

Remark 3.1. It is important to observe that our Grüss type inequality also holds for integrals considered on infinite intervals.

If ρ : $(-\infty, +\infty) \to (0, \infty)$ is a probability density function, i.e., $\int_{-\infty}^{+\infty} \rho(t) dt = 1$, then $\rho^{\frac{1}{2}} \in L^2(-\infty, +\infty)$ and obviously $\|\rho^{\frac{1}{2}}\|_2 = 1$. Consequently, if we assume that $f, g \in L^2(-\infty, +\infty)$ and

$$\alpha \rho^{\frac{1}{2}} \leq f \leq \Psi \rho^{\frac{1}{2}}, \quad \beta \rho^{\frac{1}{2}} \leq g \leq \Theta \rho^{\frac{1}{2}} \quad \text{a.e. on } (-\infty, +\infty),$$

then we have the inequality

(3.2)
$$\left| \int_{-\infty}^{+\infty} f(t)g(t)dt - \int_{-\infty}^{+\infty} f(t)\rho^{1/2}(t)dt \cdot \int_{-\infty}^{+\infty} f(t)\rho^{1/2}(t)dt \right| \leq \frac{1}{4} \left(\Psi - \alpha\right) \left(\Theta - \beta\right).$$

Finally, we would like to note that, in this way, we can state many Grüss type inequalities by choosing the following well known probability distributions

$$\rho(t) = \frac{1}{\lambda} e^{-\frac{t}{\lambda}}, \quad t > 0, \lambda > 0 \quad \text{(Exponential distribution)}$$

$$\rho(t) = \frac{1}{2\lambda} e^{-\frac{|t-\theta|}{\lambda}}, \quad \lambda > 0, \quad -\infty < t, \quad \theta < \infty \quad \text{(Laplace distribution)}$$

or, Cauchy, Gamma, Erlang, Logistic, Maxwell-Boltzman, Pareto, Rayleigh distributions etc...

We omit the details.

References

 MITRINOVIĆ, D.S.; PEČARIĆ, J.E.; FINK, A.M.; Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.

SCHOOL OF COMMUNICATIONS AND INFORMATICS, VICTORIA UNIVERSITY OF TECHNOLOGY, PO Box 14428, MCMC MELBOURNE, VICTORIA 8001, AUSTRALIA *E-mail address:* sever@matilda.vut.edu.au