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GRÜSS INEQUALITY IN INNER PRODUCT SPACES

S.S. DRAGOMIR

Dedicated to the memory of my grandfather Teodor Radu.

Abstract. A generalization of Grüss integral inequality in inner product spaces
is given.

1 Introduction

In 1935, G. Grüss proved the following integral inequality:∣∣∣∣∣∣ 1
b− a

b∫
a

f(x)g(x)dx− 1
b− a

b∫
a

f(x)dx · 1
b− a

b∫
a

g(x)dx

∣∣∣∣∣∣
≤ 1

4
(Φ− φ)(Γ− γ)

provided that f and g are two integrable functions on [a, b] and satisfying the
condition

φ ≤ f(x) ≤ Φ and γ ≤ g(x) ≤ Γ for all x ∈ [a, b].

The constant 1
4 is the best possible and is achieved for

f(x) = g(x) = sgn

(
x− a+ b

2

)
.

For other similar results, generalizations for positive linear functionals, dis-
crete versions, determinantal versions etc. see the Chapter X of the book [1] by
Mitrinović, Pečarić and Fink where further references are given.

In this paper we point out a version of Grüss’ inequality in inner product
spaces.

2 The Results

The following theorem holds
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Theorem 2.1. Let (X; (., .)) be a real inner product space and e ∈ X, ‖e‖ = 1.
If φ, γ,Φ,Γ are real numbers and x, y are vectors in X so that the condition

(Φe− x, x− φe) ≥ 0 and (Γe− y, y − γe) ≥ 0(2.1)

holds, then we have the inequality

|(x, y)− (x, e)(e, y)| ≤ 1
4
|Φ− φ| · |Γ− γ| .(2.2)

The constant 1
4 is the best possible.

Proof. Firstly, let observe that

(x, y)− (x, e)(e, y) = (x− (x, e)e, y − (y, e)e).

Using Schwarz’s inequality in inner product spaces, we have

|(x− (x, e)e, y − (y, e)e)|2(2.3)

≤ ‖x− (x, e)e‖2 · ‖y − (y, e)e‖2

=
(
‖x‖2 − |(x, e)|2

)(
‖y‖2 − |(y, e)|2

)
.

On the other hand, a simple computation shows that

(Φ− (x, e)) · ((x, e)− φ)− (Φe− x, x− φe)

= ‖x‖2 − |(x, e)|2

and

(Γ− (y, e)) · ((y, e)− γ)− (Γe− y, y − γe)

= ‖y‖2 − |(y, e)|2 .

From the condition (2.1) we deduce now

‖x‖2 − |(x, e)|2 ≤ (Φ− (x, e)) · ((x, e)− φ)(2.4)

and

‖y‖2 − |(y, e)|2 ≤ (Γ− (y, e)) · ((y, e)− γ) .(2.5)

Using the elementary inequality 4ab ≤ (a+ b)2 holding for each real numbers
a, b; for a := Φ− (x, e) and b := (x, e)− φ, we get

(Φ− (x, e)) · ((x, e)− φ) ≤ 1
4

(Φ− φ)2(2.6)
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and, similarly,

(Γ− (y, e)) · ((y, e)− γ) ≤ 1
4

(Γ− γ)2
.(2.7)

Consequently, using the inequalities (2.3)− (2.7), we have successively

|(x, y)− (x, e) (e, y)|2 ≤
(
‖x‖2 − |(x, e)|2

)(
‖y‖2 − |(y, e)|2

)

≤ (Φ− (x, e)) · ((x, e)− φ) · (Γ− (y, e)) · ((y, e)− γ)

≤ 1
16

(Φ− φ)2 (Γ− γ)2

from where we get the desired inequality (2.2).
To prove that the constant 1

4 is sharp, let e,m ∈ X with ‖e‖ = ‖m‖ = 1, e⊥m
and assume that φ, γ,Φ,Γ are real numbers. Define the vectors

x :=
φ+ Φ

2
e+

Φ− φ
2

m

and

y :=
Γ + γ

2
e+

Γ− γ
2

m.

Then

(Φe− x, x− φe) =
(

Φ− φ
2

)2

(e−m, e+m) = 0

and, similarly,

(Γe− y, y − γe) = 0,

i.e., the condition (2.1) holds.
Now, let observe that

(x, y) =
(
φ+ Φ

2

)
·
(

Γ + γ

2

)
+
(

Φ− φ
2

)
·
(

Γ− γ
2

)
and

(x, e) (e, y) =
(
φ+ Φ

2

)
·
(

Γ + γ

2

)
.

Consequently,

|(x, y)− (x, e) (e, y)| =
1
4
|Φ− φ| · |Γ− γ|

which shows that the constant 1
4 is sharp.
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3 Some Applications

Let (Ω,Σ, µ) be a measure space consisting of a set Ω , a σ−algebra Σ of
subsets of Ω and a countably additive and positive measure µ on Σ with values
in R∪{∞}. Denote L2(Ω) the Hilbert space of all real valued functions x defined
on Ω and 2-integrable on Ω , i.e.,

∫
Ω |x(s)|2dµ(s) <∞.

Proposition 3.1. Let f, g ∈ L2(Ω), m,M,n,N ∈ R and e ∈ L2(Ω) is so that∫
Ω |e(s)|

2dµ(s) = 1. If the following condition holds

me ≤ f ≤Me, ne ≤ g ≤ Ne a.e. on Ω,

then we have the Grüss type inequality∣∣∣∣∫
Ω
f(s)g(s)dµ(s)−

∫
Ω
f(s)e(s)dµ(s) ·

∫
Ω
e(s)g(s)dµ(s)

∣∣∣∣(3.1)

≤ 1
4

(M −m) (N − n) .

The constant 1
4 is the best possible.

Proof. Consider the inner product

(f, g) =
∫

Ω
f(s)g(s)dµ(s).

Then we have

(Me− f, f −me) =
∫

Ω
(Me (s)− f (s)) (f (s)−me (s)) dµ (s) ≥ 0

and, similarly,

(Ne− g, g − ne) ≥ 0.

Applying Theorem 2.1 for the Hilbert space L2(Ω), we get the desired inequality
(3.1).

Now, if we assume that µ(Ω) < ∞, then we can obtain the following Grüss
inequality for integral means:

Proposition 3.2. Let L2(Ω) be as above and µ(Ω) < ∞. If f, g ∈ L2(Ω) and
p, P, q,Q are real numbers so that

p ≤ f ≤ P, q ≤ g ≤ Q a.e. on Ω,

then we have the inequality∣∣∣∣ 1
µ(Ω)

∫
Ω
f (s) g (s) dµ(s)− 1

µ(Ω)

∫
Ω
f (s) dµ (s) · 1

µ (Ω)

∫
Ω
g (s) dµ (s)

∣∣∣∣
≤ 1

4
(P − p) (Q− q) .

The constant 1
4 is sharp.
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Proof. The proof follows by the above proposition choosing

e =
1

[µ (Ω)]1/2
,

and

M = [µ(Ω)]1/2P, m = [µ(Ω)]1/2p, N = [µ(Ω)]1/2Q and n = [µ(Ω)]1/2q.

We omit the details.

Remark 3.1. It is important to observe that our Grüss type inequality also
holds for integrals considered on infinite intervals.

If ρ : (−∞,+∞) → (0,∞) is a probability density function, i.e.,
∫ +∞
−∞

ρ(t)dt = 1, then ρ
1
2 ∈ L2(−∞,+∞) and obviously ‖ρ 1

2 ‖2 = 1. Consequently,
if we assume that f, g ∈ L2(−∞,+∞) and

αρ
1
2 ≤ f ≤ Ψρ

1
2 , βρ

1
2 ≤ g ≤ Θρ

1
2 a.e. on (−∞,+∞),

then we have the inequality∣∣∣∣∣∣
+∞∫
−∞

f(t)g(t)dt−
+∞∫
−∞

f(t)ρ1/2(t)dt ·
+∞∫
−∞

f(t)ρ1/2(t)dt

∣∣∣∣∣∣(3.2)

≤ 1
4

(Ψ− α) (Θ− β) .

Finally, we would like to note that, in this way, we can state many Grüss
type inequalities by choosing the following well known probability distributions

ρ(t) =
1
λ
e−

t
λ , t > 0, λ > 0 (Exponential distribution)

ρ(t) =
1

2λ
e−
|t−θ|
λ , λ > 0, −∞ < t, θ <∞ (Laplace distribution)

or, Cauchy, Gamma, Erlang, Logistic, Maxwell-Boltzman, Pareto, Rayleigh dis-
tributions etc...

We omit the details.
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