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GRUSS INEQUALITY IN INNER PRODUCT SPACES
S.S. DRAGOMIR

Dedicated to the memory of my grandfather Teodor Radu.
ABSTRACT. A generalization of Griiss integral inequality in inner product spaces
is given.

1 INTRODUCTION

In 1935, G. Griiss proved the following integral inequality:

b b b
i [ s@e)ds - 2 [ fa)de [ o)
<T@ -6 )
— 4

provided that f and g are two integrable functions on [a,b] and satisfying the
condition

p< flz)<® and ~y<g(x)<T forallx€]la,bl.

The constant i is the best possible and is achieved for

f(@) = g(z) = sgn (z— ”b) .

2

For other similar results, generalizations for positive linear functionals, dis-
crete versions, determinantal versions etc. see the Chapter X of the book [1] by
Mitrinovi¢, Pecari¢ and Fink where further references are given.

In this paper we point out a version of Griiss’ inequality in inner product
spaces.

2 THE RESULTS

The following theorem holds
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Theorem 2.1. Let (X;(.,.)) be a real inner product space and e € X, ||e|| = 1.
If ¢,v,®,T are real numbers and x,y are vectors in X so that the condition

(2.1) (Pe—z,2—¢e) >0 and (Te—y,y—vye) >0
holds, then we have the inequality

1
(2.2) |(@,9) = (z,e)(e;y)l < 1@ = 9] - [T =]

The constant % is the best possible.

Proof. Firstly, let observe that

(fﬂ,y) - (x76)(67y) = (SU - (m,e)e,y - (yae)e)'

Using Schwarz’s inequality in inner product spaces, we have

(23) |(£L' - (1‘, 6)6, Y= (y, 6)6)|2
<l = (z,e)e]* - ly = (y e)e]”

= (el = It e)) (Il = It )

On the other hand, a simple computation shows that

(®—(z,€)) - ((x,€) = ¢) — (Pe —z,2 — ¢e)

= |lz)* = |(z,e)|?
and

= (y,e) - ((y:¢) =7) — Te—y,y —7e)

2 2
= llyl” = I(y,e)|" -

From the condition (2.1) we deduce now

(2.4) [2[|* = (2, €)|* < (® = (z,€)) - ((2,€) — ¢)
and
(2.5) Iy = 1y, e)* < (T = (y,€)) - (. €) —7)-

Using the elementary inequality 4ab < (a + b)2 holding for each real numbers
a,b; for a := ® — (z,e) and b := (z,e) — ¢, we get

(@ — ¢)°

N

(2.6) (® —(z,€)) - ((z,€) = ¢) <
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and, similarly,

(27) (T~ () (5.0) ~7) < 7 ().

Consequently, using the inequalities (2.3) — (2.7), we have successively
(@,9) = (@,0) (el < (Il =@ o) (Iyl* = . e)F)
S(@—(z,0) - ((z,6) —¢) - (T' = (y,¢)) - ((y,€) =)
< 16 (=67 (T =)

— 16

from where we get the desired inequality (2.2).
To prove that the constant  is sharp, let e,m € X with [le]| = |[m| = 1,eLm
and assume that ¢,~y, ®,I" are real numbers. Define the vectors

AL LT

2 2
and
_ T+ -7
Y= 5 e+ 5
Then
P — o\2
(@e—x,ax—qﬁe):(Q(b) (e—m,e+m)=0

and, similarly,

(Te —y,y —ve) =0,

i.e., the condition (2.1) holds.
Now, let observe that

o= (45%) (5)+ (%) (7))

waen=(23%)(557).

and

Consequently,

:9) ~ () ()] =718~ 6] T~

which shows that the constant i is sharp. i
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3 SOME APPLICATIONS

Let (2,%, ) be a measure space consisting of a set © , a o—algebra ¥ of
subsets of 2 and a countably additive and positive measure p on ¥ with values
in RU{oc}. Denote L?(2) the Hilbert space of all real valued functions x defined
on  and 2-integrable on Q , i.e., [, [z(s)[*du(s) < co.

Proposition 3.1. Let f,g € L?(2), m,M,n,N € R and e € L*() is so that
Jo le(s)|?du(s) = 1. If the following condition holds

me < f < Me, ne < g < Ne a.e. on ),

then we have the Griiss type inequality

(3.1) / £(5)9(s)du(s) — / £()e(s)du(s) - / (5)g(s)dp(s)

< (M —m) (N —n).

The constant % 1s the best possible.

Proof. Consider the inner product

(f.9) = /Q £(5)a(5)dp(s).
Then we have

(Me — £, — me) = / (Me () — £ (5)) (f (5) — me (3)) dju (3) > 0

Q

and, similarly,
(Ne —g,9 —ne) > 0.

Applying Theorem 2.1 for the Hilbert space L?(2), we get the desired inequality
(3.1). n

Now, if we assume that u(€2) < oo, then we can obtain the following Griiss
inequality for integral means:

Proposition 3.2. Let L?(2) be as above and u(Q) < oo. If f,g € L?(Q) and
p, P,q,Q are real numbers so that

p<[f<P, 9<9g<Q a.e. on {1,
then we have the inequality

1 1 1
i L@ s o [ e o g

The constant % s sharp.

RGMIA Research Report Collection, Vol. 1, No. 1, 1998



Griiss Inequality in Inner Product Spaces 75

Proof. The proof follows by the above proposition choosing
_
(@)

e =

and

M = [u@)?P, m=[w@)]"?p, N=[u]"?Q and n=I[u(Q)]"/?q.
We omit the details. i

Remark 3.1. [t is important to observe that our Griiss type inequality also
holds for integrals considered on infinite intervals.

+oo

—00

If p: (—00,+00) — (0,00) is a probability density function, i.e.,
p(t)dt = 1, then p2 € L?(—00,400) and obviously |2 || = 1. Consequently,
if we assume that f,g € L?(—o0,+00) and

ap? < f<Up?, Bp? <g<Op? ae. on (—00, +00),

then we have the inequality

“+00 +oo +o0
(3.2) / F(t)g(t)dt — / F(t)p 2 (1)t / F() (1)t

<

(¥ —a)(©-0).

NP

Finally, we would like to note that, in this way, we can state many Griiss
type inequalities by choosing the following well known probability distributions

1
p(t) = Xe*§, t>0,A>0 (Exponential distribution)

1 t—
p(t) = 56_‘7*9', A>0, —oco<t, 6O<oo (Laplace distribution)

or, Cauchy, Gamma, Erlang, Logistic, Maxwell-Boltzman, Pareto, Rayleigh dis-
tributions etc...
We omit the details.
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