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A LOWER BOUND FOR CONTINUOUS CONVEX
MAPPINGS ON NORMED LINEAR SPACES

S.S. DRAGOMIR

Abstract. A lower bound for continuous convex mappings defined on normed
linear spaces in terms of norm derivatives and best approximants is given.

1 Introduction

Let (X, ‖ · ‖) be a real normed space and consider the norm derivatives

(x, y)i(s) = lim
t→−(+)0

(
‖y + tx‖2 − ‖y‖2

)
/2t.

Note that these mappings are well defined on X × X and the following
properties are valid (see also [1], [3] ):

(i) (x, y)i = −(−x, y)s if x, y are in X;

(ii) (x, x)p = ‖x‖2 for all x in X;

(iii) (αx, βy)p = αβ(x, y)p for all x, y in X and αβ ≥ 0;

(iv) (αx+ y, x)p = α‖x‖2 + (y, x)p for all x, y in X and α a real number ;

(v) (x+ y, z)p ≤ ‖x‖ · ‖z‖+ (y, z)p for all x, y, z in X;

(vi) the element x in X is Birkhoff orthogonal over y in X (we denote x⊥y(B)),
i.e., ‖x+ ty‖ ≥ ‖x‖ for all t a real number iff (y, x)i ≤ 0 ≤ (y, x)s;

(vii) the space X is smooth iff (y, x)i = (y, x)s for all x, y in X iff (·, ·)p is linear
in the first variable;

(viii) we have the representation:

(y, x)i = inf {f(y) : f ∈ J(x)} and (y, x)s = sup {f(y) : f ∈ J(x)}

where J is the normalized duality mapping, i.e.,

J(x) = {f ∈ X∗ : f(x) = ‖f‖ · ‖x‖, ‖f‖ = ‖x‖} ,

where p = s or p = i .
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Now, let (X, ‖·‖) be a normed linear space and G a nondense subset in X.
Suppose x0 ∈ X \ Cl(G) and g0 ∈ G .

Definition 1. The element g0 will be called the best approximation element of
x0 in G if

‖x0 − g0‖ = inf
g∈G
‖x0 − g‖(1.1)

and we shall denote by PG (x0) the set of all elements which satisfy (1.1).

The main aim of this paper is to prove some characterization of best approx-
imants from convex subsets in normed linear spaces. A lower bound for convex
mappings in terms of norm derivatives is also given.

For the classical results in domain, see the monograph [4] due to Ivan Singer.

2 The Results

We shall consider the concept of sub-orthogonality in the sense of Birkhoff in-
troduced by the author in the paper [1]:

Definition 2. Let (X, ‖·‖) be a normed linear space and x, y ∈ X. The element
x will be called sub-orthogonal in the sense of Birkhoff over y if (y, x)i ≤ 0. We
shall denote this by x⊥Sy(B).

The following elementary properties of sub-orthogonality hold:

(i) 0⊥Sy(B) and x⊥S0(B) for all x, y ∈ X;

(ii) x⊥Sy(B) implies (αx)⊥S(βy)(B) for αβ ≥ 0;

(iii) x⊥Sx(B) implies x = 0.

The following characterization of best approximants from convex sets in
normed linear spaces which completes the classical results from the book [4]
holds.

Theorem 2.1. Let C be a nondense convex set in the normed linear spaces X.
If x0 ∈ X\Cl(C) and g0 ∈ C, then the following statements are equivalent:

(i) g0 ∈ PG (x0) ;

(ii) We have the relation:

x0 − g0⊥S(C − g0)(B);(2.1)

(iii) The following inclusion holds

C − g0 ⊂ ∪f∈J(x0−g0)K−(f);(2.2)

where J is the normalized duality mapping and K−(f) is the half space
{x ∈ X : f(x) ≤ 0} ;

(iv) We have the bound
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inf
g∈C

(g − x0, g0 − x0)s = ‖g0 − x0‖2.(2.3)

Proof. ”(i)⇒ (ii)”. If g0 ∈ PG (x0) , then ‖x0 − g0‖ = infg∈G ‖x0 − g‖ , which
implies that

‖x0 − g0‖2 ≤ ‖x0 − ((1− t)g0 + tg)‖2

for each g ∈ C and t ∈ [0, 1].
Denoting w0 := x0− g0 and u0 := g0− g we get ‖w0‖2 ≤ ‖w0 + tu0‖2 for all

t ∈ [0, 1], which implies

(‖w0 + tu0‖2 − ‖w0‖2)/2t ≥ 0 for all t ∈ (0, 1].

Letting t→ 0+ we deduce (u0, w0)s ≥ 0 which is equivalent to (g−g0, x0−x0)i ≤
0 for all g ∈ C and then the relation (2.1) holds.

”(ii) ⇔ (iii)”. If w0⊥S(C − g0), then (g − g0, w0)i ≤ 0 for all g ∈ C and
then there exists (see the property (viii) from introduction) a continuous linear
functional f so that f ∈ J(w0) and f(g−g0) = (g−g0, w0)i and then f(g−g0) ≤
0, i.e., g − g0 ∈ K− (f) . Consequently the inclusion (2.2) holds.

Conversly, if the inclusion (2.2) holds, then for each g ∈ C there exists a
functional f0 ∈ J(x0 − g0) so that g − g0 ∈ K− (f0) . But, by property (viii)
stated above, we have

(g − g0, x0 − g0)i = inf{f0(g − g0) : f ∈ J(x0 − g0)}

and as f0 ∈ J(x0 − g0) and f0(g − g0) ≤ 0 it follows that (g − g0, x0 − g0)i ≤ 0.
Consequently the relation (2.1) holds and the implication is proved.

”(ii)⇒ (iv)”. Relation (2.1) is equivalent to

(g0 − g, x0 − g0)s ≥ 0 for all g ∈ C.

A simple calculation shows that

(g0 − g, x0 − g0)s = (x0 − g − (x0 − g0), x0 − g0)s

= (x0 − g, x0 − g0)s − ‖x0 − g0‖2

= (g − x0, g0 − x0)s − ‖x0 − g0‖2

and then, by the above inequality, we deduce

(g − x0, g0 − x0)s ≥ ‖g0 − x0‖2

for all g ∈ C, which is equivalent to (2.3).
”(iv)⇒ (i)”. Using the properties of semi-inner product (, )s, we have

(g − x0, g0 − x0)s ≤ ‖g − x0‖ · ‖g0 − x0‖

for each g ∈ C. From (2.3) we get

‖g0 − x0‖2 ≤ (g − x0, g0 − x0)s

for each g ∈ C, consequently, by the previous two inequalities we deduce that
‖g0 − x0‖ ≤ ‖g − x0‖ for all g ∈ C, i.e., g0 ∈ PG (x0) .
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Remark 2.1. The relation (2.3) is equivalent to the fact that the element g0 ∈
C minimizes the (nonlinear) functional

Fx0,g0 : C → R, Fx0,g0(u) := (u− x0, g0 − x0)s.

The following corollary holds.

Corollary 2.2. Let G be a nondense linear subspace in X. If x0 ∈ X\Cl(G)
and g0 ∈ G, then the following statement are equivalent:

(i) g0 ∈ PG (x0) ,

(ii) x0 − g0⊥G(B),

(iii) G ⊂ ∪f∈J(x0−g0)K−(f).

The equivalence ”(i) ⇔ (ii)” is a well known result due to Singer and fol-
lows from the fact that a vector is sub-orthogonal on a linear subspace iff it is
orthogonal on that subspace.

Now, let denote by

F≤(r) := {x ∈ X : F (x) ≤ r} , r ∈ R

the r − level set of F and assume that r is so that F≤(r) is nonempty.
The following theorem characterizes best approximants by elements of the

level set F≤(r). This result can also be viewed as an estimation theorem for the
continuous convex mappings defined on a normed space in terms of semi-inner
product (., .)i.

Theorem 2.3. Let (X, ‖·‖) be a normed linear space, F : X → R a continuous
convex mapping on X, r ∈ R so that F≤(r) 6= ∅, x0 ∈ X\F≤(r) and g0 ∈ F≤(r).
The following statements are equivalent:

(i) g0 ∈ PF≤(r) (x0);

(ii) We have the estimation:

F (x) ≥ r +
F (x0) − r

‖x0 − g0‖2
(x− g0, x0 − g0)i(2.4)

for all x ∈ F≤(r), or, equivalently, the estimation

F (x) ≥ F (x0) +
F (x0) − r

‖x0 − g0‖2
(x− x0, x0 − g0)i(2.5)

for all x ∈ F≤(r).

Proof. ”(i)⇒ (ii)”. Firstly, let observe as x0 ∈ X\F≤(r) we have that F (x0) >
r.

Now, let x ∈ F≤(r). Then F (x) ≤ r and if we choose α := F (x0) − r, β :=
r − F (x), then obviously α > 0, β ≥ 0 and 0 < α+ β = F (x0)− F (x).
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Let consider the element

u :=
αx + βx0

α+ β
.

Then, by the convexity of F we have:

F (u) ≤ αF (x) + βF (x0)
α+ β

=
(F (x0)− r)F (x) + (r − F (x))F (x0)

F (x0)− F (x)

which shows that u ∈ F≤(r).
As g0 ∈ PF≤(r) (x0) and as F≤(r) is a convex set, we get (see Theorem 2.1,

”(i)⇒ (ii)”) that

(g − g0, x0 − x0)i ≤ 0

for all g ∈ F≤(r).
Choose g = u, where u is defined as above. Then(

(F (x0)− r)x+ (r − F (x))x0

F (x0)− F (x)
− g0, x0 − g0

)
i

≤ 0(2.6)

for all x ∈ F≤(r). But(
(F (x0)− r)x+ (r − F (x))x0

F (x0)− F (x)
− g0, x0 − g0

)
i

=
1

F (x0)− F (x)
((r − F (x))(x0 − g0) + (F (x0)− r)(x− g0), x0 − g0)i

=
1

F (x0)− F (x)
((r − F (x))‖x0 − g0‖2 + (F (x0)− r)(x− g0, x0 − g0)i)

and then, by (2.6), we get

(r − F (x))‖x0 − g0‖2 + (F (x0)− r)(x− g0, x0 − g0)i ≥ 0

which is equivalent with the desired estimation (2.4).
Now, let observe that

r +
F (x0) − r

‖x0 − g0‖2
(x− g0, x0 − g0)i

= r +
F (x0) − r

‖x0 − g0‖2
(x− x0 + x0 − g0, x0 − g0)i

= r +
F (x0) − r

‖x0 − g0‖2
[(x− x0, x0 − g0)i + ‖x0 − g0‖2]

= r + F (x0)− r +
F (x0) − r

‖x0 − g0‖2
(x− x0, x0 − g0)i
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= F (x0) +
F (x0) − r

‖x0 − g0‖2
(x− x0, x0 − g0)i

which shows that (2.4) and (2.5) are equivalent.
”(ii)⇒ (i)”. As x ∈ F≤(r), then 0 ≥ F (x)− r. On the other hand, by (2.4),

we have

F (x)− r ≥ F (x0) − r

‖x0 − g0‖2
(x− g0, x0 − g0)i

for all x ∈ F≤(r), consequently

0 ≥ F (x0) − r

‖x0 − g0‖2
(x− g0, x0 − g0)i

for all x ∈ F≤(r). As F (x0)− r > 0, we get

0 ≥ (x− g0, x0 − g0)i

for all x ∈ F≤(r). Now, using the implication ”(ii) ⇒ (i)” of Theorem 2.1, we
deduce that g0 ∈ PF≤(r) (x0) , and the theorem is proved.

Remark 2.2. If g0 ∈ PF≤(r) (x0) , then F (g0) = r.

Indeed, as g0 ∈ F≤(r), then F (g0) ≤ r. On the other hand, choosing x = g0
in (2.4) we get F (g0) ≥ r, and then the required equality holds.
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