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AN INEQUALITY OF GRÜSS TYPE FOR
RIEMANN-STIELTJES INTEGRAL AND
APPLICATIONS FOR SPECIAL MEANS

S.S. DRAGOMIR AND I. FEDOTOV

Abstract. In this paper we derive a new inequality of Grüss’ type for Riemann-
Stieltjes integral and apply it for special means (logarithmic mean, identric mean,
etc...).

1 Introduction

In 1935, G. Grüss proved the following inequality which establishes a connection
between the integral of the product of two functions and the product of the
integrals:

∣∣∣∣∣∣ 1
b− a

b∫
a

f(x)g(x)dx− 1
b− a

b∫
a

f(x)dx · 1
b− a

b∫
a

g(x)dx

∣∣∣∣∣∣ ≤ 1
4

(Φ− φ)(Γ− γ)

provided that f and g are two integrable functions on [a, b] and satisfying the
condition

φ ≤ f(x) ≤ Φ and γ ≤ g(x) ≤ Γ for all x ∈ [a, b].

The constant 1
4 is the best possible and is achieved for

f(x) = g(x) = sgn

(
x− a+ b

2

)
.

For other similar results, generalizations for positive linear functionals, dis-
crete versions, determinantal versions etc. see the Chapter X of the book [1]
due to Mitrinović, Pečarić and Fink where further references are given.

In this paper we point out a Grüss’ type inequality for Riemann-Stieltjes
integral and apply it for special means, i.e., logarithmic mean, identric mean,
etc...

2 The Results

The following result of Grüss’ type holds:
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Theorem 2.1. Let f, u : [a, b]→ R be so that u is L-lipschitzian on [a, b], i.e.,

|u(x)− u(y)| ≤ L |x− y|(2.1)

for all x, y ∈ [a, b], f is Riemann integrable on [a, b] and there exists the real
numbers m,M so that

m ≤ f(x) ≤M for all x ∈ [a, b].(2.2)

Then we have the inequality∣∣∣∣∣∣
b∫
a

f(x)du(x)− u(b)− u(a)
b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤ 1
2
L (M −m) (b− a) ,(2.3)

and the constant 1
2 is sharp, in the sense that it can not be replaced by a smaller

one.

Proof. First of all let observe that if v is an L-lipschitzian mapping and q is
Riemann integrable on [a, b], then

∣∣∣∣∣∣
b∫
a

q(x)dv(x)

∣∣∣∣∣∣ ≤ L
b∫
a

|q(t)| dt.(2.4)

Indeed, if ∆n := xn0 < xn1 < ... < xnn−1 < xnn = b is a sequence of partitions
of [a, b] with ν (∆n) := maxi=0,n−1

(
xni+1 − xni

)
→ 0 (for n → ∞) and ξni ∈[

xni , x
n
i+1

]
then∣∣∣∣∣∣

b∫
a

q(x)dv(x)

∣∣∣∣∣∣ =

∣∣∣∣∣ lim
ν(∆n)→0

n−1∑
i=0

q (ξni )
(
v
(
xni+1

)
− v (xni )

)∣∣∣∣∣
≤ lim
ν(∆n)→0

n−1∑
i=0

|q(ξni )|

∣∣∣∣∣
(
v(xni+1)− v(xni )

)
xni+1 − xni

∣∣∣∣∣ (xni+1 − xni )

≤ L lim
ν(∆n)→0

n−1∑
i=0

|q (ξni )|
(
xni+1 − xni

)
= L

b∫
a

|q(t)| dt.

Now, let observe that∣∣∣∣∣∣
b∫
a

f(x)du(x)− u(b)− u(a)
b− a

b∫
a

f(t)dt

∣∣∣∣∣∣(2.5)

=

∣∣∣∣∣∣
b∫
a

(f(x)− 1
b− a

b∫
a

f(t)dt)du(x)

∣∣∣∣∣∣
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≤ L
b∫
a

∣∣∣∣∣∣f(x)− 1
b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ dx.
Now, define

I :=
1

b− a

b∫
a

f(x)− 1
b− a

b∫
a

f(t)dt

2

dx.

Then we have

I =
1

b− a

b∫
a

f2(x)− 2f(x)
1

b− a

b∫
a

f(t)dt+

 1
b− a

b∫
a

f(t)dt

2 dx

=
1

b− a

b∫
a

f2(x)dx−

 1
b− a

b∫
a

f(t)dt

2

and

I =

M − 1
b− a

b∫
a

f(t)dt

 1
b− a

b∫
a

f(t)dt−m



− 1
b− a

b∫
a

(M − f(t)) (f(t)−m) dt.

As m ≤ f(x) ≤M for all x ∈ [a, b], then

b∫
a

(M − f(t)) (f(t)−m) dt ≥ 0

which implies

I ≤

M − 1
b− a

b∫
a

f(t)dt

 1
b− a

b∫
a

f(t)dt−m

 .

Using the elementary inequality

(M − k)(k −m) ≤ 1
4

[(M − k) + (k −m)]2 =
1
4

(M −m)2

which holds for k,m,M ∈ R, we get

I ≤ 1
4

(M −m)2.(2.6)
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Using Cauchy-Buniakowski-Schwarz’s integral inequality we have

I ≥

 1
b− a

b∫
a

∣∣∣∣∣∣f(x)− 1
b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ dx
2

.

Now, by (2.6), we get

b∫
a

∣∣∣∣∣∣f(x)− 1
b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ dx ≤ 1
2

(M −m)(b− a)

and then by (2.5) we obtain the desired inequality (2.3).
To prove the sharpness of the constant 1

2 , let choose

u(x) :=
∣∣∣∣x− a+ b

2

∣∣∣∣ , f(x) := sgn

(
x− a+ b

2

)
, x ∈ [a, b].

Then

|u(x)− u(y)| =
∣∣∣∣∣∣∣∣x− a+ b

2

∣∣∣∣− ∣∣∣∣y − a+ b

2

∣∣∣∣∣∣∣∣ ≤ |x− y|
for all x, y ∈ [a, b], which shows that u is L-lipschitzian with the constant L = 1.

Also, because −1 ≤ f(x) ≤ 1, for all x ∈ [a, b], then M −m = 2 and

L

2
(M −m)(b− a) = b− a.

On the other hand,

b∫
a

f(x)du(x)− u(b)− u(a)
b− a

b∫
a

f(t)dt =

b∫
a

sgn

(
x− a+ b

2

)
du(x)

= −

a+b
2∫
a

du(x) +

b∫
a+b

2

du(x) = −u
(
a+ b

2

)
+ u(a) + u(b)− u

(
a+ b

2

)
= b− a

which shows that the equality is realized in (2.3).

Corollary 2.2. Let f : [a, b]→ R be as above and u : [a, b]→ R a differentiable
mapping whose derivative u′ : (a, b)→ R is bounded on (a, b). Denote ‖u′‖∞ :=
supt∈(a,b) |u′(t)| <∞. Then we have the inequality∣∣∣∣∣∣

b∫
a

f(t)u′(t)dt− u(b)− u(a)
b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤ ‖u
′‖∞
2

(M −m)(b− a).
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Corollary 2.3. Let f : [a, b] → R be as above and g : [a, b] → R a continuous
mapping. Denote ‖g‖∞ := supt∈[a,b] |g(t)| <∞. Then we have the inequality∣∣∣∣∣∣

b∫
a

f(t)g(t)dt− 1
b− a

b∫
a

g(t)dt

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤ ‖g‖∞2
(M −m)(b− a).

Corollary 2.4. Let f : [a, b] → R be a differentiable mapping whose deriva-
tive f ′ : (a, b) → R is bounded on (a, b) and f(a) 6= f(b). Denote ‖f ′‖∞ :=
supt∈(a,b) |f ′(t)| <∞. Then we have the inequality∣∣∣∣∣∣f(a) + f(b)

2
− 1
b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤ ‖f ′‖∞
2 (f(b)− f(a))

(M −m)(b− a).

The proof is obvious from the above corollary choosing u = f.

Remark 2.1. If in Corollary 2.2 we put u = fp, u = ln f, u = sin f etc..., we
can obtain some other interesting inequalities . We shall omit the details.

3 Applications for Special Means

We first discuss the application of the results in the previous section to lower and
upper bounds estimation of some important relationships between the following
means:

The arithmetic mean:

A = A(a, b) := (a+ b)/2, a, b ≥ 0.

The geometric mean:

G = G(a, b) :=
√
ab, a, b ≥ 0.

The harmonic mean:

H = H(a, b) :=
2

1
a

+
1
b

, a, b > 0.

The logarithmic mean:

L = L(a, b) :=


b− a

ln b− ln a
if a 6= b

a if a = b

, a, b > 0.

Note that for the convex mapping f : (0,∞)→ R, f(t) = 1
t we have

1
b− a

b∫
a

f(t)dt = L−1(a, b)

for a 6= b.

RGMIA Research Report Collection, Vol. 1, No. 1, 1998



94 Dragomir and Fedotov

The p-logarithmic mean

Lp = Lp(a, b) :=


[
bp+1 − ap+1

(p+ 1)(b− a)

]1/p

if a 6= b

a if a = b

, p ∈ R \ {−1, 0}, a, b > 0.

For the convex (or concave) mapping f(t) = tp, p ∈ (−∞, 0)∪ [1,∞) \ {−1} (or
p ∈ (0, 1)) we have

1
b− a

b∫
a

f(t)dt = Lpp(a, b)

for a 6= b.
The identric mean:

I = I(a, b) :=


1
e

(
bb

aa

) 1
b−a

if a 6= b

a if a = b

, a, b > 0.

For the convex mapping f(t) = ln t, t > 0 we have

1
b− a

b∫
a

f(t)dt = ln I(a, b)

if a 6= b.
These means are often used in numerical approximation and in other areas.

However, the following simple relationships are known in the literature

H ≤ G ≤ L ≤ I ≤ A.

It is also known that Lp is monotonically increasing in p ∈ R with L0 = I and
L−1 = L.

We now derive various sophisticated bounds for some differences and prod-
ucts of the above special means using the results obtained in the previous section.
These bounds are useful in applications since the special means are often used
in numerical approximations.

1 . If in Corollary 2.2 we choose f(x) = xq, u(x) = xp+1 (p, q > 0), then we
get ∣∣Lp+qp+q − LppLqq

∣∣ ≤ qbp

2
(b− a)Lq−1

q−1.(3.1)

2 . If in Corollary 2.2 we choose f(x) = xq (q > 0), u(x) = 1
x , then we get∣∣∣Lqq −G2Lq−2

q−2

∣∣∣ ≤ q

2a2 (b− a)G2Lq−1
q−1.(3.2)
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3 . If in the same corollary we choose

f(x) = xq(q > 0), u(x) = lnx,

then we get ∣∣∣Lqq − LLq−1
q−1

∣∣∣ ≤ q

2a2 (b− a)LLq−1
q−1.(3.3)

We remark that if in the Corollary 2.2 we choose f and u in other appropriate
ways, we get some other interesting inequalities for special means.

We omit the details.
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