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AN OSTROWSKI TYPE INEQUALITY FOR
MAPPINGS WHOSE SECOND DERIVATIVES
BELONG TO Lp(A,B) AND APPLICATIONS

P. CERONE, S.S. DRAGOMIR AND J. ROUMELIOTIS

ABSTRACT. An inequality of the Ostrowski type for twice differentiable map-
pings whose derivatives belong to Ly (a,b) (p > 1) and applications in Numerical
Integration are investigated.

1 INTRODUCTION

The following inequality is well known in the literature as Ostrowski’s integral
inequality (see for example [1, p. 468])

Theorem 1.1. Let f : I C R — R be a differentiable mapping on I°(I°is the
interior of I) and let a,b € I° with a < b. If f' : (a,b) = R is bounded, i.e.,
1f'lloo == sup |f'(t)] < oo, then we have the inequality:

t

€(a,b)

b
) @ [fod] <

7] (b—a) Il

for all z € (a,b).
The constant i is the best possible.

For a simple proof and some applications of Ostrowski’s inequality to some
special means and some numerical quadrature rules, we refer the reader to the
recent paper [2] by S.S. Dragomir and A. Wang.

In [3], the same authors considered another inequality of Ostrowski type for
[|[],, —norm (p > 1) as follows:

Theorem 1.2. Let f : I C R — R be a differentiable mapping on I° and
a,b € I° witha < b. If f' € L, (a,b) (p > 1,% + % = 1) then we have the
inequality:

1 / 1 |@=—a)™ + (b—o)™" :
(12)  |f(@) - /ﬂﬂﬁ< l ]nﬂu

b—a “b—a qg+1
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44 Cerone, Dragomir and Roumeliotis

for all z € [a,b], where

p

b
17l = / Fora)

is the Ly (a,b) —norm.

They also pointed out some applications of (1.2) in Numerical Integration
as well as for special means.

In 1976, G.V. Milovanovi¢ and J.E. Pecari¢ proved a generalization of Os-
trowski inequality for n—times differentiable mappings (see for example [1, p.
468]). The case of twice differentiable mappings [1, p. 470] is as follows:

Theorem 1.3. Let f : [a,b] = R be a twice differentiable mapping such that

f" : (a,b) = R is bounded on (a,b), i.e., ||f"|| := sup |f"(t)] < co. Then
te(a,b)

we have the inequality:

2

for all z € [a,b].

In this paper, we point out an inequality of Ostrowski type for twice differ-
entiable mappings which is in terms of the [|-|| -norm of the second derivative
f" and apply it in Numerical Integration.

2  SOME INTEGRAL INEQUALITIES
The following inequality of Ostrowski type for mappings which are twice differ-
entiable, holds:

Theorem 2.1. Let f : [a,b] = R be a twice differentiable mapping on (a,b) and
f"€eLy(a,b) (p>1). Then we have the inequality:

b

2.1 to -5 [rwa- (o= 1w

a

ST ST

1+
GO II{”II,,
2(2¢+ 1)

for all z € [a,b], where % + % =1.
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Ostrowski for Bounded Second Derivative Mappings in Lj (a, b)

Proof. Let us define the mapping K (-,-) : [a, b]2 — R given by

if t € [a, 2]
K (z,t) :=

if t € (z,0]

Integrating by parts, we have successively,

b

‘2 2 b 2
/K(m,t) 7" (t)dt:/@f“ (t)dt+/ (t-b) £ (t) dt

b
fr@)

(t_b)2 '
2

= (- (m—“;”)f'(x)—(b—a>f<x>+/bf<t>dt

a

from which we get the integral identity

(2.2)
b b
[10@=0-0fw-0-0(s-"52) @+ [Kor O

a

for all € [a,b].
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Using (2.2), we have, by Holder’s integral inequality, that

b
23 - [rwa- (-5 1w
1 b 1 b q
= | [K@nrwal s | [Ki@oar) 1,

Q=

T b
_ 1 (t B a’)2q (t B b)Zq "
=7 / 57 dt+/Tdt 71,

1
_\20+1 _\20+177
B L i (s P
b—a|29(2¢+1) 29(2¢+1) P
1 1 :

— T —a 2q+1 —z 2g+1] 9 || p1r
‘2w—au%+¢)[( P -2 I,

Q=

and the first inequality in (2.1) is proved. The second inequality is obvious
taking into account that

(= a)* + (b— o) < (b—a)*""
for all € [a,D]. N

The following particular case for euclidean norms is interesting

Corollary 2.2. Let f : [a,b] = R be as above and f" € Ly (a,b). Then we have
the inequality:

(2.4 to -5 [rwa- (o= 1w

I O e 0 M e ) TP
80+2 (b—a) + (b—a)4 ||f ||2

M

Proof. Apply inequality (2.1) for p = ¢ = 2, to get
1 / b
a+
= [rwa- (o= ) 1w
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Ostrowski for Bounded Second Derivative Mappings in Lj (a, b)

1

T Rl M A S

Denote t :=x — ‘IT“’ Then

:U—a—t+b_—a b—w—b_a
B 2’ 2

Let us compute

I=(z-a)+(b-2) = <t+b_a>5+<b_“

2

We know that, for numbers A, B € R, we have

_t>5_

A® 4+ B® = (A+B) (A" - A’B + A’B* - AB® + BY)

=(A+B)[A*+ B'— AB (4> + B?) + A°B?|

= (A+B)[(4?+B?)’ - 4°B* - AB (42 + B?)|.

Now, if we put A :=¢+ b_Ta, B .= b_T“ —t, then we get

2
A2+ B2 =92 + (b b 4“)

—a)®
Ty AB=
and then
J:= (A% + B?)” — A’B> — AB (A’ + B?)

<b—2a>2 B [ﬁ_ (b—a)’

22
+ 4

(b—a)

TR

:5t4+g(b—a)2t2+

Consequently,

o l(b—4a)2 —tZ]
t4+2<b;a>2t2+%<

—¢2

2t2 +

b—a
2

Finally, using the inequality (2.5), we get the desired result (2.4) I

47

Remark 2.1. Let f : [a,b] = R be as above . Then we have the midpoint

inequality:

2o |1 (%57)- _a/f <Ssaore-
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Taking into account the fact that the mapping
h:la,b]= R, h(z)=(z—a)t" +@b-2z)""""

has the property that

. a+b (b—a)*"™
xér[la,b] (1‘) ( ) 224

and

sup h(z) = h(a) =h(b) = (b—a)™"*";
z€[a,b]

then, the best estimation we can get from (2.1) is that one for which z = <t
obtaining the inequality (2.6).

)

Remark 2.2. If in (2.1) we choose x = a we get

1 b—a (b—a)'ts
o [ F0d Pt @) < T,
—a) 2 2(2¢+1)7
and putting x = b, we also get
1 b—a (b—a)'ts
g [fwa -t rw) < B,
b—a) 2 2(2¢+1)7

Summing the above two inequalities, using the triangle inequality and dividing
by 2, we get the perturbed trapezoid formula

2.7)
b
F@4F®) _boa o (-0
; 2 0) - f (@) b_a/f(t)dt<2(2q+1)

a

11, -

Q=

Remark 2.3. If p = q = 2, then we get for the euclidean norm, from (2.6),

2.8) f<a+b>

and, from(2.7),

e < V20 LUl

o) (TG Do) pa - [r0a

&
—
@‘
\_/
Wlw

< ———1Mf"ll,-
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3 APPLICATIONS IN NUMERICAL INTEGRATION

Let I, :a =29 < 71 < ... < p_1 < T, = b be a division of the interval,
& €[ziywip1] (6=0,...,n—1). We have the following quadrature formula:

Theorem 3.1. Let f : [a,b] = R be a twice differentiable mapping on (a,b)
whose second derivative ' : (a,b) = R belongs to L, (a,b) (p > 1), i.e.,

, :
171, = / W7t | < oo

Then the following perturbed Riemann type quadrature formula holds:

(3.) /f AU FL 6T+ R £16.1)
where A (f, f',&,1,) is given by

n—1
T+ Tip1
I,) ) o
A(f, 1,6, th ;;f(&)(& 5 )h
and the remainder satisfies the estimation:

(3.2) | R(f, 1€ In) |

1
q

1 n—1
< . i— i2q+1_+_ 2g+1 n
<ot (St - )

2q+1 "
< (2Q+11/q (Z > 111,

for all &; € [zi,241] (i=0,..,n—1).

Proof. Apply inequality (2.1) on the interval [z;,2;41] (i =0,...,n — 1) to get

Tiq1
T+ Tip

reati— [ rwa- (-2 e,

Z;

3=

Ti41
1 o
q

< sarv g (@ -] [ ora

Zq

for all i € {0,...,n — 1}.
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Summing over i from 0 to n — 1, using the generalized triangle inequality
and Holder’s discrete inequality, we get:

R(F. 1.6 00)
n—1 Tit1
<3 |reon- (6= 252 rean- [ roa
i=0 7

n—1 1
q

< m Z [(fz —2)" "™ (@i - & )2q+1] / |f" ()" dt
i=0

Zq

n—1 1\ 7 %
SNy

i=

1
n—1 Tit1 % "\ ¥
3 / £ ()P dt
=0

n—1 %
= (2q+1 l/q (Z[€ —2)* " 4 (i — f)zqﬂ]) 11,

and the first inequality in (3.2) is proved.
The last part is obvious from the fact that

(€ =)™ + (@i — €)™ < BT
foralli € {0,....,n—1}. 1

Now, if we consider the midpoint formula

n—1
M(f1) =Y f (“%) i
i=0

then we have

b

(3.3) / (&) dt = M (f,1,) + R (f,1,)

a

and the remainder R (f,I,) can be estimated in terms of the p—norm of f" as
follows:

2q+1 "
(3.4) IR (f, 1) < S(Qq“l/q (Z ) 111,
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which is, in a certain sense, the best estimation we can obtain from (3.2).
Also, we can construct the following perturbed trapezoid formula

T, (f, ', 1) =§ZM EZ (@)
i=0 =0
Then we have
b
(3.5) / F()dt =T, (£, ', 1) + Ry (f. £/, 1)

and the remainder can be estimated (see the inequality (2.7) ) as follows:

2q+1 n
(3.6) Ry (f, ', Tn)| < 2(2q+1 2@ar ) (Z > 71, -

Remark 3.1. To derive the corresponding results for the euclidean norm || f"||,,
we put in the above p = q = 2.

We omit the details.

Remark 3.2. The reader can obtain the corresponding quadrature formulae for
equidistant partitioning by choosing ©; = a + 1 - b_T“ (1=0,...,n—1).

Remark 3.3. If we consider equidistant partitioning of [a,b] then the perturbed
trapezoid formula we considered above will involve the calculation for f' only at
the endpoints a and b , which is a good advantage for practical applications.
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