

The Best Constant in an Inequality of Ostrowski Type

This is the Published version of the following publication

Peachey, Tom, Mcandrew, Amca and Dragomir, Sever S (1998) The Best Constant in an Inequality of Ostrowski Type. RGMIA research report collection, 1 (1).

The publisher's official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/17109/

THE BEST CONSTANT IN AN INEQUALITY OF OSTROWSKI TYPE

T. PEACHEY, A. MCANDREW AND S.S. DRAGOMIR

ABSTRACT. We prove that the constant $\frac{1}{2}$ in Dragomir-Wang's inequality [2] is best.

1 Introduction

The classical inequality of Ostrowski, [1, p. 469] is

Theorem 1.1. Let I be an interval in \mathbf{R} , I° the interior of I, $f: I \to \mathbf{R}$ be differentiable on I° . Let $a, b \in I^{\circ}$ with a < b and $||f'||_{\infty} = \sup_{t \in [a,b]} |f'(t)| < \infty$.

Then

$$(1.1) \left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right| \le \left[\frac{1}{4} + \frac{\left(x - \frac{a+b}{2}\right)}{\left(b-a\right)^{2}} \right] (b-a) \|f'\|_{\infty}$$

for all $x \in [a, b]$.

The constant $\frac{1}{4}$ in (1.1) is the best possible.

For, suppose that

$$(1.2) \left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right| \le \left[k + \frac{\left(x - \frac{a+b}{2} \right)^{2}}{\left(b - a \right)^{2}} \right] (b-a) \|f'\|_{\infty}$$

for all $x \in [a, b]$. Taking f(x) = x, gives $\|f'\|_{\infty} = 1$ and (1.2) becomes

$$\left| x - \frac{a+b}{2} \right| \le \left[k + \frac{\left(x - \frac{a+b}{2}\right)^2}{\left(b-a\right)^2} \right] (b-a)$$

for all $x \in [a, b]$. With x = a this becomes

$$\frac{b-a}{2} \le \left(k + \frac{1}{4}\right)(b-a)$$

giving $k \ge \frac{1}{4}$.

Date. November, 1998

¹⁹⁹¹ Mathematics Subject Classification. Primary 26D15; Secondary 26D99. Key words and phrases. Ostrowski Inequality.

2 The Results

In [2], Dragomir and Wang obtained a related inequality:

Theorem 2.1. Let I, f, a, b be as above and $f' \in L_1[a, b]$. Then

$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right| \le \left[\frac{1}{2} + \frac{\left| x - \frac{a+b}{2} \right|^{2}}{b-a} \right] \|f'\|_{1}$$

for all $x \in [a, b]$,

but did not prove that the constant $\frac{1}{2}$ is the best possible one.

In [3], S.S. Dragomir gave an extension of Theorem 2.1 for mappings with bounded variation, i.e., he proved the result:

Theorem 2.2. Let $f : [a,b] \to \mathbf{R}$ be a mapping with bounded variation on [a,b]. Then for all $x \in [a,b]$, we have the inequality:

(2.2)
$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right| \le \left[\frac{1}{2} + \frac{\left| x - \frac{a+b}{2} \right|^{2}}{b-a} \right] \bigvee_{a}^{b} (f)$$

where $\bigvee_{a}^{b}(f)$ denotes the total variation of f on [a,b].

The constant $\frac{1}{2}$ is the best possible one.

For the sake of completeness and as the paper [3] is not published yet, we give here a short proof of Theorem 2.2.

Using the integration by parts formula for Riemann-Stieltjes integral, we have

(2.3)
$$\int_{a}^{b} p(x,t) df(t) = f(x) (b-a) - \int_{a}^{b} f(t) dt$$

where

$$p(x,t) := \begin{cases} t - a & \text{if } t \in [a,x) \\ t - b & \text{if } t \in [x,b] . \end{cases}$$

for all $x, t \in [a, b]$.

It is well known that if $p:[a,b]\to \mathbf{R}$ is continuous on [a,b] and $v:[a,b]\to \mathbf{R}$ is with bounded variation on [a,b], then

(2.4)
$$\left| \int_{a}^{b} p(x) dv(x) \right| \leq \sup_{x \in [a,b]} |p(x)| \bigvee_{a}^{b} (v).$$

Applying the inequality (2.4) for $p(x, \cdot)$ and f, we get

$$\left| \int_{a}^{b} p(x,t) df(t) \right| \leq \sup_{t \in [a,b]} |p(x,t)| \bigvee_{a}^{b} (f)$$

Best Constant 99

$$= \max\left\{x - a, b - x\right\} \bigvee_{a}^{b} (f) = \left[\frac{b - a}{2} + \left|x - \frac{a + b}{2}\right|\right] \bigvee_{a}^{b} (f).$$

Using the identity (2.3), we deduce the desired result (2.2).

To prove the sharpness of the constant $\frac{1}{2}$ in the class of mappings with bounded variation, assume that the inequality (2.2) holds with a constant C > 0, i.e.,

(2.5)
$$\left| \int_{a}^{b} f(t) dt - f(x) (b-a) \right| \leq \left[C(b-a) + \left| x - \frac{a+b}{2} \right| \right] \bigvee_{a}^{b} (f),$$

for all $x \in [a, b]$.

Consider the mapping $f:[a,b]\to \mathbf{R}$ given by

$$f(x) = \begin{cases} 0 & \text{if } x \in [a, b] \setminus \left\{\frac{a+b}{2}\right\} \\ 1 & \text{if } x = \frac{a+b}{2} \end{cases}$$

in (2.5). Then f is with bounded variation on [a, b] and

$$\bigvee_{a}^{b} (f) = 2, \qquad \int_{a}^{b} f(t) dt = 0$$

and for $x = \frac{a+b}{2}$ we get in (2.5), $1 \leq 2C$; which implies that $C \geq \frac{1}{2}$ and the theorem is completely proved.

Now, it is clear that if f is differentiable on (a, b) and $f' \in L_1[a, b]$, then f is with bounded variation on [a, b] and applying Theorem 2.2 we get Theorem 2.1. But we are not sure that the constant $\frac{1}{2}$ is best in the class of differentiable mappings whose derivatives are in $L_1(a,b)$. We give an example showing that the constant $\frac{1}{2}$ remains best for this class of mappings, too.

Suppose that

(2.6)
$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right| \leq \left[k + \frac{\left| x - \frac{a+b}{2} \right|}{b-a} \right] \|f'\|_{1}, x \in [a,b].$$

Let C be any positive real and let

$$f(x) = \frac{C}{C^2 + x^2} - \tan^{-1}\left(\frac{1}{C}\right)$$

with a = -1 and b = 1.

Direct calculation shows that $\int_{a}^{b} f(t) dt = 0$. Also, since $f'(x) \leq 0$ for all $x \geq 0$,

$$||f'||_1 = 2 \int_0^1 |f'(t)| dt = -2 \int_0^1 f'(t) dt = 2 [f(0) - f(1)]$$

$$=2\left\lceil \frac{1}{C}-\frac{C}{C^2+1}\right\rceil =\frac{2}{C\left(C^2+1\right)}.$$

Substituting these into (2.6) and taking x = 0 then gives

$$\left| \frac{1}{C} - \tan^{-1} \left(\frac{1}{C} \right) \right| \le k \frac{2}{C \left(C^2 + 1 \right)}$$

so that

$$k \ge \frac{C^2 + 1}{2} \left[1 - C \tan^{-1} \left(\frac{1}{C} \right) \right].$$

Since the right side tends to $\frac{1}{2}$ as $C \to 0+$, we get $k \ge \frac{1}{2}$, which shows that the constant $\frac{1}{2}$ is the best possible in Theorem 2.1.

References

- [1] D.S. MITRINOVIĆ, J.E. PEČARIĆ and A.M. FINK, *Inequalities for Functions and Their Integrals and Derivatives*, Kluwer Academic Publishers, Dordrecht, 1994.
- [2] S.S. DRAGOMIR and S. WANG, A new inequality of Ostrowski's type in L_1 norm and applications to some special means and some numerical quadrature rules, $Tamkang\ J.\ of\ Math.$, **28**(1997), 239-244.
- [3] S.S. DRAGOMIR, On the Ostrowski's inequality for mappings with bounded variation and applications, *submitted*.

School of Communications and Informatics, Victoria University of Technology, PO Box 14428, Melbourne City MC, Victoria 8001, Australia.

 $E ext{-}mail\ address: \{ ext{tom, amca, sever} \} @matilda.vut.edu.au$