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THE BEST CONSTANT IN AN INEQUALITY OF
OSTROWSKI TYPE

T. PEACHEY, A. MCANDREW AND S.S. DRAGOMIR

ABSTRACT. We prove that the constant % in Dragomir-Wang’s inequality [2] is
best.

1 INTRODUCTION

The classical inequality of Ostrowski, [1, p. 469] is

Theorem 1.1. Let I be an interval in R, I° the interior of I, f : I — R be
differentiable on I°. Let a,b € I° with a < b and || f'|| ., = sup |f'(t)] < oc.
t€la,b]

Then
b
1 1 (x_aTb) ’
. — < |22 )
1) |- [rod < |+ S a7
for all x € [a,b].
The constant % in (1.1) is the best possible.
For, suppose that
b
2 |rw) - [ < kel Ml
. x) — 22| (b—
b*a - (b_a)2 o]

for all z € [a,b]. Taking f (z) = z, gives || f'||, = 1 and (1.2) becomes

for all z € [a,b] . With & = a this becomes

b;a < (k—ki) (b—a)

- 1
giving k > 7.
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2 THE RESULTS

In [2], Dragomir and Wang obtained a related inequality:
Theorem 2.1. Let I, f,a,b be as above and f' € Ly [a,b]. Then

1 ’x_a?er‘Q ’
T T T a 151

(2.1) f (@) - — / f(tydt] <

for all x € [a,b],

but did not prove that the constant % is the best possible one.
In [3], S.S. Dragomir gave an extension of Theorem 2.1 for mappings with
bounded variation, i.e., he proved the result:

Theorem 2.2. Let f : [a,b] — R be a mapping with bounded variation on
[a,b]. Then for all x € [a,b], we have the inequality:

b—a

b o atb2] b
(2.2) f@gbia/famtgl;+| 2|]Vﬁﬂ

b

where \/ (f) denotes the total variation of f on |a,b].
a

The constant % is the best possible one.

For the sake of completeness and as the paper [3] is not published yet, we
give here a short proof of Theorem 2.2.

Using the integration by parts formula for Riemann-Stieltjes integral, we
have

b

b
(2.3) / p(e.t)df (£) = f () (b— a) - / £ (1)t

a
where

t—a if t € [a,z)
p(z,t) :=
t—b  iftelzb].

for all x,t € [a,b].
It is well known that if p : [a,b] — R is continuous on [a,b] and v : [a,b] — R
is with bounded variation on [a, ], then

b b
2.4 x)dv (x su T V).
(2.4) /p<> @) < s p@IV )

a
a

Applying the inequality (2.4) for p (z,-) and f, we get

b b

/ p (.t df ()] < sup |0\ ()

t€la,b]

a
a
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:max{x—a,b—x}\i/(f)z {b;“Jr‘x—a;’bH\b/(f).

a

Using the identity (2.3), we deduce the desired result (2.2).
To prove the sharpness of the constant % in the class of mappings with

bounded variation, assume that the inequality (2.2) holds with a constant C' > 0,
ie.,

(2.5) /bf(t)dt—f(x)(b—a) < [C(b—a>+\x—“;bﬂ\?<m

for all € [a,b].
Consider the mapping f : [a,b] — R given by

0  ifz€lab]\ {22}
flz) =
1 ifa::aTH’

in (2.5). Then f is with bounded variation on [a, b] and

b b
V=2 [rwi=o

and for x = “7“’ we get in (2.5), 1 < 2C; which implies that C' > % and the
theorem is completely proved. I

Now, it is clear that if f is differentiable on (a,b) and f’ € L4 [a,b], then f
is with bounded variation on [a,b] and applying Theorem 2.2 we get Theorem
2.1. But we are not sure that the constant % is best in the class of differentiable
mappings whose derivatives are in Ly (a,b). We give an example showing that
the constant % remains best for this class of mappings, too.

Suppose that

b _atb
@6 1@ - [rwa < k+|9”b‘] 17 € fab]

Let C' be any positive real and let

C 1
@)= Gaigm (c)

with a = —1 and b= 1.
Direct calculation shows that f: f@)dt=o0.
Also, since f’ (x) <0 for all > 0,

Lf =2 [ 1f O)fdt==2 [ f(t)dt =2[f(0) = f (1)]
[iram==]
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1 c 1 2

=2|=— .
[C C2+1] C(C?+1)

Substituting these into (2.6) and taking « = 0 then gives

l,tanfl l <k#
C c)|— 0(024—1)

C?+1 A
> — =]
k> 5 [1 C'tan (C)}

Since the right side tends to % as C — 0+, we get k > %7 which shows that
the constant % is the best possible in Theorem 2.1. i

so that
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