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AN INEQUALITY FOR LOGARITHMS AND ITS
APPLICATION IN CODING THEORY

N.M. DRAGOMIR AND S.S. DRAGOMIR

Abstract. In this paper we prove a new analytic inequality for logarithms and
apply it for the Noiseless Coding Theorem.

1 Introduction

The following analytic inequality for logarithms is well known in the literature
(see for example [1, Lemma 1.2.2, p. 22] ):

Lemma 1.1. Let P = (p1, ..., pn) be a probability distribution, that is, 0 ≤ pi ≤
1 and

∑n
i=1 pi = 1. Let Q = (q1, ..., qn) have the property that 0 ≤ qi ≤ 1 and∑n

i=1 qi ≤ 1 (note the inequality here). Then

n∑
i=1

pi logb

(
1
pi

)
≤

n∑
i=1

pi logb

(
1
qi

)
(1.1)

where b > 1, 0 · logb(1/0) = 0 and p · logb (1/0) = +∞. Furthermore, equality
holds if and only if qi = pi for all i ∈ {1, ..., n}.

Note that the proof of this fact uses the elementary inequality for logarithms
(see [1, p. 22])

lnx ≤ x− 1 for all x > 0.(1.2)

Also, we would like to remark that the inequality (1.1) was used to obtain
many important results from the foundations of Information Theory such as:
the range of the entropy mapping, the Noiseless Coding Theorem, etc. For some
recent results which provide similar inequalities see the papers [2-6].

The main aim of this paper is to point out a counterpart inequality for (1.1)
and to use it in connection with the Noiseless Coding Theorem.

2 The Results

We shall start with the following inequality.
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Lemma 2.1. Let pi, qi be strictly positive real numbers for i = 1, ..., n. Then
we have the double inequality:

1
ln r

n∑
i=1

(pi − qi)(2.1)

≤
n∑
i=1

(
logr

1
qi
− logr

1
pi

)
pi ≤

1
ln r

n∑
i=1

(
pi
qi
− 1
)
pi

where r > 1, r ∈ R. The equality holds in both inequalities iff pi = qi for all i.

Proof. The mapping f(x) = logr x is a concave mapping on (0,∞) and thus
satisfies the double inequality

f ′(y)(x− y) ≥ f(x)− f(y) ≥ f ′(x)(x− y)

for all x, y > 0, and as

f ′(x) =
1

ln r
· 1
x

we get

1
ln r
· x− y

y
≥ logr x− logr y ≥

1
ln r
· x− y

x
for all x, y > 0.(2.2)

Let us choose x = 1
qi
, y = 1

pi
in (2.2) to get

1
ln r
· (pi − qi)

qi
≥ logr

1
qi
− logr

1
pi
≥ 1

ln r
· (pi − qi)

pi
(2.3)

for all i ∈ {1, ..., n}.
Now, if we multiply this inequality by pi > 0 (i = 1, ..., n) we get:

1
ln r

[
pi

(
pi
qi
− 1
)]
≥ pi logr

1
qi
− pi logr

1
pi
≥ 1

ln r
· (pi − qi)(2.4)

for all i ∈ {1, ...n}.
Now, summing over i from 1 to n, we obtain the desired inequality (2.1).
The statement on equality holds by the strict concavity of the mapping

logr(.) . We shall omit the details.

Corollary 2.2. Let P = (p1, ..., pn) be a probability distribution, that is, pi ∈
[0, 1] and

∑n
i=1 pi = 1. Let Q = (q1, ..., qn) have the property that qi ∈ [0, 1] and∑n

i=1 qi ≤ 1( note the inequality here). Then we have:

0 ≤ 1
ln r

(
1−

n∑
i=1

qi

)
(2.5)

≤
n∑
i=1

pi logr
1
qi
−

n∑
i=1

pi logr
1
pi
≤ 1

ln r

(
n∑
i=1

p2
i

qi
− 1

)

where r > 1, r ∈ R. The Equality holds iff pi = qi (i = 1, ...n).
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The proof is obvious by Lemma 2.1 taking into account that
∑n
i=1 pi = 1

and 1 ≥
∑n
i=1 qi.

Remark 2.1. Note that the above corollary is a worth-while improvement of
Lemma 1.2.2 from the book [1] which plays there a very important role in ob-
taining the basically inequalities for entropy, conditional entropy, mutual infor-
mation, etc.

Now, consider an encoding scheme (c1, ..., cn) for a probability distribution
(p1, ..., pn). Recall that the average codeword length of an encoding scheme
(c1, ..., cn) for (p1, ..., pn) is

AveLen(c1, ..., cn) =
n∑
i=1

pilen (ci) .

We denote the length len(ci) by li .
Recall also that the r − ary entropy of a probability distribution (or of a

source) is given by:

Hr(p1, ..., pn) =
n∑
i=1

pi logr
1
pi
.

The following theorem is well known in the literature (see for example [1,
Theorem 2.3.1, p. 62] ):

Theorem 2.3. Let C = (c1, ..., cn) be an instantaneous (decipherable) encoding
scheme for P = (p1, ..., pn). Then we have the inequality:

Hr(p1, ..., pn) ≤ AveLen(c1, ..., cn),(2.6)

with equality if and only if li = logr(
1
pi

) for all i = 1, ..., n.

We shall give now the following sharpening of (2.6) which has important
consequences in connection with Noiseless Coding Theorem as follows.

Theorem 2.4. Let C and P be as in the above theorem. Then we have the
inequality:

0 ≤ 1
ln r

(
1−

n∑
i=1

1
rli

)
(2.7)

≤ AveLen (c1, ..., cn)−Hr (p1, ..., pn) ≤ 1
ln r

n∑
i=1

pi
(
pir

li − 1
)
.

The Equality holds iff li = logr
(

1
pi

)
.

Proof. Define qi := 1
rli

(i = 1, ...n) . Then qi ∈ [0, 1] and
∑n
i=1 qi =

∑n
i=1

1
rli
≤

1 by Kraft’s theorem (see for example [1, Theorem 2.1.2, p. 44]) and by a simple
computation (as in [1, p. 62] ) we have :

n∑
i=1

pi logr
1
qi

=
n∑
i=1

pi logr
(
rli
)

=
n∑
i=1

pili = AveLen (c1, ...cn) .

Also
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1
ln r

(
n∑
i=1

p2
i

qi
− 1

)
=

1
ln r

n∑
i=1

p
(
rli − 1

)
.

Thus inequality (2.5) yields (2.7).

The following theorem also holds.

Theorem 2.5. Let P = (p1, ..., pn) be a given probability distribution and r ∈
N, r ≥ 2. If ε > 0 is given and there exists natural numbers l1, ..., ln such that

logr

(
1
pi

)
≤ li ≤ logr

(
1 + ε ln r

pi

)
for all i ∈ {1, ..., n} ,(2.8)

then there exists an instantaneous r-ary code C = (c1, ..., cn) with codeword
length len (ci) = li such that:

Hr (p1, ..., pn) ≤ AveLen (c1, ..., cn) ≤ Hr (p1, ..., pn) + ε.(2.9)

Proof. First of all, let us observe that (2.8) is equivalent to

1
pi
≤ rli ≤ 1 + ε ln r

pi
, for all i ∈ {1, ..., n} .(2.10)

Now, as 1
rli
≤ pi, we deduce that

n∑
i=1

1
rli
≤

n∑
i=1

pi = 1

and by Kraft’s theorem, there exists an instantaneous r−ary code C = (c1, ..., cn)
so that len (ci) = li. Obviously, by the Theorem 2.3, the first inequality in (2.9)
holds.

We prove the second inequality.
By Theorem 2.4 we have the estimate

AveLen (c1, ..., cn)−Hr (p1, ..., pn)(2.11)

≤ 1
ln r

n∑
i=1

p
(
pir

li − 1
)

≤ 1
ln r

n∑
i=1

pi
∣∣pirli − 1

∣∣ ≤ max
i=1,...,n

{∣∣pirli − 1
∣∣} 1

ln r

n∑
i=1

pi

=
1

ln r
max

i=1,...,n

{∣∣pirli − 1
∣∣} .

Now, we observe that (2.10) implies

1− ε ln r
pi

≤ 1
pi
≤ rli ≤ 1 + ε ln r

pi
, i ∈ {1, ..., n} ,

i.e. ,

1− ε ln r ≤ pirli ≤ 1 + ε ln r, i ∈ {1, ..., n} ,
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which is equivalent to∣∣pirli − 1
∣∣ ≤ ε ln r for all i ∈ {1, ..., n}

and then, by (2.11) , we deduce the second part of (2.9).

Remark 2.2. Since for ε ∈ (0, 1) , we have for all r > 0,

logr

(
1 + ε ln r

pi

)
− logr

(
1
pi

)
= logr (1 + ε ln r) < logr r = 1,

(because 1 + ε ln r < r for all r for a given ε ∈ (0, 1)) we are not sure always we
can find a natural number li so that inequality (2.8) holds.

Before giving some sufficient conditions for the probability P = (p1, ..., pn)
so that we can find natural numbers li satisfying the inequalities (2.8) , let us
recall the Noiseless Coding Theorem.

We shall use the notation

MinAveLenr (p1, ..., pn)

to denote the minimum average codeword length among all r−ary instantaneous
encoding scheme for the probability distribution P = (p1, ..., pn).

The following Noiseless Coding Theorem is well known in the literature ( see
for example [1, Theorem 2.3.2, p. 64] ) :

Theorem 2.6. For any probability distribution P = (p1, ..., pn) we have

Hr(p1, ..., pn)≤̇MinAveLenr(p1, ..., pn) < Hr(p1, ..., pn) + 1.(2.12)

The following question arises naturally:

Question: Is it possible to replace the constant 1 on (2.12) by a smaller
constant ε ∈ (0, 1) under some conditions on the probability distribution P =
(p1, ..., pn) ?

We are able to give the following (partial) answer to this question.

Theorem 2.7. Let r be a given natural number and ε ∈ (0, 1). If a probability
distribution P = (p1, ..., pn) satisfies the condition that every closed interval

Ii =
[
logr

(
1
pi

)
, logr

(
1 + ε ln r

pi

)]
, i ∈ {1, ..., n}

contains at least one natural number li, then for that probability distribution P
we have

Hr (p1, ..., pn) ≤MinAveLenr (p1, ..., pn) ≤ Hr (p1, ..., pn) + ε.(2.13)

Proof. Under the hypotheses
n∑
i=1

1
rli
≤

n∑
i=1

pi = 1

and by Kraft’s theorem, there exists an instantaneous code C = (c1, ..., cn)
so that len (ci) = li. For that code we have the condition (2.8) and then,
by Theorem 2.5, we have the inequality (2.9) . Taking the infimum in that
inequality over all r − ary instantaneous codes, we get (2.13).
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The following theorem could be useful for applications.

Theorem 2.8. Let ai (i = 1, ..., n) be n natural numbers. If pi (i = 1, ..., n) are
such that

1
rai
≤ pi ≤

1 + ε ln r
rai

for i = 1, ..., n;(2.14)

and
∑n
i=1 pi = 1, then there exists an instantaneous code C = (c1, ..., cn) with

len (ci) = ai so that (2.9) holds for the probability distribution P = (p1, ..., pn).
Furthermore, for that distribution, we have the inequality (2.13) .

Proof. The condition (2.14) is equivalent to

1
pi
≤ rai and

1 + ε ln r
pi

≥ rai , i = 1, ..., n;

which implies

logr

(
1
pi

)
≤ ai ≤ logr

(
1 + ε ln r

pi

)
, i = 1, ..., n;

and then ai ∈ Ii, i = 1, ..., n .
Applying the above results, we get the desired conclusion.
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