
An Ostrowski Type Inequality for Weighted Mappings
with Bounded Second Derivatives

This is the Published version of the following publication

Roumeliotis, John, Cerone, Pietro and Dragomir, Sever S (1998) An Ostrowski
Type Inequality for Weighted Mappings with Bounded Second Derivatives. 
RGMIA research report collection, 1 (1).  

The publisher’s official version can be found at 

Note that access to this version may require subscription.

Downloaded from VU Research Repository  https://vuir.vu.edu.au/17112/ 



RGMIA Research Report Collection, Vol. 1, No. 1, 1998
http://sci.vut.edu.au/∼rgmia/reports.html

AN OSTROWSKI TYPE INEQUALITY FOR
WEIGHTED MAPPINGS WITH BOUNDED SECOND

DERIVATIVES

J. ROUMELIOTIS, P. CERONE AND S.S. DRAGOMIR

Abstract. A weighted integral inequality of Ostrowski type for mappings
whose second derivatives are bounded is proved. The inequality is extended to
account for applications in numerical integration.

1 Introduction

In 1938, Ostrowski (see for example [7, p. 468]) proved the following inequality

Theorem 1.1. Let f : I ⊆ R→ R be a differentiable mapping in Io (Io is the
interior of I), and let a, b ∈ Io with a < b. If f ′ : (a, b) → R is bounded on
(a, b), i.e., ‖f ′‖∞ := sup

t∈(a,b)
|f ′(t)| <∞, then we have the inequality:

∣∣∣∣∣ 1
b− a

∫ b

a

f(t) dt− f(x)

∣∣∣∣∣ ≤
[

1
4

+

(
x− a+b

2

)2
(b− a)2

]
(b− a)‖f ′‖∞(1.1)

for all x ∈ (a, b).
The constant 1

4 is sharp in the sense that it cannot be replaced by a smaller
one.

A similar result for twice differentiable mappings [5] is given below.

Theorem 1.2. Let f : [a, b] → R be a twice differentiable mapping such that
f ′′ : (a, b)→ R is bounded on (a,b), i.e. ‖f ′′‖∞ := sup

t∈(a,b)
|f ′′(t)| <∞. Then we

have the inequality

(1.2)

∣∣∣∣∣ 1
b− a

∫ b

a

f(t) dt− f(x) +
(
x− a+ b

2

)
f ′(x)

∣∣∣∣∣
≤

[
1
24

+

(
x− a+b

2

)2
2(b− a)2

]
(b− a)2‖f ′′‖∞

for all x ∈ [a, b].

In this paper, we extend the above result and develop an Ostrowski-type
inequality for weighted integrals. Applications to special weight functions and
numerical integration are investigated.

Date. September, 1998
1991 Mathematics Subject Classification. Primary 26D15, 26Dxx; Secondary 65Xxx.
Key words and phrases. Ostrowski Inequality, Weighted Integrals, Numerical Integration,

Numerical Analysis

101



102 Roumeliotis, Cerone and Dragomir

2 Preliminaries

In the next section weighted (or product) integral inequalities are constructed.
The weight function (or density) is assumed to be non-negative and integrable
over its entire domain. The following generic quantitative measures of the weight
are defined.

Definition 3. Let w : (a, b)→ [0,∞) be an integrable function, i.e.
∫ b
a
w(t) dt <

∞, then define

mi(a, b) =
∫ b

a

tiw(t) dt, i = 0, 1, . . .(2.1)

as the ith moment of w.

Definition 4. Define the mean of the interval [a, b] with respect to the density
w as

µ(a, b) =
m1(a, b)
m0(a, b)

(2.2)

and the variance by

σ2(a, b) =
m2(a, b)
m0(a, b)

− µ2(a, b).(2.3)

3 The Results

3.1 1-point inequality

Theorem 3.1. Let f, w : (a, b)→ R be two mappings on (a, b) with the follow-
ing properties:

(1) sup
t∈(a,b)

|f ′′(t)| <∞,

(2) w(t) ≥ 0 ∀t ∈ (a, b),

(3)
∫ b
a
w(t) dt <∞,

then the following inequalities hold∣∣∣∣ 1
m0(a, b)

∫ b

a

w(t)f(t) dt−f(x) +
(
x− µ(a, b)

)
f ′(x)

∣∣∣∣
≤ ‖f

′′‖∞
2

[(
x− µ(a, b)

)2 + σ2(a, b)
]

(3.1)

≤ ‖f
′′‖∞
2

(∣∣∣∣x− a+ b

2

∣∣∣∣+
b− a

2

)2

(3.2)

for all x ∈ [a, b].

Proof. Define the mapping K(·, ·) : [a, b]2 → R by

K(x, t) :=

{∫ t
a
(t− u)w(u) du, a ≤ t ≤ x,∫ t

b
(t− u)w(u) du, x < t ≤ b.
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Ostrowski for Weighted Mappings 103

Integrating by parts gives

∫ b

a

K(x, t)f ′′(t) dt =
∫ x

a

∫ t

a

(t− u)w(u)f ′′(t) dudt+
∫ b

x

∫ t

b

(t− u)w(u)f ′′(t) dudt

= f ′(x)
∫ b

a

(x− u)w(u) du

−
∫ x

a

∫ t

a

(t− u)w(u)f ′(t) dudt−
∫ b

x

∫ t

b

(t− u)w(u)f ′(t) dudt

=
∫ b

a

w(t)f(t) dt+ f ′(x)
∫ b

a

(x− u)w(u) du− f(x)
∫ b

a

w(u) du

providing the identity

(3.3)
∫ b

a

K(x, t)f ′′(t) dt

=
∫ b

a

w(t)f(t) dt−m0(a, b)f(x) +m0(a, b)
(
x− µ(a, b)

)
f ′(x)

that is valid for all x ∈ [a, b].
Now taking the modulus of (3.3) we have,

(3.4)
∣∣∣∣∫ b

a

w(t)f(t) dt−m0(a, b)f(x) +m0(a, b)
(
x− µ(a, b)

)
f ′(x)

∣∣∣∣
=

∣∣∣∣∣
∫ b

a

K(x, t)f ′′(t) dt

∣∣∣∣∣
≤ ‖f ′′‖∞

∫ b

a

|K(x, t)| dt

= ‖f ′′‖∞

[∫ x

a

∫ t

a

(t− u)w(u) dudt+
∫ b

x

∫ t

b

(t− u)w(u) dudt

]

=
‖f ′′‖∞

2

∫ b

a

(x− t)2w(t) dt.

The last line being computed by reversing the order of integration and eval-
uating the inner integrals. To obtain the desired result (3.1) observe that∫ b

a

(x− t)2w(t) dt = m0(a, b)
[(
x− µ(a, b)

)2 + σ2(a, b)
]
.

To obtain (3.2) note that∫ b

a

(x− t)2 dt ≤ sup
t∈[a,b]

(x− t)2mo(a, b)

= max{(x− a)2, (x− b)2}m0(a, b)

=
1
2
(
(x− a)2 + (x− b)2 +

∣∣(x− a)2 − (x− b)2
∣∣)m0(a, b)

=
(∣∣∣∣x− a+ b

2

∣∣∣∣+
b− a

2

)2

m0(a, b)
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104 Roumeliotis, Cerone and Dragomir

which upon susbitution into (3.4) furnishes the result. �
Note also that the inequality (3.1) is valid even for unbounded w or interval

[a, b]. This is not the case with (1.2).

Corollary 3.2. The inequality (3.1) is minimized at x = µ(a, b) producing the
generalized “mid-point” inequality∣∣∣∣∣ 1

m0(a, b)

∫ b

a

w(t)f(t) dt− f(µ(a, b))

∣∣∣∣∣ ≤ ‖f ′′‖∞σ2(a, b)
2

.(3.5)

Proof. Substituting µ(a, b) for x in (3.1) produces the desired result. Note
that x = µ(a, b) not only minimizes the bound of the inequality (3.1), but also
causes the derivative term to vanish. �

The optimal point (2.2) can be interpreted in many ways. In a physical
context, µ(a, b) represents the centre of mass of a one dimensional rod with
mass density w. Equivalently, this point can be viewed as that which minimizes
the error variance for the probability density w (see [4] for an application).
Finally (2.2) is also the Gauss node point for a one-point rule [12]. The bound
in (3.5) is directly proportional to the variance of the density w. So that the
tightest bound is achieved by sampling at the mean point of the interval (a, b),
while its value is given by the variance.

3.2 2-point inequality

Here a two point analogy of (3.1) is developed where the result is extended to
create an inequality with two independent parameters x1 and x2. This is mainly
used (Section 5) to find an optimal grid for composite weighted-quadrature rules.

Theorem 3.3. Let the conditions of Theorem 3.1 hold, then the following 2-
point inequality is obtained

(3.6)
∣∣∣∣∫ b

a

w(t)f(t) dt−m0(a, ξ)f(x1) +m0(a, ξ)
(
x1 − µ(a, ξ)

)
f ′(x1)

−m0(ξ, b)f(x2) +m0(ξ, b)
(
x2 − µ(ξ, b)

)
f ′(x2)

∣∣∣∣
≤ ‖f

′′‖∞
2

{
m0(a, ξ)

[(
x1 − µ(a, ξ)

)2 + σ2(a, ξ)
]

+m0(ξ, b)
[(
x2 − µ(ξ, b)

)2 + σ2(ξ, b)
]}

for all a ≤ x1 < ξ < x2 ≤ b.

Proof. Define the mapping K(·, ·, ·, ·) : [a, b]4 → R by

K(x1, x2, ξ, t) :=


∫ t
a
(t− u)w(u) du, a ≤ t ≤ x1,∫ t

ξ
(t− u)w(u) du, x1 < t, ξ < x2,∫ t

b
(t− u)w(u) du, x2 ≤ t ≤ b.

With this kernel, the proof is almost identical to that of Theorem 3.1.
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Integrating by parts produces the integral identity

(3.7)
∫ b

a

K(x1, x2, ξ, t)f ′′(t) dt

=
∫ b

a

w(t)f(t) dt−m0(a, ξ)f(x1) +m0(a, b)
(
x− µ(a, ξ)

)
f ′(x1)

−m0(ξ, b)f(x2) +m0(ξ, b)
(
x− µ(ξ, b)

)
f ′(x2).

Re-arranging and taking bounds produces the result (3.6). �

Corollary 3.4. The optimal location of the points x1, x2 and ξ satisfy

x1 = µ(a, ξ), x2 = µ(ξ, b), ξ =
µ(a, ξ) + µ(ξ, b)

2
(3.8)

Proof. By inspection of the right hand side of (3.6) it is obvious that choosing

x1 = µ(a, ξ) and x2 = µ(ξ, b)(3.9)

minimizes this quantity. To find the optimal value for ξ write the expression in
braces in (3.6) as

2
∫ b

a

|K(x1, x2, ξ, t)| dt = m0(a, ξ)
[(
x1 − µ(a, ξ)

)2 + σ2(a, ξ)
]

+m0(ξ, b)
[(
x2 − µ(ξ, b)

)2 + σ2(ξ, b)
]

=
∫ ξ

a

(x1 − t)2w(t) dt+
∫ b

ξ

(x2 − t)2w(t) dt.

(3.10)

Substituting (3.9) into the right hand side of (3.10) and differentiating with
respect to ξ gives

d

dξ

∫ b

a

|K(µ(a, ξ), µ(ξ, b), ξ, t)| dt =
(
µ(ξ, b)−µ(ξ, a)

)(
ξ − µ(a, ξ) + µ(ξ, b)

2

)
w(ξ).

Assuming w(ξ) 6= 0, then this equation possesses only one root. A minimum
exists at this root since (3.10) is convex, and so the corollary is proved. �

Equation (3.8) shows not only where sampling should occur within each
subinterval (i.e. x1 and x2), but how the domain should be divided to make up
these subintervals (ξ).

4 Some Weighted Integral Inequalities

Integration with weight functions are used in countless mathematical problems.
Two main areas are: (i) approximation theory and spectral analysis and (ii)
statistical analysis and the theory of distributions.

In this section (3.1) is evaluated for the more popular weight functions. In
each case (1.2) cannot be used since the weight w(t) or the interval (b − a) is
unbounded. The optimal point (2.2) is easily identified.

RGMIA Research Report Collection, Vol. 1, No. 1, 1998



106 Roumeliotis, Cerone and Dragomir

4.1 Uniform (Legendre)

Substituting w(t) = 1 into (2.2) and (2.3) gives

µ(a, b) =

∫ b
a
t dt∫ b

a
dt

=
a+ b

2
(4.1)

and

σ2(a, b) =

∫ b
a
t2 dt∫ b
a
dt
−
(
a+ b

2

)2

=
(b− a)2

12

respectively. Substituting into (3.1) produces (1.2). Note that the interval mean
is simply the midpoint (4.1).

4.2 Logarithm

This weight is present in many physical problems; the main body of which
exhibit some axial symmetry. Special logarithmic rules are used extensively
in the Boundary Element Method popularized by Brebbia (see for example
[2]). Some applications of which include bubble cavitation [3] and viscous drop
deformation ([8] and more recently by [9]).

With w(t) = ln(1/t), a = 0, b = 1, (2.2) and (2.3) are

µ(0, 1) =

∫ 1
0 t ln(1/t) dt∫ 1
0 ln(1/t) dt

=
1
4

and

σ2(0, 1) =

∫ 1
0 t

2 ln(1/t) dt∫ 1
0 ln(1/t) dt

−
(

1
4

)2

=
7

144

respectively. Substituting into (3.1) gives∣∣∣∣∫ 1

0
ln(1/t)f(t) dt− f(x) +

(
x− 1

4

)
f ′(x)

∣∣∣∣ ≤ ‖f ′′‖∞2

(
7

144
+
(
x− 1

4

)2
)
.

The optimal point

x = µ(0, 1) =
1
4

is closer to the origin than the midpoint (4.1) reflecting the strength of the log
singularity.

4.3 Jacobi

Substituting w(t) = 1/
√
t, a = 0, b = 1 into (2.2) and (2.3) gives

µ(0, 1) =

∫ 1
0

√
t dt∫ 1

0 1/
√
t dt

=
1
3

and

σ2(0, 1) =

∫ 1
0 t
√
t dt∫ 1

0 1/
√
t dt
−
(

1
3

)2

=
4
45
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Ostrowski for Weighted Mappings 107

respectively. Hence, the inequality for a Jacobi weight is

∣∣∣∣12
∫ 1

0

f(t)√
t
dt− f(x) +

(
x− 1

3

)
f ′(x)

∣∣∣∣ ≤ ‖f ′′‖∞2

(
4
45

+
(
x− 1

3

)2
)
.

The optimal point

x = µ(0, 1) =
1
3

is again shifted to the left of the mid-point due to the t−1/2 singularity at
the origin.

4.4 Chebyshev

The mean and variance for the Chebyshev weight w(t) = 1/
√

1− t2, a = −1, b =
1 are

µ(−1, 1) =

∫ 1
−1 t/

√
1− t2 dt∫ 1

−1 1/
√

1− t2 dt
= 0

and

σ2(−1, 1) =

∫ 1
−1 t

2
√

1− t2 dt∫ 1
−1 1/

√
1− t2 dt

− 02 =
1
2

respectively. Hence, the inequality corresponding to the Chebyshev weight is∣∣∣∣ 1π
∫ 1

−1

f(t)√
1− t2

dt− f(x) + xf ′(x)
∣∣∣∣ ≤ ‖f ′′‖∞2

(
1
2

+ x2
)
.

The optimal point

x = µ(−1, 1) = 0

is at the mid-point of the interval reflecting the symmetry of the Chebyshev
weight over its interval.

4.5 Laguerre

The conditions in Theorem 3.1 are not violated if the integral domain is infinite.
The Laguerre weight w(t) = e−t is defined for positive values, t ∈ [0,∞). The
mean and variance of the Laguerre weight are

µ(0,∞) =

∫∞
0 te−t dt∫∞
0 e−t dt

= 1

and

σ2(0,∞) =

∫∞
0 t2e−t dt∫∞
0 e−t dt

− 12 = 1

respectively.
The appropriate inequality is∣∣∣∣∫ ∞

0
e−tf(t) dt− f(x) + (x− 1)f ′(x)

∣∣∣∣ ≤ ‖f ′′‖∞2
(
1 + (x− 1)2) ,

from which the optimal sample point of x = 1 may be deduced.
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108 Roumeliotis, Cerone and Dragomir

4.6 Hermite

Finally, the Hermite weight is w(t) = e−t
2

defined over the entire real line. The
mean and variance for this weight are

µ(−∞,∞) =

∫∞
−∞ te−t

2
dt∫∞

−∞ e−t2 dt
= 0

and

σ2(−∞,∞) =

∫∞
−∞ t2e−t

2
dt∫∞

−∞ e−t2 dt
− 02 =

1
2

respectively.
The inequality from Theorem 3.1 with the Hermite weight function is thus∣∣∣∣ 1√

π

∫ ∞
−∞

e−t
2
f(t) dt− f(x) + xf ′(x)

∣∣∣∣ ≤ ‖f ′′‖∞2

(
1
2

+ x2
)
,

which results in an optimal sampling point of x = 0.

5 Application in Numerical Integration

Define a grid In : a = ξ0 < ξ1 < · · · < ξn−1 < ξn = b on the interval [a,b],
with xi ∈ [ξi, ξi+1] for i = 0, 1, . . . , n − 1. The following quadrature formulae
for weighted integrals are obtained.

Theorem 5.1. Let the conditions in Theorem 3.1 hold. The following weighted
quadrature rule holds∫ b

a

w(t)f(t) dt = A(f, ξ,x) +R(f, ξ,x)(5.1)

where

A(f, ξ,x) =
n−1∑
i=0

(
hif(xi)− hi(xi − µi)f ′(xi)

)
and

|R(f, ξ,x)| ≤ ‖f
′′‖∞
2

n−1∑
i=0

[
(xi − µi)2 + σ2

i

]
hi.(5.2)

The parameters hi, µi and σ2
i are given by

hi = m0(ξi, ξi+1), µi = µ(ξi, ξi+1), and σ2
i = σ2(ξi, ξi+1)

respectively.

Proof. Apply Theorem 3.1 over the interval [ξi, ξi+1] with x = xi to obtain∣∣∣∣∣
∫ ξi+1

ξi

w(t)f(t) dt− hif(xi) + hi(xi − µi)f ′(xi)

∣∣∣∣∣
≤ ‖f

′′‖∞
2

hi
(
(xi − µi)2 + σ2

i

)
.

Summing over i from 0 to n− 1 and using the triangle inequality produces the
desired result. �

RGMIA Research Report Collection, Vol. 1, No. 1, 1998



Ostrowski for Weighted Mappings 109

Corollary 5.2. The optimal location of the points xi, i = 0, 1, 2, . . . , n−1, and
grid distribution In satisfy

xi = µi, i = 0, 1, . . . , n− 1 and(5.3)

ξi =
µi−1 + µi

2
, i = 1, 2, . . . , n− 1,(5.4)

producing the composite generalized mid-point rule for weighted integrals∫ b

a

w(t)f(t) dt =
n−1∑
i=0

hif(xi) +R(f, ξ, n)(5.5)

where the remainder is bounded by

|R(f, ξ, n)| ≤ ‖f
′′‖∞
2

n−1∑
i=0

hiσ
2
i(5.6)

Proof. The proof follows that of Corollary 3.4 where it is observed that the
minimum bound (5.2) will occur at xi = µi. Differentiating the right hand side
of (5.2) gives

d

dξi

n−1∑
j=0

[
(xj − µj)2 + σ2

j

]
hj = 2w(ξi)(xi − xi−1)

(
ξi −

xi−1 + xi
2

)
.

Inspection of the second derivative at the root reveals that the stationary point
is a minimum and hence the result is proved. �

6 Numerical Results

In this section, for illustratration, the quadrature rule of Section 5 is used on
the integral ∫ 1

0
100t ln(1/t) cos(4πt) dt = −1.972189325199166(6.1)

This is evaluated using the following three rules:

(1) the composite mid-point rule, where the grid has a uniform step-size and
the node is simply the mid-point of each sub-interval,

(2) the composite generalized mid-point rule (5.1). The grid, In, is uniform
and the nodes are the mean point of each sub-interval (5.3),

(3) equation (5.5) where the grid is distributed according to (5.4) and the
nodes are the sub-interval means (5.3).

Table 1 shows the numerical error of each method for an increasing number
of sample points.

For a uniform grid, it can be seen that changing the location of the sampling
point from the midpoint [method (1)] to the mean point [method (2)] roughly
doubles the accuracy. Changing the grid distribution as well as the node point

RGMIA Research Report Collection, Vol. 1, No. 1, 1998



110 Roumeliotis, Cerone and Dragomir

n Error (1) Error (2) Error (3) Error ratio (3) Bound ratio (3)
4 1.97(0) 2.38(0) 2.48(0) – –
8 3.41(-1) 2.93(-1) 2.35(-1) 10.56 3.90

16 8.63(-2) 5.68(-2) 2.62(-2) 8.97 3.95
32 2.37(-2) 1.31(-2) 4.34(-3) 6.04 3.97
64 6.58(-3) 3.20 (-3) 9.34(-4) 4.65 3.99

128 1.82(-3) 7.94(-4) 2.23(-4) 4.18 3.99
256 4.98(-4) 1.98(-4) 5.51(-5) 4.05 4.00

Table 1: The error in evaluating (6.1) under different quadrature rules. The
parameter n is the number of sample points.

[method (3)] from the composite mid-point rule [method (1)] increases the ac-
curacy by approximately an order of magnitude. It is important to note that
the nodes and weights for method (3) can be easily calculated numerically using
an iterative scheme. For example on a Pentium-90 personal computer, with
n = 64, calculating (5.3) and (5.4) took close to 37 seconds.

Note that equations (5.3) and (5.4) are quite general in nature and only rely
on the weight insofar as knowledge of the first two moments is required. This
contrasts with Gaussian quadrature where for an n point rule, the first n + 1
moments are needed (or equivalently the 2n+1 coefficients of the continued frac-
tion expansion [11, 10]) to construct the appropriate orthogonal polynomial and
then a root-finding procedure is called to find the abscissae [1]. This procedure,
of course, can be greatly simplified for the more well known weight functions
[6].

The second last column of Table 1 shows the ratio of the numerical errors for
method (3) and the last column the ratio of the theoretical error bound (5.5)

Bound ratio (3) =
|R(f, ξ, n/2)|
|R(f, ξ, n)|

.(6.2)

As n increases the numerical ratio approaches the theoretical one. The theoret-
ical ratio is consistently close to 4. This value suggests an asymptotic form of
the error bound

|R(f, ξ, n)| ∼ O
(

1
n2

)
(6.3)

for the log weight. Similiar results have been obtained for the other weights
of Section 4. This is consistent with mid-point type rules and it is anticipated
that developing other product rules, for example a generalized trapezoidal or
Simpsons rule, will yield more accurate results.
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