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AN OSTROWSKI TYPE INEQUALITY FOR DOUBLE
INTEGRALS IN TERMS OF Lp— NORMS AND APPLICATIONS
IN NUMERICAL INTEGRATION

S.S. DRAGOMIR, N.S. BARNETT AND P. CERONE

ABSTRACT. An inequality of the Ostrowski type for double integrals and applications in Numerical
Analysis in connection with cubature formulae are given.

1 INTRODUCTION

In 1938, A. Ostrowski proved the following integral inequality [5, p. 468]

Theorem 1.1. Let f : [a,b] — R be continuous on [a,b] and differentiable on (a,b) whose
derivative f': (a,b) = R is bounded on (a,b), i.e.,

1f'llo := szlpb) |f' (t)] < co. Then we have the inequality
te(a,

L, (o= 5t)
1t
1 (b-a

b
fla)- s [T <

] (b—a) [Nl

for all x € [a,b].
The constant % s the best possible.

For some generalizations see the book [5, p. 468-484] by Mitrinovi¢, Pecari¢ and Fink.

Some applications of the above results in Numerical Integration and for special means have
been given in [3] by S.S. Dragomir and S. Wang,.

In [4] Dragomir and Wang established the following Ostrowski type inequality for differen-
tiable mappings whose derivatives belong to L,—spaces.

Theorem 1.2. Let f : I C R — R be a differentiable mapping on I° and a,b € I° with a < b.
If f' € L, (a,b) (p > 1, % + % = 1) , then we have the inequality:

1 l(m—a)ﬁl—k(b—x)ﬁl ‘
a

— 171,

P

b
for all z € [a,b], where ||f']|, := (f lf ()" dt) , is the Ly, (a,b) —norm.
a

Note that the above inequality can also be obtained from Theorem 1.1 [5, p. 471] due to
A .M. Fink.

For other Ostrowski type inequalities, see the papers [1, 2 and 4].

In 1975, G.N. Milovanovi¢ generalized Theorem 1.1 where f is a function of several variables
[5, p. 468].
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78 Dragomir, Barnett and Cerone

Theorem 1.3. Let f: R™ — R be a differentiable functwn defined on
D = {(@1, @) |ai < < bi (i = 1,.;m)} andlet‘ ‘<M(M >0,i=1,..,m) in D.

Furthermore, let function x — p(x) be integrable and p( ) > 0 for every x € D Then for
every x € D, we have the inequality:

o) fy)dy Epr ) |z — il dy

D
fle) - [p(y)dy < fp( ) dy
D D

In the present paper we point out an Ostrowski type inequality for double integrals in terms
of L,—norms and apply it in Numerical Integration obtaining a general cubature formula.

2 THE RESULTS

The following inequality of Ostrowski’s type for mappings of two variables holds:

Theorem 2.1. Let f : [a,b] X [¢,d] — R be a continuous mapping on [a,b] X [c,d], f,, = ;fgy
ezists on (a,b) x (¢,d) and is in L,((a,b) x (c,d)), i.e.,

b d 6]0
" 1‘ y
e, = ([ |22

then we have the inequality:

ddy < 00, p>1

b d d b

(2.1) |//f(s,t)dsdt—[(b—a)/f(:n,t)dt+(d—c)/f(s,y)ds

a c C a

—(d=c)(b=a)f(z,y)] |

<

(- 1+ b—a)™ ] [y =™ 1 (@ -y ]
1 o 1724,

for all (z,y) € [a,b] x [e,d], where L + 1 =1,

Proof. Integrating by parts successively, we have the equality:

(2.2) /w/y(s —a)(t—c) fg (s,t)dtds

=(y—c)(w—a)f(m)—(y—c>/f<s,y>ds

—(:U—a)/yf(x,t)dt-i—/m/yf(s,t)dsdt.

RGMIA Research Report Collection, Vol. 1, No. 2, 1998



Ostrowski for Double Integrals in Terms of L, —Norms

By similar computations we have,

(2.3) / /d (s —a) (t —d) fI', (s, 1) dsdt

=(w—a)(d—y)f(:v,y)—(d—y)/f(s,y)ds

—(a:—a)/df(a:,t)dt+/m/yf(s,t)dsdt.
Now,
b od
(2.4) // (s =0) (t —d) fg; (s,t)dsdt
=(d-y)(b-=)f(z,y) —(d—y)/bf(s,y)ds
d b od

—(b—m)/f(:n,t)dt+//f(s,t)dsdt
and finally
(2.5) /b/y (s = D) (t —c) fi; (s, t) dsdt

—(b—m)/yf(a:,t)dt+/b/yf(s,t)dsdt.

If we add the equalities (2.2) — (2.5) we get, in the right hand side:

[(y =)z —a)+(z —a)(d-y)

+td=y)(b-2)+ Yy —0c)(b-2)]f(,y)
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Yy

—W—djf@w%—w—djf@w%—@—@/f@ﬁﬁ

C

d T Y z d
—(b—a)y/f(:n,t)dt+a/c/f(s,t)dsdﬂ—a/y/f(s,t)dsdt
b d
+x/y/fstdsdt+//fstdsdt

—(b—a)/bf(:r,t)dt+/b/df(s,t)dsdt.

For the first part, let us define the kernels: p : [a, b]2 =R, q:]e d]2 — R given by:

s—a it s € [a, 7]
p(z,s) =
s—b if s € (z,0]

and

t—c it t € [c,y]
q(y,t) :=
t—d ift € (y,d].

Now, we deduce that the left part can be represented as :

b d
//p(a:,s)q(y,t) ;'t (s,t) dsdt.

Consequently, we get, the identity

b d
(2.6) //pm@qmwﬂm&wwm

d b d
—(b—a)/f(a:,t)dt+//f(s,t)dsdt
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for all (z,y) € [a,b] % [¢,d].
Now, using the identity (2.6) we get

b d d b

[ [senasit-(o-a [f@nd+@-o [ 16ds

a c c a

—(d=c)(b—a)f(z,y)] |

b d
S//Ip(x,S)q(y,t)H Yy (s,1)| dsdt.
a ¢

Using Hélder’s integral inequality for double integrals, we get

b od
//m 0,01 |2 (1) dsdl
i /b od
|p |qudt> (//| ot (s,t)|pdsdt>

b % d %
:(/mmﬂW% (ﬂ( ”ﬁ)”fh

_ l(ﬂ:—a)qJrl +(b—m)q+1r l(y—c)q+1 +(d—y)q+1r 177
= q—l—l q+1 s,t P

f i —
\m.

IN
/_\

and the theorem is proved. I

Corollary 2.2. Under the above assumptions, we have the inequality:

2.7) //f s,1) dsdt — [(b— )/f(a;b,t> di

/bf<s,c+d>ds—(d—c)(b_a)f<a;‘b,c-|2-d>]

(b — a) (d — c) ” ”
A(g+1)7 !
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Remark 2.1. Consider the mapping g : [, 8] = R,g(t) = (t —a)™ + (8 — )™, (m > 1).
Taking into account the fact that one has the properties

inf g(t) =g (C“W) _ (B

tela,B] 2 2m-1
and

sup g(t) = g(a) = g(8) = (B —a)™
tela,[]

then, the above inequality (2.7) is the best that can be obtained from (2.1).

Remark 2.2. Now, if we assume that f(s,t) = h(s)h(t), h: [a,b] = R is continuous on
[a,b] and suppose that ||B'||, < oo, then from (2.1) we get (for z = y)

b b

/h(s)ds/bh(s)ds—h(x)(b—a)/h(s)ds

a a

_h () (b—a)/h(s) ds + (b— a)> 2 (z)

qg+1

x_a0+1_+_ b_mq+1% )
s[( e T

i.e.
2

N ]
(s)ds —h(z) (b—a)| <
/ |

a

2
@=a)™ + =) ]
. I

which is clearly equivalent to Ostrowski’s inequality. Consequently (2.1) can be also regarded as
a generalization for double integrals of the result embodied in Theorem 1.2.

3 APPLICATIONS FOR CUBATURE FORMULAE

Let us consider the arbitrary division I, : a = 29 < 21 < ... < 1 < T, = b and J,
c=yo <Y1 < . < Ym—1 < Ym = band §; € [z, Tit1] (i=0,....n—1),m; € [yj,yj+1]
(j =0,...,m — 1) be intermediate points. Consider the sum

n—1m— Yit1
C (f,Ins Jm: €,m) ZZ / (&,t)d
i=0 j=0 .
n—1m—1 Tit1 n—1m—1
+ 3 0 [ Flmg)ds= 30 S mlif (€
i=0 j=0 . i=0 j=0

T

for which we assume that the involved integrals can more easily be computed than the original

double integral
b d
D :://f(s,t) dsdt,
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and
hi =Tyl — Ty (l = 0, ey U — 1) y lj =UYj+1 — Yy (] = 0, ey, M — 1) .
With this assumption, we can state the following cubature formula:

Theorem 3.1. Let f : [a,b] X [c,d] = R be as in Theorem 2.1 and I,,, Jp,, & and n be as above.
Then we have the cubature formula:

b d
//f@ﬂ%ﬁzCMth&m+RMth&m

where the remainder term R (f, I, Jm,&,m) satisfies the estimation:

(3.1) \R(f, In, Jm, &, m)|

n-1 i — & oty e ; q+1 |
< ”f;/’th lz <(35 11— &) = 1(£l ;) )]
i=0

Q=

1
J

x [mzl ((ym — )™+ (n _y])'m)

L‘=0 ¢+l

N T
(g+1)7 r
for all & and m as above.

Proof. Apply Theorem 2.1 on the interval [z;, z;41] X [y, Y;+1]
(i=0,...,n—1;7=0,..,m—1) to get:

Tit+1 Yj+1 Yi+1 Tit1

/f@ﬂ%ﬁ—h@/f@ﬁﬁ+b/f@mﬂ%—wﬁﬁmm

Ti Yj Y Ti

q+1 q+1

< K(wm )+ (& - CUz')qu1> <(yj+1 - ”j)q+1 + (n; = yi)qH)] :

Tit1 Yj+1 P
X / / | f(s,t) |P dsdt
Ti Y5
forall¢=0,..,n—1;7=0,....m— 1.

Summing over i from 0 to n —1 and over j from 0 to m —1 and using the generalized triangle
inequality and Hoélder’s discrete inequality for double sums, we deduce

\R(f, In, Jm, &)
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i 7=0 q+1

_ Z 5 K(ml —E)™ 4 (6 - :ri)ﬁl)

g1 g+1 % Tit1 Yj+1 B
R + (n: —y;
« ((yJ-H 773) q+1(77j vi) >] % / / | £ (s,t) P dsdt

Ti Yj

|
-

n

<

q+1

i
o

i

<($z’+1 €)™ 1 (€ — )™ ] :

j=0

1
. m—1 ((yj-H _ nj)q+1 + (77]' _ yj)q+1> a

q+1

1
n—lm—1 Tit1Yit1 v
XY [ [ 1reoraa
=0 =0 J .
i i

=

_ — [ (@is1 — fi)QH + (& — l‘i)q+1
- i=0 q + 1

1

m—1 g+1 e+l ‘
. +n;—yj
X <(yi+1 ;) n; ~ ) ) x ”f;l,th'

= q+1
To prove the second part, we observe that
(@1 = &)™ + (& —2)™ < (@iga — )
and

(i =) (=)™ < gy — )T

for all 7, j as above and the intermediate points §; and n;.
We omit the details. 1

Remark 3.1. As

n—1 n—1
1+ 1 :
b T < (W)Y hi = (b—a) [y (B)]s
1=0 =0
and
m—1 m—1
141 1 1
Lt <lp] ) li=(d=c)[u()]"
7=0 7=0
where
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and

p(l) =max{l; :j=0,..m—1},

the right hand side of (3.1) can be bounded by

1
— i b=a)(d=) [ ()
Tt [ £l b = a) (d =) [v (h) w (V)]

Q=

Now, define the sum

n—1m-—1
Out (f,Iny Jin) = hi / f (Mt> dt
' Y

n—1m—1 v

i T n-lm—1 T + x; Sy
+221j/f<s,7y3 Qy”1>ds—22hiljf<’ A 2‘%“).

i=0 j=0 i=0 j=0

T

Then we have the best cubature formula we can get from Theorem 3.1.

Corollary 3.2. Under the above assumptions we have

b d
/ / £ (5,8 dsdt = Car (f, Iy Jon) + R (1 Iy Ton)

where the remainder R (f,1,,,J) satisfies the estimation:

[1]

[4]

[5]

1 n—1 1+lm71 141
R 7[ 7J Si ;I h; * I "
R T Tl S o Wl 2™ 3o 4
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