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SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE

S.S. DRAGOMIR

Abstract. Some classical and new integral inequalities of Grüss type are presented.

1 Grüss Integral Inequality

In 1935, G. Grüss, proved the following integral inequality which gives an estimation for the
integral of a product in terms of the product of integrals (see for example [1, p. 296])∣∣∣∣∣∣ 1

b− a

b∫
a

f (x) g (x) dx− 1
b− a

b∫
a

f (x) dx · 1
b− a

b∫
a

g (x) dx

∣∣∣∣∣∣
≤ 1

4
(Φ− ϕ) (Γ− γ) ;

provided that f and g are two integrable functions on [a, b] and satisfying the condition

ϕ ≤ f (x) ≤ Φ, γ ≤ g (x) ≤ Γ(1.1)

for all x ∈ [a, b] .
The constant 1

4 is the best possible and is achieved for f (x) = g (x) = sgn
(
x− a+b

2

)
.

We give here a weighted version of Grüss’ inequality

Theorem 1.1. Let f and g be two functions defined and integrable on [a, b]. If (1.1) holds for
each x ∈ [a, b] , where ϕ,Φ, γ,Γ are given real constants, and h : [a, b] → [0,∞) is integrable
and

∫ b
a
h(x)dx > 0, then∣∣∣∣∣∣

b∫
a

h(x)dx ·
b∫
a

f (x) g (x)h(x)dx−
b∫
a

f (x)h(x)dx ·
b∫
a

g (x)h(x)dx

∣∣∣∣∣∣(1.2)

≤ 1
4

(Φ− ϕ) (Γ− γ)

 b∫
a

h(x)dx

2

and the constant 1
4 is the best possible.

For the sake of completeness we give here a simple proof of this fact which is similar with
the classical one for unweighted case (compare with [1, p. 296]).
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96 Dragomir

Let us note that the following equality is valid:

1
b∫
a

h(x)dx

b∫
a

f (x) g (x)h(x)dx(1.3)

− 1
b∫
a

h(x)dx

b∫
a

f (x)h(x)dx · 1
b∫
a

h(x)dx

b∫
a

g (x)h(x)dx

=
1

2

(
b∫
a

h(x)dx

)2

b∫
a

b∫
a

(f (x)− f (y)) (g (x)− g (y))h(x)h(y)dxdy.

Applying Cauchy-Buniakowski-Schwarz’s integral inequality for double integrals we have
1

2

(
b∫
a

h(x)dx

)2

b∫
a

b∫
a

(f (x)− f (y)) (g (x)− g (y))h(x)h(y)dxdy


2

(1.4)

≤ 1

2

(
b∫
a

h(x)dx

)2

b∫
a

b∫
a

(f (x)− f (y))2
h(x)h(y)dxdy

× 1

2

(
b∫
a

h(x)dx

)2

b∫
a

b∫
a

(g (x)− g (y))2
h(x)h(y)dxdy

=

 1
b∫
a

h(x)dx

b∫
a

f2 (x)h(x)dx−

 1
b∫
a

h(x)dx

b∫
a

f (x)h(x)dx


2

×

 1
b∫
a

h(x)dx

b∫
a

g2 (x)h(x)dx−

 1
b∫
a

h(x)dx

b∫
a

g (x)h(x)dx


2 .

The following equality also holds

1
b∫
a

h(x)dx

b∫
a

f2 (x)h(x)dx−

 1
b∫
a

h(x)dx

b∫
a

f (x)h(x)dx


2
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=

Φ− 1
b∫
a

h(x)dx

b∫
a

f (x)h(x)dx

 ·
 1

b∫
a

h(x)dx

b∫
a

f (x)h(x)dx− ϕ



− 1
b∫
a

h(x)dx

b∫
a

(Φ− f (x)) (f (x)− ϕ)h(x)dx.

As, (Φ− f (x)) (f (x)− ϕ) ≥ 0 for each x ∈ [a, b] , then

1
b∫
a

h(x)dx

b∫
a

f2 (x)h(x)dx−

 1
b∫
a

h(x)dx

b∫
a

f (x)h(x)dx


2

(1.5)

≤

Φ− 1
b∫
a

h(x)dx

b∫
a

f (x)h(x)dx

 ·
 1

b∫
a

h(x)dx

b∫
a

f (x)h(x)dx− ϕ

 .

Similarly, we have

1
b∫
a

h(x)dx

b∫
a

g2 (x)h(x)dx−

 1
b∫
a

h(x)dx

b∫
a

g (x)h(x)dx


2

(1.6)

≤

Γ− 1
b∫
a

h(x)dx

b∫
a

g (x)h(x)dx

 ·
 1

b∫
a

h(x)dx

b∫
a

g (x)h(x)dx− γ

 .

Now, by (1.3), (1.4) , (1.5) and (1.6) we get∣∣∣∣∣∣∣∣∣
1

b∫
a

h(x)dx

b∫
a

f (x) g (x)h(x)dx(1.7)

− 1
b∫
a

h(x)dx

b∫
a

f (x)h(x)dx · 1
b∫
a

h(x)dx

b∫
a

g (x)h(x)dx

∣∣∣∣∣∣∣∣∣

≤

Φ− 1
b∫
a

h(x)dx

b∫
a

f (x)h(x)dx

 ·
 1

b∫
a

h(x)dx

b∫
a

f (x)h(x)dx− ϕ


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98 Dragomir

×

Γ− 1
b∫
a

h(x)dx

b∫
a

g (x)h(x)dx

 ·
 1

b∫
a

h(x)dx

b∫
a

g (x)h(x)dx− γ

 .

Using the elementary inequality for real numbers:

4pq ≤ (p+ q)2
, p, q ∈ R

we can state

4

Φ− 1
b∫
a

h(x)dx

b∫
a

f (x)h(x)dx

 ·
 1

b∫
a

h(x)dx

b∫
a

f (x)h(x)dx− ϕ

(1.8)

≤ (Φ− ϕ)2

and

4

Γ− 1
b∫
a

h(x)dx

b∫
a

g (x)h(x)dx

 ·
 1

b∫
a

h(x)dx

b∫
a

g (x)h(x)dx− γ

(1.9)

≤ (Γ− γ)2
.

Now, combining (1.7) with (1.8) and (1.9) we deduce the desired inequality (1.2) .
To prove the sharpness of (1.2) , let choose h(x) = 1,

f (x) = g (x) = sgn
(
x− a+b

2

)
for all x ∈ [a, b]. Then

1
b− a

b∫
a

f (x) dx = 1,

1
b− a

b∫
a

f (x) dx =
1

b− a

b∫
a

g (x) dx = 0,

Φ− ϕ = Γ− γ = 2

and the equality in (1.2) is realized.�
For other inequalities of Grüss type see the book [1], where many other references are given.
We omit the details.
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2 The Case When Both Mappings Are Lipschitzian

The following inequality of Grüss’ type for lipschitzian mappings holds :

Theorem 2.1. Let f, g : [a, b] → R be two lipschitzian mappings with the constants L1 > 0
and L2 > 0, i.e.,

|f (x)− f (y)| ≤ L1 |x− y| , |g (x)− g (y)| ≤ L2 |x− y|(2.1)

for all x, y ∈ [a, b] . If p : [a, b]→ [0,∞) is integrable, then∣∣∣∣∣∣
b∫
a

p (x) dx ·
b∫
a

p (x) f (x) g (x) dx−
b∫
a

p (x) f (x) dx ·
b∫
a

p (x) g (x) dx

∣∣∣∣∣∣(2.2)

≤ L1L2

 b∫
a

p (x) dx ·
b∫
a

p (x)x2dx−

 b∫
a

p (x)xdx

2
and the inequality is sharp.

Proof. By (2.1) we have that

|(f (x)− f (y)) (g (x)− g (y))| ≤ L1L2 (x− y)2

for all x, y ∈ [a, b] .
Multiplying by p (x) p (y) ≥ 0 and integrating on [a, b]2, we get∣∣∣∣∣∣

b∫
a

b∫
a

p (x) p (y) (f (x)− f (y)) (g (x)− g (y)) dxdy

∣∣∣∣∣∣
≤

b∫
a

b∫
a

p (x) p (y) |(f (x)− f (y)) (g (x)− g (y))| dxdy

≤ L1L2

b∫
a

b∫
a

p (x) p (y) (x− y)2
dxdy.

As it is easy to see that

1
2

b∫
a

b∫
a

(f (x)− f (y)) (g (x)− g (y)) p (x) p (y) dxdy

=

b∫
a

p (x) dx

b∫
a

p (x) f (x) g (x) dx−
b∫
a

p (x) f (x) dx

b∫
a

p (x) g (x) dx

and

1
2

b∫
a

b∫
a

p (x) p (y) (x− y)2
dxdy =

b∫
a

p (x) dx

b∫
a

p (x)x2dx−

 b∫
a

p (x)xdx

2

the inequality (2.2) is thus obtained.
Now, if we chose f (x) = L1x, g (x) = L2x, then f is L1−lipschitzian , g is L2−lipschitzian

and the equality in (2.2) is realized for any p as above.

RGMIA Research Report Collection, Vol. 1, No. 2, 1998
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Corollary 2.2. Under the above assumptions, we have∣∣∣∣∣∣ 1
b− a

b∫
a

f (x) g (x) dx− 1
b− a

b∫
a

f (x) dx · 1
b− a

b∫
a

g (x) dx

∣∣∣∣∣∣(2.3)

≤ L1L2 (b− a)2

12
.

The constant 1
12 is the best possible.

We note that the above corollary is a natural generalization of a well-known result by
C̆ebys̆ev (see for example [1, p. 297]) :

Corollary 2.3. Let f, g : [a, b] → R be two differentiable mappings whose derivatives are
bounded on (a, b). Denote ‖f ′‖∞ = sup

t∈(a,b)
|f ′ (t)| <∞. Then we have the inequality:

∣∣∣∣∣∣ 1
b− a

b∫
a

f (x) g (x) dx− 1
b− a

b∫
a

f (x) dx · 1
b− a

b∫
a

g (x) dx

∣∣∣∣∣∣(2.4)

≤
‖f ′‖∞ ‖g′‖∞

12
(b− a)2

.

The constant 1
12 is the best possible.

3 The Case When f Is Lipschitzian

We are able now to prove another inequality of Grüss type assuming that only one mapping is
lipschitzian as follows:

Theorem 3.1. Let f : [a, b] → R be a M−lipschitzian mapping on [a, b]. Then we have the
inequality: ∣∣∣∣∣∣ 1

b− a

b∫
a

f (x) g (x) dx− 1
b− a

b∫
a

f (x) dx · 1
b− a

b∫
a

g (x) dx

∣∣∣∣∣∣(3.1)

≤



M ‖g‖1 provided that g ∈ L1 [a, b]

M

[
2

(p+ 1) (p+ 2)

] 1
p

(b− a)
1
p ‖g‖q provided that g ∈ Lq[a, b]

p > 1 and 1
p + 1

q = 1;

M
(b− a)3

3
‖g‖∞ provided that g ∈ L∞ [a, b] .

Proof. We have that

|f (x) g (y)− f (y) g (y)| ≤M |x− y| |g (y)|

for all x, y ∈ [a, b] , from where, by integration on [a, b]2, we get that∣∣∣∣∣∣
b∫
a

b∫
a

(f (x) g (y)− f (y) g (y)) dxdy

∣∣∣∣∣∣ ≤M
b∫
a

b∫
a

|x− y| |g (y)| dxdy.

RGMIA Research Report Collection, Vol. 1, No. 2, 1998
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But

b∫
a

b∫
a

(f (x) g (y)− f (y) g (y)) dxdy =

b∫
a

f (x) dx

b∫
a

g (x) dx− (b− a)

b∫
a

f (x) g (x) dx.

Now, if g ∈ L1 [a, b] , then

b∫
a

b∫
a

|x− y| |g (y)| dxdy ≤ (b− a) max |x− y|
(x,y)∈[a,b]2

b∫
a

|g (y)| dy = (b− a)2 ‖g‖1 .

Now, assume that p > 1 and 1
p + 1

q = 1, g ∈ Lq [a, b] . Then by Hölder’s integral inequality
we have:

b∫
a

b∫
a

|x− y| |g (y)| dxdy

≤

 b∫
a

b∫
a

|x− y|p dxdy


1
p
 b∫
a

b∫
a

|g (y)|q dxdy


1
q

= K
1
p (b− a)

1
q ‖g‖q

where

K :=

b∫
a

b∫
a

|x− y|p dxdy =

b∫
a

 b∫
a

|y − x|p dy

 dx

=

b∫
a

 x∫
a

|x− y|p dy +

b∫
x

|y − x|p dy

 dx

=

b∫
a

[
(x− a)p+1 + (b− x)p+1

p+ 1

]
dx =

2 (b− a)p+2

(p+ 1) (p+ 2)

and then we get

b∫
a

b∫
a

|x− y| |g (y)| dxdy ≤
[

2
(p+ 1) (p+ 2)

] 1
p

(b− a)2+ 1
p ‖g‖q .

Finally, assuming that g ∈ L∞ [a, b], we have that

b∫
a

b∫
a

|x− y| |g (y)| dxdy ≤ ‖g‖∞

b∫
a

b∫
a

|x− y| dxdy =
(b− a)3

3
‖g‖∞ .

The theorem is thus proved.

The following corollary is important in applications.

Corollary 3.2. Let f : [a, b] → R be a differentiable mapping whose derivative is bounded on
(a, b) . Then we have the inequality:∣∣∣∣∣∣ 1

b− a

b∫
a

f (x) g (x) dx− 1
b− a

b∫
a

f (x) dx · 1
b− a

b∫
a

g (x) dx

∣∣∣∣∣∣(3.2)

RGMIA Research Report Collection, Vol. 1, No. 2, 1998
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≤



‖f ′‖∞ ‖g‖1 provided that g ∈ L1 [a, b]

[
2

(p+ 1) (p+ 2)

] 1
p

(b− a)
1
p ‖f ′‖∞ ‖g‖q provided that g ∈ Lq [a, b]

p > 1, 1
p + 1

q = 1;

(b− a)
3

‖f ′‖∞ ‖g‖∞ provided that g ∈ L∞ [a, b] .

4 The Case When f Is M − g-Lipschitzian

Another generalization of Grüss’ integral inequality is embodied in the following theorem:

Theorem 4.1. Let f, g : [a, b]→ R be two integrable mappings on [a, b] such that

|f (x)− f (y)| ≤M |g (x)− g (y)| for all x, y ∈ [a, b] .(4.1)

Then we have the inequality:∣∣∣∣∣∣
b∫
a

p (x) dx ·
b∫
a

p (x) f (x) g (x) dx−
b∫
a

p (x) f (x) dx ·
b∫
a

p (x) g (x) dx

∣∣∣∣∣∣(4.2)

≤M

 b∫
a

p (x) dx

b∫
a

p (x) g2 (x) dx−

 b∫
a

p (x) g (x) dx

2
where p : [a, b] → [0,∞) is an arbitrary integrable function on [a, b] . The inequality (4.2) is
sharp.

Proof. By condition (4.1) we have

|(f (x)− f (y)) (g (x)− g (y))| ≤M (g (x)− g (y))2 for all x, y ∈ [a, b] .

Multiplying by p (x) p (y) ≥ 0 and integrating on [a, b]2 we get∣∣∣∣∣∣
b∫
a

b∫
a

p (x) p (y) (f (x)− f (y)) (g (x)− g (y)) dxdy

∣∣∣∣∣∣

≤
b∫
a

b∫
a

p (x) p (y) |(f (x)− f (y)) (g (x)− g (y))| dxdy

≤M
b∫
a

b∫
a

p (x) p (y) (g (x)− g (y))2
dxdy

which is clearly equivalent to (4.2).
Now, if we choose f (x) = Mx, g (x) = x, then the equality in the above inequality is realized

for any p as above .

The following corollary is important for applications.
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Corollary 4.2. Let f, g : [a, b] → R be two differentiable mappings with g′ (x) 6= 0 on (a, b)
and there exists a constant M > 0 so that:∣∣∣∣f ′ (x)

g′ (x)

∣∣∣∣ ≤M for all x ∈ (a, b) .(4.3)

Then we have the inequality (4.2).The inequality is sharp.

Proof. Use the Cauchy’s mean value theorem, i.e., for every x, y ∈ [a, b] with x 6= y, there exists
a c between x and y so that

f (x)− f (y)
g (x)− g (y)

=
f ′ (c)
g′ (c)

.

Consequently, for each x, y ∈ [a, b] we have

|f (x)− f (y)| ≤M |g (x)− g (y)|

i.e., (4.1) holds. Applying Theorem 4.1, we get (4.3) .

Remark 4.1. Under the assumption of Corollary 4.2 we can choose

M = sup
x∈(a,b)

∣∣∣∣f ′ (x)
g′ (x)

∣∣∣∣ =
∥∥∥∥f ′g′

∥∥∥∥
∞
,

assuming that the norm is finite.

Remark 4.2. If f, g are as in the above theorem, then we have the inequality∣∣∣∣∣∣ 1
b− a

b∫
a

f (x) g (x) dx− 1
b− a

b∫
a

f (x) dx · 1
b− a

b∫
a

g (x) dx

∣∣∣∣∣∣(4.4)

≤M

 1
b− a

b∫
a

g2 (x) dx−

 1
b− a

b∫
a

g (x) dx

2
and the inequality is sharp.

2. If f, g are as in Corollary 4.2, then we have the inequality∣∣∣∣∣∣ 1
b− a

b∫
a

f (x) g (x) dx− 1
b− a

b∫
a

f (x) dx · 1
b− a

b∫
a

g (x) dx

∣∣∣∣∣∣
≤
∥∥∥∥f ′g′

∥∥∥∥
∞

 1
b− a

b∫
a

g2 (x) dx−

 1
b− a

b∫
a

g (x) dx

2
and the inequality is sharp.

5 The Case When Both Mappings Are of Hölder Type

In this section we point out a Grüss’ type inequality for mappings satisfying the condition of
Hölder as follows :
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Theorem 5.1. Suppose that f is of r−Hölder type and g is of s−Hölder, i.e.,

|f (x)− f (y)| ≤ H1 |x− y|r and |g (x)− g (y)| ≤ H2 |x− y|s(5.1)

for all x, y ∈ [a, b] , where H1,H2 > 0 and r, s ∈ (0, 1] are fixed. Then we have the inequality:∣∣∣∣∣∣ 1
b− a

b∫
a

f (x) g (x) dx− 1
b− a

b∫
a

f (x) dx · 1
b− a

b∫
a

g (x) dx

∣∣∣∣∣∣(5.2)

≤ H1H2 (b− a)r+s

(r + s+ 1) (r + s+ 2)
.

Proof. By the assumption (5.1) we have

|(f (x)− f (y)) (g (x)− g (y))| ≤ H1H2 |x− y|r+s

for all x, y ∈ [a, b] .
Integrating on [a, b]2 we get∣∣∣∣∣∣

b∫
a

b∫
a

(f (x)− f (y)) (g (x)− g (y)) dxdy

∣∣∣∣∣∣

≤
b∫
a

b∫
a

|(f (x)− f (y)) (g (x)− g (y))| dxdy ≤ H1H2

b∫
a

b∫
a

|x− y|r+s dxdy.

Now, we observe that :

b∫
a

b∫
a

|x− y|r+s dxdy =

b∫
a

 b∫
a

|y − x|r+s dy

 dx

=

b∫
a

∫ x

a

(x− y)r+sdy +

b∫
x

(y − x)r+s dy

 dx

=

b∫
a

[
(x− a)r+s+1 + (b− x)r+s+1

r + s+ 1

]
dx

=
2 (b− a)r+s+1

(r + s+ 1) (r + s+ 2)

and as

1
2

b∫
a

b∫
a

(f (x)− f (y)) (g (x)− g (y)) dxdy

= (b− a)

b∫
a

f (x) g (x) dx−
b∫
a

f (x) dx ·
b∫
a

g (x) dx

we get the desired inequality (5.2) .
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6 The Case When f ′and g′ Belong to Some Lp-Spaces

In this section we point out some inequalities of Grüss’ type for differentiable mappings whose
derivatives belong firstly to L∞ (a, b), then to Lp (a, b) (p > 1) and finally to L1 (a, b) .

Theorem 6.1. Let f, g : [a, b] → R be two differentiable mappings on (a, b) and p : [a, b] →
[0,∞) is integrable on [a, b] . If f ′, g′ ∈ L∞ (a, b) , then we have the inequality∣∣∣∣∣∣

b∫
a

p (x) dx ·
b∫
a

p (x) f (x) g (x) dx−
b∫
a

p (x) f (x) dx ·
b∫
a

p (x) g (x) dx

∣∣∣∣∣∣(6.1)

≤ 1
2

b∫
a

b∫
a

p (x) p (y)

∣∣∣∣∣∣
y∫
x

|f ′ (t)| dt

∣∣∣∣∣∣
∣∣∣∣∣∣
y∫
x

|g′ (z)| dz

∣∣∣∣∣∣ dxdy

≤ ‖f ′‖∞ ‖g
′‖∞

 b∫
a

p (x) dx

b∫
a

p (x)x2dx−

 b∫
a

p (x)xdx

2 .
Moreover, the inequality (6.1)is sharp.

Proof. Let observe that for any x, y ∈ [a, b] we have that

(f (x)− f (y)) (g (x)− g (y)) =

y∫
x

y∫
x

f ′ (t) g′ (z) dtdz.

As f ′, g′ ∈ L∞ (a, b) , then we have

p (x) p (y) |(f (x)− f (y)) (g (x)− g (y))|

≤

∣∣∣∣∣∣
y∫
x

|f ′ (t)| dt

∣∣∣∣∣∣
∣∣∣∣∣∣
y∫
x

|g′ (z)| dz

∣∣∣∣∣∣ p (x) p (y) ≤ ‖f ′‖∞ ‖g
′‖∞ (x− y)2

p (x) p (y)

for all x, y ∈ [a, b] .
By the properties of the modulus, we have∣∣∣∣∣∣

b∫
a

b∫
a

p (x) p (y) (f (x)− f (y)) (g (x)− g (y)) dxdy

∣∣∣∣∣∣(6.2)

≤
b∫
a

b∫
a

p (x) p (y)

∣∣∣∣∣∣
y∫
x

|f ′ (t)| dt

∣∣∣∣∣∣
∣∣∣∣∣∣
y∫
x

|g′ (z)| dz

∣∣∣∣∣∣ dxdy

≤ ‖f ′‖∞ ‖g
′‖∞

b∫
a

b∫
a

(x− y)2
p (x) p (y) dxdy,

from where we get the desired inequality (6.1) .
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To prove the sharpness of (6.1), let consider the mappings f (x) = αx + β, g (x) = γx + δ
(α, γ > 0, β, δ ∈ R) on [a, b]. A simple calculation gives

b∫
a

p (x) dx ·
b∫
a

p (x) f (x) g (x) dx−
b∫
a

p (x) f (x) dx ·
b∫
a

p (x) g (x) dx

=
1
2

b∫
a

b∫
a

p (x) p (y)

∣∣∣∣∣∣
y∫
x

|f ′ (t)| dt

∣∣∣∣∣∣
∣∣∣∣∣∣
y∫
x

|g′ (z)| dz

∣∣∣∣∣∣ dxdy
= ‖f ′‖∞ ‖g

′‖∞

 b∫
a

p (x) dx

b∫
a

p (x)x2dx−

 b∫
a

p (x)xdx

2
=
αγ

2

b∫
a

b∫
a

(x− y)2
p (x) p (y) dxdy

which proves that we can have equality in all inequalities in (6.1) .

The following corollary holds.

Corollary 6.2. With the above assumptions on the mappings f, g, we have :∣∣∣∣∣∣ 1
b− a

b∫
a

f (x) g (x) dx− 1
b− a

b∫
a

f (x) dx · 1
b− a

b∫
a

g (x) dx

∣∣∣∣∣∣(6.3)

≤ 1
2

b∫
a

b∫
a

∣∣∣∣∣∣
y∫
x

| f ′ (t) | dt

∣∣∣∣∣∣
∣∣∣∣∣∣
y∫
x

| g′ (z) | dz

∣∣∣∣∣∣ dxdy ≤ ‖f
′‖∞ ‖g′‖∞

12
(b− a)2

.

The constants 1
2 and 1

12 , respectively, are the best possible.

Remark 6.1. We shall show that some time the estimation given by classical Grüss’ inequality
for the difference

1
b− a

b∫
a

f (x) g (x) dx−
b∫
a

f (x) dx · 1
b− a

b∫
a

g (x) dx

is better than the estimation (6.3) and some other time the other way around.

Let f, g : [0, 1]→ [0,∞) given by f (x) = xp, g (x) = xq, p, q > 1. Then

ϕ = inf
x∈[0,1]

f (x) = 0, Φ = sup
x∈[0,1]

f (x) = 1;

γ = inf
x∈[0,1]

g (x) = 0, Γ = sup
x∈[0,1]

g (x) = 1.

Also we have

f ′ (x) = pxp−1, g′ (x) = qxq−1, x ∈ [0, 1]
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and obviously ‖f ′‖∞ = p, ‖g′‖∞ = q.
Now, we observe that

1
4

(Φ− ϕ) (Γ− γ) =
1
4

and

‖f ′‖∞ ‖g′‖∞
12

(b− a)2 =
pq

12
.

Consequently, if pq > 3 , then the bound provided by Grüss’ inequality is better than the
bound provided by (6.3) . If pq < 3 (p, q > 1) then (6.3) is better than (1.1) .

Remark 6.2. The inequality (6.3) is also a refinement of Čebys̆ev’s inequality embodied in
Corollary 2.2.

The following theorem also holds

Theorem 6.3. Let f, g : [a, b] → R be two differentiable mappings on (a, b) and p : [a, b] →
[0,∞) is integrable on [a, b]. If f ′ ∈ Lα (a, b), g′ ∈ Lβ (a, b) with α > 1 and 1

α + 1
β = 1, then we

have the inequality∣∣∣∣∣∣
b∫
a

p (x) dx

b∫
a

p (x) f (x) g (x) dx−
b∫
a

p (x) f (x) dx ·
b∫
a

p (x) g (x) dx

∣∣∣∣∣∣(6.4)

≤ 1
2

 b∫
a

b∫
a

p (x) p (y) |x− y|

∣∣∣∣∣∣
y∫
x

|f ′ (t)|α dt

∣∣∣∣∣∣ dxdy


1
α

×

 b∫
a

b∫
a

p (x) p (y) |x− y|

∣∣∣∣∣∣
y∫
x

|g′ (t)|α dt

∣∣∣∣∣∣ dxdy


1
β

≤ 1
2
‖f ′‖α ‖g

′‖β

b∫
a

b∫
a

|x− y| p (x) p (y) dxdy.

Note that, the first inequality in (6.4) is sharp.

Proof. Using Hölder’s inequality for double integrals, we have∣∣∣∣∣∣
y∫
x

y∫
x

|f ′ (t) g′ (z)| dtdz

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
y∫
x

y∫
x

|f ′ (t)|α dtdz

∣∣∣∣∣∣
1
α
∣∣∣∣∣∣
y∫
x

y∫
x

|g′ (z)|β dtdz

∣∣∣∣∣∣
1
β

= |x− y|
1
α

∣∣∣∣∣∣
y∫
x

|f ′ (t)|α dt

∣∣∣∣∣∣
1
α

|x− y|
1
β

∣∣∣∣∣∣
y∫
x

|g′ (z)|α dz

∣∣∣∣∣∣
1
β

= |x− y|

∣∣∣∣∣∣
y∫
x

|f ′ (t)|α dt

∣∣∣∣∣∣
1
α
∣∣∣∣∣∣
y∫
x

|g′ (t)|β dt

∣∣∣∣∣∣
1
β

.
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Now, as in the proof of Theorem 6.1, we have :∣∣∣∣∣∣
b∫
a

b∫
a

p (x) p (y) (f (x)− f (y)) (g (x)− g (y)) dxdy

∣∣∣∣∣∣

≤
b∫
a

b∫
a

p (x) p (y)

∣∣∣∣∣∣
y∫
x

y∫
x

|f ′ (t) g′ (z)| dtdz

∣∣∣∣∣∣ dxdy

≤
b∫
a

b∫
a

p (x) p (y) |x− y|

∣∣∣∣∣∣
y∫
x

|f ′ (t)|α dt

∣∣∣∣∣∣
1
α
∣∣∣∣∣∣
y∫
x

|g′ (z)|β dz

∣∣∣∣∣∣
1
β

dxdy.

Using again Hölder’s inequality for double integrals, we have

b∫
a

b∫
a

p (x) p (y) |x− y|

∣∣∣∣∣∣
y∫
x

|f ′ (t)|α dt

∣∣∣∣∣∣
1
α
∣∣∣∣∣∣
y∫
x

|g′ (z)|β dz

∣∣∣∣∣∣
1
β

dxdy(6.5)

≤

 b∫
a

b∫
a

p (x) p (y) |x− y|

∣∣∣∣∣∣
y∫
x

|f ′ (t)|α dt

∣∣∣∣∣∣ dxdy


1
α

×

 b∫
a

b∫
a

p (x) p (y) |x− y|

∣∣∣∣∣∣
y∫
x

|g′ (z)|β dz

∣∣∣∣∣∣ dxdy


1
β

and, as

b∫
a

b∫
a

p (x) p (y) (f (x)− f (y)) (g (x)− g (y)) dxdy(6.6)

= 2

 b∫
a

p (x) dx

b∫
a

p (x) f (x) g (x) dx−
b∫
a

p (x) f (x) dx

b∫
a

p (x) g (x) dx


the inequality (6.5) and (6.6) provide the first inequality in (6.4) .
Now, let observe that∣∣∣∣∣∣

y∫
x

|f ′ (t)|α dt

∣∣∣∣∣∣ ≤ ‖f ′‖αα ,
∣∣∣∣∣∣
y∫
x

|g′ (z)|β dz

∣∣∣∣∣∣ ≤ ‖g′‖ββ
for all x, y ∈ [a, b] , and then

 b∫
a

b∫
a

p (x) p (y) |x− y|

∣∣∣∣∣∣
y∫
x

|f ′ (t)|α dt

∣∣∣∣∣∣ dxdy


1
α
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×

 b∫
a

b∫
a

p (x) p (y) |x− y|

∣∣∣∣∣∣
y∫
x

|g′ (z)|β dt

∣∣∣∣∣∣ dxdy


1
β

≤ ‖f ′‖α

 b∫
a

b∫
a

p (x) p (y) |x− y| dxdy


1
α

× ‖g′‖β

 b∫
a

b∫
a

p (x) p (y) |x− y| dxdy


1
β

= ‖f ′‖α ‖g
′‖β

b∫
a

b∫
a

p (x) p (y) |x− y| dxdy

and the second inequality in (6.4) is also proved.
For the sharpness of the first inequality in (6.4) , let consider the mappings f, g : [a, b]→ R,

f (x) = mx+ n, g (x) = sx+ z with m, t > 0. Then, obviously

b∫
a

p (x) dx

b∫
a

p (x) f (x) g (x) dx−
b∫
a

p (x) f (x) dx ·
b∫
a

p (x) g (x) dx

=
1
2
ms

b∫
a

b∫
a

p (x) p (y) (x− y)2
dxdy

and ∣∣∣∣∣∣
y∫
x

|f ′ (t)|α dt

∣∣∣∣∣∣ = mα |x− y| ,

∣∣∣∣∣∣
y∫
x

|g′ (z)|β dz

∣∣∣∣∣∣ = sβ |x− y|

then  b∫
a

b∫
a

p (x) p (y) |x− y|

∣∣∣∣∣∣
y∫
x

|f ′ (t)|α dt

∣∣∣∣∣∣ dxdy


1
α

×

 b∫
a

b∫
a

p (x) p (y) |x− y|

∣∣∣∣∣∣
y∫
x

|g′ (z)|β dz

∣∣∣∣∣∣ dxdy


1
β

= ms

 b∫
a

b∫
a

p (x) p (y) |x− y|2 dxdy


1
α

×

 b∫
a

b∫
a

p (x) p (y) |x− y|2 dxdy


1
β

= ms

b∫
a

b∫
a

p (x) p (y) (x− y)2
dxdy

and the equality is realized in the first inequality in (6.4) .

The following corollary holds.
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Corollary 6.4. Let f, g be as above. Then we have the inequality∣∣∣∣∣∣ 1
b− a

b∫
a

f (x) g (x) dx− 1
b− a

b∫
a

f (x) dx · 1
b− a

b∫
a

g (x) dx

∣∣∣∣∣∣(6.7)

≤ 1
2

 1
(b− a)2

b∫
a

b∫
a

|x− y| |
y∫
x

|f ′ (t) |αdt| dxdy


1
α

×

 1
(b− a)2

b∫
a

b∫
a

|x− y| |
y∫
x

|g′ (t) |βdt|dxdy


1
β

≤ 1
6
‖f ′‖α ‖g

′‖β (b− a) .

The first inequality in (6.7) is sharp.

In a similar way we can prove the following theorem:

Theorem 6.5. Let f, g : [a, b] → R be two differentiable mappings on (a, b). If f ′ ∈ L∞(a, b)
and g′ ∈ L1 (a, b) then we have the inequalities:∣∣∣∣∣∣

b∫
a

p (x) dx

b∫
a

p (x) f (x) g (x) dx−
b∫
a

p (x) f (x) dx ·
b∫
a

p (x) g (x) dx

∣∣∣∣∣∣(6.8)

≤ 1
2

b∫
a

b∫
a

p (x) p (y) |x− y| sup
t∈[x,y]

|f ′ (t)|

∣∣∣∣∣∣
y∫
x

|g′ (z)| dz

∣∣∣∣∣∣ dxdy

≤ 1
2
‖f ′‖∞ ‖g

′‖1

b∫
a

b∫
a

p (x) p (y) |x− y| dxdy.

The first inequality in (6.8) is sharp.

The following corollary also holds.

Corollary 6.6. Under the above assumptions for the mappings f and g, we have∣∣∣∣∣∣ 1
b− a

b∫
a

f (x) g (x) dx− 1
b− a

b∫
a

f (x) dx · 1
b− a

b∫
a

g (x) dx

∣∣∣∣∣∣(6.9)

≤ 1
2 (b− a)2

b∫
a

b∫
a

p (x) p (y) |x− y| sup
t∈[x,y]

|f ′ (t)|

∣∣∣∣∣∣
y∫
x

|g′ (z)| dz

∣∣∣∣∣∣ dxdy

≤ 1
6
‖f ′‖∞ ‖g

′‖1 (b− a) .

The first inequality in (6.9) is sharp.
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Remark 6.3. We note that some time the upper bound provided by (6.4) is better than the
upper bound given by (6.8) and other time, the other way around.

Indeed, choosing f, g : [0, 1]→ R, f (x) = xp, g (x) = xq (p, q > 1) we have

f ′ (x) = pxp−1, g′ (x) = qxq−1, ‖f ′‖∞ = p, ‖g′‖1 = 1,

‖f ′‖α =
p

[α (p− 1) + 1]
1
α

and

‖g′‖q =
q

[β (q − 1) + 1]
1
β

where α, β > 1 and 1
α + 1

β = 1.
Also, let

A :=
1
6
‖f ′‖∞ ‖g

′‖1 (b− a) =
p

6

and

B :=
1
6
‖f ′‖α ‖g

′‖β (b− a) =
pq

6 [α (p− 1) + 1]
1
α [β (q − 1) + 1]

1
β

.

If we choose α = β = 2, we get

A

B
=

[(2p+ 1) (2q + 1)]
1
2

q

which can be greater or less than 1 for different values of p, q > 1.
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