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SOME ESTIMATIONS OF KRAFT NUMBERS AND RELATED
RESULTS

N.M. DRAGOMIR, S.S. DRAGOMIR AND K. PRANESH

Abstract. Some inequalities for Kraft numbers which are important in coding theory [2, 3], for
they lead to a simple criterion to determine whether or not there is an instantaneous code with
given codeword lengths, are pointed out.

1 Introduction

The following remarkable theorem, published by L.G. Kraft in 1949 gives a simple criterion to
determine whether or not there is an instantaneous code [1, p. 43] with given code word lengths
[1, p. 44].

Theorem 1.1. (Kraft’s Theorem) We have

1. If C is an r-ary instantaneous code with code word lengths l1, ..., ln, then these lengths
must satisfy Kraft’s inequality

n∑
k=1

1
rlk
≤ 1.(1.1)

2. If the numbers l1, l2, ..., ln and r satisfy Kraft’s inequality (1.1) , then there is an instan-
taneous r-ary code with codeword lengths l1, ..., ln.

It is interesting to observe that Kraft’s inequality is also necessary and sufficient for the
existence of a uniquely decipherable code. Of course, Kraft’s inequality is sufficient since any
instantaneous code is also uniquely decipherable. The necessity of Kraft’s inequality was proved
by McMillan in 1956 [1, p. 47]:

Theorem 1.2. (McMillan’s Theorem). If C = {c1, ..., cn } is a uniquely decipherable r-ary
code, then its code word lengths must satisfy Kraft’s inequality (1.1).

Define now for an r-ary code C having the code word lengths l1, ..., ln the Kraft numbers

Kr (l1, ..., ln) =
n∑
k=1

1
rlk

.

In what follows we shall point out some new inequalities for Kraft numbers which are closely
connected with the inequalities (1.1). Some related results with Kraft’s theorem are also given.
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2 The Results

We shall start with the following lemma which is of interest in itself.

Lemma 2.1. Let r, li (i = 1, ..., n) be real numbers with r > 1.
Then we have the double inequality

ln r
n∑
i=1

logr
(
rli
)

rli
≤ 1−

n∑
i=1

1
rli
≤ ln r

[
1
n

n∑
i=1

li − logr n

]
.(2.1)

The equality holds iff li = logr n for all i ∈ {1, ..., n}.

Proof. The exponential map f : R→ (0,∞), f (x) = rx is strictly convex on R.
Recall that for a convex mapping f which is differentiable on its domain, we have the double

inequality:

f
′
(y)(x− y) ≤ f(x)− f(y) ≤ f

′
(x)(x− y)(2.2)

for all x, y in the domain of f .
As f

′
(x) = rx ln r, then by (2.2) we get

ry(x− y) ln r ≤ rx − ry ≤ rx(x− y) ln r, x, y ∈ R.(2.3)

Now if we choose into the inequality (2.3) x = −li, y = logr
( 1
n

)
we deduce

r−li
[
−li − logr

(
1
n

)]
ln r ≥ r−li − 1

n
≥ 1
n

[
−li − logr

(
1
n

)]
ln r

for all i ∈ {1,..., n}, which is equivalent to:

(li − logr n) r−li ln r ≤ 1
n
− 1
rli
≤ 1
n

(li − logr n) ln r(2.4)

for all i ∈ {1, ..., n}.
Summing in (2.4) over i from 1 to n, we deduce (2.1). The case of equality follows by the

strict convexity of the mapping f(x) = rx (r > 1, x ∈ R) . We shall omit the details.

Theorem 2.2. Let C = (c1,..., cn) be an r-ary code having the codeword lengths l1, ..., ln. Then
we have the estimation for the Kraft’s number:

1
n ln r

n∑
i=1

[
ln (nr)− li [ln r]2

]
≤ Kr (l1, ..., ln)(2.5)

≤ 1
n ln r

n∑
i=1

[
rli ln r + n lnn− nli [ln r]2

rli

]
.

The equality holds iff li = logr n.

Proof. By Lemma 2.1, we have

Kr (l1, ..., ln) ≥ 1− ln r

[
1
n

n∑
i=1

li − logr n

]

=
1

n ln r

n∑
i=1

[
ln(nr)− li(ln r)2]
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and

Kr (l1, ..., ln) ≤ 1− ln r
n∑
i=1

logr
(
rli

n

)
rli

=
1

n ln r

n∑
i=1

[
rli ln r + n ln r − nli [ln r]

rli

2
]
.

The case of equality is obvious by the same lemma.

Corollary 2.3. Let C = (c1, ..., cn) be an r-ary code having the codeword lengths l1, ..., ln. If

1
n

(l1 + ...+ ln) < logr n,(2.6)

then C is not uniquely decipherable.

Corollary 2.4. If the real numbers r, li(i = 1, ..., n) satisfy the inequality:

n∑
i=1

li
rli

n∑
i=1

1
rli

≥ logr n(2.7)

then there is an instantaneous r-ary code with codeword lengths l1, ..., ln.

Proof. Note that the inequality (2.7) is clearly equivalent to

n∑
i=1

li − logr n
rli

≥ 0

but by the inequality (2.1) we have

0 ≤ ln r
n∑
i=1

li − logr n
rli

≤ 1−Kr (l1, ..., ln)

and, then

Kr (l1, ..., ln) ≤ 1.

Applying Kraft’s theorem we deduce the desired conclusion.

Lemma 2.5. Let r, li ≥ 1 (i = 1, ..., n) be real numbers. Then we have the inequality:

1
n

n∑
i=1

li

(
1− n

1
li

r

)
≥ 1−

n∑
i=1

1
rli
≥ r

n∑
i=1

li

rlin
1
li

(
1− n

1
li

r

)
.(2.8)

The equality holds iff li = logr n, i = 1, ..., n.

Proof. The mapping g(x) = xp, p ≥ 1 is strictly convex on (0,∞) so by the inequality (2.2) ,
we have the inequality

pbp−1 (a− b) ≤ ap − bp ≤ pap−1 (a− b)(2.9)

for all a, b ∈ [0,∞).
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Let choose in (2.9)

p = li ≥ 1, a =
1
r

, b =
(

1
r

) 1
li

to get for all i ∈ {1, ..., n}

li

(
1
n

) li−1
li

(
1
r
−
(

1
n

) 1
li

)
≤ r−li − 1

n
≤ li

(
1
r

)li−1
(

1
r
−
(

1
n

) 1
li

)

which is equivalent to

1
rn
lin

1
li − li

n
≤ r−li − 1

n
≤ li

(
1
r

)li
− li

(
1
r

)li−1( 1
n

) 1
li

(2.10)

for all i ∈ {1, ..., n}.
Summing into the inequality (2.10) over i from 1 to n, we derive

1
rn

n∑
i=1

lin
1
li − 1

n

n∑
i=1

li ≤
n∑
i=1

1
rli
− 1 ≤

n∑
i=1

li

(
1
r

)li
−

n∑
i=1

li
rli−1

1

n
1
li

which is equivalent to (2.8).
The case of equality holds from the strict convexity of g and taking into account that

1
r =

( 1
n

) 1
li iff 1

li
logr

1
n = −1, i.e., li = logr n, i = 1, ..., n.

In the following theorem we give an estimation of Kraft numbers Kr (l1, ..., ln) holds.

Theorem 2.6. Let C = (c1, ..., cn) be an r-ary code with the codeword lengths l1, ..., ln. Then
we have the estimation

1
nr

n∑
i=1

[
n

1
li

+1 − r (li − 1)
]
≤ Kr (l1, ..., ln)(2.11)

≤ 1
nr

n∑
i=1

rli+1n
1
li

(
n

1
li

+1 + 1
)
− nr2li

rlin
1
li


The equality holds in (2.11) iff li = logr n.

Proof. By Lemma 2.5 we have

Kr (l1, ..., ln) ≥ 1− 1
n

n∑
i=1

(
li −

n
1
li

r

)
=

1
nr

n∑
i=1

[
r (1− li) + n

1
li

+1
]

=
1
nr

n∑
i=1

[
n

1
li

+1 − r (li − 1)
]

and

Kr (l1, ..., ln) ≤ 1−
n∑
i=1

[
rli

rlin
1
li

− n
1
li

]

=
1
nr

n∑
i=1

rli+1n
1
li

(
1 + n

1
li

+1
)

rlin
1
li


and the inequality (2.11) is proved. The case of equality follows by Lemma 2.5, too.
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Proposition 2.7. Let C = (c1, ..., cn) be an r-ary code with the codeword lengths l1, ..., ln. If

n∑
i=1
lin

1
li

n∑
i=1
li

> r(2.12)

then C is not uniquely decipherable.

Proof. If we would assume that C is uniquely decipherable, then by McMillan’s theorem we
have that Kr (l1, ..., ln) ≥ 1 which implies

0 ≤ 1−Kr (l1, ..., ln) ≤
n∑
i=1

li

(
1− n

1
li

r

)

and then
n∑
i=1
li ≥ 1

r

n∑
i=1
n

1
li li which contradicts (2.12).

Finally, we obtain the following sufficient condition for the existence of an instantaneous
code having a given the non-negative integers r and the lengths l1, ..., ln.

Theorem 2.8. If the non-negative integers r, li (i = 1, ..., n) satisfy the inequality:

r ≥

n∑
i=1

li
rli

n∑
i=1

li

rli n
1
li

then there is one instantaneous r-ary code with codeword lengths l1, ..., ln.

The proof follows by Lemma 2.5 and Kraft’s theorem. We shall omit the details.
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