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A HADAMARD-JENSEN INEQUALITY AND AN
APPLICATION TO THE ELASTIC TORSION PROBLEM

S.S. DRAGOMIR AND G. KEADY

ABsTRACT. The (generalised) torsion function u of a domain 2 C R" is a function
which is zero on the boundary of the domain and whose Laplacian is minus one at
every point in the interior of the domain. Denote by |Q2| the measure of 2, z. its
centroid. We establish, for convex €,
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Various improvements, generalisations and possible applications are discussed.

1 FOUNDATIONAL MATERIALS

1.1 Introduction

The main results in this paper concern positive functions u with certain concavity
properties (usually that u to some power is concave) defined on a convex domain
2 and vanishing on its boundary. We find bounds for quantities, with & > 0, like

(1.1) C kyu,zp) =

where z,, is a given point in (2. In some bounds, notably those from the Hadamard
inequality, z, = x. the centroid of 2. In other bounds, =, = z,, the location of
the maximum of u.

The Research Report version of this paper, and supplements at the same Web
site, [1], contain further details and applications.

Without concavity properties for v or information concerning u such as one
might have from being given that u solves some partial differential equation prob-
lem, results on ( are limited. Here, however, is one easy result.

Theorem 1.1. For any domain Q2 and positive function u defined on ), the func-
tional ((Q, k,u,xp) defined by equation (1.1) satisfies the following.
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12 Dragomir and Keady

(i) For any x, € Q, ((Q,-,u,x,) is positive and logconcave on [0, 00).
(ii) Let x,, be a location of the mazimum of uw. Then ((Q,-,u,x,,) is monotonic
nondecreasing on [0,00). For k € [0,00), ((2,0,u,z,,) =1 < ((Q, k,u,x,,).
A simple application of the Hélder inequality gives, for 0 < ¢ < 1 and omitting

arguments which are the same in the (,

1 < 1 1
C((A = t)ko +tk1) = ((ko)t =t ((k1)t

which proves (i).

Write (,,(k) = ((k,zm). The result 1 < (,, (k) is easily improved for the
solutions u of our partial differential equation problems: see, for example, the
leftmost inequality — on (,, (1) — in the abstract.

1.2 Hadamard’s inequality

The Hermite-Hadamard inequality for convex functions defined on an interval of
the real line is given, with some history, in [10]. The result immediately below is
a generalisation of this to higher space dimensions.

Theorem 1.2. Let Q be a convez, compact subset of R™ with nonempty interior.
Suppose that the mapping ® : Q@ — R is differentiable and convex on Q). Define,
for z, € Q,

Il(xp):/Q(I)(m)dm—|Q|(I>(mp), L (zy) :/Q(th(m),m)dm—(mp,/gV@(m)dm),

where |Q] is the volume of Q. Then one has the inequalities

Il (l‘c),
I (l'p),

where x. is the centroid of Q. If u = ® is concave rather than convezx, the inequal-
ities are reversed, and, if additionally uw > 0, ((Q,1,u,z.) > 1.

(1.2) 0
(1.3) Ii(zp)

IN N

Proof. As @ is differentiable in the interior of {2 we know that
(1.4) O(z) — @(y) = (V) (y),z —y) Va,yeq,

where (a,b) = a - b is the usual inner product in R". Applying this with y = x,
and integrating over z gives

Li(z:.) = /Q<I>(:r)d:r—|ﬂ|<1>(:rc)Z/Q(V@(:rc),x—:rc>dm,

(V@(mc),/ (x —z.)dz) =0,

Q
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Elastic torsion problem 13

which establishes inequality (1.2).
Let x, be any point in the interior of Q. By inequality (1.4) we also deduce
that

B(r,) - B(z) > (V) (x), 2, — ) Vreq.
Integrating this inequality with respect to x over () gives
“h() = 1902G) - [ #@)ds
Q

vV

/(V@(m),mp>dm—/(Vfb(aj),x)daj = —Iy(zp),
Q

Q
from which we get inequality (1.3).

2 POSITIVE POWER-CONCAVE FUNCTIONS VANISHING ON Of)

2.1 Notation

We apologise for the switch from convex functions to concave ones. However, this
seems to be forced on us because of applications to partial differential equations
coming in Section 3.
In this section we are concerned with classes of positive functions defined on
the convex set €. Specifically, for 1 < «, define
U, = {u>0] u/* is concave},
Uno = {u]| u €U, which are zero on 90Q}.
The centroid z. is introduced in Section 1.2. Define also
U = MAxu, UW(Tp) = Uy
The results stated in the rest of this subsection, subsection 2.1, are for v > 0
and 1 < ¢. We have
1 1 1/¢ 1 1
(2.1) —/ul/é < —/u or C(HYE<¢(3).
Gy f, @) < Ggp f W) (?)

This inequality is simply Holder’s inequality, and is recorded here because of our
concern — in our main application, the torsion problem — with fQ u. (It is also
follows from the logconcavity of ¢ using ((0) = 1.) Another trivial inequality is

1 / 1 1
22)  ~ u<u,<5—1>/£_/ e, or B,
consistent with Theorem 1.1 (ii).

Ifu>0and 1 <&, and v = 0 on the boundary of 2, an application of the
divergence theorem gives

(2.3) —/ w-V(ul/E) = —/ div(wul/g) +n/ ut/é :n/ ul/t.
Q Q Q Q
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14 Dragomir and Keady

2.2 Concave function results

Theorem 2.1. Let o > 1. Yu € Uy o

(24) - i Cu, [ < ﬁ/gu””‘ < u(e)'?,
or 1 1 1 1
D (5) S1SUGm) SGu(Z) <+ ).
From this:
(2.5) Um < em(n, @), where em(n,a) = (n+1)%;
(2.6) canzwfs%ww> where  cpo(na) = (n -+ 1)%
Q

Proof. The right-hand part of the first inequalities (2.4-r) follows on applying the
generalisation of Hadamard’s inequality (1.2) given in Section 1.2 to the function
® = —u'/, The left-hand part (2.4-1) follows from the fact that u'/ lies above a
‘cone’ base ) and height u% ®. The next inequality is a combination of both parts
of inequalities (2.4).

Inequality (2.6) follows from inequalities (2.1), with & = «, and the left-hand
part (2.4-1). I

Here is an alternative proof of the left-hand inequality (2.4-1). We start with
applying inequality (1.3) at any point z, € Q:

—/ ul/ 4+ |Q|(u(mp))1/a < —/ T - V(ul/o‘).
Q Q
Next apply (2.3), with £ = «. This gives
Rlue,)* < (1) [ il
Q

This inequality is best when z, = z,, which gives the left-hand inequality (2.4-1)
as stated in the theorem.

Combining the next two Theorems improves on inequality (2.6).

Theorem 2.2. Let O* = {z € R" | |z| < p}. Let U = Up(1 — |z|/p) define a
conical graph over Q. Let £ > 0.

|Q*|U;n B _ F(n-f-f-l-l)
IR =cq(n,§), where cr(n, §) = T+ D+ 1)

2.7)
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Elastic torsion problem 15

Proof. Using spherical polar coordinates, we find

JoUS _ e hA =08 ""dt _  D(n+ DO(E+1)
Jol " et ™ Th+é+1)

Refer to [11, 2] for the definitions and properties of Schwarz symmetrisation. I

The following result is in the standard books on convexity for Steiner sym-
metrisation, and is also true for Schwarz symmetrisation. If v is concave over
Q, its Schwarz symmetrisation v* is concave over the symmetrised domain Q*.
(The result for Schwarz symmetrisation is proved in some books by combining the
Blaschke Selection Principle with the result for Steiner symmetrisation.) This fact
is used in the following proof.

Theorem 2.3. Leta > 1, £ > 0. Yu € Uy

2.8 = < cp(n,af),

where ¢, is defined in the preceding lemma.

Proof. Translate the origin so that it is at z,,, 2, = 0. Define, for zsq € 912, the
cone

U.(tron) = U,:n/a(l —1).

U.e€lUypand u>U.
Next, consider the Schwarz symmetrisation U} of U.,.

[ [os= [ wr
Q Q Q=

The level curve U, = u%a(l — t) is geometrically similar to 9€: it is {tzaq |

To0 € 69}.
{a | Uelw) > up/*(1 =)} = t"9.

From this U} is a ‘circular cone’, so the preceding lemma can be applied and gives
the result. i

When £ = 1 and @ > 1 inequality (2.8) improves on inequality (2.6): in the
case a = 1 they are equal. For the application to the torsion problem, we note
cr(n,2) = (n+ 1)(n + 2)/2, the right-most expression in the inequality given in
the Abstract.
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16 Dragomir and Keady

3 THE ELASTIC TORSION PROBLEM

3.1 Preliminaries

In their 1951 book [11], and subsequent papers, Pdlya and Szeg6 were concerned
with bounding various ‘physical’ domain functionals in terms of ‘geometrical’ ones.
The geometric functionals include (when n = 2) the area of Q (or the measure
of Q for general n), ||, its centroid z., its polar moment of inertia I. about
the centroid, etc.. The physical domain functionals arise from various partial
differential equation problems. For ease of exposition we consider, in this Section,
just one problem, the elastic torsion problem. In the actual physical problem
concerning elastic torsion, n = 2: see [11].

Given a domain (2, the problem of finding a u, twice continuously differentiable
in Q and continuous on the closure of () satisfying, for some given positive constant

M,

—Au = p in
u = 0 on the boundary of €,

is called the (St Venant elastic) torsion problem. There is no loss of generality in
taking p = 1.

A functional of interest in some applications is the maximum of the torsion
function, uy,, and its location @, u(zmy) = u,; = maxqu. Other functionals of
significance in elasticity include the following. The torsional rigidity is

S:/u:/|Vu|2:—l/:r-Vu.
Q Q nJo

Another functional studied here is u. = u(z.), the torsion function evaluated at
the centroid, z..

In [11] there is some concern with nondimensional combinations of domain
functionals. Quantities like S|Q|=2, SI.|Q|=* — appropriate when n = 2 — and
similar appear in tables at the back of the book, and others are scattered through-
out the text and elsewhere in the literature. Amongst various ways of unifying the
bounds on domain functionals, say for some non-dimensional combination @ is to
find positive lower bounds )1, g and finite upper bounds /g so that the bounds
have the form

Qe <Q) < Qus for © in some class of domains.
A favorite class of domains is the bounded convex domains.
For a survey of the elastic torsion problem in convex domains, for the case

n = 2, see [5].

Theorem 3.1. Let u be the torsion function of a conver domain 2. Then the
square root of u, \/u is concave.
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Elastic torsion problem 17

For n = 2 this was proved in Makar-Limanov, [7]. The result for higher space
dimensions was first proved in [6].

Theorem 3.2. (Sperb [12]). Let u be the torsion function of a bounded convex
domain Q. Then,

(3.1) ﬁi?/ww Sqm/uwwm, 50,
2 Q Q
3 197
. - < = .
(3.2 ;< e

Proof. Define the quantities Py,
P, = |Vul® + k.

Henceforth 1 = 1. In this paragraph we repeat proofs by Payne and by Sperb [12]
that, for convex (2,

P, satisfies an elliptic differential inequality (or equation when n = 2),
{-VP, 1
> + al? R(n) >0, Vu 2V >,

and R(2) = |VP|?/(2|Vu|?). The coefficients in this differential inequality become
singular at points where |[Vu| = 0, and only at these points. An application of the
maximum principle establishes that the maximum of P» occurs either at a point
where |Vu| = 0 or on the boundary of Q2. A calculation given on p.76 of [12] shows
that at any point on 012,
0P,
on
where M is the mean curvature of 9. When Q) is convex, M > 0, and the
Hopf form of the maximum principle shows that it is impossible for the maximum
of P, to be attained on 9. The details are given at pp.76-77 of [12]. Thus
inequality (3.3) is established. (The result was first established, for n = 2, by
Payne.)
An application of the divergence theorem (to div(u'/#Vu) ) shows that

/Mm:;/wwwww_
Q BJa

Applying inequality (3.3), P> < 2u,,, in the preceding gives inequality (3.1) which

at f=11is
3/u:/P2§2um|Q|,
Q Q

= (n - 1)|Vul*M,

hence inequality (3.2). Il
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18 Dragomir and Keady

3.2 The new results

Theorem 3.3. The torsion function u of a bounded convex domain € satisfies

(3.4 < < ,
2n+1)2 ~ (n+1)2 [Hu Jou
Q Q
(3.5) 2"t < e [um o)
Jou Jou
If, in addition, v € Up o for 1 < a <2,
3 1 Q m Q c
(3-6) ~ S | |u S | |U ,
2(n+1) (n+1)> [,u Jou
Q Q
(3.7) cr(n, )= Qe [Qum (n, ).

Jou = Jau

Proof. Inequalities (3.4) and (3.5) follow on using Theorem 3.1 and inequali-
ties (3.6) and (3.7).

The right-most parts of inequalities (3.7) follow from (2.6). From inequal-
ity (2.2) with £ = o and the Hadamard inequality (2.4)

1 o— al (e ox— (e (e
ﬁ/gugugn Wﬁ/gul/ < ylo-D/ayL/o

from which
1Qum |Qu.

(e ()

Using the rightmost inequality of (3.7) to control the first term, the w,,-term, of
the last inequality yields the leftmost inequality of (3.7).
From Theorem 3.2 and inequalities (2.5) (for u € Upo, 1 < a < 2), we have

Qs

Jou

These yield inequalities (3.6). This completes the proof. I

<

and U < (n+ 1)%u,

N W

3.3 Exact solutions, possible best constants, related items

3.3.1 n=1

3

The case n =1 is trivial: |Quc/ [,u = 2.
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Elastic torsion problem 19

3.3.2 n =2 and some closed-form torsion functions in some simple
domains.

Simple exact solutions are convenient for checking against inequalities, and helping
in the formulation of conjectures. The solutions given in this section are polyno-
mials. (Numerous other exact solutions are available. There is some interest in
these when the domain 2 is easy to describe, and the solutions are elementary
transcendental functions. See references in [5, 11].)

Considering quadratic and cubic polynomials for u one can solve the elastic
torsion problem in an ellipse and in an equilateral triangle. One finds the following.

Q <1} {y+ % >0,V3lz| <y - 2%}
17&7& a a
e UEEL g3
a b
T 4
S_IQU Z(Lafi) \/25(()1
a21 b2 o2
o 2(% %) v
0 0 {2 +9% < %}

The concavity set € is defined in [5]. For both the ellipse and the equilateral
triangle, x,, coincides with the centroid.

For the ellipse, u is concave. For the equilateral triangle, u is not concave (and,
in fact, u!/® is not concave for any a < 2). For the ellipse, Q,,

|€2e |uc
S

We expect that for a family of rectangles tending to an infinite strip,

[Qs|u. 3
s

=2

To date the extreme values we have found are
|Qu./S = 2 for an equilateral triangle, and
|u./S ~ 3 for a thin isosceles triangle or a thin sector.
We have no numerical evidence to contradict a conjecture that, at least amongst
circular-arc triangles, these are the extreme values.

Using a pair of well-known inequalities for the n = 2 torsion problem, the
inequalities (3.5) can be improved replacing ¢(2,2) = 6 by 4. Let p denote the
inradius of 2. The first of these inequalities, proved in [11], is

12
~20/< S
8pl | <8,

an inequality which becomes an equality when  is a disk. The second, proved in
[12] is

2
P, for convex (2,

DN | =

U <
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20 Dragomir and Keady

an inequality which becomes an equality when € is a strip. Combining these last
two inequalities gives
12w,
S
as previously asserted. (See [1] for a reference which can be used to establish an
upper bound for |Q|u,,/S for any simply connected Q C IR%.)

<4,

4 CONCLUSION

In this paper we have proved inequalities involving u,. the torsion function evalu-
ated at the centroid of a convex domain (2.

In [1] this is generalised to positive solutions of the semilinear equation —Au =
u?, 0 < v < 1, vanishing on 99Q. (v = 0 is the torsion problem.) The starting
point for our application of the Hadamard inequality, to solutions of this semilinear
problem, is the result in [6, 4, 2] that u!~7)/2 is concave. [12] also provides results
generalising those we used in Section 3.

The second author has a possible application area, discussed in supplements
to [1]. This concerns a problem from steady plane inviscid hydrodynamics: vortex
pairs. In a popular formulation of this, [3], the area and centroid of the vortex
core region is prescribed, and a modified stream function solves the elastic torsion
problem in the core. (The main weakness in the suggestion for this application
area is that, though there is numerical evidence favouring the convexity of the
vortex cores, there is, as yet, no simple proof of their convexity.)
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