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SOME REMARKS ON THE MIDPOINT RULE IN NUMERICAL
INTEGRATION

S.S. DRAGOMIR, P. CERONE AND A. SOFO

Abstract. Using some classical results from the theory of inequalities (Grüss’ inequality, Hermite-
Hadamard’s inequality and others) we point out some quasi-midpoint quadrature formulae, for
which the errors of approximation are smaller than the error given for the classical approach.

1 Introduction.

The following inequality is well known in the literature as the midpoint inequality:∣∣∣∣∣∣
b∫
a

f (x) dx− f
(
a+ b

2

)
(b− a)

∣∣∣∣∣∣ ≤ ‖f
′′‖∞
24

(b− a)3(1.1)

where the mapping f : [a, b] ⊂ R → R is supposed to be twice differentiable on the interval
(a, b) and having the second derivative bounded on (a, b), that is,
‖f ′′‖∞ := sup

x∈(a,b)
|f ′′ (x)| <∞. Now if we assume that

Ih : a = x0 < x1 < ... < xn−1 < xn = b is a partition of the interval [a, b] and f is as above,

then we can approximate the integral
b∫
a

f (x) dx by the midpoint quadrature formula MT (f, Ih)

having an error given by RT (f, Ih) , where

MT (f, Ih) =
n−1∑
i=0

f

(
xi+1 + xi

2

)
hi

and the remainder RT (f, Ih) satisfies the estimation

|RT (f, Ih)| ≤
‖f ′′‖∞

24

n−1∑
i=0

h3
i

where hi = xi+1 − xi for i = 0, 1, 2, ..., n− 1.
In this paper, by the use of some classical results from the theory of inequalities; Hölder’s

inequality, Grüss’ inequality and the Hermite-Hadamard inequality; we provide some quasi-
midpoint quadrature formulae for which the remainder terms are smaller than the classical one
given above. For other results in connection with the midpoint inequality see chapter XV of
the recent book by Mitrinović et al. [2].

2 Some Integral Inequalities.

The following lemma will be useful in what follows.

Lemma 2.1. Let f : [a, b] ⊂ R → R be a twice differentiable mapping on (a, b) . Suppose that
f ′′ : (a, b)→ R is integrable on (a, b) . Then we have the identity:
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26 Dragomir, Cerone and Sofo

b∫
a

f (x) dx = (b− a) f
(
a+ b

2

)
+

b∫
a

φ (x) f ′′ (x) dx(2.1)

where φ (x) is the kernel given by

φ (x) =

{
(x−a)2

2 if x ∈
[
a, a+b

2

]
(b−x)2

2 if x ∈
(
a+b

2 , b
] .(2.2)

Proof. We have successively

b∫
a

φ (x) f ′′ (x) dx =

a+b
2∫
a

(x− a)2

2
f ′′ (x) dx+

b∫
a+b

2

(b− x)2

2
f ′′ (x) dx,

integrating by parts twice we eventually obtain

b∫
a

φ (x) f ′′ (x) dx =

a+b
2∫
a

f (x) dx− b− a
2

f

(
a+ b

2

)
+

b∫
a+b

2

f (x) dx

+
a− b

2
f

(
a+ b

2

)

=

b∫
a

f (x) dx− (b− a) f
(
a+ b

2

)
and the identity (2.1) is proved.�

The following theorem containing an integral inequality, which is known in the literature as
the midpoint inequality, holds.

Theorem 2.2. Let f be as above. Then we have the inequality

∣∣∣∣∣
∫ b

a

f(x) dx− (b− a)f
(
a+ b

2

)∣∣∣∣∣ ≤


(b−a)3

24 ‖f ′′‖∞, if f ′′ ∈ L∞(a, b),

(b−a)
2+ 1

p

8(2p+1)
1
p
‖f ′′‖q,

if f ′′ ∈ Lq(a, b)
where 1

p + 1
q = 1, p > 1,

(b−a)2

8 ‖f ′′‖1 if f ′′ ∈ L1(a, b).

(2.3)

Proof. Using the representation (2.1) we have that∣∣∣∣∣∣
b∫
a

f (x) dx− (b− a) f
(
a+ b

2

)∣∣∣∣∣∣ ≤
b∫
a

|φ (x)| |f ′′ (x)| dx.

Now, if f ′′ ∈ L∞ (a, b), then

b∫
a

|φ (x)| |f ′′ (x)| dx ≤ ‖f ′′‖∞

b∫
a

|φ (x)| dx

= ‖f ′′‖∞


a+b

2∫
a

(x− a)2

2
dx+

b∫
a+b

2

(b− x)2

2
dx


=

(b− a)3

24
‖f ′′‖∞ .
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Some Remarks On The Midpoint Rule 27

If f ′′ ∈ Lq (a, b) where 1
p + 1

q = 1, p > 1 then we have, by Hölder’s inequality, that

b∫
a

|φ (x)| |f ′′ (x)| dx ≤ ‖f ′′‖q

 b∫
a

|φ (x)|p dx


1
p

.

But

b∫
a

|φ (x)|p dx =

a+b
2∫
a

(
(x− a)2

2

)p
dx+

b∫
a+b

2

(
(b− x)2

2

)p
dx

=
(b− a)2p+1

8p (2p+ 1)

and therefore the second inequality in (2.3) holds. Finally, if f ′′ ∈ L1 (a, b), then

b∫
a

|φ (x)| |f ′′ (x)| dx ≤ max
x∈(a,b)

φ (x) ‖f ′′‖1

=
(b− a)2

8
‖f ′′‖1

and therefore the last inequality in (2.3) is also proved.
An example will now be presented to illustrate that the different norms in (2.3) provide

better bounds on the error depending on the behaviour of the integrand. We may take, without
loss of generality, in the right hand of (2.3), a = 0 and b− a = 2β so that

T1 =
β3

3
sup

t∈(0,2β)
|f ′′ (t)|

T2 =
β2

2

(
2β

2p+ 1

) 1
p

 2β∫
0

|f ′′ (t)|q dt


1
q

,
1
p

+
1
q

= 1, p > 1 and

T3 =
β2

2

2β∫
0

|f ′′ (t)| dt.

Consider the example f ′′ (t) = et, the Figure 1, shows, on the (p, β) plane, the contours,
from the horizontal axis, of the ratios T1

T2
= 1, T1

T3
= 1 and T2

T3
= 1. The regions A,B,C and D

are respectively represented by the inequalities:

A : T1 < T2 < T3, B : T1 < T3 < T2,

C : T2 < T3 < T1, D : T3 < T2 < T1.

Hence, we have demonstrated that each of the bounds T1, T2 or T3 are best in a particular
region of (p, β) .
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28 Dragomir, Cerone and Sofo

Figure 1: The diagram shows regions A,B,C,D of the (p, β) plane, separated by the contours
of T1

T2
= 1, T1

T3
= 1 and T2

T3
= 1.
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The following theorem, regarding an integral inequality also holds.

Theorem 2.3. Let f : [a, b]→ R be a twice differentiable mapping on (a, b) . If f ′′ : (a, b)→ R
satisfies the condition

γ ≤ f ′′ (x) ≤ Γ for all x ∈ (a, b) ,(2.4)

then the following inequality is satisfied:∣∣∣∣∣∣
b∫
a

f (x) dx− (b− a) f
(
a+ b

2

)
− (b− a)2

24

(
f
′
(b)− f

′
(a)
)∣∣∣∣∣∣ ≤ (b− a)3 (Γ− γ)

32
.(2.5)

Proof. Applying Grüss’ integral inequality [[1], p.296], we may state that∣∣∣∣∣∣ 1
b− a

b∫
a

φ (x) f ′′ (x) dx− 1
b− a

b∫
a

φ (x) dx
1

b− a

b∫
a

f ′′ (x) dx

∣∣∣∣∣∣ ≤ (b− a)2 (Γ− γ)
32

(2.6)

as 0 ≤ φ (x) ≤ (b−a)2

8 for all x ∈ [a, b] . It may be easily seen that 1
b−a

b∫
a

φ (x) dx = (b−a)3

24 and
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1
b−a

b∫
a

f ′′ (x) dx = f
′
(b)−f

′
(a)

b−a and hence from (2.6) we may write

∣∣∣∣∣∣
b∫
a

φ (x) f ′′ (x) dx− (b− a)2

24

(
f
′
(b)− f

′
(a)
)∣∣∣∣∣∣ ≤ (b− a)3 (Γ− γ)

32
,

which, by identity (2.1), is clearly equivalent to inequality (2.5).�
Now, using the celebrated Hermite-Hadamard integral inequality for convex functions, g :

[a, b]→ R, which may be written as

g

(
a+ b

2

)
≤ 1
b− a

b∫
a

g (x) dx ≤ g (a) + g (b)
2

(2.7)

we obtain the following theorem.

Theorem 2.4. Let f : [a, b]→ R be as in the above theorem; then we have the following double
inequality:

γ (b− a)2

24
≤ 1
b− a

b∫
a

f (x) dx− f
(
a+ b

2

)
≤ Γ (b− a)2

24
(2.8)

and the estimation∣∣∣∣∣∣ 1
b− a

b∫
a

f (x) dx− (b− a) f
(
a+ b

2

)
− (γ + Γ) (b− a)2

48

∣∣∣∣∣∣ ≤ (Γ− γ) (b− a)3

48
.(2.9)

Proof. Let us choose in (2.7) g (x) = f (x)− γx2

2 , then g (x) is a convex function in x, since
g′′ (x) ≥ 0, and hence

f

(
a+ b

2

)
− γ (a+ b)2

8
≤ 1
b− a

 b∫
a

f (x) dx−
γ
(
b3 − a3

)
6


which is equivalent to

1
b− a

b∫
a

f (x) dx− f
(
a+ b

2

)
≥ γ

2

(
b3 − a3

3 (b− a)
−
(
a+ b

2

)2
)

=
γ (b− a)

24

2

,

and the first part of (2.8) is therefore obtained. For the second part, let g (x) = x2Γ
2 − f (x),

and similar manipulations, as previous lead to the second part of (2.8). The inequality (2.9) is
now obvious by (2.8), the details have been omitted.�

3 Composite Rules.

We now consider applications of the integral inequalities developed in the previous section, to
obtain some midpoint composite rules.

Theorem 3.1. Let f : [a, b] ⊂ R → R be a twice differentiable mapping on (a, b) . If Ih : a =
x0 < x1 < ... < xn−1 < xn = b is a partition of the interval [a, b], then we have

b∫
a

f (x) dx = AM (f, Ih) +RM (f, Ih)(3.1)
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where

AM (f, Ih) :=
n−1∑
i=0

f

(
xi + xi+1

2

)
hi

is the midpoint quadrature rule and the remainder RM (f, Ih) satisfies the inequality

|RM (f, Ih)| ≤



1
24‖f

′′‖∞
∑n−1
i=0 h

3
i

1

8(2p+1)
1
p
‖f ′′‖q

(∑n−1
i=0 h

2p+1
i

) 1
p

, where 1
p + 1

q = 1, p > 1 and

1
8‖f

′′‖1ν2(Ih)

(3.2)

where hi := xi+1 − xi, i = 0, 1, 2, ..., n− 1 and ν (Ih) = max
i=0,...,n−1

hi.

Proof. Applying the first inequality in (2.3) on the interval [xi, xi+1] we obtain∣∣∣∣∣∣
xi+1∫
xi

f (x) dx− f
(
xi + xi+1

2

)
hi

∣∣∣∣∣∣ ≤ 1
24
‖f ′′‖∞ h3

i

for all i = 0, 1, 2, ..., n− 1. Summing over i from 0 to n− 1 we obtain the first part of inequality
(3.2). The second inequality in (2.3) gives us∣∣∣∣∣∣

xi+1∫
xi

f (x) dx− f
(
xi + xi+1

2

)
hi

∣∣∣∣∣∣ ≤ h
2+ 1

p

i

4 (2p+ 1)
1
p

 xi+1∫
xi

∣∣∣f ′′ (t)∣∣∣q dt


1
q

for all i = 0, 1, 2, ..., n− 1. Summing over all i and using Hölder’s discrete inequality, we obtain∣∣∣∣∣∣
b∫
a

f (x) dx−AM (f, Ih)

∣∣∣∣∣∣ ≤ 1

8 (2p+ 1)
1
p

n−1∑
i=0

h
2p+1
p

i

 xi+1∫
xi

∣∣∣f ′′ (t)∣∣∣q dt


1
q

≤ 1

8 (2p+ 1)
1
p

(
n−1∑
i=0

(
h

2p+1
p

i

)p) 1
p

n−1∑
i=0


 xi+1∫

xi

∣∣∣f ′′ (t)∣∣∣q dt


1
q


q

1
q

=
1

8 (2p+ 1)
1
p

(
n−1∑
i=0

h2p+1
i

) 1
p

 b∫
a

∣∣∣f ′′ (t)∣∣∣q dt


1
q

and the second inequality in (3.2) is proved. In the last part, we have by (2.3) that

|RM (f, Ih)| ≤ 1
8

n−1∑
i=0

 xi+1∫
xi

∣∣∣f ′′ (t)∣∣∣ dt
h2

i

≤ 1
8

max
i=0,...,n−1

h2
i

n−1∑
i=0

xi+1∫
xi

∣∣∣f ′′ (t)∣∣∣ dt
=

1
8
‖f ′′‖1 ν

2 (Ih)

and the theorem is proved.�
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Remark 3.1. It is of some interest to note that in every book on numerical integration, encoun-
tered by the authors, only the first estimate in (3.2) is used. Sometimes, where

∥∥∥f ′′∥∥∥
q

(q > 1)

or
∥∥∥f ′′∥∥∥

1
are easier to compute, it would perhaps be more appropiate to use the second or third

estimates.

We shall now investigate the case where we have an equidistant partitioning of [a, b] given
by: Ih : xi = a+

(
b−a
n

)
i, i = 0, 1, 2, ..., n− 1. The following result is a consequence of theorem

3.1.

Corollary 3.2. Let f : [a, b]→ R be a twice differentiable mapping on (a, b) . Then we have

b∫
a

f (x) dx = AM,n (f) +RM,n (f)

where

AM,n (f) :=
b− a
n

n−1∑
i=0

f

(
a+

2i+ 1
2n

(b− a)
)

and the remainder RM,n (f) satisfies the estimate:

|RM,n (f)| ≤


(b−a)3

12n2 ‖f ′′‖∞ ,

(b−a)
2+ 1

p

8(2p+1)
1
p n2
‖f ′′‖q ,

(b−a)2

8n2 ‖f ′′‖1 .

The following theorem gives a quasi-midpoint formula which is sometimes more appropriate.

Theorem 3.3. Let f : [a, b]→ R be a twice differentiable mapping on (a, b) . If f ′′ : (a, b)→ R
satisfies the condition (2.4) and Ih is an arbitrary partition of [a, b] as above, then we have

b∫
a

f (x) dx = AM

(
f, f

′
, Ih

)
+ R̃M

(
f, f

′
, Ih

)
where

AM

(
f, f

′
, Ih

)
=

n−1∑
i=0

f

(
xi + xi+1

2

)
hi

+
1
24

n−1∑
i=0

(
f
′
(xi+1)− f

′
(xi)

)
h2
i

is a perturbed midpoint rule and the remainder term, R̃M
(
f, f

′
, Ih

)
, satisfies the estimation

∣∣∣R̃M (f, f ′ , Ih)∣∣∣ ≤ Γ− γ
32

n−1∑
i=0

h3
i(3.3)

where hi is as defined above.

Proof. Writing the inequality (2.5) on the interval [xi, xi+1], i = 0, 1, 2, ..., n− 1 we obtain∣∣∣∣∣∣
xi+1∫
xi

f (x) dx− f
(
xi + xi+1

2

)
hi −

1
24

(
f
′
(xi+1)− f

′
(xi)

)
h2
i

∣∣∣∣∣∣ ≤ Γ− γ
32

h3
i ,

and summing over i from 0 to n− 1 we easily deduce the desired estimation (3.3).�
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Remark 3.2. If we consider a mapping f : [a, b] → R so that (2.4) is satisfied and Γ−γ
32 ≤

‖f ′′‖∞
24 = 1

24 max {|γ| , |Γ|}, that is,

Γ− γ ≤ 4
3

max {|γ| , |Γ|}(3.4)

then the estimation provided by (3.3) is better than the first estimation in (3.2). Also notice
that if γ ≥ 0, then the condition (3.4) holds.

The following corollary is also valid.

Corollary 3.4. Let f be as defined in the previous theorem, then we have

b∫
a

f (x) dx = AM,n

(
f, f

′
)

+ R̃M,n

(
f, f

′
)

(3.5)

where

AM,n

(
f, f

′
)

=
b− a
n

n−1∑
i=0

f

(
a+

2i+ 1
2n

(b− a)
)

+
(b− a)2

24n2

(
f
′
(b)− f

′
(a)
)

and the remainder, R̃M,n

(
f, f

′
)

, satisfies the estimation

∣∣∣R̃M,n

(
f, f

′
)∣∣∣ ≤ (M −m) (b− a)3

32n2 ,

for all n ≥ 1, where m := inf
x∈(a,b)

f
′
(x) > −∞ and M := sup

x∈(a,b)
f
′
(x) <∞.

Now, if we apply Theorem 2.3, we can state the following quadrature formula which is a
quasi-midpoint formula.

Theorem 3.5. Let f be as in Theorem 3.2. If Ih is a partition of the interval [a, b] then we
have

b∫
a

f (x) dx = AM (f, γ,Γ) +RM (f, γ,Γ)

where

AM (f, γ,Γ) =
n−1∑
i=0

f

(
xi + xi+1

2

)
hi +

Γ + γ

48

n−1∑
i=0

h2
i

and

|RM (f, γ,Γ)| ≤ Γ− γ
48

n−1∑
i=0

h3
i .

Proof. Applying the inequality (2.9) in [xi, xi+1] we obtain∣∣∣∣∣∣
xi+1∫
xi

f (x) dx− f
(
xi + xi+1

2

)
hi −

Γ + γ

48
h2
i

∣∣∣∣∣∣ ≤ Γ− γ
48

h3
i ,

and summing over i from 0 to n− 1 we have the desired estimation.�
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Corollary 3.6. Let f be as above. Then we have

b∫
a

f (x) dx = AM,n (f, γ,Γ) +RM,n (f, γ,Γ)

where

AM,n (f, γ,Γ) =
b− a
n

n−1∑
i=0

f

(
a+

2i+ 1
2n

(b− a)
)

+
(Γ + γ) (b− a)2

48n

and the remainder satisfies the estimation

|RM,n (f, γ,Γ)| ≤ (Γ− γ) (b− a)3

48n2 .
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