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NEW ESTIMATION OF THE REMAINDER IN THE
TRAPEZOIDAL FORMULA WITH APPLICATIONS

S.S. DRAGOMIR AND T.C. PEACHEY

Abstract. A new inequality for the trapezoidal formula in terms of p-norms is presented with
applications to numerical integration and special means.

1 Introduction

Integral inequalities have been used extensively in most subjects involving mathematical anal-
ysis. They are particularly useful for approximation theory and numerical analysis in which
estimates of approximation errors are involved. In this paper, by the use of an integral iden-
tity, we point out some new integral inequalities for the trapezoidal rule and apply these to
special means: p-logarithmic means, logarithmic means, identric means etc., and in numerical
integration.

Classically, the error bounds for the trapezoidal quadrature rule depend on the maximum
norms of the second derivative of the integrand. The new upper bounds for the quadrature
rules obtained in this paper have the merit that they depend on only the first derivative of the
integrand and thus they are particularly useful for integrals with integrands having bounded
first derivatives, but unbounded second derivatives in some norms.

2 The Results

We shall start with the following lemma which contains an interesting integral identity.

Lemma 2.1. Let f : [a, b] → R be a differentiable mapping on (a, b) with f ′ ∈ L1[a, b]. Then
we have the identity

(2.1)
f(a) + f(b)

2
− 1
b− a

∫ b

a

f(x) dx =
1

(b− a)2

∫ b

a

∫ b

a

(y − x)f ′(y) dxdy.

Proof. Our proof uses the well-known relations

(2.2)
∫ tn

a

dtn−1

∫ tn−1

a

dtn−2 · · ·
∫ t1

a

f(t0) dt0 =
∫ tn

a

(tn − u)n−1

(n− 1)!
f(u) du,

and

(2.3)
∫ b

tn

dtn−1

∫ b

tn−1

dtn−2 · · ·
∫ b

t1

f(t0) dt0 =
∫ b

tn

(u− tn)n−1

(n− 1)!
f(u) du

valid for f ∈ L1[a, b] and any positive integer n. We consider

I =
∫ b

a

∫ b

a

(y − x)f ′(y) dxdy

=
∫ b

a

∫ b

x

(y − x)f ′(y) dydx −
∫ b

a

∫ x

a

(x− y)f ′(y) dydx = T1 − T2.

35



36 Dragomir and Peachey

Applying (2.3) to the inner integral in T1 gives

T1 =
∫ b

a

dx

∫ b

x

du

∫ b

u

f ′(t) dt =
∫ b

a

dx

∫ b

x

[f(b)− f(u)] du

=
∫ b

a

(v − a)[f(b)− f(v)] dv =
∫ b

a

(a− v)f(v) dv +
1
2

(b− a)2f(b).

Similarly, applying (2.2) to T2,

T2 =
∫ b

a

(b− v)f(v) dv − 1
2

(b− a)2f(a).

Combining these yields

I = T1 − T2 =
∫ b

a

(a− b)f(v) dv +
1
2

(b− a)2[f(a) + f(b)]

and the identity (2.1) follows.

The lemma may be used to prove

Theorem 2.2. With the above assumptions, we have

(2.4)

∣∣∣∣∣f(a) + f(b)
2

− 1
b− a

∫ b

a

f(x) dx

∣∣∣∣∣ ≤


b−a
3 ‖f

′‖∞,[
2(b−a)

(p+1)(p+2)

] 1
p ‖f ′‖q, p > 1, 1

p + 1
q = 1,

‖f ′‖1.

Proof. From (2.1)∣∣∣∣∣f(a) + f(b)
2

− 1
b− a

∫ b

a

f(x) dx

∣∣∣∣∣ ≤ 1
(b− a)2

∫ b

a

∫ b

a

|y − x||f ′(y)| dy dx = I.

We treat the three cases in turn.

(i) Since∫ b

a

∫ b

a

|y − x| |f ′(y)| dy dx ≤ ‖f ′‖∞
∫ b

a

∫ b

a

|y − x| dy dx = ‖f ′‖∞
(b− a)3

3

so that I ≤ 1
3 (b− a)‖f ′‖∞.

(ii) By Hölder’s integral inequality

∫ b

a

∫ b

a

|y − x| |f ′(y)| dx dy ≤

(∫ b

a

∫ b

a

|y − x|p dx dy

) 1
p
(∫ b

a

∫ b

a

|f ′(y)|q dx dy

) 1
q

= K
1
p (b− a)

1
q ‖f ′‖q

where

K =
∫ b

a

∫ b

a

|y − x|p dx dy = 2
∫ b

a

∫ b

x

(y − x)p dydx =
2(b− a)p+2

(p+ 1)(p+ 2)

using the symmetry of the integrand. Thus∫ b

a

∫ b

a

|y − x| |f ′(y)| dx dy ≤
[

2
(p+ 1)(p+ 2)

] 1
p

(b− a)1+ 2
p+ 1

q ‖f ′‖q
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so that with 1
p + 1

q = 1 we obtain

I ≤
[

2(b− a)
(p+ 1)(p+ 2)

] 1
p

‖f ′‖q

as required.

(iii) Finally, we have that∫ b

a

∫ b

a

|y − x| |f ′(y)| dx dy ≤
[

max
(x,y)∈[a,b]2

|y − x|
] ∫ b

a

∫ b

a

|f ′(y)| dx dy = (b− a)2‖f ′‖1

showing that I ≤ ‖f ′‖1. The three cases in (2.4) have now been proved.

Remark 2.1. If p = q = 2 we have

(2.5)

∣∣∣∣∣f(a) + f(b)
2

− 1
b− a

∫ b

a

f(x) dx

∣∣∣∣∣ ≤
√
b− a

6
‖f ′‖2.

Remark 2.2. In the paper [2], S. S. Dragomir and S. Wang have obtained the following similar
result as a particular case of an Ostrowski type inequality.

(2.6)

∣∣∣∣∣f(a) + f(b)
2

− 1
b− a

∫ b

a

f(x) dx

∣∣∣∣∣ ≤ 1
4

(b− a)(Γ− γ) ≤ 1
2

(b− a)‖f ′‖∞

where γ := inft∈(a,b) f(t) > −∞ and Γ := supt∈(a,b) f(t) <∞.

Remark 2.3. In [1] S. S. Dragomir and S. Wang have obtained the following result

(2.7)

∣∣∣∣∣f(a) + f(b)
2

− 1
b− a

∫ b

a

f(x) dx

∣∣∣∣∣ ≤ (b− a)
1
p ‖f ′‖q

(p+ 1)
1
p

as a particular case of Ostrowski’s inequality for q-norms. Since[
2

(p+ 1)(p+ 2)

] 1
p

≤
[

1
p+ 1

] 1
p

for p > 1,

then our estimate in (2.4) is better than that embodied in (2.7).

Remark 2.4. In [3], S. S. Dragomir and S. Wang obtained the inequality

(2.8)

∣∣∣∣∣f(a) + f(b)
2

− 1
b− a

∫ b

a

f(x) dx

∣∣∣∣∣ ≤ ‖f ′‖1
as a particular case of an Ostrowski type inequality for the L1 norm.

Remark 2.5. In 1938, by means of geometrical considerations, K. S. K. Iyengar [4, p.471]
has proved the following inequality

(2.9)

∣∣∣∣∣f(a) + f(b)
2

− 1
b− a

∫ b

a

f(x) dx

∣∣∣∣∣ ≤ (b− a)‖f ′‖∞
4

− (f(b)− f(a))2

4(b− a)‖f ′‖∞
≤ (b− a)‖f ′‖∞

4

which is a better inequality than our first inequality in (2.2).
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38 Dragomir and Peachey

In conclusion, Theorem 2.2 gives the following new result

(2.10)

∣∣∣∣∣f(a) + f(b)
2

− 1
b− a

∫ b

a

f(x) dx

∣∣∣∣∣ ≤
[

2(b− a)
(p+ 1)(p+ 2)

] 1
p

‖f ′‖q

where p > 1 and 1
p + 1

q = 1, and the particular case

(2.11)

∣∣∣∣∣f(a) + f(b)
2

− 1
b− a

∫ b

a

f(x) dx

∣∣∣∣∣ ≤
[
b− a

6

] 1
2

‖f ′‖2.

All our further applications for special means and in numerical integration for the trapezoidal
formula will be based on these new results.

3 Applications To Special Means

Let us recall first some special means that we will use in the sequel:

(a) The arithmetic mean: A = A(a, b) := (a+ b)/2, a, b ≥ 0,

(b) the geometric mean: G = G(a, b) :=
√
ab, a, b ≥ 0,

(c) the harmonic mean: H = H(a, b) := 2
1
a+ 1

b

, a, b > 0,

(d) the logarithmic mean:

L = L(a, b) :=

{
a if a = b
b− a

ln b− ln a if a 6= b
a, b > 0,

(e) the identric mean:

I = I(a, b) :=


a if a = b

1
e

(
bb

aa

) 1
b−a

if a 6= b
a, b > 0,

(f) the p-logarithmic mean:

Lp = Lp(a, b) :=


a if a = b[
bp+1 − ap+1

(p+ 1)(b− a)

] 1
p

if a 6= b
a, b > 0, and p ∈ IR\{−1, 0}.

These means are often used in numerical approximation and in other areas.

The following simple relationships are known:

H ≤ G ≤ L ≤ I ≤ A

and Lp is monotonically increasing in p ∈ IR with L0 := I and L−1 := L.

1. Let us assume that f : (0,∞) → IR, f(x) = xs, s ∈ IR\{−1, 0} and p, q > 1, 1
p + 1

q = 1.
Then obviously

f(a) + f(b)
2

=
as + bs

2
= A(as, bs),

1
b− a

∫ b

a

f(x) dx =
1

b− a

∫ b

a

xs dx =
bs+1 − as+1

(s+ 1)(b− a)
= Lss(a, b).
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Since f ′(x) = sxs−1,

‖f ′‖q =

[
|s|q

∫ b

a

xq(s−1)dx

]1/q

= |s|(b− a)1/q

[
1

b− a

∫ b

a

xq(s−1)dx

]1/q

= |s|(b− a)1/qLs−1
q(s−1)

so the inequality (2.10) becomes

|A(as, bs)− Lss(a, b)| ≤
[

2(b− a)
(p+ 1)(p+ 2)

] 1
p

Ls−1
q(s−1)(a, b).

That is, we have

(3.1) |A(as, bs)− Lss(a, b)| ≤ |s|(b− a)
[

2
(p+ 1)(p+ 2)

] 1
p

Ls−1
q(s−1)(a, b),

for 0 ≤ a ≤ b <∞. In particular, for p = q = 2,

(3.2) |A(as, bs)− Lss(a, b)| ≤
|s|(b− a)√

6
Ls−1

2(s−1)(a, b).

2. Let us assume that f : (0,∞)→ IR, f(x) = 1
x and p, q > 1 with 1

p + 1
q = 1. Then

f(a) + f(b)
2

=
1
a + 1

b

2
= H−1(a, b),

1
b− a

∫ b

a

f(x) dx =
1

b− a

∫ b

a

dx

x
=

ln b− ln a
b− a

= L−1(a, b),

f ′(x) = − 1
x2 , ‖f ′‖q =

[∫ b

a

dx

x2q

]1/q

= (b− a)
1
qL−2
−2q.

Then (2.10) becomes

∣∣H−1(a, b)− L−1(a, b)
∣∣ ≤ [ 2

(p+ 1)(p+ 2)

] 1
p

L−2
−2q(a, b)

This yields the inequality

(3.3) 0 ≤ L−H ≤ (b− a)LH
L2
−2q

[
2

(p+ 1)(p+ 2)

] 1
p

Ls−1
q(s−1)

for 0 ≤ a ≤ b <∞.

In particular, for p = q = 2 we have

(3.4) 0 ≤ L−H ≤ (b− a)LH√
6L2
−4

.

3. Let us assume that f : (0,∞)→ IR, f(x) = lnx and p, q > 1 with 1
p + 1

q = 1. Then

f(a) + f(b)
2

=
ln a+ ln b

2
= lnG
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40 Dragomir and Peachey

1
b− a

∫ b

a

f(x) dx =
1

b− a

∫ b

a

lnx dx =
1

b− a
ln
(
bb

aa

)
− 1 = ln I,

f ′(x) =
1
x
, ‖f ′‖q =

[∫ b

a

dx

xq

]1/q

= (b− a)
1
qL−1
−q.

Then inequality (2.10) gives

|lnG− ln I| ≤ (b− a)
[

2
(p+ 1)(p+ 2)

] 1
p

L−1
−q

Thus

(3.5) 1 ≤ I

G
≤ exp

[
(b− a)

[
2

(p+ 1)(p+ 2)

] 1
p

L−1
−q

]

for 0 ≤ a ≤ b <∞.

In particular, for p = q = 2 we have

(3.6) 1 ≤ I

G
≤ exp

[
(b− a)√

6L−2

]
.

4 Applications In Numerical Integration

We discuss here the application of the inequality (2.10) in Numerical Integration to obtain some
new estimates of the remainder term in the classical trapezoidal rule.

Theorem 4.1. Let f : [a, b] → IR be a differentiable function on (a, b) and assume that f ′ is
q-integrable on [a, b], that is that f ′ ∈ Lq[a, b], q > 1. If Ih : a = x0 < x1 < . . . < xn = b is a
partition of [a, b], then we have

(4.1)
∫ b

a

f(x) dx = T (f, Ih) +R(f, Ih)

where T (f, Ih) is the trapezoidal quadrature rule, i.e.,

(4.2) T (f, Ih) =
n−1∑
i=0

[
f(xi) + f(xi+1)

2

]
hi

where hi = xi+1 − xi for all i = 0, 1, 2, . . . , n − 1 and the remainder R(f, Ih) satisfies the
inequality

(4.3) |R(f, Ih)| ≤
[

2
(p+ 1)(p+ 2)

] 1
p

‖f ′‖q

[
n−1∑
i=1

hp+1
i

] 1
p

.

Proof. Applying the inequality (2.10) on the interval [xi, xi+1] where i = 0, 1, . . . , n−1 we have
that ∣∣∣∣f(xi) + f(xi+1)

2
hi −

∫ xi+1

xi

f(x) dx
∣∣∣∣ ≤ [ 2

(p+ 1)(p+ 2)

] 1
p

h
1+ 1

p

i

(∫ xi+1

xi

|f ′(x)|qdx
)
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for all i = 0, 1, 2, . . . , n− 1. Summing these inequalities and using Hölder’s discrete inequality
we have that

|R(f, Ih)| ≤
n−1∑
i=0

∣∣∣∣f(xi) + f(xi+1)
2

hi −
∫ xi+1

xi

f(x) dx
∣∣∣∣

≤
[

2
(p+ 1)(p+ 2)

] 1
p
n−1∑
i=0

h
p+1
p

i

(∫ xi+1

xi

|f ′(x)|qdx
) 1
q

≤
[

2
(p+ 1)(p+ 2)

] 1
p

(
n−1∑
i=0

(
h
p+1
p

i

)p) 1
p
(
n−1∑
i=0

((∫ xi+1

xi

|f ′(x)|qdx
) 1
q

)q) 1
q

=
[

2
(p+ 1)(p+ 2)

] 1
p

(
n−1∑
i=1

hp+1
i

) 1
p

‖f ′‖q.

The theorem is thus proved.

Corollary 4.2. With the above assumptions, if f ′ ∈ L2[a, b] we have

(4.4) |R(f, Ih)| ≤ ‖f
′‖2√
6

(
n−1∑
i=1

h3
i

) 1
2

.

Suppose now that Ih denotes the equidistant partitioning of [a, b] given by

Ih : xi = a+
b− a
n

i, i = 0, 1, . . . , n.

For this partition we have the following corollary.

Corollary 4.3. Under the assumptions of Theorem 4.1,

(4.5)
∫ b

a

f(x) dx = Tn(f) +Rn(f)

where Tn(f) is the trapezoidal quadrature rule for the partition Ih, that is

(4.6) Tn(f) =
b− a
2n

n−1∑
i=0

[
f

(
a+ i

b− a
n

)
+ f

(
a+ (i+ 1)

b− a
n

)]
and the remainder term Rn(f) satisfies the estimate

(4.7) |Rn(f)| ≤
[

2
(p+ 1)(p+ 2)

] 1
p (b− a)1+ 1

p ‖f ′‖q
n

for n ≥ 1.

In particular, for p = 2, we have

(4.8) |Rn(f)| ≤ (b− a)
3
2

√
6
‖f ′‖2
n

.

Given any ε > 0, we are able using (4.7), to establish the minimum number of nodes such
that the error in the numerical integration based on the equidistant trapezoidal rule is smaller
than ε. This is contained in the following corollary.

Corollary 4.4. Given any constant ε > 0, if n ≥ nε, where

nε =

[[
2

(p+ 1)(p+ 2)

] 1
p (b− a)1+ 1

p ‖f ′‖q
ε

]
+ 1

then |Rn(f)| ≤ ε.
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Example 4.5. We give an example where the bound on Rn provided by (4.8) is better than
those previously known. The equivalent bound imposed by (2.7) with p = 2 is

(4.9) |Rn(f)| ≤ (b− a)
3
2

√
3
‖f ′‖2
n

,

that imposed by (2.8) is

(4.10) |Rn| ≤
(b− a)‖f ′‖1

n
,

while that implied by (2.9) is

(4.11) |Rn| ≤
(b− a)2

4
‖f ′‖∞
n

.

As the example, we take a = 0, b = 1 and f(x) = x2/3e−2x/3 so that f ′(x) = 2
3x
−1/3(1 −

x)e−2x/3. In this case ‖f ′‖∞ is infinite so (4.11) yields nothing useful. Since f ′(x) is positive
on (0, 1), we have

∫ 1
0 |f

′(x)| dx = f(1)− f(0) = e−2/3. Thus (4.10) is

|Rn| ≤
e−2/3

n
≈ 0.513

n
.

Also

‖f ′‖22 =
∫ 1

0

4
9
e−2x/3

(
1− x
x1/3

)2

dx ≤ 4
9

∫ 1

0
(1− x)2x−2/3dx =

4
9
B(3,

1
3

) =
6
7
.

Inserting this into (4.9) gives

|Rn| ≤
√

2
7

1
n
≈ 0.535

n

while (4.8) becomes

|Rn| ≤
√

1
7

1
n
≈ 0.378

n
.

Thus in this example the new bound is superior.
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