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NEW INEQUALITIES FOR LOGARITHMIC MAP AND THEIR
APPLICATION FOR ENTROPY AND MUTUAL INFORMATION

S.S. Dragomir, C.E.M. Pearce and J. Pecari¢

ABSTRACT. In this paper we discuss new inequalities for logarithmic mapping and apply them in
Information Theory obtaining new bounds for the entropy mapping and mutual information.

1 INTRODUCTION

Let ¢ = (z1,...,2Zn), p = (P1,... ,Pn) be n-tuple of real numbers so that z; > 0, (i = 1,... ,n) and
pi > 0 with P, := "  p; > 0. The following inequality is well known in the literature as arithmetic
mean - geometric mean inequality

1
Pn

(1.1) % il’ﬂi > (ﬁ xfi>
"oi=1 i=1

with equality for p; >0, (i =1,... ,n) if and only if z; = z; for all i,5 € {1,... ,n}.

This elementary inequality is closely related to entropy mapping and mutual information which are
important in Information Theory and Coding.

Suppose that X is a discrete random variable whose range R := {z1,... ,z,} is finite.

Let p; = P{X =x;}, (i=1,... ,n) and assume that p; > 0 for all : € {1,... ,n}.

Define the b-entropy ( we use notation entropy in the rest of the paper) of X by

= 1
Hb(X) = Zpi 10g p_
i=1 v

where, for simplicity, log denotes the logarithm of base b > 1.
The following theorem is well known in the literature and concerns the maximum possible value for
Hy(X) in terms of the size of R [3, p. 17].

Theorem 1.1. Let X assume values in R = {z1,...,xn}. Then
(1.2) 0 < Hy(X) <logn.

Furthermore, Hy(X) = 0 if and only if pi = 1 for some i and Hy(X) = logn if and only if p; = =
forallie {1,... n}.

Note that if in (1.1) we take log(-) we get

1 « 1 —
(1.3) Pﬂ;p ogw; < 0g<Pn;px>

(which is Jensen’s inequality for the concave map log(-)) and if in (1.3) we choose z; = ]%, we deduce
the second inequality in (1.2).
In paper [1], S.S. Dragomir and C.J. Goh proved the following counterpart of (1.3):
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Theorem 1.2. Let z; € (0,00)

(1.4) 0 <

IN

and pi,i € {1,...,n}, are as above. Then

log (Pi pr&) - PL Zpi log x;
" i=1 " =1
11 ({pivy >
o 77 (Zzzpi“ ‘P")

i=1 i=1
1 1 & pips >
2Ilnb P2 £ Tilj (xl_a:]) '
i,j=1
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In papers [1] and [2] they used this inequality to establish various counterpart inequalities involving
entropy mapping, joint and conditional entropy, mutual information and conditional mutual informa-

tion.

The main aim of this paper is to establish some other inequalities for log(-) map similar to (1.4)
and to apply them for some relevant mappings in Information Theory.

2  PRELIMINARY RESULTS

The following theorem is important.

Theorem 2.1. Let z; > 0 and
inequality:

(2.1) 0

IA

IN

¢ >00G=1,...

i qixilogx; — i qixilog (i qizi>
i=1 i=1 i=1

1 & T;
5 E iq;(zi — ;) log —
2 qiqj (i — ;) ng_

ij=1 J

,n) so that Y0 q = 1.

Then we have the

(Z i giz;logx; — i qiT; i qi log xl> )
i=1 i=1 i=1

The equality holds in (2.1) simultaneously if and only if z; =x; for all i,j € {1,...,n}.

Proof. We use Jensen’s discrete inequality:

(2.2)

f (qu) < Zqz‘f(l‘i)

where f: I CR —R is a convex mapping, z; € I, ¢; >0 (i =1,...,n) with 3" ¢ =1 and n > 2.
Consider now the map f; : (0,00) = R, fy(z) := zlogz.

From
!
:l e—
fo(z) ogx—l—lnb, x>0
and
fi (x) = L >0 x>0
b zlnb ’

we can see that f, is convex.

Applying Jensen’s inequality (2.2) for f, we get the first inequality in (2.1).

The well known identity

1 n
3 > aigi (@i — ) (yi —yj

i,j=1

gives equation in brackets in (2.1).

RGMIA Research Report Collection, Vol. 2, No. 1, 1999

)= @i Y Gy — Y GTi Y Gy
i=1 i=1 i=1 i=1



Logarithmic Map 47

The second inequality in (2.1) is equivalent with:

n n n
Z qiZs; lOg Tr; — Z qix; log (Z qia:i)
i=1 i=1 i=1

n n n
Z qixilogx; — Z qiTi Z qilog x;
i=1 i=1 i=1

IN

ie.
n n n n
Zqimi Zqi log x; < Zqimi log (Zq1z1> .
i=1 i=1 i=1 Jj=1
This follows by Jensen’s discrete inequality (2.2) applied for the convex map f(z) := —logz and

considering that z; >0, ¢ >0 (4 =1,...,n) and ) " | ¢ = 1. The case of equality is obvious. Il

Corollary 2.2. Let x; > 0(i = 1,...,n). Then we have the inequality

0 < ixiloga:i - ilog <#)
i=1 i=1

1 g
< o Z (zi —zj)loga:—j
ij=1
= l Z (a:i—a:j)logﬂ
n 44— T
1<i<j<n

n 1 n n
= ;zilogm — Ezlzi;logzi.

i=

The following theorem is also useful.

.....

Then we have the inequality:

(2.3) 0 < Zqixi log z; — Zqizi log (Z qizi>
=1 i=1 =1
< Z(a:M — Tm)log i—]:
Proof. As &y < z; < oy we have Inz, <Inz; <Ilnz for all ¢ € {1,... ,n}. Now (2.3) is a simple

consequence of the well-known Griiss inequality

P @iaibi 3R giai 300, qibi
Z?:l qi Z?:l qi Z?:l qi

where ¢; > 0,a <a; < A, b<b <B,i=1,..,n By Chebyshev inequality for similar ordered
n-tuples the expression in absolute value is positive what is our case with a; = z; and b; = logx;. I

1
< (A-a)(B-1)

Using the Corollary 2.2, we can prove the following result:

Corollary 2.4. With the above assumption for x;, i =1,... ,n, we have the inequality:
_ _ nox 1 [n? T
0< ;xilogzi — ;xilog <%> < - |:Z:| (xrmr — xm) log %

where [x] is the integer part of x.
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Proof. We obtain the above result by using Corollary 2.2, and the following result of M. Biernacky, H.
Pidek and C. Ryll-Nardzewski (see for example [4, p. 205]):

<[ (- 2B o

1,...,,n) and taking into account that

(24) 31 (-3 -2 %]

forallme Nyn>1. I

n

ZaIZbi

z:l i=1

where a <a; < Aand b<b; <B (i =

The following theorem also holds:

Theorem 2.5. With the assumptions of Theorem 2.1, we have the inequality:

0 < zn:qixi log z; — iqm log (i Qiﬂ?i)
i=1 i=1 i=1

IN

"%)2
21nb quq] N

i,j=1

Proof. Consider A(a,b) := 2, G(a,b) := Vab and L(a,b) := —2=L— (a # b) the arithmetic mean,

2 Ina—Inb?
geometric mean and logarithmic mean, respectively. It is well known that

G(a,b) < L(a,b) < A(a,b)

thus

which gives us

for all 4,5 € {1,... ,n}.
Consequently

- [P 31 Zi _51:])2
Z(Iij(l'z_xj) n;_ Zqz(b \/m

i,j=1 J i,j=1

and the theorem is thus proved. [
Corollary 2.6. With the above assumptions, we get:

ixiloga:l le10g< l1$z>
i=1

(2.5) 0

IN

IN

1 Z (x; — x;)?
nlnb JTiT;

1<i<j<n
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3 SOME INEQUALITIES FOR THE ENTROPY MAPPING

Suppose that X is a discrete random variable whose range R = {z1,... ,z,} is finite. Let p; = P{X =
zi},i=1,...,n and assume that p; > 0 for all i € {1,... ,n.} Define the entropy of X by
- 1
(3.1) Hy(X) = pilog, o
i=1 v

The following theorem is well known in the literature (see the Introduction)
Theorem 3.1. Let X be as above. Then we have
(3.2) 0 < Hy(X) <logn.

Furthermore, Hy(X) = 0 if and only if p; = 1 for some i and Hy(X) =logn if and only if p; = L for
alli € {1,...,n}.

In the recent paper [1], S.S. Dragomir and C.J. Goh proved the following counterpart of (3.2).

Theorem 3.2. Let X be defined as above, then

1 L,

Furthermore, equality holds simultaneously in all the above inequalities if and only if p; = % for all
i€{1,..,n}.

Using some results obtained above for the log(-) mapping we can point out some different results:

Theorem 3.3. Let X be defined as above, then

1 Di
0 < logn—Hb(X)Sﬁ Z (pi—pj)log;

1 (pi —p;)°
Wb 2 Jp

1<i<j<n

IN

with equality in all inequalities if and only if p; = %, i€ {1,..,n}.
Proof. Follows by Corollary 2.2 and Corollary 2.6 by choosing z; = p;. 1

The following result also holds.

Theorem 3.4. Let X be as above. If p:= min{p;|i = 1,... ,n} and P := max{p;|i =1,...,n}
then:

1[n’] 1 p

< - <2 p- =

0 < logn Hb(X)_n{4]lnb(P p)logp
1[n*] 1L (P=p)?
n|4]|nb pP

Proof. The proof follows by Corollary 2.4 for x; = p;. We omit the details. [l

We can give now different results for the entropy mapping.
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Theorem 3.5. Let X be as above and let Q = Y7 1pl. Then we have the inequality:

(3.3) 0 < Hb(X)—logé

< Q Z pip;i(pi — p; 10g -

i,j=1
< — ipi(pi —pi 2.
< 2anbijzzl VPip; (pi — p;)

Proof. In the inequality (2.1) let choose
a4 = pi/Q.

Then )"  ¢; =1 and if we put z; = ﬁ, then

Dy Pi (Z”ﬂ pi)
0 < E i log — — == lo —
S Q p g g

2 1) V2
i | —— — ) log =
QQZ ( i Dj gpi

i,j=1

IN

— o bi
= 2Q szpj bi —Dpj lng_

1,j=1

and the second inequality in (3.3) is obtained.

The last inequality follows by the elementary inequality to L™' < G~!, and we shall omit the

details. il

Another estimation in terms of P and p (defined above) is the following:

Theorem 3 6. Let X be as above and P := max{p;|i = 1,... ,n}, p = min{p;|i = 1,...

Q=" 1pl. Then we have the inequality:

1 Q P _ (P—p)?Q
3.4 0<HyX)-log=<—(P—p)log— < ————————
(3.4) < Hy(X) —log 5 < 75 (P —p)log - < P VpPInt
Proof. If we choose ¢q; = ’2 , i = — in Theorem 4, we get

1 1 Ypi  Dioapi
0 < —= pilog — — &= o =1
Q z:: & Qe *Q
1 1
o Gop)usf
- 4
which is equivalent with
P
0 < Hy(X) — Q <Q- (4 Pp) log=.

Now, as L' < G, we get the last part of (3.4) and the theorem is proved. H

4 SOME NEW BOUNDS FOR CONDITIONAL ENTROPY

For a pair of random variables X and Y, with respective ranges {z1, 2, ..., z, } and {y1, v, ...

conditional entropy of X and Y is defined by [3, p. 22]:

H(XIY) = 3 _plaispy)lo ( |yj> 2 lwws) log( (1‘(y)>>
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where
p(zi,y;) == P{X = 2:,Y =y}
and

— PUX = [V = g} = P@0Y)
p(zl|y]) . P{X 1’1|Y y]} p(yj) -
Without loss of generality we need to define these quantities only for those (¢, j) for which p(z;,y;) >
0. There will be n (< rs) such pairs.
One can interpret the conditional entropy as the amount of uncertainty remaining about X after
Y has been observed.
The following theorem holds.

Theorem 4.1. For 1 < j < s define V; = {i : p(zi,y;) > 0} and U := {(i,j) : i € V;} and
ro= > p(yj)|Vj|. Then we have the inequality:
j=1

(4.1)
0 < 1ogr' — Hy(X|Y)
yi)p(vy) p(zily;)
< Z Z —— = (p(ily;) — p(zuly»))log ——==
(”)GU(u v)eU $l|y] (T u]yy) p(Tuly)
1 P()P(ye) (p(x:ly;) — p(zalys))”
T nb o= e Pily)p(eulyy) Ve (@ilyp(wuly)
Proof. We shall apply the Theorem 2.1 for
g = P o p@ilys)
r p(y5)
Note that
p(y
> — Z (yi) [Vi] = 1.
(i,5)eU J
By Theorem 2.1 we have the inequality:
0 < ¥ p( yj xz,y)J) log p(l‘(i}/)j) _
(id)ev PAYj
1'7,; 1'7,,
Z P?JJ yy)])log Z Pf] pyy)])
(i.)€U / (i§)€U J
Z D p(y;) p(yv) (p(xi,yv) B p(fcu,yu)> log p(zi, y)p(yo)
o p(y;) p(y») P(Tu, yo)P(y5)

(2,§)€U (u,v)eU

which is equivalent with

1 Ti, 1 1
0 = 3" plei,y)log” pleny;) 1 > plaiy)log | = D7 plaiy)

(i.4)€U P(y;) " ev (i,§)€U

| 1 o PEusy0)
Z Z p(yi)p(yv) (p(xi,yj) p(xu,yv)> log p(zi,y;)

(4,7)EU (u,w)EU

IN

IN

0 < l (logr' - Hb(X|Y))

Y Y I (aiy) o) log B

(l])EU(u v)EU (@i, y5)p(@u; yo) P(Tu,Yv)

IA
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and the first inequality in (4.1) is proved. The last inequality follows from

np(zily;) —Inp(zuly.) 1
p(@ily;) —p(@ulyn) = /p(@ily;)p(zulys)

for (i,7) # (u,v). 1
In a similar way, by using Theorem 2.3, we get the inequality:

Theorem 4.2. Let assumptions of Theorem 4.1 be satisfied. Suppose that k := min{p(z:|y;)/p(y;)},
K := max{p(zi|y;)/p(y;)}

Then we have the inequality:

r (K —k)

<logr — <
0 <logr — Hy(X|Y) < K

! AT
log%< r (K — k)

= 4kKVEK Inb

Remark 4.1. For some related results see [1] and [2]

5 RESULTS FOR MUTUAL INFORMATION

Consider the mutual information between two random variables X and Y defined by:

ZP iy Yj 10g[ ((%y]) ]

)p(y;)

The following theorem concerning the mutual information is known in the literature /3, p. 23].

Theorem 5.1. For any pair of discrete random variable X and Y, I(X;Y) > 0. Moreover, I(X;Y) >
0 of and only if X and Y are independent.

Now we shall prove the following result.

Theorem 5.2. Let V i={(i,7) : p(a,y) > 0} and S =%, , ey p()p(y)

(5.1)

o
IN

I(X;Y) +1og S

S S pep()p(e)p(e) (p’(’(’f’“y“, - p("’“’y“))

v Wy zi)p(y;)  p(za)p(ys)

p(wi, y5)p(xu)p(yy)
p(zi)p(y; )p(Tu, yo)

= e XX p(m)p(yj)p(mp(yv)\/p(“)’,’(y%)p("’“)p(y”)

(DEV (wneV P(xt:yj)p(xu:yv)

p(zi,y;) _ P(Tu, yv) ’
8 (p(xi)p(yj) p(zu)p(y») '

Proof. Consider ¢q; = %. Then, obviously, Y. ¢ = Z(i’j)gv % = 1. If we choose now
— p@)p(y;)
= S

IA

X lo,

p(ziy;)

in Theorem 2.1 we deduce:
p(zi)p(y;)

T, = and ¢;

pleipy;) p(@iyi) | (_p@iy;)
O X TS et Corm)
_ = p(ﬂh,yg) P xl,y] p(zi)p(y;)
)

pxzpy p(wWp(v) ( plriy)  p(Tu,yo)
= Z 2 <p(xz-)p(yj> ) (y»)

(z J)EV (u,v)EV p(xu p

p(zi, yj)p(zu)p(y)
p(xi)p(y; )p(Tu, yov)

log
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which is equivalent with

0 < I(X;Y)+logS
1 ZTi,Yj Lu, Yo
5 L X redstmepy) (Fn pen) )

v ey p(xi)p(y;)  plea)p(ys)

IN

(w4, yj)p(xu)p(yv)
(x:)p(Y;)P(Tw, yv)

p
x log
p

and the second inequality in (5.1) is proved.
Now, as L™} < G™!, we get that

<p(1'i,yj) _ p(zu,yo) ) <ln p(@iy;) o P, y0) )

plx)ply;)  plra)p(ys) p(xi)p(y;) p(zu)p(yv)

< \/p(zi)p(yj)p(xnp(yv) ( Piys) Pl y) )
“V p@hy)p(eu,y)  \p(@p(y;)  pla)p(ye)

and the theorem is proved. I

Using Theorem 2.3, we get another result:

Theorem 5.3. With the above assumptions and ift = min {M andT = max {—J—p(g_”’y‘)_ ,
@ pev LpEiply;) @pev Lpiply;)

we have the following:

1 T (T —t)?
0<I(X;Y)+1log8 < ———(T —t)log — < ———1)__
SIXGY) +log § <y o (T = 1) log 5 = 45T Inb

Remark 5.1. For some related results see [1] and [2] .
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