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AN OSTROWSKI TYPE INEQUALITY FOR A RANDOM
VARIABLE WHOSE PROBABILITY DENSITY FUNCTION
BELONGS TO Lp[A4,B],P > 1

S.S Dragomir, N.S. Barnett and S. Wang

ABSTRACT. An inequality of Ostrowski’s type for a random variable whose probability density
function is in Ly [a,b] ,p > 1, in terms of the cumulative distribution function and expectation is
given. An application for a Beta random variable is also given.

1 INTRODUCTION

The following theorem contains the integral inequality which is known in the literature as Ostrowski’s
inequality [1, p. 469]:

Theorem 1.1. Let f : I C R — R be a differentiable mapping in } (} is the interior of I ), and let
a,b € I witha <b. If f': (a,b) = R is bounded on (a,b), i.e., ||f'|l., := sup |f' (¢)] < oo, then we
te(a,b)

have

1 (m_aTHJ)2 1
1t W] e—a)||f]..

b
(1.1) f@) -5 [ F@a <

for all x € [a,b].
The constant i is sharp in the sense that it can not be replaced by a smaller one.

In [2], S.S Dragomir and S. Wang applied Ostrowski’s inequality in Numerical Analysis obtaining
an estimation of the error bound for the quadrature rules of Riemann type in terms of the infinity norm.
Application for special means: logarithmic mean, identric mean, p—logarithmic mean etc... were also
given.

In [3], N.S. Barnett and S.S. Dragomir established the following version of
Ostrowski’s inequality for cumulative distribution functions

Theorem 1.2. Let X be a random wvariable with the probability density function f : [a,b] C R —
R and with cumulative distribution function F(x) = Pr(X <z). If f € Lo [a,b] and |||, =

sup f (t) < oo, then
te(a,b)

(1.2) Pr(X <uz)

_b—E(X)‘<
b—a -

for all x € [a,b].
The constant %+ in (1.2) is sharp.

The main aim of this paper is to give an Ostrowski type inequality for a random variable whose
probability density functions are in L, [a,b] (p > 1) . An application for a Beta Random Variable is also
given.
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2 AN OSTROWSKI TYPE INEQUALITY

The following theorem holds

Theorem 2.1. Let X be a random variable with the probability density function f : [a,b] C R — R4
and with cumulative distribution function F (x) = Pr(X <=z). If f € Ly[a,b],p > 1, then we have the
inequality:

(2.1) Pr(X <z)-—

b—a

1+q b 14g¢
q 1 rT—a\) ¢ —x\ ¢
< —— —a)e
< LAl 0 a) [(b_a) +(5=5) ]

q 1
< 1Al 0 - )

b—E(X)‘

for all z € [a,b], where 1—1) + % =1.

Proof. By Hélder’s integral inequality we have
(22) F@-Fl=|[ £

1
Y

1, 2
1
g/dt /|f(t)|pdt <z =yl Il

xr
for all z,y € [a,b], where p > 1,1—1)4— % =1 and

P

b
171, = / I ()] dt

is the usual p—norm on L, [a,b].
The inequality (2.2) shows in fact that the mapping F'(-) is of r — H—Hodlder type, i.e.,

(2.3) |F () - Fyl<Hlz—yl",  (V)z,y€a,b]

with 0 < H = ||f||, and r = ¢ € (0,1).
Integrating the inequality (2.2) over y € [a, b] we get successively

(24) F@)- 5= [Fudy

b
[1F@ = Fldy< ;= 111, [le =it dy

T b
= ol | [e=wiay+ [w-o)tay
(b—a)at!

1
E‘"l

(z — a)%"'1

+
1
1+1

q 1 1 1
= i (@0 T e - 0

- #Hf”p(b—a)% [(z:s>é+l+ (Z:D;ﬂ]
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for all = € [a,b].
It is well known that

E(X):b—/F(t)dt

a

then, by (2.4), we get the first inequality in (2.1).
For the second inequality, we observe that

4 i
rT—a) b—a\«
<
(b—a) +<b—a> <1, (V) z € [a,b]

and the theorem is completely proved. i

Remark 2.1. The inequality (2.1) is equivalent to

25) Pr(x 2 0) - 20
q 1 r—a 1_‘Iq b—=x %
Sm”f”p(b—a)q [(b—a) +(b—a> ]
q 1
Sm”f”p(b_a)q: )z € [a,b].

Corollary 2.2. Under the above assumptions, we have the double inequality
7 1+1 q 141
(2.6) b—mllfllp(b—a) ‘ SE(X)SawLmIIfIIp(b—a)q

Proof. We know that a < E (X) <b.
Now, choose in (2.1) x = a to get

<L _yf1, (b—a)s
— q

‘b—E(X)‘
b—a

ie.,

q 1+
b—FE(X)< —— b—
(X) < 7 IFll, b —a) e
which is equivalent to the first inequality in (2.6) .
Also, choosing z = b in (2.1), we get
b— E(X)
b—a

q 1
i <, - o
E(X)—a<—L_|f], (b—a)s*
< LIl

which is equivalent to the second inequality in (2.6) . |}

Remark 2.2. We know that by Holder’s integral inequality

b

1:/f<t)dtg<b—a)%||f||p

which gives
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Now, if we assume that ||f||, is not too large, i.e.,

qg+1 1
2.7) Wi, <= ———=
» q —a)i
then we get
q 141
a+m||f||p(b—a)q <b
and

q 1+
b—mﬂfﬂp(b—a) i >a

which shows that the inequality (2.6) is a tighter inequality than a < E (X) < b when (2.7) holds.
Another equivalent inequality to (2.6) which can be more useful in practice is the following one:

Corollary 2.3. With the above assumptions, we have the inequality:

a+b q 11
2. E(X) - <(b—a) | L —a)7 — =
(2. -5 <0-a [0, 0- 0 -
Proof. From the inequality (2.6) we have:
a+b q 141 a+b
- -7 - <E(X)-
b= T = Ll - @) <) -
a+b q 141
< qa— _7 _
<a- s L, - a)'
ie.,
b—a q 1 a+b
5 —mﬂf”p(b—a)HQSE(X)— 5
<220 L), -0t
- 2 q+1 p
which is equivalent to
a+b q 1+ b—a
B -4 < i, e-0m- 2

=) | L5111, 0 - 0 -

and the inequality (2.8) is proved.

This Corollary provides the possibility of finding a sufficient condition in terms of ||f[|, (p > 1) for

the expectation E (X) to be close to the mean value 2£°.

Corollary 2.4. Let X and f be as above and € > 0. If

g+1 1 e(g+1
i, < S L fr D,
7 (b-a)s qb—a)’e
then
‘E(X)—a;_b‘gs

The proof is similar, and we omit the details.
The following corollary of Theorem 2.1 also holds:
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Corollary 2.5. Let X and f be as above. Then we have the inequality:

2 2
q 1 1 a+b
<l 6= 0¥ + 2 [P - 45
24 (¢ +1) “
Proof. If we choose in (2.1) z = “£2, we get
pe(x < 858) - 2B et - 0)f
2 bma 172 g+

which is clearly equivalent to:

Pr<X§a+b>—%+ ! (E(X)—a+b>‘§ il b—a)7 .
27 (g +

2 b—a 2

Q=
—
_

—
~—

Now, using the triangle inequality, we get

a+b 1
< _ -
Pe(x<t52) -3

o (x =5 -t (s - 55) ot (s -5

< ‘Pr (Xg “;Lb> S (E(X)— “'2”’)‘+ —— B (x) - “‘2”"
<L, 0- 0+ B0 - 4
29 (¢ +1) “
and the corollary is proved. |l
Finally, the following result also holds:
Corollary 2.6. With the above assumptions, we have:

<L — s, 0-a)F + (b-a)
24 (¢ +1) 2

Pr<X§a+b>—%‘.

The proof is similar and we omit the details.

3 APPLICATIONS FOR A BETA RANDOM VARIABLE
A Beta Random Variable X with parameters (s,t) € Q has the probability density function

e (1 =)t
. = . 1
f(z;s,t) T Ben 0<x<

where

Q:={(s,t) :s,t >0}
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and

We observe that, for p > 1,

o=

1
17 G55, = [t a-
0

=

FPE=1+1-1 (1— T)p(tlelfl dr

I
o)
@~
~
=
o

= Fop oG- +1pe-D+1p
provided
p(s—1)+1, pit—-1)+1>0
ie.,

1 1
s>1——-— and t>1-—-.
p p

Now, using Theorem 2.1, we can state the following proposition:

Proposition 3.1. Let p > 1 and X be a Beta random variable with the parameters (s,t) ,s > 1— %,t >
1- 1—1). Then we have the inequality:

(3.1) Pr(X <z)-—

t
s+t

][B(p(S—l)-l-l,p(t—l)—i—l)]%
e B (s,1)

for all x €10,1].
Particularly, we have

. A ¢ [BeG-D+LpE-1)+1)]»
: <X< ) S+t‘32;(q+l) B (s,1) '

The proof follows by Theorem 2.1 choosing f (z) = f(z;s,t),z € [0,1] and taking into account

that B (X) = 5.
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