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ON THE OSTROWSKTI’S INTEGRAL INEQUALITY FOR
MAPPINGS WITH BOUNDED VARIATION AND
APPLICATIONS

S.S. Dragomir

ABSTRACT. A generalization of Ostrowski’s inequality for mappings with bounded variation and
applications in Numerical Analysis for Euler’s Beta function is given.

1 INTRODUCTION

The following theorem contains the integral inequality which is known in the literature as Ostrowski’s
inequality [2, p. 469].

Theorem 1.1. Let f : [a,b] = R be a differentiable mapping on (a,b) whose derivative is bounded on
(a,b) and denote ||f'||, = sup |f'(t)] < oco. Then for all z € [a,b] we have the inequality
te(a,b)

1 (@)’

b
f@) - = [ #(0it] <

The constant % 1s sharp in the sense that it can not be replaced by a smaller one.
In this paper we prove an Ostrowski’s type inequality for mappings with bounded variation and

apply it in obtaining a Riemann’s type quadrature formula for this class of mappings. Applications for
Euler’s Beta function are also given.

2  OSTROWSKI'S INEQUALITY FOR MAPPINGS WITH BOUNDED VARIATION
The following inequality for mappings with bounded variation holds:

Theorem 2.1. Let u : [a,b] — R be mapping with bounded variation on [a,b]. Then for all x € [a,b],
we have the inequality

(2.1) /u(t)dt—u(a:)(b—a) < [—(b—a)+ ‘a:— “;bH \:/(u).

where \/Z (u) denotes the total variation of u.
The constant % is the best possible one.
Proof. Using the integration by parts formula for Riemann-Stieltjes integral we have

x x

/ (t — a)du(t) = u(z)(z — a) — / u(t)dt

a a
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and

b

b
/ (t — b)du(t) = u(z)(b —z) — / w(t)dt.

x

If we add the above two equalities, we get

b b
(2.2) w(@)(b— a) — / w(t)dt = / p(z, 8)du?)

where

for all z,t € [a, b].
Now, assume that A, : a = 20 < 2{" < .. <2, <l
v(An) = 0 as n — oo, where v(A,) :=  max (a:fi)l —z™) and ¢ € [ ("),xiz)l] )

3

(n) (n)

= b is a sequence of divisions with

If p : [a,b] — R is continuous on [a,b] and v : [a,b] = R is with bounded variation on [a, b], then

b
(2.3) / p(z)dv(x)| =

(n) (n) (n)
i, S [ et - )]
n—1
: (n) (n) (n)
< i, SB[ () - ()

< swp ol supz\ (#£2) = o (=) | = sup oo |v

z€la,b] z€[a,b]
Applying the inequality (2.3) for p(z,t) as above and v(z) = u(z), z € [a,b], we get
b b
(24) [penau)| < s o]\

t€la,b]
a

:max{z—a,b—x}\:/(u)z [bga+‘x—“;b‘] \b/(u)

a

and then by (2.4), via the identity (2.2), we deduce the desired inequality (2.1).
Now, assume that the inequality (2.1) holds with a constant C' > 0, i.e.,

”H \:/(u)

b

(2.5) /u(t)dt —u(z)(b—a)| < [C(b —a)+ ‘z -

a

for all = € [a, b].
Consider the mapping « : [a,b] — R, given by

0 if = €la,b)\ {22}
u(x) =

1 if =29t

n (2.5). Then u is with bounded variation on [a,b], and
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and for z = “E* we get in (2.5)

1<20

which implies that C' > % and the theorem is completely proved.
The following corollary holds:

Corollary 2.2. Let u : [a,b] = R be a monotonous mapping on [a,b]. Then we have the inequality

1) - s

T —

b
/u(t)dt —u(@)(b—a)| < [%(b —a)+

a

The case of lipschitzian mappings is embodied in the following corollary.
Corollary 2.3. Let u : [a,b] = R be an L-lipschitzian mapping on [a,b],i.e., we recall
ju(@) —u(y)| < Llz—y|  for all 2,y € [a,b].

Then we have the inequality

/bu(t)dt—u(a:)(b—a) <L E(b—an ‘a:— “;bH b—a).

a

The best inequality we can get from (2.1) is that one for which z = “T*b obtaining

Corollary 2.4. Let u : [a,b] = R be as above. Then we have the inequality:
b

(2.6) /u(t)dx —u (“;b> b—a)| < %(b— a)\b/(u).

a

Similar inequalities can be found if we assume that u is monotonous or lipschitzian on [a,b]. We
shall omit the details.

Remark 2.1. If we assume that u is continuous differentiable on (a,b) and u' is integrable on (a,b),
then by (2.1) we get

/bu(wdx_u(“;”) -a)|<[50-a+ |- 2] i,

a

which is the inequality obtained by Dragomir and Wang in the recent paper [1].

Remark 2.2. It is well known that if f : [a,b] — R is a conver mapping on [a,b], then Hermite-
Hadamard’s inequality holds

(2.7) f(a+b>§ ! /bf(x)deM.

2 b—a 2

Now, if we assume that f : I C R — R is convex on I and a,b € Int(I),a < b; then f) is
monotonous nondecreasing on [a,b] and by Corollary 2.4 we get

b
1 b 1y
9 02 [ s - (5) <3 1m,

which gives a counterpart for the first membership of Hadamard’s inequality.
Similar results can be obtained if we assume that f is convex and monotonous or convex and
lipschitzian on [a, b].
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3 A QUADRATURE FORMULA OF RIEMANN TYPE
Let I, : a = 20 < 1 < ... < Zn—1 < Z, = b be a division of the interval [a,b] and &, €
[zi,2i4+1] (1 =0, ...,n — 1) a sequence of intermediate points for I,,. Construct the Riemann sums

n—1

Ro (f,10,8) = f()hi

=0

where h; := xi4+1 — ;.
We have the following quadrature formula

Theorem 3.1. Let f : [a,b] = R be a mapping with bounded variation on [a,b] and I,,,§, (i =0,...,n — 1)
be as above. Then we have the Riemann quadrature formula

b
(3.1) / F@)de = Ro(f, I, &) + W (£, In,£)(3.1)

where the remainder satisfies the estimation

Ti + Tit1
2

€ —

=0,...,n

1
|Wn(f7[n;E)| < ~sup [Ehl +

(3.2) < |zv(h)+ sup _ Tt T

for all€,(i=0,...,n—1) as above, where v(h) := max h;.
The constant % is sharp in (3.2).

Proof. Apply Theorem 2.1 on the interval [z;, zi+1] to get

Tit1

(3.3 [ f@as - seon| < | ni+

1 Tig1

£ — TV (.

Ti

Summing over i from 0 to n — 1 and using the generalized triangle inequality we get

n—1 Tit1

LA AIES M O

=0 z;

:| n—1Ti41

> V-

i=0 x;

T+ Tit1
2

€ —

T+ Tit1

1
= sup [Ehl + I —

€ —

] \Z/(f)

The second inequality follows by the properties of sup(.).
Now, as

Ti + Tit1

1
. — < —h;
& 5 <3

for all §; € [zi,zi+1] (i = 0,...,n — 1) the last part of (3.2) is also proved.
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Corollary 3.2. Let u : [a,b] & R be a monotonous mapping on [a,b] and I,,,&; (1 =0,...,n — 1) be as
above. Then we have the Riemann quadrature formula (3.1) and the remainder satisfies the estimation

T+ Tt

1
|Wn(faln7£)|§ sup |:—hi+
i=0 2 2

=0,...,n

£

] 1F() — ()

T+ Tt
2

] | (b) = f (a)| < v (R)[f(b) — f(a)|
forall€, (i=0,...,n—1) as above.
The case of lipschitzian mappings is embodied into the following corollary.

Corollary 3.3. Let u : [a,b] = R be an L-lipschitzian mapping on [a,b] and I,,&; (i =0,...,n —1)
be as above. Then we have the Riemann quadrature formula (3.1) and the remainder satisfies the
estimation

B

T+ Tt

& -7

Wl 1 Ol S LY |3+
i=0

The proof is obvious by Corollary 2.3 applied on the intervals [z;, z;+1] and summing the obtained
inequalities.

We shall omit the details.

Note that the best estimation we can get from (3.2) is that one for which
€ = m# obtaining the following midpoint formula:

Corollary 3.4. Let f, I, be as Theorem 3.1. Then we have the midpoint rule

b

/ f(@)dz = Mo (f, 1) + Su(f, I)

a

where

n—1

Mo (f 1) =3 f (B b
=0

and the remainder Sy (f,I,) satisfies the estimation

b
1$a(, 1) < 57 ().

Similar results can be obtained from Corollaries 3.2 and 3.3.

Remark 3.1. If we assume that f : [a,b] — R is differentiable on (a,b) and whose derivative f' is
integrable on (a,b) we can put instead of VZ(f) the Li—norm ||f'||1 obtaining the estimation due to
Dragomir-Wang from the paper [1].
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4  APPLICATIONS FOR EULER’S BETA MAPPING

Consider the mapping Beta for real numbers
1
B(p,q) := /t”‘l(l —t)""'dt, p,q>0
0

and the mapping e, () :==t*~5(1 — )71, ¢t € [0, 1].
We have for p,q > 1 that

€p,q(t) = ep—1.4-1(t)[p — 1 = (p +q — 2)t]
and as

lp—1-(p+q—-2)t]| <max{p—1,¢-1}
for all ¢ € [0,1], then
(4.1) lepqll, < max{p—1,q4—1}[lep—24-2l,

=max{p—1,¢—1}B(p—1,¢—1);  pg>1
The following inequality for Beta mapping holds

Proposition 4.1. Let p,q > 1 and z € [0,1]. Then we have the inequality
(4.2) |B(p,q) —2" (1 —2)"""|

1
<max{p—1,g—1}B(p—1,g—1) {5

.

The proof follows by Theorem 2.1 applied for the mapping e, , and taking into account that ||e;,q || L
satisfies the inequality (4.1).

Corollary 4.2. Let p,q > 1. Then we have the inequality

1 1
B(p,a) = 5pg= | S gmax{p—1Lg¢—-1}B(p-1q-1).

Now, if we apply Theorem 3.1 for the mapping e, , we get the following approximation of Beta
mapping in terms of Riemann sums.

Proposition 4.3. Let I, : a =20 < 21 < ... < Tp—1 < T = b be a division of the interval [a,b],€,; €
[Zi,2i4+1] (1 =0,...,n — 1) a sequence of intermediate points for I, and p,q > 1. Then we have the
formula

B(p,g) =Y &7 1 —=£)"" hi + T (p,9)
=0

where the remainder Ty (p,q) satisfies the estimation

T (p, )]
1 i i
Smax{p—-1,q-1} [§V(h)+_j)up &—%H B(p—-1,9-1)

<max{p—1,g—1}v(h)B(p—-1,9-1).
Particularly, if we choose above £, = H# (i=0,...,n—1) then we get the approrimation

n—1

1 _ _
B(p,q) = Srra 2 S @it zig)’ 2 —wi—zip)" ! + Valp,q)
i=0

where

1
[V (p,q)| < 3 max{p—1,¢ =1} v(h)B(p— 1,9 - 1).
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