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AN ALGEBRAIC INEQUALITY

Feng Qi

ABSTRACT. In the short note, an algebraic inequality is presented by using analytic arguments
and Cauchy’s mean-value theorem.

1 RESuULTS

In this note, we present the following algebraic inequality

Theorem 1.1. Let b > a > 0 and 6 > 0 be real numbers, then for any given positive r € R, we have
(b+6—a bt — gt )1“ b
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(1.1)
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The lower bound in (1.1) is best possible.

Proof. The inequality (1.1) is equivalent to
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that is,
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Therefore, it is sufficient to prove that the function (s"** —a"*')/s"(s — a) is decreasing with s > a.
By direct computation, we have
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So, it also suffices to prove
(1.3) (r+1)(s—a)st = [(r+1)s —ra](s"t" —a" ") 0.

By straightforwardly calculating and easily simplifying, the inequality (1.3) is reduced to
s"—a" a”
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(1.4) r(s —a) > s

(From Cauchy’s mean-value theorem, there exists one point ¢ € (a, s) such that
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Hence, the inequality (1.4) holds.
Using L’Hospital principle yields
_ r+1 _ _r+1 1/r b
(1.5) lim <b+5 o b _—a ) -

r—4o00

b—a b+ o)rtt —art?

b+4’
thus, the lower bound in (1.1) is best possible. The proof is complete. il
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Remark 1.1. Note that the inequality (1.1) can be rewritten as

1 [ 1 bd YT
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(1.6) (b—a/axdx/b+6—a/a xdx) >b—+—6

It is easy to see that inequality (1.6) is indeed an integral analogy of the following
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where r is a given positive real number, n and m are natural numbers, k is a nonnegative integer. The
lower bound in (1.7) is best possible.

The inequality (1.7) was presented in [2] by the author using the Cauchy’s mean-value theorem and
the mathematical induction, which generalized the so-called Alzer’s inequality in [1].

Using the same method as in [2], the author [3] further generalized the Alzer’s inequality and got
that, if a = (a1, a2,...) s a positive and increasing sequence satisfying
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for any positive number r, then we have
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where n and m are natural numbers. The lower bound in (1.9) is best possible.

Remark 1.2. Using L’Hospital principle once again yields
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hence, we proposed the following
Corollary 1.2. Letb>a > 0 and § > 0 be real numbers, then for any positive r € R, we have
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The upper bound in (1.11) is best possible.

Remark 1.3. In fact, these inequalities in this paper have some close relationships with the mono-
tonicity of the ratios or differences of mean values.
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