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A PROOF OF THE ARITHMETIC MEAN-GEOMETRIC
MEAN-HARMONIC MEAN INEQUALITIES

Da-Feng Xia, Sen-Lin Xu and Feng Qi

ABSTRACT. In the note, using Cauchy-Schwartz-Buniakowski’s inequality, the authors give a new
proof of the arithmetic mean-geometric mean-harmonic mean inequalities.

1 INTRODUCTION

The simplest and most classical mean values are the arithmetic, the geometric, and the harmonic mean

values. For a positive sequence a = (a1, a2, ..., a,), these mean values are defined respectively by
1 — n
(1.1) A, (a) = EZai, Gn(a) = Hu(a) = 5
i=1 D
i=1 Qi

For a positive integrable function f defined on [z, y], their integral analogues of (1.1) are given by

(12)  A(f) = —2 /yf(t)dt, G(f):exp(y%z/ylnf(t)dt) H(f) =~

y—x T

= f)

It is well-known that
(1.3) An(a) 2 Gnla) > Hn(a), A(f) > G(f) = H(f)

are called the arithmetic mean-geometric mean-harmonic mean inequalities.

For the sake of brevity, the inequality between the arithmetic and geometric means will be called
A-G inequality, while the inequality between the geometric and harmonic means will be called G-H
inequality.

The A-G inequality has found much interest among many mathematicians, and there are numerous
new proofs, extensions, refinements, and variants of it. The study of the A-G inequality has a rich
literature, for details, please refer to [2, 3, 4], and the like. Recently, H. Alzer [1] and J. Pec¢ari¢ and S.
Varosanec [6] gave two new proofs of the A-G inequality.

The concepts of mean values have been generalized, extended in many directons. A recent devel-
opments concerning the mean values has simply been introduced in [5, 7, 8, 9].

In this note, using Cauchy-Schwartz-Buniakowski’s inequality, we give a new proof of the A-G-H
inequalities.

2 A NEw PRoOF OF THE A-G-H INEQUALITIES

For a continuous function f, define

w0 = (5 [(rwa)” s
v(0) = G(f).
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For a positive sequence a = (a1, as,...,an), define
1/r
= i ; 0;
(2.2) ( Za ) r
©(0) = Gn(a).

Theorem. The functions ¥(r) and ¢(r) are increasing with r € R, respectively.

Proof. Simple calculation yields

() = In ¥ f7 —In(y — z)

_ I [T dt—lnfyfo (t)dt

f Yf t)dt
d
/ dt °

The lemma 1 in [10] states that, if f is a dlfferentlable and increasing function on a given interval
I, then the arithmetic mean v (r, s) of f defined as

_— | r—s
(2.3) () = —— / f(tydt, £0,

P(r,r) = f(r)
is also increasing with both r and s on I.
Therefore, it is sufficient to verify that

F(s) 2
S O
is increasing in s € R
Let g(s) = [Y f°(t)dt, s € R. Then F(s) increases with s if and only if ¢"(s)g(s) — [g'(s)]2 >0,
that is,
(2.4) (/f t)In f dt) /f dt/f )[In £()]* d
Since

/ " P () f(t) dt = / PR (s) I £(1)] dt,

from Cauchy-Schwartz-Buniakowski’s integral inequality in integral form, the inequality (2.4) follows.
The function t(r) is increasing with r.
From straightforward computation, we have

1 n
1 == IE =1
no(r) . ( n 2 a; nn)
1 - r - 0
2. == 1§ | E
(2.5) 7n(nizlal nizlal)

/T (iaf lnai/iaf> ds.
0 \i=1 i=1

Using Cauchy-Schwartz-Buniakowski’s inequality in discrete form, by the similar arguments as proving
the monotonicity of ¥ (r), we can easily obtain that the function ((r) increases with r. The proof of
Theorem follows. [

S| =

Corollary. For a positive continuous function f or a positive sequence a = (ai,as,...,an), we have
the following A-G-H inequalities:
(2.6) A(f) 2 G(f) 2 H(f), An(a) 2 Gu(a) 2 Hn(a).

Proof. 1t is easy to see that (1) = A(f), ¥(—=1) = H(f), (1) = An(a) and ¢(—1) = H,(a). Thus,
the A-G-H inequalities in integral form follows from the monotonicity of ¢ (r), the A-G-H inequalities
in discrete form follows from the monotonicity of ¢(r). The proof is complete. i
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