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A WEIGHTED VERSION OF OSTROWSKI INEQUALITY FOR
MAPPINGS OF HOLDER TYPE AND APPLICATIONS IN
NUMERICAL ANALYSIS

S.S. Dragomir, P. Cerone, J. Roumeliotis and S. Wang

ABSTRACT. In this paper we establish a weighted version of Ostrowski inequality for mappings of
Holder type and apply it in Numerical Integration. Some Examples for the most popular weights:
Legendre, Logarithm, Jacobi, Chebyshev, Laguerre and Hermite are also given.

1 INTRODUCTION

In 1938, A. Ostrowski proved the following integral inequality [2, p. 468]

Theorem 1.1. Let f : [a,b] = R be continuous on [a,b] and differentiable on (a,b) and whose deriva-
tive f' : (a,b) = R is bounded on (a,b), i.e., ||f'|l, = sup |f (t)] < co. Then
te(a,b)

L, (o)
4 (b—a)

b
(11) f@) -5 [ F@a <

] oo |l

for all x € [a,b].
The constant i is the best possible.

For some applications of Ostrowski’s inequality to certain numerical quadrature rules, we refer to
the recent paper [1] by S.S. Dragomir and S. Wang.

In this paper we establish a weighted version of Ostrowski inequality for mappings of » — H-Ho6lder
type and apply it in Numerical Integration.

Some examples for the most popular weights: Legendre, Logarithm, Jacobi, Chebyshev, Laguerre
and Hermite are also given.

For other results in connection to Ostrowski inequality, the reader is advised to consult [1-11].

2 THE RESULTS

The following theorem holds:

Theorem 2.1. Let fyw : (a,b) C R — R be so that w(s) > 0 on (a,b),w is integrable on (a,b) and
b

Jw(s)ds >0, f is of r — H-Holder type, i.e.,

(2.1) lf @) —fWI<Hlz—yl"  forallz,yé€ (a,b)

where H > 0 and r € (0,1] are given. If wf € Ly (a,b), then we have the inequality:

b b
(2.2) f(x)—b;/w(s)f(s)ds SH'%/M—SVU)(S)dS
Jw(s)dsa Jw(s)dsa

for all x € (a,b).
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The constant factor C =1 in the right hand side of the inequality can not be replaced by a smaller
one.

Proof. As f is of r — H—Holder type, we can state that
(2.3) |f(z)— f(s)| < Hlzx—s|" for all z,s € (a,b).

Multiplying by w (s) > 0 and integrating over s on [a,b], we get

(2.4) /|f |w<)ds<H/|x—s| w(s)ds

for all x € (a,b).
On the other hand, by the integral’s properties, we have

b b

(2.5) /If(fv) —f()|w(s)ds > /(f (@) = f () w(s)ds

a a

= f(x)/bw(S)dS—/bf(S)w 5)ds

Now, using (2.4) and (2.5), we get the desired inequality (2.2).
To prove that the constant factor C' = 1 is sharp, let us assume that (2.2) holds with a constant
C>0,i.e,

b
(2.6) f(x)—#/ms)f(s)ds <H. /|a:—s|
dSa

for all z € (a,b).
Consider the mapping fo : [0,1] = R, fo = z",r € (0,1]. Then
[fo(@) = fo(W) =lz" —y"| < |z —yl",

for all z,y € [0,1], which shows that fy is of r—Ho6lder type with the constant H = 1.
Writing the inequality (2.6) for fo, we get

1

(2.7) /@f—yyug@ SC]M—SVW@MS

0

for all z € [0,1] and w as above. Letting z = 0 in (2.7), we deduce C' > 1, which proves the sharpness
of the constant. I

Remark 2.1. If r =1, i.e., the mapping f s Lipschitzian with, let us say, the constant L > 0, then
we get

1
(2.8) fl@)——— [ w(s)f(s)ds|< ——— [ |z —s|w
/ s)ds a/

b
Jw(s)dsa

Now, if in (2.8) we assume that the weight function w (t) = 1, then we get Ostrowski’s inequality
for Lipschitzian mappings (see also [12]):

b

PpEIC
(2.9) ﬂm—bia/f@msg %+(@_;2]L@—aL z € [a,b]

a
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The proof is obvious by (2.8) taking into account the fact that

b T b
ﬁ/|x—s|ds=ﬁ /(x—s)ds+/(s—x)ds
1 (x—a)’+(b—a)
b—a 2
1 =)’
z*W] o=

Remark 2.2. If the mapping f is differentiable on (a,b) and whose derivative f' is bounded on (a,b),
ie, [ lle == sup |f' (¢)] < oo, then instead of L in (2.8) we can put ||f'|, -
te(a,b)

The following corollary, which provides an Ostrowski type inequality for mappings of Holder type
holds.

Corollary 2.2. Let f : [a,b] = R be a mapping of r — H—Holder type. Then we have the inequality

(29) f@) - 5 / 7 (8) dt
< |(550) "+ (55) ooy
= rljl (b—a)

The constant factor C =1 in the right hand side of the inequality can not be replaced by a smaller one.

Proof. Put w(s) =1 in (2.2) to get, in the right hand side, that

b x b '|
ﬁ/|x—s|sds bia[/(x—s)rdsﬂ—/(s—z)rdSJ
) 1 a[(a:—a)rﬂ—l—(;—a:)wrl]

) r+1

and the inequality (2.9") is proved. I

We give now some corollaries for the most popular weight functions.

2.1 Logarithm

Corollary 2.38. Let f : (0,1) = R be a differentiable mapping whose derivative is bounded and for
1

which the integral [In (1) f (t)dt is finite. Then
0

1

(2.10) f(x)—/ln G) f)de| < H -z 42’ (; —1”)] (-

0

for all x € (0,1).
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Proof. We apply (2.8) for L =[|f'[|,,a=0,b=1,w(t) =In
We have

o+ =
~—

1
/|x—s|ln (é) / s—x lnsds+/(a:—s)lnsds
0

for all z € (0,1), and then (2.10) is obtained. I

Remark 2.3. IfI (z) =2” (£ —Inz) —x + 1, then I' (z) = 22 (1 — Inz) — 1, which shows that I has
its minimum on (0,1) at the point Tmin ~ 0.1866823. At this point I (Tmin) = 0.1740840.

Consequently, the best inequality we can get from (2.8) is

1

(2.11) £(0.1866823) —/ln (%) f(t)dt| < 0.1740840 || |

0

2.2 Jacobi

Corollary 2.4. Let f : (0,1) — R be a differentiable mapping whose derivative is bounded and for
1

which the integral ! %dt 18 finite.

Then

(2.12) f(@) - %/%dt < % (8a:3/2 —6x+2) 171

for all x € (0,1).

Proof. We apply (2.8) for L =||f'l|,,a =0,b=1,w(t) = % We have

for all z € (0,1), and then (2.12) is obtained. i
Remark 2.4. If J(z) := % (81‘3/2 — 6z + 2) , then J' (z) = 2y/x — 1, which shows that J has its

minimum on (0,1) at the point Tmin = i. J (Tmin) = i and then, the best inequality we can get from
(2.12) is

(2.13) (—) —%/1% t < i (g
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2.3 Chebyshev

Corollary 2.5. Let f: (—1,1) — R be a differentiable mapping whose derivative is bounded and for
1

which the integral [ LB gt s finite.

b V1i-t2
Then
1
1 f@ 2 .

(2.14) f(z)— = / mdt < p (xarcsmx + 41— z2) ||f'||oo

S
forallz € (—1,1).
Proof. We apply (2.8) for L = ||f'||, ,a=—1,b=1,w (t) = —2—. We have

V1-t2

1
/ dt__
1\/1—t2 ’

1

|z — s| .
———ds=2 (z arcsinx + /1 — z2>
m

21

for all z € (—1,1), and then (2.14) is obtained. I

Remark 2.5. If K (z) := 2 (zarcsinz + /1 — 2?) , then K' (z) = 2 arcsinz, which shows that K has
its minimum on (—1,1) at the point Tmin = 0. K (Tmin) = % and then, the best inequality we can get
from (2.14) is

219) -1 [ Ha <2y,

2.4 Laguerre

Corollary 2.6. Let f : [0,00) — R be a differentiable mapping whose derivative is bounded and for
which the integral [ e”"f (t)dt is finite. Then
0

(216 f@) = [ o)< e -1 |7

for all x € [0, 00).

Proof. We apply (2.8) for L = |||l ,a =0,b = +oo,w (t) =e "

We have
/eftdt =1
0

(oo}
/|x—s|eisds=267w+z—1
0

for all = € [0, 00), and then (2.16) is obtained. [

Remark 2.6. If L (z):=2e * +x —1, then L' (x) = —2e~* + 1 which shows that the mapping L has
its minimum on (0,00) at the point Tmin = In2. L (zmin) = In2 and then the best inequality we can get
from (2.16) is

(2.17) f(an)—/e’tf(t)dt < In2.
0
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2.5 Hermite

Corollary 2.7. Let f: R — R be a differentiable mapping whose derivative is bounded and for which
the integral [ e_t2f (t)dt is finite. Then

(2.18) f(z) — %_é e F () dt] < % [e—zz + V/rx erf (:c)] 171
for all x € R.

Proof. We apply (2.8) for L = ||f'||., ,a = —00,b = +o0,w (t) = e=*. We know

o)

/ e_tzdt =/,

— 00

/ |z — s e ds =" + Vrxerf (z)
for all z € R, and then (2.18) is obtained. |

7=
minimum at Tmin =0 and M (0) = # Consequently, the best inequality we can get from (2.18) is

Remark 2.7. If M (z) = L (e_ﬂ”z + /mzerf (x)) , then M' (z) = erf (z) which shows that M has its

(2.19) f(0) - % /6_t2f(t) dt| < % 17 -

3  APPLICATIONS IN NUMERICAL INTEGRATION

Let In :a =20 < 1 < ... < Zn—1 < T, = b be a division of [a,b] and ¢, € [zi, ziy1] (1 =0,...,n— 1)
intermediate points. Let f,w : [a,b] = R and define the sum

A(f7waIna§) :2f(§l) / w(S)dS.

The following result holds:

Theorem 3.1. Let f and w be as in Theorem 2.1. Then we have the following quadrature rule:

b
(31) [1©wE)ds = A 0,1,0 + R(f0,1,,)
where A (f,w, I, ) is given above and the remainder satisfies the estimate:
n—1 Ti41
(32) RGw T, <HY [ 16— wds
i=0
" 1 Ti41 I b
327 h; / w(s)ds<2—r[u(h)T]/w(s)ds,
i=0 xrq a
where h; :== zi+1 — z; and v (h) = max h;
i=0,n—1
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Proof. We apply the inequality (2.2) on the interval [z;,z;+1] (i = 0,...,n — 1) to get

Tit1 Tit1 Tit1
£€) [ weds— [ we e <H [ 16w

Summing over ¢ from 0 to n — 1 and using the generalized triangle inequality, we get the first part of
(3.2).
The last part follows by the fact that

hi v h)

|§i_5|375 5

and we omit the details. [

1
Suppose that the integral [ %dt is to be approximated. Let [|f'|| := sup |f'(¢)| and assume
0 te(0,1)

that f' : (0,1) — R is bounded. If I,, : 0 = x9 < 21 < ... < Typ—1 < T, = 1 is a division of the
interval [0,1] and &; € [z;, zi41] are intermediate points, then

A1 2 1e) —2Zf ) (VT = VED

and

Tiql &; Tit1

[ le—slshas = [ e —s57ha / s—¢)shds

:2(\/5‘_\/35_1‘) [51_%(§z+\/§—%+$l)]
Z(M \/_) |:% (Z‘i+1+\/€i'$i+l +§l)_€l:|
6 (hi,&;);
and
Tiyl

[ weds=2(/mmm - va).

Ti

1
Consequently, we can approximate the integral [ fT t by
0

A (f,7 In,é) = 2Zf ) (Vi1 — Vi)
having an error R (f, %, I, f) which satisfies the bound:
i=0
n—1
<N 3 m s v < b
i=0

1
Consider the integral f %dt is to be approximated and assume that f' : (—1,1) — R is
—1 -

bounded and ||f'||, :== sup |f'(¢)].

te(—1,1)
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fl,:-1=2z0<z <..<Zy_1 <zp,=1Is a division of the interval [—1,1] and &, € [z;, Tit1]
are intermediate points, then

n—1
Alf, %,In,ﬁ = Z f (&) (arcsin x4 — arcsinz;)
\/1=() i=0
and
Tigl
1
§| ——=ds
[ - =
Ti
& Tiy1 ¢
_s e
— 13 dS+ i d
vi—a T ] i
1 31
1-s%)72 %
=¢; [arcsin s|il] + 1 ( T )
A |
L=
T3 I - [arcsins|§i’]
? &
. arcsin x; + arcsin ;41
= 2¢. o
& (arcsmﬁz 5 )
. 1—22 1—a7,,
+2 [ \/1-¢& — D) =: B (hi,§;)
and

Tit1
w (s)ds = arcsin x;4+1 — arcsin ;.

T

1
Consequently, we can approximate the integral [ SWdt gy by

et V1-t2

1

n—1
—1,,¢ | = Z f (&) (arcsin zj41 — arcsin z;)
\J1-()? i=0

AL

having an error R (f, \/liv, I, 5) which satisfies the bound

1

n—1
———— L) | <] D B ki€
\/1-— ()2 i=0

’ n—-1
11 Z hi (arcsin ;41 — arcsin z;)

R f7

IA

IN
N
—
=
=
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