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Dedicated to Professor M.1. Yadrenko on the occasion of his 70th birthday

ABSTRACT. Classical inequalities of Diaz - Metcalf and Pdlya - Szegd are generalized to
probabilistic setting which covers the initial deterministic (both discrete and integral) vari-
ants. From these two inequalities, by the probabilistic derivation method further well -
known inequalities are obtained (that ones by Kantorovich, Rennie and Schweitzer).

1. INTRODUCTION

Probably the most frequently mentioned inequality is the celebrated Cauchy - Buniakowski
- Schwarz inequality. In probabilistic description it is

|[E¢n|” < EE’En?, (1)

where £, 7 are random variables defined on certain probability space (€2, §, P). An inequality
reverse to (1) is known but just in few situations. These are both deterministic - discrete
and integral variants of Diaz - Metcalf and Pdlya - Szeg6 inequalities, such that includes
many other famous ones, e.g. inequalities by Kantorovich, Rennie and Schweitzer and some
of its generalizations, see [6, §2.11.], [7].

In this paper new reverse evaluations are given to (1) for almost surely P bounded random
variables £, involving just its first two moments E¢, E€2 and the limiting parameters m, M
in P{m < £ < M} = 1 and precise necessary and sufficient conditions are given to hold
equalities in all considered cases. These results generate the classical Diaz - Metcalf and Pdlya
- Szego6 inequalities such that include all other above mentioned deterministic inequalities
together with few new ones both in plane and weighted versions. The derived results cover
the discrete and the integral cases. The used derivation methods are quite simple and
elementary; we use mainly the monotonicity and linearity of the expectation operator E.

In the article we will write £ ~ 1 for r.v. £ possessing distribution/density 1, the symbol
T4 denotes the indicator of random event A and xg(t) stands for the characteristic function
of the set S, Ny denotes the set of nonnegative integers and ¢y, is the Kronecker symbol.
Finally, under LZ[A] we mean the function space {h | [, |h(t)|*¢(t)dt < co} and supp(h) =

{tlh(t) # 0}.

Key words and phrases. almost surely bounded random variable, Diaz - Metcalf inequality, discrete in-
equality, integral inequality, Kantorovich inequality, mathematical expectation, Pdélya - Szegd inequality,
Rennie inequality, Schweitzer inequality.
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2. ON Di1AZ - METCALF INEQUALITY
In the sequel we will deal with almost surely P bounded real random variable £ and we
will assume the existence of real constants m, M, m < M such that
Pim<&{< M} =1.

Of course, there is the possibility to estimate all moments E€", » > 0; m > 0, by the obvious
relation m” < E€" < M", while the variance satisfies D€ < (M — m)?/4. In the continuation
we list certain more sophisticated results.

First of all we give a result we will need in the equality discussion concerning the Diaz -
Metcalf inequality. This theorem was communicated to the author by O.I.Klesov, [5].

Equality Theorem. Let X be a random wvariable for which there exist two real numbers
m, N, m < M such that

Pm<X<M) =1
Then two conditions are equivalent:
EX-—mMMm—-X%X)=0 (2)
and

there exist two events A, B such that

X=mIy+ Mg, a.s. (3)
P(AUB) =1, (4)
P(ANB) = 0. (5)

Proof. Put § = (X — m)(9M — X). Conditions (3-5) imply condition (2), since 6 = 0 almost
surely under (3-5).

Conversely, put A = {w| X(w) = m} and B = {w| (w) = MM}. Obviously by (2) we have
P(X € R\ {m,2}) = 0,
accordingly (3),(4) hold. Since m < 9 (5) holds too. O

Now, we are ready to formulate the Diaz - Metcalf inequality for bounded r.v. case.

Theorem 1. Let &, n be real random variables defined on the same probability space (€2, §, P).
When P{m; <& < M} =1, P{my <n < My} =1 with m; < M;, mg > 0, it holds true

M m M
Eg2 ME2< At I = 6
£+m2M2 U v &n, (6)

and the equality holds iff either (i) my/My = My/ms or (ii) my /My < My/msy and

(e f0) -
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Proof. 1t is easy to see that by the assumptions of the theorem it is

m1 f M1
<2< —.
M2 - Mo (8)

Now by monotonicity of E, we have

(0-0) -3 o

and since E is a linear operator we deduce the desired relation (6) from (9).

Now, it remains the equality discussion in (6), i.e. in (9). Since the case (i) is obvious,
consider (ii), i.e. my /My < M;/msy and (7). But we can write

P(me& = Min V M =mn) =1 and P(mf = Mmn N M =mmn) =0

instead of (ii). Then in (9) the equality appears for the case (8). Conversely, when (9)
becomes equality, that means

Denote A = {w € QMx¢{ = min}, B = {w € Qme& = Mn} and apply the Equality
Theorem with

%:5/77, m:ml/MQ, m:Ml/mg.
So, (7) is proved. O
Corollary 1.1 (D1Az - METCALF TYPE WEIGHTED DISCRETE INEQUALITY).  Suppose
mi < ap < My, k=1nand let 0 < my <y < My, | = 1,m. Assume py > 0, and
Sorei > = 1. Then it holds

m1M1 my M1
< = 4 = 11
D (B DO B (1)

where

ZPM:%, k=1n, Zpkl:rla I=1,m.
=1

The equality in (11) is valid iff either (1) my /My = My/my or (ii) mi/My < My /ms and

> =1, (12)

kel y

where I, == {(k,1) : xx/y, € {m1/Ma, My /ma}}.

Proof. Let (£,7n) be a twodimensional discrete random variable which coordinates are defined
on probability space (Q,P(£2),P), n being positive, and P(Q) = {S|S C Q}. Set (&,7n) ~
Pl =amn=u}=pu k=1n L=Tmand >, > pu =1 Now, Theorem 1 by
the inequality (6) gives (11). The equality discussion in Theorem 1 clearifies the equality in
(11). 0
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Remark 1. Putting m = n and py = +0y, k,1 = 1,n, into (11) (such that implies g, =
r; = 1/n), we get the original equal - weight Diaz - Metcalf inequality:

S (),

published firstly in [2]. Here the equality is valid iff ;. /y; € {m /My, M;/msy} for allk = 1,n.
This follows from (12), since pg; = 0 for all k£ # [ and py = 1/n.

Extensions to complex n - tuples were proved by the author couple Diaz - Metcalf in [2],
compare the list of references in [6, p.66-67] as well.

Corollary 1.2 (D1az - METCALF WEIGHTED INTEGRAL INEQUALITY). Let f, g be Borel
- functions, such that

my < f(z) < My, 0<mg <g(y) < M, a.e. (x,y) € [a,b] X [c,d]. (13)

Let w(m y) be a nonnegative normalized weight function such that supp(w) = [a, b] X [c,d],

Zeff (z,y)dxdy = 1 and let

/de(:z:,y)dy = wi(z), /abw(x,y)dx — wn(y).

Then it is valid

’ 2 my My [ 2 my
[ 30 [P <+ 220 [ [ r@eut . o1
a m2M2 c
In (14) the equality appears iff either (i) ml/Mg = Ml/mQ or (ii) my /My < My/ms and

/ w(z,y) =1,
Loy

where I, :== {(z,y) : f(x)/g(y) € {m1/Maz, M;/ms}}.

Proof. Let (§,7 > 0) be twodimensional continuous r.v. with density function w(z, y) having
supp(w) = [a, b] X [¢,d]. We conclude w; (z), we(y) are the marginal density functions of £, n
respectively. Since f, g are Borel - functions, they are from L2 [a,b], L3, [c,d] respectively.
Choosing m;, M; in way that P{m; < f(§) < M} = P{my < g(n) < My} = 1, with the
help of Theorem 1, we deduce

EF2(6) + Z;—%:Egz(n) < (% T —) EF(©)g(n). (15)

or in equivalent notation (14).

The equality is obvious in case (i). Considering

0 + et - (it + S Er@a =€ (1 - 2ot ) (16 - ko)

by the Equality Theorem we deduce the assertion (ii) of the Corollary. U
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Remark 2. Take (§,7) ~ w(z,y) = (b — a) " X{a42(x, y)dzy. This specification results with
the classical Diaz - Metcalf equal - weight integral inequality:

[ P+ 200 [ o< (220 [

because of the marginal density functions become wi(z) = (b — a) ' X(a4(z) = wa(z). The
equality holds iff either (i) m,/My = M;/my or (ii) my /My < M;/ms and

/ wy(x)dx =1,
I

where I, = I, ,, « € [a,b], compare Corollary 1.2 and the article [2](where the inequality
appears firstly) as well. See [6, p.64] for further informations on the subject.

3. ON POLYA - SZEGO INEQUALITY

The classical Pdlya - Szegé inequality in both cases (discrete and integral) was published
in [8, p.57 & pp.213-214]. Here we give the basic probabilistic moment inequality which
generalize the classical results to weighted variants.

Theorem 2. Let £, be real random variables defined on fixed probability space (€2, §,P).
When P{m; <& < M} =1, P{my <n < My} =1 with 0 <m; < M;, j=1,2, it is valid

2
e <3 (Vi ) o
In (16) the equality holds iff
£ =miZy(w) + MiZoa(w) a.s., n=moToa(w)+ MyZa(w) a.s., (17)
where A € § is chosen so that
P(A) = mlM]\jii-meflmg' (18)

Proof. Suppose that &,n are positive a.s. P bounded random variables. Then the left -
hand expression in the Diaz - Metcalf inequality (6), with the aid of AG - means inequality,
becomes

M
Ee2 4 M lE2 5
mQMQ mo

LEC2ER2. (19)
2

Now, straightforward calculation gives us the asserted result.
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To prove the if part of the equality assertion, assume that &, n are given by (17) and (18).
Consequently, easy calculation gives us

mlMl(m1m2 + M1M2)

2
B = mq My + Mimeo
En — maMa(mymg + My Ms)
my My + Myims
Een — 2mymeo M My 7
mq My + Mime

which results with equality in (16).

The only if part of the equality in (16) we get when equality holds in Diaz - Metcalf
inequality (6) and in the AG - mean inequality (19). Assume at first that mymq < MM,
otherwise the theorem is obvious. Then it have to be satisfied

(i)

E£2 = mlMl(mgMg)_lE’f]Q. (b)
The requirement (a) is satisfied iff there are A, B€ §F, AUB=Q, ANB =1, so
{=mZy(w)+ MIpw), n=myIp(w) + MoZs(w). (20)
Replacing (20) into (b) we get
P(A) _ P(B)
My T Mz
ie. u u
P(A) = LT P(B) = 2
( ) m1M2 -+ M1m2’ ( ) m1M1 -+ M1m2
Therefore (17) and (18) are proved. O

Corollary 2.1 (POLYA - SZEGO TYPE WEIGHTED DISCRETE INEQUALITY).  Suppose
O0<my <z <M, k=1nand 0 < mg <y < My, | =1,m. Then let pyy > 0, and

Y ope1 Doy P = 1. It follows

2 2
- e 1 mym M, M. =
2 2 o1 1172 1M . 21
Zk:l xquzl:1 LA 4( v T\ s > R (21)

k=1 Il=

Here 1s
Zpkl = qi, k= 1,_71; Zpkl =7, l=1,m.
=1 k=1
The equality in (21) holds iff m = n, and
(1)

Mlmgn
K= € Ny, 22
my My + Mymg ‘ (22)
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(2)

Tjy = =T, =M, Ti, ==&, = M, (23)
Yy = =Yi, = Ma, Yipy =+ =Y, =ma, i; €{1,--- ,n}, (24)

(3)
p =0, (k1) € {ir, i} X {tepr, yint U{ingr, - yin}t X {1, ,ix} (25)

Proof. Specity

0 < (577]) ~ P{g = Tk, N = yl} = Pkl
with >0, > ", pr = 1 on fixed probability space (2, P(Q2),P). Easy calculation gives us
(21) by means of (16).

We omit the equality proof since the descriptionary character of the Corollary formulation
in displays (22-25) with m = n. O

Special case of the discrete Weighted Poélya - Szegd inequality is the Kantorovich inequality,
see [4]. If we set m = n; 23 = 5, yi = 7.t we deduce 0 < /i < 4, < VM where
my = p, My = M. Moreover 1f

5k‘l7 k’,l = 1,n, (26)
where at least one uy # 0, we deduce from (21) the Kantorovich inequality, reads as follows

S (i 5) (£9)-

Putting m = n and specifying py; in manner like (26) we get

Zm uiZykuk i( m1m2 \/ > (Z%%%) )
k=1

which is exactly the result by Greub and Rheinboldt, compare [3], [6, p.61].

see [6, p.61] too.

Taking m = n and py = n 'y, the weighted discrete Pélya - Szegd inequality (21)
becomes the classical one:

2 2
1 myms M, M, -
= § : 27
,; 1 i E Ui 4 ( VM, + m1m2> <k:1 xk?Jk) , (27)

for all positive real n - tuples {z}, {yx},k = 1,n, having bounds mentioned in Corollary
2.1, see e.g. [6, pp.60-61.], [8].

The equality condition is now somewhat simpler then in the Corollary 2.1., i.e. (27)
becomes equality under (22-24).
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Corollary 2.2 (POLYA - SZEGO WEIGHTED INTEGRAL INEQUALITY). Let f, g be positive
Borel - functions, such that

0<my < f(x) < My, 0<my <g(y) < My, a.s. (z,y) € [a,b] X [c,d]. (28)
Let w(z,y) be a nonnegative weight function such that supp(w) = [a,b] X [¢,d], and let
d b
[ vty =), [ i =)

Then it is valid

2
Ju PP @wi(@)dz [ g (yywey)dy _ 1 [ [rims MG
b pd z = 4 ML N g | (29)
(S S F@)glyyw(e, y)dady) vz
The equality in (29) holds iff the following conditions are fulfilled: |a,b] = [c,d] and
f(x) =mixs(z) + Mixams(@), 9(y) = Maxapns(y) + maxs(y), (30)
for a Borel set S C |[a,b] of Lebesque measure
Mlmg(b — CL)
S| = , 31
| | mlMQ + M1m2 ( )
moreover
w(z,y) =0,  Y(z,y) € S?U([a,0]\ ). (32)

Since the proof of the inequality (29) is very similar to the proof of the Corollary 1.2 and
Corollary 2.1, it is omitted.

Remark 3. When [a7b] - [C’ d] and <§’n) ~ UJ(Z’,y) = (b - a)71X[a,b]2(1'7y)5xya we get
Jo S (@)da ), g (i 1 ( mimy M1M2>27 (33)
(ff f (x)g(:c)dx> A \V MM, "V mym,

for all f,g € L?[a, ] satisfying
0<my < f(x) <My, 0<mgy <g(x) < M.

When f, g satisfy (30) and (31), then (33) becomes equality and vice versa. The inequality
(33) originates back to Pélya and Szegd, compare [8, p.81 & pp.251-252, Problem 93] where
no equality analysis was given.

4. ON RENNIE AND SCHWEITZER INEQUALITIES

In this section we give some generalizations of Rennie and Schweitzer inequalities to proba-
bilistic setting. We can do this in two directions: 1. applying the linearity and monotonicity
of the expectation operator E; 2. direct use of Diaz - Metcalf and Pdlya - Szego inequalities
respectively.
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Let ¢ be a.s. P bounded, positive random variables, i.e. P{0 < m < (< M} = 1. Then
it is clear that

E(M{™ = 1)(C—m) >0
Therefore we deduce
E(—i—mMEC1 <m+ M.

This is the Rennie - type inequality for positive, bounded random variables. Now, the AG -
mean inequality, applied to the left side term in Rennie inequality gives us 2./mMECE(1/()
and we finish the derivation with

(m + M)?

ECECT! <
(BC < AmM

which is the Schweitzer - type inequality.

Theorem 3. Let ¢ be positive, a.s. P bounded random wvariable defined on the probability
space (Q,F,P) and P{O <m < (<M} =1. Then

EC +mMEC! <m+ M, (34)
where the equality holds iff ( = mZs(w) + MZo\a(w), for certain A € § and
ECEC™ < Uit (35)

AmM
where the equality is valid iff ¢ = mZ(w) + MZo\a(w), for A€, P(A) =1/2.

Proof. Take &2 = ¢ =n"%in (6) and (16) respectively. O

The following result is given in [9], without any equality quotation, compare [6, p.63] as
well.

Corollary 3.1 (DISCRETE RENNIE INEQUALITY). Let {x;} be a positive, real n - tuple,
m; >0, Z?zl n; =1. Then

xjm; +mM <m+ M, (36)
Z i) Z

where m, M are the minimal, mazimal element of {x;} respectively.

The equality holds in (36) for x; € {m, M}, j =1,n.

Proof. Take ( ~ P{¢ = z;} = ;. By (34) we get the desired result (36) immediately.
Now, let I C {1,--- ,n}. Put z; =m,j €l and x; = M when j & I. As

ZxJﬂJvLmMZ——mZWJ—l—MZWJ—i-mM (%Zm—l—%Zm) =m+ M,

jel JEI Jjel Jjé¢l

the Corollary 3.1. is proved. O
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Corollary 3.2 (INTEGRAL RENNIE INEQUALITY). Let f,1/f € L.]a,b], where w(z) > 0
and fabw(:c)d:c =1. When 0 <m < f(x) < M for all x € [a,b], then

/f dx+mM/f d < m+ M: (37)

here the equality is valid iff f(x) = mxg(x) + MXn\s(x), for some Borel S C |a,b].
Corollary 3.3 (WEIGHTED DISCRETE SCHWEITZER INEQUALITY). Let 0 < m < z; <
M, 7; >0, j =1,n where Zl m; =1. Then

(m + M)?
j= 1
The equality appears iff n is even (n = 2\), lel m =1/2 and
Tjp = 0 =X =M Ty = 700 = T =M, g€ {17 7n}'
Corollary 3.4 (WEIGHTED INTEGRAL SCHWEITZER INEQUALITY). Let f,1/f € L. [a, ],
where w(x) >0 andf z)dr =1. When 0 <m < f(x) < M for all x € [a,b], then

/ f(m)w(x)dx/ l;g;dm < (WZ;]\]Z) (39)

and the equality is valid iff f(x) = mxs(z) + MX{an\s(2), for certain Borel S C [a,b] which
possesses Lebesgue measure equal |S| = (b — a)/2.

The Schweitzer inequalities (in both cases, discrete and integral) we can find in [10]. More
precisely, when we specify on certain probability space (£2, P(£2), P) the equal weight case by
£~ P{fZl’]} =T = 1/”7 J:L_nln (34>7 we get

1 (m+M)*n?
) R G S
Z i Z .= dmM ’
7=1 7j=1
which is the original discrete Schweitzer result.

Additionally, taking & ~ Ula, b, i.e. w(z) = (b—a) "y () in (39), we deduce

/f Vo dx)g(”l;;]\]\? (b—a)”.

This inequality is originally proved by Schweitzer in [10] too. Further informations about
the subject can be found in [6, pp.60-61], [8, pp.80-81 & pp.250-251].
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