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STOLARSKY AND GINI DIVERGENCE MEASURES IN
INFORMATION THEORY

P. CERONE AND S.S. DRAGOMIR

Abstract. In this paper we introduce the concepts of Stolarsky and Gini

divergence measures and establish a number of basic properties. Some com-
parison results in the same class or between different classes are also given.

1. Introduction

One of the important issues in many applications of Probability Theory is finding
an appropriate measure of distance (or difference or discrimination) between two
probability distributions. A number of divergence measures for this purpose have
been proposed and extensively studied by Jeffreys [14], Kullback and Leibler [18],
Rényi [27], Havrda and Charvat [12], Kapur [15], Sharma and Mittal [28], Burbea
and Rao [4], Rao [26], Lin [20], Csiszár [6], Ali and Silvey [1], Vajda [35], Shioya
and Da-te [29] and others (see for example [15] and the references therein).

Assume that a set χ and the σ−finite measure µ are given. Consider the set of all
probability densities on χ to be Ω :=

{
p|p : χ → R, p (t) ≥ 0,

∫
χ

p (t) dµ (t) = 1
}

.
The Kullback-Leibler divergence [18] is well known among the information diver-
gences. It is defined as:

(1.1) DKL (p, q) :=
∫

χ

p (t) log
[
p (t)
q (t)

]
dµ (t) , p, q ∈ Ω,

where log is to base 2.
In Information Theory and Statistics, various divergences are applied in addi-

tion to the Kullback-Leibler divergence. These are the: variation distance Dv,
Hellinger distance DH [13], χ2−divergence Dχ2 , α−divergence Dα, Bhattacharyya
distance DB [2], Harmonic distance DHa, Jeffrey’s distance DJ [14], triangular
discrimination D∆ [33], etc... They are defined as follows:

(1.2) Dv (p, q) :=
∫

χ

|p (t)− q (t)| dµ (t) , p, q ∈ Ω;

(1.3) DH (p, q) :=
∫

χ

∣∣∣√p (t)−
√

q (t)
∣∣∣ dµ (t) , p, q ∈ Ω;
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(1.4) Dχ2 (p, q) :=
∫

χ

p (t)

[(
q (t)
p (t)

)2

− 1

]
dµ (t) , p, q ∈ Ω;

(1.5) Dα (p, q) :=
4

1− α2

[
1−

∫
χ

[p (t)]
1−α

2 [q (t)]
1+α

2 dµ (t)
]

, p, q ∈ Ω;

(1.6) DB (p, q) :=
∫

χ

√
p (t) q (t)dµ (t) , p, q ∈ Ω;

(1.7) DHa (p, q) :=
∫

χ

2p (t) q (t)
p (t) + q (t)

dµ (t) , p, q ∈ Ω;

(1.8) DJ (p, q) :=
∫

χ

[p (t)− q (t)] ln
[
p (t)
q (t)

]
dµ (t) , p, q ∈ Ω;

(1.9) D∆ (p, q) :=
∫

χ

[p (t)− q (t)]2

p (t) + q (t)
dµ (t) , p, q ∈ Ω.

For other divergence measures, see the paper [15] by Kapur or the book on line [32]
by Taneja. For a comprehensive collection of preprints available on line, see the
RGMIA web site http://rgmia.vu.edu.au/papersinfth.html.

The f−divergence is defined as follows [6] :

(1.10) Df (p, q) :=
∫

χ

p (t) f

[
q (t)
p (t)

]
dµ (t) , p, q ∈ Ω,

where f is convex on (0,∞). It is assumed that f (u) is zero and strictly convex at
u = 1. By appropriately defining this convex function, various divergences are de-
rived. All the above distances (1.1)−(1.9), are particular instances of f−divergence.
There are also many others which are not in this class (see for example [15] or [32]).
For the basic properties of the f−divergence see [7]-[9].

For classical and new results in comparing different kinds of divergence measures,
see the papers [1]-[36] where further references are given.

2. Lp− Divergence Measures

We define the p−Logarithmic means by (see [3, p. 346])

Lp (a, b) =



[
bp+1−ap+1

(p+1)(b−a)

] 1
p

, p 6= −1, 0,

b−a
ln b−ln a , p = −1,

1
e

(
bb

aa

) 1
b−a

, p = 0,

a 6= b, a, b > 0(2.1)

Lp (a, a) = a.

Where convenient, L−1 (a, b)−the logarithmic mean, will be written as just L (a, b).
The case p = 0 is also called the identric mean, i.e., L0 (a, b) and will be denoted by
I (a, b). Of course, we will also define L∞ (a, b) = max {a, b} and L−∞ = min {a, b}
to complete the special cases.
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It is easily checked that the above definitions are consistent in the sense that
lim
p→0

Lp (a, b) = I (a, b) and lim
p→±∞

Lp (a, b) = L±∞ (a, b).

Following [10], we define the p−logarithmic divergence measure, or simply the
Lp−divergence measure, by

DLp
(q, r) : =

∫
χ

Lp (q (t) , r (t)) dµ (t)(2.2)

=



∫
χ

[
[q(t)]p+1−[r(t)]p+1

(p+1)(q(t)−r(t))

] 1
p

dµ (t) , if p 6= −1, 0,

∫
χ

[
q(t)−r(t)

ln q(t)−ln r(t)

]
dµ (t) , if p = −1,

1
e

∫
χ

[
[q(t)]q(t)

[r(t)]r(t)

] 1
q(t)−r(t)

dµ (t) , if p = 0,

D+∞ (q, r) : =
∫

χ

max {q (t) , r (t)} dµ (t) ,(2.3)

D−∞ (q, r) : =
∫

χ

min {q (t) , r (t)} dµ (t) ,(2.4)

for any q, r ∈ Ω. We observe that

(2.5) D+∞ (q, r) =
∫

χ

q (t) + r (t) + |q (t)− r (t)|
2

dµ (t) = 1 +
1
2
Dv (q, r)

and similarly,

(2.6) D−∞ (q, r) = 1− 1
2
Dv (q, r) .

Since Lp (a, b) = Lp (b, a) for all a, b > 0 and p ∈ [−∞,∞], we can conclude that
the Lp−divergence measures are symmetrical.

Now, if we consider the continuous mappings (which are not necessarily convex)

fp (t) : = Lp (t, 1)(2.7)

=



[
tp+1−1

(p+1)(t−1)

] 1
p

, t ∈ (0, 1) ∪ (1,∞) , p 6= −1, 0;

t−1
ln t , t ∈ (0, 1) ∪ (1,∞) , p = −1;

1
e t

t
t−1 , t ∈ (0, 1) ∪ (1,∞) , p = 0;

1 if t = 1,

f+∞ (t) = 1 +
1
2
|t− 1| ,

f−∞ (t) = 1− 1
2
|t− 1| ,
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and since Lp (a, b) = aLp

(
1, b

a

)
for all a, b > 0 and p ∈ [−∞,∞], we deduce that

Dfp (q, r) =
∫

χ

q (t) fp

(
r (t)
q (t)

)
dµ (t)(2.8)

=
∫

χ

q (t) Lp

(
r (t)
q (t)

, 1
)

dµ (t)

=
∫

χ

Lp (r (t) , q (t)) dµ (t) = DLp (q, r) ,

for all q, r ∈ Ω, which shows that the Lp−divergence measure can be interpreted as
an f−divergence, for f = fp, that are not necessarily convex.

The following fundamental theorem regarding the position of the Lp−divergence
measures has been obtained in [10].

Theorem 1. For any q, r ∈ Ω, we have the inequality

(2.9) 1− 1
2
Dv (r, q) ≤ DLu

(r, q) ≤ DLs
(r, q) ≤ 1 +

1
2
Dv (r, q)

for all −∞ ≤ u < s ≤ ∞.
In particular, we have

1− 1
2
Dv (p, q) ≤ D

[HG2]
1
3

(p, q) ≤ DB (p, q) ≤ DL (p, q)(2.10)

≤ 1
2

+
1
2
DB (p, q) ≤ DI (p, q) ≤ 1,

where

DL (r, q) :=
∫

χ

[
r (t)− q (t)

ln r (t)− ln q (t)

]
dµ (t) is the Logarithmic divergence,

DI (r, q) =
1
e

∫
χ

[
[r (t)]r(t)

[q (t)]q(t)

] 1
r(t)−q(t)

dµ (t) is the Identric divergence,

DB (p, q) =
∫

χ

√
r (x) q (x)dµ (x) (Bhattacharyya distance)

and

D
[HG2]

1
3

(p, q) := 3
√

2
∫

χ

r
2
3 (t) q

2
3 (t)

[r (t) + q (t)]
1
3
dµ (t) .

Remark 1. From (2.9), we can conclude the following inequality for the Lp−divergence
measure in terms of the variational distance

(2.11) |DLs (r, q)− 1| ≤ 1
2
Dv (r, q) , r, q ∈ Ω

for all s ∈ [−∞,∞]. The constant 1
2 is sharp.
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3. α−Power Divergence Measures

For r ∈ R, we define the α−th power mean of the positive numbers a, b by (see
[3, p. 133])

(3.1) M [α] (a, b) :=



(
aα+bα

2

) 1
α if α 6= 0, α 6= ±∞;

√
ab if α = 0;

max {a, b} if α = +∞;

min {a, b} if α = −∞.

Following [10], we define the α−power divergence measure by

DM [α] (p, q) : =
∫

χ

M [α] (p (t) , q (t)) dµ (t)(3.2)

=



∫
χ

[
pα(t)+qα(t)

2

] 1
α

dµ (t) if α 6= 0, α 6= ±∞;

∫
χ

√
p (t) q (t)dµ (t) if α = 0;

1 + 1
2Dv (p, q) if α = +∞;

1− 1
2Dv (p, q) if α = −∞.

.

Since M [α] (a, b) = M [α] (b, a) for all a, b > 0 and α ∈ [−∞,∞], we can conclude
that the α−power divergences are symmetrical. Now, if we consider the continuous
functions (that are not necessarily convex)

(3.3) fα (t) := M [α] (t, 1) =



[
tα+1

2

] 1
α if α 6= 0, α 6= ±∞;

√
t if α = 0, t ∈ (0,∞) ;

1 + 1
2 |t− 1| if α = +∞;

1− 1
2 |t− 1| if α = −∞

and taking into account that M [α] (a, b) = aM [α]
(
1, b

a

)
, we deduce that

Dfα
(p, q) =

∫
χ

p (t) fα

(
q (t)
p (t)

)
dµ (t)(3.4)

=
∫

χ

p (t)M [α]

(
q (t)
p (t)

, 1
)

dµ (t)

=
∫

χ

M [α] (p (t) , q (t)) dµ (t) = DM [α] (p, q) ,

for all p, r ∈ Ω, which shows that the α−power divergence measures can be inter-
preted as f−divergences, for f = fα.

The following theorem concerning the location of the α−power divergence mea-
sure has been obtained in [10].
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Theorem 2. For any p, q ∈ Ω, we have:

(3.5) 1− 1
2
Dv (p, q) ≤ DM [α] (p, q) ≤ DM [β] (p, q) ≤ 1 +

1
2
Dv (p, q)

for −∞ ≤ α < β ≤ ∞.
In particular, we have

(3.6) 1− 1
2
Dv (p, q) ≤ DHa (p, q) ≤ DB (p, q) ≤ 1 +

1
2
Dv (p, q) ,

where DHa (p, q) is the Harmonic divergence and DB (p, q) is the Bhattacharyya
distance.

Remark 2. From (3.5), we may conclude the following inequalities for the α-power
divergence measures in terms of the variational distance

(3.7) |DM [α] (p, q)− 1| ≤ 1
2
Dv (p, q)

for any p, q ∈ Ω and α ∈ [−∞,∞] and the constant 1
2 is sharp.

The following relationship between the power divergence and the generalized
logarithmic divergence holds (see [10]).

Theorem 3. For any p, q ∈ Ω, we have:

(3.8) DM [r1] (p, q) ≤ DLr (p, q) ≤ DM [r2] (p, q) ,

where r1 are defined by

r1 :=


min

{
r+2
3 , r · ln 2

ln r+1

}
, if r > −1, r 6= 0;

min
{

2
3 , ln 2

}
, if r = 0;

min
{

r+2
3 , 0

}
, if r ≤ −1;

and r2, as defined above, but with max instead of min.

Using the above means, we can imagine more divergences that can be constructed
by the use of different contributions of these means. For example, we can define for
p, q ∈ Ω

D
(AG)

1
2

(p, q) : =
∫

χ

√
A (p (t) , q (t))G (p (t) , q (t))dµ (t) ;

D
(LI)

1
2

(p, q) : =
∫

χ

√
L (p (t) , q (t)) I (p (t) , q (t))dµ (t)

or even

D
(GI)

1
2

(p, q) :=
∫

χ

√
G (p (t) , q (t)) I (p (t) , q (t))dµ (t) .

Using Alzer’s result for means (see for instance [3, p. 350]), we may state the
following theorem concerning the above divergence measures (see [10]).

Theorem 4. For any p, q ∈ Ω, we have

D
(AG)

1
2

(p, q) < D
(LI)

1
2

(p, q) < D
M[ 1

2 ] (p, q) ,(3.9)

DL (p, q) + DI (p, q) < 1 + B (p, q) ,(3.10)

D
(GI)

1
2

(p, q) < DI (p, q) <
1
2

[B (p, q) + DI (p, q)] .(3.11)
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4. Stolarsky Means & Divergence Measures

Let a, b ∈ R and let x, y > 0. The Stolarsky mean D(a,b) (x, y) of order (a, b) of
x and y (x 6= y) is defined as

(4.1) D(a,b) (x, y) =



[
b(xa−ya)
a(xb−yb)

] 1
b−a

if (a− b) ab 6= 0;

exp
(
− 1

a + xa ln x−ya ln y
xa−ya

)
if a = b 6= 0;

[
xa−ya

a(ln x−ln y)

] 1
a

if a 6= 0, b = 0;

√
xy if a = b = 0,

with D(a,b) (x, x) = 0 (see [30]).
The following properties of the Stolarsky mean follow immediately from its def-

inition
(i) D(a,b) (·, ·) is symmetric in its parameters, i.e., D(a,b) (·, ·) = D(b,a) (·, ·) ;
(ii) D(·,·) (x, y) is symmetric in the variables x and y, i.e., D(·,·) (x, y) = D(·,·) (y, x) ;
(iii) D(a,b) (x, y) is a homogeneous function of order one in its variables, i.e.,

D(a,b) (tx, ty) = tD(a,b) (x, y) , t > 0.

It can be proved that D(·,·) (·, ·) is an infinitely many times differentiable function
on R2×R2

+, where R+ denotes the set of positive reals. This calss of means contains
several particular means. For instance,

(4.2) D(a,a) (x, y) = Ia (x, y)

is the identric mean of order a, while

(4.3) D(a,0) (x, y) = La (x, y)

is the logarithmic mean of order a. Also,

(4.4) D(2a,a) (x, y) = Ma (x, y)

is the power mean of order a. For the inequality connecting the logarithmic means
of order one and the power means, see [5], [22] and the references therein.

Let

µ (x, y) :=


|x|−|y|

x−y if x 6= y;

sgn (x) if x = y.

The definition of the logarithmic mean is extended to the domain x, y ≥ 0 by

L (x, y) :=


x−y

ln x−ln y if x, y > 0, x 6= y;

0 if x, y = 0.

The following comparison theorem for the Stolarsky mean is due to Leach-
Sholander [19] and Páles [24].

Theorem 5. Let a, b, c, d ∈ R. Then the comparison inequality

(4.5) D(a,b) (x, y) ≤ D(c,d) (x, y)
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holds true for all x, y > 0 if and only if a + b ≤ c + d and

L (a, b) ≤ L (c, d) if 0 < min (a, b, c, d) ,

µ (a, b) ≤ µ (c, d) if min (a, b, c, d) < 0 < max (a, b, c, d) ,

−L (−a,−b) ≤ −L (−c,−d) if max (a, b, c, d) ≤ 0.

Using Theorem 5, we can prove that D(·,b) (x, y) are increasing functions for all
b ∈ R and all x, y > 0.

We define the (a, b)−Stolarsky Divergence Measures by

D(a,b) (p, q)(4.6)

:=
∫

χ

D(a,b) (p (t) , q (t)) dµ (t)

=



∫
χ

[
b(pa(t)−qa(t))
a(pb(t)−qb(t))

]
dµ (t) if (a− b) ab 6= 0;

∫
χ

exp
(
− 1

a + pa(t) ln p(t)−qa(t) ln q(t)
pa(t)−qa(t)

)
dµ (t) if a = b 6= 0;

∫
χ

[
pa(t)−qa(t)

a(ln p(t)−ln q(t))

] 1
a

dµ (t) if a 6= 0, b = 0;

∫
χ

√
p (t) q (t)dµ (t) if a = b = 0,

where p, q ∈ Ω.
Since Stolarsky’s means are symmetrical for (a, b) ∈ R2, we may conclude that

D(a,b) (p, q) = D(a,b) (q, p) for each p, q ∈ Ω, i.e., the Stolarsky divergence measures
are also symmetrical.

Now, if we consider the functions (that are not necessarily convex)

f(a,b) (t) := D(a,b) (t, 1)

=



[
b(ta−1)
a(tb−1)

] 1
b−a

if (a− b) ab 6= 0;

exp
(
− 1

a + ta ln t
ta−1

)
if a = b 6= 0;

[
ta−1
a ln t

] 1
a if a 6= 0, b = 0;

√
t if a = b = 0,

and taking into account that for any x, y > 0

D(a,b) (x, y) = yD(a,b)

(
x

y
, 1

)
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we deduce the equality

Df(a,b) (p, q) =
∫

χ

p (t) f(a,b)

(
q (t)
p (t)

)
dµ (t)

=
∫

χ

p (t) D(a,b)

(
q (t)
p (t)

, 1
)

dµ (t)

=
∫

χ

D(a,b) (q (t) , p (t)) dµ (t)

= D(a,b) (p, q)

for each p, q ∈ Ω, which shows that the (a, b)−Stolarsky divergence measures can
be interpreted as f−divergences for f = f(a,b). Note that, in general, f(a,b) are not
convex functions.

Using the comparison theorem, we may state the following result for Stolarsky
divergence measures.

Theorem 6. Let a, b, c, d ∈ R. If a + b ≤ c + d and

L (a, b) ≤ L (c, d) if 0 < min (a, b, c, d) ,

µ (a, b) ≤ µ (c, d) if min (a, b, c, d) < 0 < max (a, b, c, d) ,

−L (−a,−b) ≤ −L (−c,−d) if max (a, b, c, d) ≤ 0,

then we have the inequalities:

(4.7) 1− 1
2
Dv (p, q) ≤ D(a,b) (p, q) ≤ D(c,d) (p, q) ≤ 1 +

1
2
Dv (p, q) .

The first and last inequalities in (4.7) follow by the fact that for any pair of real
numbers (a, b) , one has

min (x, y) ≤ D(a,b) (x, y) ≤ max (x, y)

for any x, y > 0.

5. Gini Means & Divergence Measures

In 1938, C. Gini [11] introduced the following means

(5.1) S(a,b) (x, y) =



(
xa+ya

xb+yb

) 1
a−b

if a 6= b;

exp
(

xa ln x+ya ln y
xa+ya

)
if a = b 6= 0;

√
xy if a = b = 0,

where a, b ∈ R.
Clearly, these means are symmetric in their parameters and variables, also, they

are homogeneous of order one in their variables. It is worth mentioning that

S(a,0) (x, y) = M[a] (x, y) .

In 1988, Zs. Páles [25] proved the following comparison theorem.
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Theorem 7. Let a, b, c, d ∈ R. Then the comparison inequality

(5.2) S(a,b) (x, y) ≤ S(c,d) (x, y)

is valid for all x, y > 0 if and only if a + b ≤ c + d and

min (a, b) ≤ min (c, d) if 0 < min (a, b, c, d) ,

µ (a, b) ≤ µ (c, d) if min (a, b, c, d) < 0 < max (a, b, c, d) ,

max (a, b) ≤ max (c, d) if max (a, b, c, d) ≤ 0.

Using Theorem 7 one can prove that S(·,b) (x, y) are increasing functions for all
b ∈ R and all x, y > 0.

We define the (a, b)−Gini Divergence Measures by

S(a,b) (p, q) :=
∫

χ

S(a,b) (p (t) , q (t)) dµ (t)(5.3)

=



∫
χ

(
pa(t)+qa(t)
pb(t)+qb(t)

) 1
a−b

dµ (t) if a 6= b;

∫
χ

exp
(

pa(t) ln p(t)+qa(t) ln q(t)
pa(t)+qa(t)

)
dµ (t) if a = b 6= 0;

∫
χ

√
p (t) q (t)dµ (t) if a = b = 0,

where a, b ∈ R.
It is obvious that the (a, b)−Gini divergence measures are symmetrical. If we

consider the functions

g(a,b) (t) := S(a,b) (t, 1) =



(
ta+1
tb+1

) 1
a−b

if a 6= b;

exp
(

ta ln t
ta+1

)
if a = b 6= 0;

√
t if a = b = 0,

and taking into account that for any x, y > 0

S(a,b) (x, y) = yS(a,b)

(
x

y
, 1

)
we deduce the equality

Dg(a,b) (p, q) = D(a,b) (p, q)

for any p, q ∈ Ω, which shows that the (a, b)−Gini divergence measures can be
interpreted as f−divergences for f = g(a,b). Note that in general g(a,b) are not
convex functions.

Using the comparison theorem for Gini means, we may state the following result
concerning the Gini divergence measures.

Theorem 8. Let a, b, c, d ∈ R. If a + b ≤ c + d and

L (a, b) ≤ L (c, d) if 0 < min (a, b, c, d) ,

µ (a, b) ≤ µ (c, d) if min (a, b, c, d) < 0 < max (a, b, c, d) ,

−L (−a,−b) ≤ −L (−c,−d) if max (a, b, c, d) ≤ 0.
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then we have the inequalities

(5.4) 1− 1
2
Dv (p, q) ≤ S(a,b) (p, q) ≤ S(c,d) (p, q) ≤ 1 +

1
2
Dv (p, q) .
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