

# Some Inequalities for the Triangle Involving Fibonacci Numbers

This is the Published version of the following publication

Díaz-Barrero, José Luis (2004) Some Inequalities for the Triangle Involving Fibonacci Numbers. Research report collection, 7 (2).

The publisher's official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/17166/

## SOME INEQUALITIES FOR THE TRIANGLE INVOLVING FIBONACCI NUMBERS

#### JOSÉ LUIS DÍAZ-BARRERO

ABSTRACT. In this note classical inequalities and Fibonacci numbers are used to obtain some miscellaneous inequalities involving the elements of a triangle.

### 1. Introduction

The elements of a triangle are a source of many nice identities and inequalities. A similar interpretation exists for Fibonacci numbers. Many of these identities and inequalities have been documented in extensive lists that appear in the work of Botema [1], Mitrinovic [3] and Koshy [2]. However, as far as we know, miscellaneous geometric inequalities for the elements of a triangle involving Fibonacci numbers never have appeared. In this paper, using classical inequalities and Fibonacci numbers some of these inequalities are given.

#### 2. The Inequalities

In what follows some inequalities for the triangle are stated and proved. We start with

**Theorem 2.1.** In all triangle  $\triangle ABC$ , with the usual notations, the following inequality

(2.1) 
$$a^2F_n + b^2F_{n+1} + c^2F_{n+2} \ge 4S\sqrt{F_nF_{n+1} + F_{n+1}F_{n+2} + F_{n+2}F_n}$$
  
holds.

*Proof.* Let us denote by  $k = 4\sqrt{F_nF_{n+1} + F_{n+1}F_{n+2} + F_{n+2}F_n}$ . Then, (2.1) reads

(2.2) 
$$a^2 F_n + b^2 F_{n+1} + c^2 F_{n+2} \ge kS.$$

 $<sup>2000\</sup> Mathematics\ Subject\ Classification.\ 05A19,11B39.$ 

Key words and phrases. Geometric inequalities, Miscellaneous triangle inequalities, Sequences of integers, Fibonacci numbers.

Taking into account the Cosine Law, we have

$$a^{2}F_{n} + b^{2}F_{n+1} + (a^{2} + b^{2} - 2ab\cos C)F_{n+2} \ge \frac{1}{2}kab\sin C,$$

or equivalently,

$$2\frac{a}{b}\left(F_n + F_{n+2}\right) + 2\frac{b}{a}\left(F_{n+1} + F_{n+2}\right) - \left(4F_{n+2}\cos C + k\sin C\right) \ge 0.$$

From Cauchy-Buniakovski-Schwarz's inequality applied to  $(4F_{n+2}, k)$  and  $(\cos C, \sin C)$ , we obtain

$$4F_{n+2}\cos C + k\sin C \le \sqrt{16F_{n+2}^2 + k^2}.$$

On the other hand, from AM-GM inequality, we get

$$2\frac{a}{b}(F_n + F_{n+2}) + 2\frac{b}{a}(F_{n+1} + F_{n+2}) \ge 4\sqrt{(F_n + F_{n+2})(F_{n+1} + F_{n+2})}.$$

Taking into account the preceding inequalities, we have

$$2\frac{a}{b}(F_n + F_{n+2}) + 2\frac{b}{a}(F_{n+1} + F_{n+2}) - (4F_{n+2}\cos C + k\sin C)$$

$$\geq 4\sqrt{(F_n + F_{n+2})(F_{n+1} + F_{n+2})} - (4F_{n+2}\cos C + k\sin C)$$

$$\geq 4\sqrt{(F_n + F_{n+2})(F_{n+1} + F_{n+2})} - \sqrt{16F_{n+2}^2 + k^2} \geq 0$$

when  $k \le 4\sqrt{F_n F_{n+1} + F_{n+1} F_{n+2} + F_{n+2} F_n}$ .

Consequently, 
$$(2.1)$$
 holds and Theorem 1 is proved.

As an immediate consequence of the preceding result we obtain the following inequality.

Corollary 2.2. In all triangle  $\triangle ABC$ , holds

(2.3) 
$$a^{2}F_{n} + b^{2}F_{n+1} + c^{2}F_{n+2} \ge 4S \left(\sum_{k=1}^{n+2} F_{k}^{2} - F_{n+1}^{2}\right)^{1/2}.$$

*Proof.* In fact, from Theorem 1 we have

$$a^{2}F_{n} + b^{2}F_{n+1} + c^{2}F_{n+2} \geq 4S\sqrt{F_{n}F_{n+1} + F_{n+1}F_{n+2} + F_{n+2}F_{n}}$$

$$= 4S\sqrt{F_{n}F_{n+1} + F_{n+2}^{2}}$$

$$= 4S\sqrt{F_{1}^{2} + F_{2}^{2} + \dots + F_{n}^{2} + F_{n+2}^{2}}.$$

Note that in the last expression we have used the fact that  $F_1^2 + F_2^2 + \ldots + F_n^2 = F_n F_{n+1}$ . Therefore,

$$a^{2}F_{n} + b^{2}F_{n+1} + c^{2}F_{n+2} \ge 4S \left(\sum_{k=1}^{n+2} F_{k}^{2} - F_{n+1}^{2}\right)^{1/2}$$

and the proof is complete.

Before stating our next result we give a Lemma that we will use further on.

**Lemma 2.3.** Let x, y, z and a, b, c be strictly positive real numbers. Then, holds

$$3(yza^2 + zxb^2 + xyc^2) \ge (a\sqrt{yz} + b\sqrt{zx} + c\sqrt{xy})^2.$$

*Proof.* Let  $\overrightarrow{u} = (\sqrt{yz}, \sqrt{zx}, \sqrt{xy})$  and  $\overrightarrow{v} = (a, b, c)$ . By applying Cauchy-Buniakovski-Schwarz's inequality, we get

$$\left[\left(\sqrt{yz},\sqrt{zx},\sqrt{xy}\right)\cdot(a,b,c)\right]^{2}\leq \parallel\left(\sqrt{yz},\sqrt{zx},\sqrt{xy}\right)\parallel^{2}\parallel(a,b,c)\parallel^{2}$$
 or equivalently,

$$(2.4) \qquad (a\sqrt{yz} + b\sqrt{zx} + c\sqrt{xy})^2 \le (yz + zx + xy)(a^2 + b^2 + c^2).$$

On the other hand, by applying the rearrangement inequality yields

$$a^{2}yz + b^{2}zx + c^{2}xy \ge b^{2}yz + c^{2}zx + a^{2}xy,$$
  
 $a^{2}yz + b^{2}zx + c^{2}xy \ge b^{2}xy + a^{2}zx + c^{2}yz.$ 

Hence, the right hand side of (2.4) becomes

$$(yz + zx + xy)(a^2 + b^2 + c^2) \le 3(yza^2 + zxb^2 + xyc^2)$$

and the proof is complete.

In particular, setting  $x = F_n$ ,  $y = F_{n+1}$ , and  $z = F_{n+2}$  in the preceding Lemma, we get the following

**Theorem 2.4.** If a, b and c are the sides of triangle  $\triangle ABC$ , then

$$3\left(F_{n+1}F_{n+2}a^{2} + F_{n+2}F_{n}b^{2} + F_{n}F_{n+1}c^{2}\right)$$

$$\geq \left(a\sqrt{F_{n+1}F_{n+2}} + b\sqrt{F_{n+2}F_{n}} + c\sqrt{F_{n}F_{n+1}}\right)^{2}.$$

Finally, we will use the preceding result to state and prove the following

**Theorem 2.5.** Let  $\triangle ABC$  be a triangle, then for  $\alpha \in \left[0, \frac{\pi}{2}\right)$ , we have

$$\sqrt{F_{n+1}F_{n+2}}\cos(C-\alpha) + \sqrt{F_{n+2}F_n}\cos(B-\alpha) + \sqrt{F_nF_{n+1}}\cos(A-\alpha)$$

$$\leq 2F_{n+2}\cos\left(\frac{\pi}{3}-\alpha\right).$$

*Proof.* By applying Botema inequality [1] and Theorem 2, we get

$$\left(a\sqrt{F_{n+1}F_{n+2}} + b\sqrt{F_{n+2}F_n} + c\sqrt{F_nF_{n+1}}\right)^2$$

 $\leq 3 \left( F_{n+1} F_{n+2} a^2 + F_{n+2} F_n b^2 + F_n F_{n+1} c^2 \right) \leq 3R^2 (F_n + F_{n+1} + F_{n+2})^2$ , and from it,

$$a\sqrt{F_{n+1}F_{n+2}} + b\sqrt{F_{n+2}F_n} + c\sqrt{F_nF_{n+1}} \le R\sqrt{3}(F_n + F_{n+1} + F_{n+2}).$$

Since  $a = 2R \sin A$ ,  $b = 2R \sin B$ , and  $c = 2R \sin C$ , then from the preceding inequality, we obtain

$$\sqrt{F_{n+1}F_{n+2}}\sin A + \sqrt{F_{n+2}F_n}\sin B + \sqrt{F_nF_{n+1}}\sin C \le \sqrt{3}F_{n+2}.$$

On the other hand, by applying the asymmetric trigonometric inequality of J. Wolstenholme ([3],[4]), we have

$$(2.6) \sqrt{F_{n+1}F_{n+2}} \cos A + \sqrt{F_{n+2}F_n} \cos B + \sqrt{F_nF_{n+1}} \cos C \le F_{n+2}.$$

Multiplying (2.5) by  $\tan \alpha$ , adding it up to (2.6), and after simplification, yields

$$\sqrt{F_{n+1}F_{n+2}} \left[\cos A \cos \alpha + \sin A \sin \alpha\right] + \sqrt{F_{n+2}F_n} \left[\cos B \cos \alpha + \sin B \sin \alpha\right] + \sqrt{F_nF_{n+1}} \left[\cos C \cos \alpha + \sin C \sin \alpha\right] \\ \leq 2F_{n+2} \left[\cos \frac{\pi}{3} \cos \alpha + \sin \frac{\pi}{3} \sin \alpha\right]$$

and the proof is complete.

#### References

- O. Botema et alt. Geometric Inequalities, Wolters Noordhoff Publishing, Groningen, 1969.
- 2. T. Koshy. Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, Inc., New York, 2001.
- 3. D. S. Mitirinovic, J. E. Pecaric and V. Volenec. *Recent Advances in Geometric Inequalities*, Kluwer Academic Publishers, Dordrecht, 1989.
- 4. J. Wolstenholme. Mathematical Problems, MacMillan and Co, London, 1878.

Applied Mathematics III, Universitat Politècnica de Catalunya, Jordi Girona 1-3, C2, 08034 Barcelona. Spain *E-mail address*: jose.luis.diaz@upc.es