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ON AN INEQUALITY OF DIANANDA, II
PENG GAO

ABSTRACT. We extend the result in part I ( Int. J. Math. Math. Sci., 2003(2003), 2061-2068;
MR1990724 (2004f:26027) ) of certain inequalities among the generalized power means.

1. INTRODUCTION

Let P, (x) be the generalized weighted means: P, ,.(x) = (3 ;- qi:z:;")%, where P, o(x) denotes
the limit of P, ,(x) as r — 07, x = (1,22, - ,2,) and ¢; > 0(1 < i < n) are positive real numbers
with Y7 | ¢; = 1. In this paper, we let ¢ = min ¢; and always assumen > 2,0 <z < 2 < -+ < Zp,.

We define A, (x) = P, 1(x),Gp(x) = Ppo(x),Hy(x) = P, —1(x) and we shall write P,, for
P, ,(x), Ay for A,(x) and similarly for other means when there is no risk of confusion.

For mutually distinct numbers r, s,t and any real number «, 3, we define

Py — P%
Ar,s,t,a,,@ = ‘HL
Pn,r - Pn,s
where we interpret Pgr — P,(L{S asInP,, —InP,,. When a = (3, we define A, 5t to be Ay st aa-
We also define A, 5; to be Ay g4 1.

Bounds for A, ;. 3 have been studied by many mathematicians. For the case o # 3, we refer
the reader to the articles [2, 7, 10] for the detailed discussions. In the case a = f and r > s > t,
we seek the following bound

(11) fr,s,t,a(‘]) Z Ar,s,t,oc 2 gns,t,a(Q)a
where fy s1q(q) is a decreasing function of ¢ and g, 5+ (¢) is an increasing function of g.
Forr=1,s=0,aa=0,t=—11n (1.1), we can take fi0+0(q) =1/¢,91,00(¢) =1/(1 —¢q), when
¢i = 1/n,1 < i < n, this is the well-known Sierpinski’s inequality[12](see [5] for a refinement of
this). If we further require ¢, > 0, then consideration of the case n = 2,1 — 0,29 = 1 leads to
the choice fr,s,t,a = CT‘,S,t((l - q>a)’ Grsit,a = Cr,s,t(qa)a where
1— xl/tfl/r 1
- 1— wl/sfl/r’t > 0; CT’S’O(:L‘) - 1 — gl/s=1/r"

We will show in Lemma 2.1 that C, ¢(x) is an increasing function of (0 < z < 1) so the above
choice for f, g is plausible. From now on, we will assume f, g to be so chosen.
Note when ¢ > 0, the limiting case @ — 0 in (1.1) leads to Liapunov’s inequality(see [8, p. 27]):

InP,, —InP,, < s(r—t)
InP,, —InP,, = t(r—=s)
From this(or by letting ¢ — 0 when o = 1), one easily deduces the following result of H.Hsu[9](see
also [1]): Ay < C(r,s,t),r >s>t>0.

The consideration of n = 2, z9 — x; shows that the two inequalities in (1.1) can’t hold simulta-
neously and from now on by saying (1.1) holds for » > s >t > 0, > 0, we mean the left-hand side

Cr,s,t(l‘)

(12) A’r’,s,t,O = =: C(T,S,t).
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inequality in (1.1) holds when C; 4;((1 — q)®) > (r —t)/(r — s) and the right-hand side inequality
n (1.1) holds when (r —t)/(r —s) > Cy s+(q%).

More generally, for any set {a, b, c} with a,b,c mutually distinct and non-negative, we let r =
max{a,b, c},t = min{a,b,c},s = {a,b,c}/{r,t}. By saying (1.1) holds for the set {a,b,c},a >0
we mean (1.1) holds for r > s >t > 0,a > 0.

In the case a = 1, aresult of P. Diananda([3], [4])(see also [1],[11]) shows (1.1) holds for {1,1/2,0}
and recently, the author[6] has shown that (1.1) holds for {r, 1,0} and {r,1,1/2}, where r € (0, 00).
It is the goal of this paper to further extend the result in [6].

2. LEMMAS

Lemma 2.1. For 0 < z < 1,0 <t < s < r,Cys+(x) is a strictly increasing function of x. In
particular, for 0 < ¢ <1/2, Cps+(1 —¢q) > Crs:(q)-

Proof. We may assume t > 0. Note C, ¢ ;(z) = C’Lt/r’s/r(xl/r), thus it suffices to prove the lemma
for 'y ;s with 1 > 7 > s > 0. By the mean value theorem,

1/8 -1 . 1 _xl/r—l —_ 1/r=1/s < xl/rfl/s
I/r—1 1—gl/s-1 7

for some x < 7 < 1 and this implies C], ((x) > 0 which completes the proof. O
Lemma 2.2. For1/2<r <1, Ci,1-,(1/2) >r/(1 —7r).

Proof. By setting « = r/(1—7) > 1, it suffices to show f(z) > 0 where f(z) = 1-2"%—z(1—2"1/7),
Now f"(z) = (In2)?2=%2=3(2*~%/* — 23) and let g(x) = (z — 1/z)In2 — 3Inz. Note ¢'(x) has one
root in (1,00) and g(1) = 0, it follows that g(x) hence f”(x) has only one root zg in (1,00). Note
when f”(z) > 0 for & > z, this together with the observation that f(1) = 0, f'(1) = In2— 3 >
0,lim;—oo f(z) =1—1n2 > 0 shows f(x) >0 for x > 1. O

Lemma 2.3. Let 0 < ¢ <1/2. For0<s<r<1l,r+s>1,Ci1,s(1—¢q) > (1—s)/(1—r). For
0<s<l<r, Coi1s(1—q)>(r—s)/(r—1)and forl<s<r, Crs1(1—q)>(r—1)/(r—-s).

Proof. We shall give a proof for the case 1 > r > s > 0,7 + s > 1 here and the proofs for the other
cases are similar. We note first that in this case 1/2 < r < 1. By Lemma 2.1, it suffices to prove
Cirs(1/2) > (1 —5s)/(1 —r). Consider

1

fls) =1 =r)(1 - (%)I/H) —(1=s)1-(5

We have f(r) = 0 and Lemma 2.2 implies f(1 —r) > 0. Now f/(r) = 21=/7g(1/r) where g(z) =
—In2(z% —x) +2*71 — 1 with 1 < 2 < 2. One checks easily g(1) = ¢/(1) = 0,¢"(x) < 0 which
implies g(z) < 0. Hence f'(r) < 0, this combined with the observation that

)l/r—l).

1
(s)=(1—r) 1n2(§)1/8*1(25 —In2)/s*
has at most one root and f”(r) >0, f(1 —r) >0, f(r) =0 implies f(s) >0for 1 —r <s<r. O

3. THE MAIN THEOREMS

Theorem 3.1. Let o = 1. For the set {1,r, s}, with 1,r, s mutually distinct andr > s > 0,r+s > 1,
the left-hand side inequality of (1.1) holds. The equality holds if and only if n = 2,21 =0,q1 = q.

Proof. The case s = 0 was treated in [6], so we may assume s > 0 here. We shall give a proof for
the case 1 > r > s > 0 here and the proofs for the other cases are similar. Define

1— xl/rfl
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By Lemma 2.3, we need to show D, > 0 and we have

1 86D
(3.1) — L =1-P e = C(1—q)(1 = By a7 ),
qn Oxp ’ ’
By a change of variables: gf—; — x;,1 <1< n, we may assume 0 < 1 < 29 < - < x, = 1in
(3.1) and rewrite it as
(3.2) gn(@1,- - s an1) = 1= Ppm = C(1 = q)(1 - B,°).
We want to show g, > 0. Let a = (a1, -+ ,a,_1) € [0,1]""! be the point in which the absolute

minimum of g, is reached. We may assume a1 < ao < -+ < ap_1. If a; = a;41 forsome 1 <i <n—2
or ap—1 = 1, by combing a; with a;11 and ¢; with ¢; 11 or a,—1 with 1 and ¢,—1 with g,, it follows
from Lemma 2.1 that we can reduce the determination of the absolute minimum of g, to that of g, _1
with different weights. Thus without loss of generality, we may assume a1 < ag < -+ < ap_1 < 1.
If a is a boundary point of [0,1]*71, then a; = 0, and we can regard g, as a function of
as, -+ ,an_1, then we obtain
Vgn(ag, - ,an—1) = 0.
Otherwise a; > 0, a is an interior point of [0,1]"~! and
v.gn(ah T 7an—1) = O
In either case as, - - - ,a,_1 solve the equation
(r— 1)P71;27"x7"_1 +C(1—-¢q)(1—- s)P,i;Qst_l = 0.
The above equation has at most one root(regarding P, ,, P, s as constants), so we only need to

show g, > 0 for the case n = 3 with 0 = a1 < as = x < az = 1 in (3.2). In this case we regard g3
as a function of z and we get

1 —2r r—
79{%(‘7}) = P31,7"2 €z 1h($),
q2
where
h(z) =7 =1+ (1= 5)C(1 — q)(qea®/? + gsz™ /) 1729/ (qea"/? + gga=/2)@r =17,
If g2 = O(note g3 > 0), then
h(x) =r—1+ (1 _ S)C(l _ q)q?l)/sfl/rl_s—r.

One easily checks that in this case h(z) has exactly one root in (0,1). Now assume g2 > 0, then
H(x) = (1= $)C(1 = P3Pyt 73 pla),
where
p(a) = (r = s)(g2"*" = g3) + (r + 5 — 1)gags(2” — 2%).
Now
P(z) =" = s")gga" + (r+ s — D)gaas(ra™™* — 5)) := 2° " Lq(2).

If r+s > 1 then ¢/(z) > 0 which implies there can be at most one root for p/(x) = 0. Since
p(0) < 0 and lim, .~ p(z) = 400, we conclude that p(z) hence h/(z) has at most one root. Since
h(1) < 0 by Lemma 2.3 and lim,_ o+ h(x) = 400, this implies h(x) has exactly one root in (0, 1).

Thus g5(x) has only one root zg in (0, 1). Since g5(1) < 0, g3(x) takes its maximum value at z.
Thus g3(z) > min{gs(0), g3(1)} = 0.

Thus we have shown g, > 0, hence %?: > 0 with equality holding if and only if n =1 or n =
2,21 = 0,¢q1 = q. By letting z;, tend to x,,—1, we have D,, > D,,_1(with weights q1, - , gn—2, ¢n—1+
qn). Since C'is an increasing function of ¢, it follows by induction that D,, > D1 > --- > Dy =0
when 1 = 0,91 = ¢ in Dy. Else D,, > D,,_1 > --- > D7 = 0. Since we assume n > 2 in this paper,
this completes the proof. ]
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The relations between (1.1) and (1.2) seems to suggest that if the left-hand side inequality of
(1.1) holds for r > s > ¢t > 0,a > 0, then the left-hand side inequality of (1.1) also holds for
r>s>t>0ka with £ < 1 and if the right-hand side inequality of (1.1) holds for r > s >t >
0, > 0, then the right-hand side inequality of (1.1) also holds for r > s > ¢t > 0, ka with k > 1.
We don’t know the answer in general but for a special case, we have the following:

Theorem 3.2. Let v > s > 0, if the right-hand side inequality of (1.1) holds for {r,s,0},a > 0,
then it also holds for {r,s,0},ka with k > 1. If the left-hand side inequality of (1.1) holds for
{r,s,0},a > 0, then it also holds for {r,s,0}, ka with 0 < k < 1.

Proof. We will only prove the first assertion here and the second can be proved similarly. By the

assumption, we have
1

Pir =G 2 ——— (P, — Bly)
/ T (gt
We write the above as
(3.3) o> (a")"
We now need to show for k > 1,
PR = (") Pl + (- (657 )ahe.
Note by (3.3), via setting w = (¢**)Y/s=V/" & = G,,/ Py, it suffices to show
fla) = (w+ (1 —w)z®)Vk —w/* — (1 —w'/*)z <o,
for 0 < w,x < 1. Note
fl(z) = (1= w)(we™ + (1 - w)) " — (1 —w'/h),

thus f’(z) can have at most one root in (0, 1), note also f(0) = f(1) = 0 and f'(1) > 0, we then
conclude f(z) <0 for 0 < x <1 and this completes the proof. O

1_
s

1
T

FPE 4 (1 - (¢%))GE.

n
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