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ON AN INEQUALITY OF DIANANDA, II

PENG GAO

Abstract. We extend the result in part I ( Int. J. Math. Math. Sci., 2003(2003), 2061-2068;
MR1990724 (2004f:26027) ) of certain inequalities among the generalized power means.

1. Introduction

Let Pn,r(x) be the generalized weighted means: Pn,r(x) = (
∑n

i=1 qix
r
i )

1
r , where Pn,0(x) denotes

the limit of Pn,r(x) as r → 0+, x = (x1, x2, · · · , xn) and qi > 0(1 ≤ i ≤ n) are positive real numbers
with

∑n
i=1 qi = 1. In this paper, we let q = min qi and always assume n ≥ 2, 0 ≤ x1 < x2 < · · · < xn.

We define An(x) = Pn,1(x), Gn(x) = Pn,0(x),Hn(x) = Pn,−1(x) and we shall write Pn,r for
Pn,r(x), An for An(x) and similarly for other means when there is no risk of confusion.

For mutually distinct numbers r, s, t and any real number α, β, we define

∆r,s,t,α,β = |
Pα

n,r − Pα
n,t

P β
n,r − P β

n,s

|,

where we interpret P 0
n,r − P 0

n,s as lnPn,r − lnPn,s. When α = β, we define ∆r,s,t,α to be ∆r,s,t,α,α.
We also define ∆r,s,t to be ∆r,s,t,1.

Bounds for ∆r,s,t,α,β have been studied by many mathematicians. For the case α 6= β, we refer
the reader to the articles [2, 7, 10] for the detailed discussions. In the case α = β and r > s > t,
we seek the following bound

(1.1) fr,s,t,α(q) ≥ ∆r,s,t,α ≥ gr,s,t,α(q),

where fr,s,t,α(q) is a decreasing function of q and gr,s,t,α(q) is an increasing function of q.
For r = 1, s = 0, α = 0, t = −1 in (1.1), we can take f1,0,t,0(q) = 1/q, g1,0,t,0(q) = 1/(1− q), when

qi = 1/n, 1 ≤ i ≤ n, this is the well-known Sierpiński’s inequality[12](see [5] for a refinement of
this). If we further require t, α > 0, then consideration of the case n = 2, x1 → 0, x2 = 1 leads to
the choice fr,s,t,α = Cr,s,t((1− q)α), gr,s,t,α = Cr,s,t(qα), where

Cr,s,t(x) =
1− x1/t−1/r

1− x1/s−1/r
, t > 0;Cr,s,0(x) =

1
1− x1/s−1/r

.

We will show in Lemma 2.1 that Cr,s,t(x) is an increasing function of x(0 < x < 1) so the above
choice for f, g is plausible. From now on, we will assume f, g to be so chosen.

Note when t > 0, the limiting case α → 0 in (1.1) leads to Liapunov’s inequality(see [8, p. 27]):

(1.2) ∆r,s,t,0 =
lnPn,r − lnPn,t

lnPn,r − lnPn,s
≤ s(r − t)

t(r − s)
=: C(r, s, t).

From this(or by letting q → 0 when α = 1), one easily deduces the following result of H.Hsu[9](see
also [1]): ∆r,s,t ≤ C(r, s, t), r > s > t > 0.

The consideration of n = 2, x2 → x1 shows that the two inequalities in (1.1) can’t hold simulta-
neously and from now on by saying (1.1) holds for r > s > t ≥ 0, α > 0, we mean the left-hand side
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inequality in (1.1) holds when Cr,s,t((1− q)α) ≥ (r − t)/(r − s) and the right-hand side inequality
in (1.1) holds when (r − t)/(r − s) ≥ Cr,s,t(qα).

More generally, for any set {a, b, c} with a, b, c mutually distinct and non-negative, we let r =
max{a, b, c}, t = min{a, b, c}, s = {a, b, c}/{r, t}. By saying (1.1) holds for the set {a, b, c}, α > 0
we mean (1.1) holds for r > s > t ≥ 0, α > 0.

In the case α = 1, a result of P. Diananda([3], [4])(see also [1],[11]) shows (1.1) holds for {1, 1/2, 0}
and recently, the author[6] has shown that (1.1) holds for {r, 1, 0} and {r, 1, 1/2}, where r ∈ (0,∞).
It is the goal of this paper to further extend the result in [6].

2. Lemmas

Lemma 2.1. For 0 < x < 1, 0 ≤ t < s < r, Cr,s,t(x) is a strictly increasing function of x. In
particular, for 0 < q ≤ 1/2, Cr,s,t(1− q) ≥ Cr,s,t(q).

Proof. We may assume t > 0. Note Cr,s,t(x) = C1,t/r,s/r(x1/r), thus it suffices to prove the lemma
for C1,r,s with 1 > r > s > 0. By the mean value theorem,

1/s− 1
1/r − 1

· 1− x1/r−1

1− x1/s−1
= η1/r−1/s < x1/r−1/s

for some x < η < 1 and this implies C ′1,r,s(x) > 0 which completes the proof. �

Lemma 2.2. For 1/2 < r < 1, C1,r,1−r(1/2) > r/(1− r).

Proof. By setting x = r/(1−r) > 1, it suffices to show f(x) > 0 where f(x) = 1−2−x−x(1−2−1/x).
Now f ′′(x) = (ln 2)22−xx−3(2x−1/x − x3) and let g(x) = (x− 1/x) ln 2− 3 ln x. Note g′(x) has one
root in (1,∞) and g(1) = 0, it follows that g(x) hence f ′′(x) has only one root x0 in (1,∞). Note
when f ′′(x) > 0 for x > x0, this together with the observation that f(1) = 0, f ′(1) = ln 2 − 1

2 >
0, limx→∞ f(x) = 1− ln 2 > 0 shows f(x) > 0 for x > 1. �

Lemma 2.3. Let 0 < q ≤ 1/2. For 0 < s < r < 1, r + s ≥ 1, C1,r,s(1 − q) > (1 − s)/(1 − r). For
0 ≤ s < 1 < r, Cr,1,s(1− q) > (r − s)/(r − 1) and for 1 < s < r, Cr,s,1(1− q) > (r − 1)/(r − s).

Proof. We shall give a proof for the case 1 > r > s > 0, r + s ≥ 1 here and the proofs for the other
cases are similar. We note first that in this case 1/2 < r < 1. By Lemma 2.1, it suffices to prove
C1,r,s(1/2) > (1− s)/(1− r). Consider

f(s) = (1− r)(1− (
1
2
)1/s−1)− (1− s)(1− (

1
2
)1/r−1).

We have f(r) = 0 and Lemma 2.2 implies f(1 − r) > 0. Now f ′(r) = 21−1/rg(1/r) where g(x) =
− ln 2(x2 − x) + 2x−1 − 1 with 1 < x < 2. One checks easily g(1) = g′(1) = 0, g′′(x) < 0 which
implies g(x) < 0. Hence f ′(r) < 0, this combined with the observation that

f ′′(s) = (1− r) ln 2(
1
2
)1/s−1(2s− ln 2)/s4

has at most one root and f ′′(r) > 0, f(1− r) > 0, f(r) = 0 implies f(s) > 0 for 1− r ≤ s < r. �

3. The Main Theorems

Theorem 3.1. Let α = 1. For the set {1, r, s}, with 1, r, s mutually distinct and r > s ≥ 0, r+s ≥ 1,
the left-hand side inequality of (1.1) holds. The equality holds if and only if n = 2, x1 = 0, q1 = q.

Proof. The case s = 0 was treated in [6], so we may assume s > 0 here. We shall give a proof for
the case 1 > r > s > 0 here and the proofs for the other cases are similar. Define

Dn(x) = An − Pn,r − C(1− q)(An − Pn,s), C(x) =
1− x1/r−1

1− x1/s−1
.
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By Lemma 2.3, we need to show Dn ≥ 0 and we have

(3.1)
1
qn

∂Dn

∂xn
= 1− P 1−r

n,r xr−1
n − C(1− q)(1− P 1−s

n,s xs−1
n ).

By a change of variables: xi
xn

→ xi, 1 ≤ i ≤ n, we may assume 0 ≤ x1 < x2 < · · · < xn = 1 in
(3.1) and rewrite it as

(3.2) gn(x1, · · · , xn−1) := 1− P 1−r
n,r − C(1− q)(1− P 1−s

n,s ).

We want to show gn ≥ 0. Let a = (a1, · · · , an−1) ∈ [0, 1]n−1 be the point in which the absolute
minimum of gn is reached. We may assume a1 ≤ a2 ≤ · · · ≤ an−1. If ai = ai+1 for some 1 ≤ i ≤ n−2
or an−1 = 1, by combing ai with ai+1 and qi with qi+1 or an−1 with 1 and qn−1 with qn, it follows
from Lemma 2.1 that we can reduce the determination of the absolute minimum of gn to that of gn−1

with different weights. Thus without loss of generality, we may assume a1 < a2 < · · · < an−1 < 1.
If a is a boundary point of [0, 1]n−1, then a1 = 0, and we can regard gn as a function of

a2, · · · , an−1, then we obtain
∇gn(a2, · · · , an−1) = 0.

Otherwise a1 > 0, a is an interior point of [0, 1]n−1 and

∇gn(a1, · · · , an−1) = 0.

In either case a2, · · · , an−1 solve the equation

(r − 1)P 1−2r
n,r xr−1 + C(1− q)(1− s)P 1−2s

n,s xs−1 = 0.

The above equation has at most one root(regarding Pn,r, Pn,s as constants), so we only need to
show gn ≥ 0 for the case n = 3 with 0 = a1 < a2 = x < a3 = 1 in (3.2). In this case we regard g3

as a function of x and we get
1
q2

g′3(x) = P 1−2r
3,r xr−1h(x),

where

h(x) = r − 1 + (1− s)C(1− q)(q2x
s/2 + q3x

−s/2)(1−2s)/s(q2x
r/2 + q3x

−r/2)(2r−1)/r.

If q2 = 0(note q3 > 0), then

h(x) = r − 1 + (1− s)C(1− q)q1/s−1/r
3 xs−r.

One easily checks that in this case h(x) has exactly one root in (0, 1). Now assume q2 > 0, then

h′(x) = (1− s)C(1− q)P 1−3s
3,s P r−1

3,r x−
r+s+2

2 p(x),

where
p(x) = (r − s)(q2

2x
r+s − q2

3) + (r + s− 1)q2q3(xr − xs).
Now

p′(x) = xs−1((r2 − s2)q2
2x

r + (r + s− 1)q2q3(rxr−s − s)) := xs−1q(x).
If r + s ≥ 1 then q′(x) > 0 which implies there can be at most one root for p′(x) = 0. Since

p(0) < 0 and limx→∞ p(x) = +∞, we conclude that p(x) hence h′(x) has at most one root. Since
h(1) < 0 by Lemma 2.3 and limx→0+ h(x) = +∞, this implies h(x) has exactly one root in (0, 1).

Thus g′3(x) has only one root x0 in (0, 1). Since g′3(1) < 0, g3(x) takes its maximum value at x0.
Thus g3(x) ≥ min{g3(0), g3(1)} = 0.

Thus we have shown gn ≥ 0, hence ∂Dn
∂xn

≥ 0 with equality holding if and only if n = 1 or n =
2, x1 = 0, q1 = q. By letting xn tend to xn−1, we have Dn ≥ Dn−1(with weights q1, · · · , qn−2, qn−1+
qn). Since C is an increasing function of q, it follows by induction that Dn > Dn−1 > · · · > D2 = 0
when x1 = 0, q1 = q in D2. Else Dn > Dn−1 > · · · > D1 = 0. Since we assume n ≥ 2 in this paper,
this completes the proof. �
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The relations between (1.1) and (1.2) seems to suggest that if the left-hand side inequality of
(1.1) holds for r > s > t ≥ 0, α > 0, then the left-hand side inequality of (1.1) also holds for
r > s > t ≥ 0, kα with k < 1 and if the right-hand side inequality of (1.1) holds for r > s > t ≥
0, α > 0, then the right-hand side inequality of (1.1) also holds for r > s > t ≥ 0, kα with k > 1.
We don’t know the answer in general but for a special case, we have the following:

Theorem 3.2. Let r > s > 0, if the right-hand side inequality of (1.1) holds for {r, s, 0}, α > 0,
then it also holds for {r, s, 0}, kα with k > 1. If the left-hand side inequality of (1.1) holds for
{r, s, 0}, α > 0, then it also holds for {r, s, 0}, kα with 0 < k < 1.

Proof. We will only prove the first assertion here and the second can be proved similarly. By the
assumption, we have

Pα
n,r −Gα

n ≥
1

1− (qα)
1
s
− 1

r

(Pα
n,r − Pα

n,s).

We write the above as

(3.3) Pα
n,s ≥ (qα)

1
s
− 1

r Pα
n,r + (1− (qα)

1
s
− 1

r )Gα
n.

We now need to show for k > 1,

P kα
n,s ≥ (qkα)

1
s
− 1

r P kα
n,r + (1− (qkα)

1
s
− 1

r )Gkα
n .

Note by (3.3), via setting w = (qkα)1/s−1/r, x = Gn/Pn,r, it suffices to show

f(x) =: (w + (1− w)xk)1/k − w1/k − (1− w1/k)x ≤ 0,

for 0 ≤ w, x ≤ 1. Note

f ′(x) = (1− w)(wx−k + (1− w))1/k−1 − (1− w1/k),

thus f ′(x) can have at most one root in (0, 1), note also f(0) = f(1) = 0 and f ′(1) > 0, we then
conclude f(x) ≤ 0 for 0 ≤ x ≤ 1 and this completes the proof. �
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