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REVERSES OF THE
CAUCHY-BUNYAKOVSKY-SCHWARZ AND

HEISENBERG INTEGRAL INEQUALITIES FOR
VECTOR-VALUED FUNCTIONS IN HILBERT SPACES

S.S. DRAGOMIR

Abstract. Some reverses of the Cauchy-Bunyakovsky-Schwarz
integral inequality for vector-valued functions in Hilbert spaces and
applications for the Heisenberg inequality are provided.

1. Introduction

Assume that (K; 〈·, ·〉) is a Hilbert space over the real or complex
number field K. If ρ : [a, b] ⊂ R → [0,∞) is a Lebesgue inte-

grable function with
∫ b

a
ρ (t) dt = 1, then we may consider the space

L2
ρ ([a, b] ; K) of all functionsf : [a, b] → K, that are Bochner measur-

able and
∫ b

a
ρ (t) ‖f (t)‖2 dt < ∞. It is well known that L2

ρ ([a, b] ; K)
endowed with the inner product 〈·, ·〉ρ defined by

〈f, g〉ρ :=

∫ b

a

ρ (t) 〈f (t) , g (t)〉 dt

and generating the norm

‖f‖ρ :=

(∫ b

a

ρ (t) ‖f (t)‖2 dt

) 1
2

,

is a Hilbert space over K.
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The following integral inequality is known in the literature as the
Cauchy-Bunyakovsky-Schwarz (CBS) inequality

(1.1)

∫ b

a

ρ (t) ‖f (t)‖2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

≥
∣∣∣∣∫ b

a

ρ (t) 〈f (t) , g (t)〉 dt

∣∣∣∣2 ,

provided f, g ∈ L2
ρ ([a, b] ; K) .

The case of equality holds in (1.1) iff there exists a constant λ ∈ K
such that f (t) = λg (t) for a.e. t ∈ [a, b] .

Another version of the (CBS) inequality for one vector-valued and
one scalar function is incorporated in:

(1.2)

∫ b

a

ρ (t) |α (t)|2 dt

∫ b

a

ρ (t) ‖f (t)‖2 dt

≥
∥∥∥∥∫ b

a

ρ (t) α (t) f (t) dt

∥∥∥∥2

,

provided α ∈ L2
ρ ([a, b]) and f ∈ L2

ρ ([a, b] ; K) , where L2
ρ ([a, b]) denotes

the Hilbert space of scalar functions α for which
∫ b

a
ρ (t) |α (t)|2 dt < ∞.

The equality holds in (1.2) iff there exists a vector e ∈ K such that
f (t) = α (t) e for a.e. t ∈ [a, b] .

In this paper some reverses of the inequalities (1.1) and (1.2) are
given under various assumptions for the functions involved. Natural
applications for the Heisenberg inequality for vector-valued functions
in Hilbert spaces are also provided.

2. Some Reverse Inequalities, The General Case

The following result holds.

Theorem 1. Let f, g ∈ L2
ρ ([a, b] ; K) and r > 0 be such that

(2.1) ‖f (t)− g (t)‖ ≤ r ≤ ‖g (t)‖
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for a.e. t ∈ [a, b] . Then we have the inequalities:

0 ≤
∫ b

a

ρ (t) ‖f (t)‖2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt(2.2)

−
∣∣∣∣∫ b

a

ρ (t) 〈f (t) , g (t)〉 dt

∣∣∣∣2
≤

∫ b

a

ρ (t) ‖f (t)‖2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

−
[∫ b

a

ρ (t) Re 〈f (t) , g (t)〉 dt

]2

≤ r2

∫ b

a

ρ (t) ‖f (t)‖2 dt.

The constant C = 1 in front of r2 is best possible in the sense that it
cannot be replaced by a smaller quantity.

Proof. We will use the following result obtained in [1]:
In the inner product space (H; 〈·, ·〉) , if x, y ∈ H and r > 0 are such

that ‖x− y‖ ≤ r ≤ ‖y‖ , then

0 ≤ ‖x‖2 ‖y‖2 − |〈x, y〉|2(2.3)

≤ ‖x‖2 ‖y‖2 − [Re 〈x, y〉]2 ≤ r2 ‖x‖2 .

The constant c = 1 in front of r2 is best possible in the sense that it
cannot be replaced by a smaller quantity.

If (2.1) holds, true, then

‖f − g‖2
ρ =

∫ b

a

ρ (t) ‖f (t)− g (t)‖2 dt ≤ r2

∫ b

a

ρ (t) dt = r2

and

‖g‖2
ρ =

∫ b

a

ρ (t) ‖g (t)‖2 dt ≥ r2

∫ b

a

ρ (t) dt = r2

and thus ‖f − g‖ρ ≤ r ≤ ‖g‖ρ . Applying the inequality (2.3) for(
L2

ρ ([a, b] ; K) , 〈·, ·〉p
)

, we deduce the desired inequality (2.2).

If we choose ρ (t) = 1
b−a

, f (t) = x, g (t) = y, x, y ∈ K, t ∈ [a, b] ,
then from (2.2) we recapture (2.3) for which the constant c = 1 in front
of r2 is best possible.

We next point out some general reverse inequalities for the second
(CBS) inequality (1.2).
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Theorem 2. Let α ∈ L2
ρ ([a, b]) , g ∈ L2

ρ ([a, b] ; K) and a ∈ K, r > 0
such that ‖a‖ > r. If the following condition holds

(2.4) ‖g (t)− ᾱ (t) a‖ ≤ r |α (t)|

for a.e. t ∈ [a, b] , (note that, if α (t) 6= 0 for a.e. t ∈ [a, b] , then the
condition (2.4) is equivalent to

(2.5)

∥∥∥∥ g (t)

ᾱ (t)
− a

∥∥∥∥ ≤ r

for a.e. t ∈ [a, b]), then we have the following inequality

(∫ b

a

ρ (t) |α (t)|2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

(2.6)

≤ 1√
‖a‖2 − r2

Re

〈∫ b

a

ρ (t) α (t) g (t) dt, a

〉

≤ ‖a‖√
‖a‖2 − r2

∥∥∥∥∫ b

a

ρ (t) α (t) g (t) dt

∥∥∥∥ ;

0 ≤
(∫ b

a

ρ (t) |α (t)|2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

(2.7)

−
∥∥∥∥∫ b

a

ρ (t) α (t) g (t) dt

∥∥∥∥
≤

(∫ b

a

ρ (t) |α (t)|2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

−Re

〈∫ b

a

ρ (t) α (t) g (t) dt,
a

‖a‖

〉
≤ r2√

‖a‖2 − r2

(
‖a‖+

√
‖a‖2 − r2

) Re

〈∫ b

a

ρ (t) α (t) g (t) dt,
a

‖a‖

〉

≤ r2√
‖a‖2 − r2

(
‖a‖+

√
‖a‖2 − r2

) ∥∥∥∥∫ b

a

ρ (t) α (t) g (t) dt

∥∥∥∥ ;
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a

ρ (t) |α (t)|2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt(2.8)

≤ 1

‖a‖2 − r2

[
Re

〈∫ b

a

ρ (t) α (t) g (t) dt, a

〉]2

≤ ‖a‖2

‖a‖2 − r2

∥∥∥∥∫ b

a

ρ (t) α (t) g (t) dt

∥∥∥∥2

,

and

0 ≤
∫ b

a

ρ (t) |α (t)|2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt(2.9)

−
∥∥∥∥∫ b

a

ρ (t) α (t) g (t) dt

∥∥∥∥2

≤
∫ b

a

ρ (t) |α (t)|2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

−
[
Re

〈∫ b

a

ρ (t) α (t) g (t) dt, a

〉]2

≤ r2

‖a‖2 (
‖a‖2 − r2

) [
Re

〈∫ b

a

ρ (t) α (t) g (t) dt, a

〉]2

≤ r2

‖a‖2 − r2

∥∥∥∥∫ b

a

ρ (t) α (t) g (t) dt

∥∥∥∥2

.

All the inequalities (2.6) – (2.9) are sharp.

Proof. From (2.4) we deduce

‖g (t)‖2 − 2 Re 〈g (t) , ᾱ (t) a〉+ |α (t)|2 ‖a‖2 ≤ |α (t)|2 r2

for a.e. t ∈ [a, b] , which is clearly equivalent to:

(2.10) ‖g (t)‖2 +
(
‖a‖2 − r2

)
|α (t)|2 ≤ 2 Re 〈α (t) g (t) , a〉

for a.e. t ∈ [a, b] .
If we multiply (2.10) by ρ (t) ≥ 0 and integrate over t ∈ [a, b] , then

we deduce ∫ b

a

ρ (t) ‖g (t)‖2 dt−
(
‖a‖2 − r2

) ∫ b

a

ρ (t) |α (t)|2 dt(2.11)

≤ 2 Re

〈∫ b

a

ρ (t) α (t) g (t) dt, a

〉
.
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Now, dividing (2.11) by
√
‖a‖2 − r2 > 0, we get

1√
‖a‖2 − r2

∫ b

a

ρ (t) ‖g (t)‖2 dt(2.12)

+

√
‖a‖2 − r2

∫ b

a

ρ (t) |α (t)|2 dt

≤ 2√
‖a‖2 − r2

Re

〈∫ b

a

ρ (t) α (t) g (t) dt, a

〉
.

On the other hand, by the elementary inequality

1

α
p + αq ≥ 2

√
pq, α > 0, p, q ≥ 0,

we can state that

2

√∫ b

a

ρ (t) |α (t)|2 dt ·

√∫ b

a

ρ (t) ‖g (t)‖2 dt(2.13)

≤ 1√
‖a‖2 − r2

∫ b

a

ρ (t) ‖g (t)‖2 dt +

√
‖a‖2 − r2

∫ b

a

ρ (t) |α (t)|2 dt.

Making use of (2.12) and (2.13), we deduce the first part of (2.6).
The second part of (2.6) is obvious by Schwarz’s inequality

Re

〈∫ b

a

ρ (t) α (t) g (t) dt, a

〉
≤

∥∥∥∥∫ b

a

ρ (t) α (t) g (t) dt

∥∥∥∥ ‖a‖ .

If ρ (t) = 1
b−a

, α (t) = 1, g (t) = x ∈ K, then, from (2.6) we get

‖x‖ ≤ 1√
‖a‖2 − r2

Re 〈x, a〉 ≤ ‖α‖ ‖a‖√
‖a‖2 − r2

,

provided ‖x− a‖ ≤ r, x, a ∈ K. The sharpness of this inequality has
been shown in [1], and we omit the details.

The other inequalities are obvious consequences of (2.6) and we omit
the details.

3. Some Particular Cases

It has been shown in [1] that, for A, a ∈ K (K = C, R) and x, y ∈ H,
where (H; 〈·, ·〉) is an inner product over the real or complex number
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field K, the following inequality holds

‖x‖ ‖y‖ ≤ 1

2
·
Re

[(
Ā + ā

)
〈x, y〉

]
[Re (Aā)]

1
2

(3.1)

≤ 1

2
· |A + a|
[Re (Aā)]

1
2

|〈x, y〉|

provided Re (Aā) > 0 and

(3.2) Re 〈Ay − x, x− ay〉 ≥ 0,

or, equivalently,

(3.3)

∥∥∥∥x− a + H

2
· y

∥∥∥∥ ≤ 1

2
|A− a| ‖y‖ ,

holds. The constant 1
2

is best possible in (3.1).
From (3.1), we can deduce the following results

0 ≤ ‖x‖ ‖y‖ − Re 〈x, y〉(3.4)

≤ 1

2
·
Re

[(
Ā + ā− 2 [Re (Aā)]

1
2

)
〈x, y〉

]
[Re (Aā)]

1
2

≤ 1

2
·

∣∣∣Ā + ā− 2 [Re (Aā)]
1
2

∣∣∣
[Re (Aā)]

1
2

|〈x, y〉|

and

0 ≤ ‖x‖ ‖y‖ − |〈x, y〉|(3.5)

≤ 1

2
· |A + a| − 2 [Re (Aā)]

1
2

[Re (Aā)]
1
2

|〈x, y〉| .

If one assumes that A = M, a = m, M ≥ m > 0, then, from (3.1),
(3.4) and (3.5) we deduce the much simpler and more useful results:

(3.6) ‖x‖ ‖y‖ ≤ 1

2
· (M + m)√

Mm
Re 〈x, y〉 ,

(3.7) 0 ≤ ‖x‖ ‖y‖ − Re 〈x, y〉 ≤ 1

2
·

(√
M −

√
m

)2

√
Mm

Re 〈x, y〉

and

(3.8) 0 ≤ ‖x‖ ‖y‖ − |〈x, y〉| ≤ 1

2
·

(√
M −

√
m

)2

√
Mm

|〈x, y〉| ,



8 S.S. DRAGOMIR

provided

Re 〈My − x, x−my〉 ≥ 0

or, equivalently

(3.9)

∥∥∥∥x− M + m

2
y

∥∥∥∥ ≤ 1

2
(M −m) ‖y‖ .

Squaring (3.1), we can get the following results as well:

(3.10) 0 ≤ ‖x‖2 ‖y‖2 − |〈x, y〉|2 ≤ 1

4
· |A− a|2

Re (Aā)
|〈x, y〉|2 ,

provided (3.2) or (3.1) holds. Here the constant 1
4

is also best possible.
Using the above inequalities for vectors in inner product spaces, we

are able to state the following theorem concerning reverses of the (CBS)
integral inequality for vector-valued functions in Hilbert spaces.

Theorem 3. Let f, g ∈ L2
ρ ([a, b] ; K) and γ, Γ ∈ K with Re (Γγ̄) > 0.

If

(3.11) Re 〈Γg (t)− f (t) , f (t)− γg (t)〉 ≥ 0

for a.e. t ∈ [a, b] , or, equivalently,

(3.12)

∥∥∥∥f (t)− γ + Γ

2
· g (t)

∥∥∥∥ ≤ 1

2
|Γ− γ| ‖g (t)‖

for a.e. t ∈ [a, b] , then we have the inequalities

(∫ b

a

ρ (t) ‖f (t)‖2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

(3.13)

≤ 1

2
·
Re

[(
Γ̄ + γ̄

) ∫ b

a
ρ (t) 〈f (t) , g (t)〉 dt

]
[Re (Γγ̄)]

1
2

≤ 1

2
· |Γ + γ|
[Re (Γγ̄)]

1
2

∣∣∣∣∫ b

a

ρ (t) 〈f (t) , g (t)〉 dt

∣∣∣∣ ,
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0 ≤
(∫ b

a

ρ (t) ‖f (t)‖2 dt

) 1
2
(∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

(3.14)

−
∫ b

a

ρ (t) Re 〈f (t) , g (t)〉 dt

≤ 1

2
·
Re

[{
Γ̄ + γ̄ − 2 [Re (Γγ̄)]

1
2

}∫ b

a
ρ (t) 〈f (t) , g (t)〉 dt

]
[Re (Γγ̄)]

1
2

≤ 1

2
·

∣∣∣Γ̄ + γ̄ − 2 [Re (Γγ̄)]
1
2

∣∣∣
[Re (Γγ̄)]

1
2

∣∣∣∣∫ b

a

ρ (t) 〈f (t) , g (t)〉 dt

∣∣∣∣ ,

0 ≤
(∫ b

a

ρ (t) ‖f (t)‖2 dt

) 1
2
(∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

(3.15)

−
∣∣∣∣∫ b

a

ρ (t) 〈f (t) , g (t)〉 dt

∣∣∣∣
≤ 1

2
· |Γ + γ| − 2 [Re (Γγ̄)]

1
2

[Re (Γγ̄)]
1
2

∣∣∣∣∫ b

a

ρ (t) 〈f (t) , g (t)〉 dt

∣∣∣∣ ,

and

0 ≤
∫ b

a

ρ (t) ‖f (t)‖2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt(3.16)

−
∣∣∣∣∫ b

a

ρ (t) 〈f (t) , g (t)〉 dt

∣∣∣∣2
≤ 1

4
· |Γ− γ|2

Re (Γγ̄)

∣∣∣∣∫ b

a

ρ (t) 〈f (t) , g (t)〉 dt

∣∣∣∣2 .

The constants 1
2

and 1
4

above are sharp.

In the case where Γ, γ are positive real numbers, the following corol-
lary incorporating more convenient reverses for the (CBS) integral in-
equality, may be stated.

Corollary 1. Let f, g ∈ L2
ρ ([a, b] ; K) and M ≥ m > 0. If

(3.17) Re 〈Mg (t)− f (t) , f (t)−mg (t)〉 ≥ 0

for a.e. t ∈ [a, b] , or, equivalently,

(3.18)

∥∥∥∥f (t)− m + M

2
· g (t)

∥∥∥∥ ≤ 1

2
(M −m) ‖g (t)‖
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for a.e. t ∈ [a, b] , then we have the inequalities(∫ b

a

ρ (t) ‖f (t)‖2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

(3.19)

≤ 1

2
· M + m√

mM

∫ b

a

ρ (t) Re 〈f (t) , g (t)〉 dt,

0 ≤
(∫ b

a

ρ (t) ‖f (t)‖2 dt

) 1
2
(∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

(3.20)

−
∫ b

a

ρ (t) Re 〈f (t) , g (t)〉 dt

≤ 1

2
·

(√
M −

√
m

)2

√
mM

∫ b

a

ρ (t) Re 〈f (t) , g (t)〉 dt,

0 ≤
(∫ b

a

ρ (t) ‖f (t)‖2 dt

) 1
2
(∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

(3.21)

−
∣∣∣∣∫ b

a

ρ (t) 〈f (t) , g (t)〉 dt

∣∣∣∣
≤ 1

2
·

(√
M −

√
m

)2

√
mM

∣∣∣∣∫ b

a

ρ (t) 〈f (t) , g (t)〉 dt

∣∣∣∣ ,

and

0 ≤
∫ b

a

ρ (t) ‖f (t)‖2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt(3.22)

−
∣∣∣∣∫ b

a

ρ (t) 〈f (t) , g (t)〉 dt

∣∣∣∣2
≤ 1

4
· (M −m)2

mM

∣∣∣∣∫ b

a

ρ (t) 〈f (t) , g (t)〉 dt

∣∣∣∣2 .

The constants 1
2

and 1
4

above are best possible.

On utilising the general result of Theorem 2, we are able to state a
number of interesting reverses for the (CBS) inequality in the case when
one function takes vector-values while the other is a scalar function.
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Theorem 4. Let α ∈ L2
ρ ([a, b]) , g ∈ L2

ρ ([a, b] ; K) , e ∈ K, ‖e‖ = 1,
γ, Γ ∈ K with Re (Γγ̄) > 0. If

(3.23)

∥∥∥∥g (t)− ᾱ (t) · Γ + γ

2
e

∥∥∥∥ ≤ 1

2
|Γ− γ| |α (t)|

for a.e. t ∈ [a, b] , or, equivalently

(3.24) Re 〈Γᾱ (t) e− g (t) , g (t)− γᾱ (t) e〉 ≥ 0

for a.e. t ∈ [a, b] , (note that, if α (t) 6= 0 for a.e. t ∈ [a, b] , then (3.23)
is equivalent to

(3.25)

∥∥∥∥∥ g (t)

α (t)
− Γ + γ

2
e

∥∥∥∥∥ ≤ 1

2
|Γ− γ|

for a.e. t ∈ [a, b] , and (3.24) is equivalent to

(3.26) Re

〈
Γe− g (t)

α (t)
,
g (t)

α (t)
− γe

〉
≥ 0

for a.e. t ∈ [a, b]), then the following reverse inequalities are valid:

(∫ b

a

ρ (t) |α (t)|2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

(3.27)

≤
Re

[(
Γ̄ + γ̄

) 〈∫ b

a
ρ (t) α (t) g (t) dt, e

〉]
2 [Re (Γγ̄)]

1
2

≤ 1

2
· |Γ + γ|
[Re (Γγ̄)]

1
2

∥∥∥∥∫ b

a

ρ (t) α (t) g (t) dt

∥∥∥∥ ;
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0 ≤
(∫ b

a

ρ (t) |α (t)|2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

(3.28)

−
∥∥∥∥∫ b

a

ρ (t) α (t) g (t) dt

∥∥∥∥
≤

(∫ b

a

ρ (t) |α (t)|2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

−Re

[
Γ̄ + γ̄

|Γ + γ|

〈∫ b

a

ρ (t) α (t) g (t) dt, e

〉]
≤ |Γ− γ|2

2
√

Re (Γγ̄)
(
|Γ + γ|+ 2

√
Re (Γγ̄)

)
×Re

[
Γ̄ + γ̄

|Γ + γ|

〈∫ b

a

ρ (t) α (t) g (t) dt, e

〉]
≤ |Γ− γ|2

2
√

Re (Γγ̄)
(
|Γ + γ|+ 2

√
Re (Γγ̄)

) ∥∥∥∥∫ b

a

ρ (t) α (t) g (t) dt

∥∥∥∥ ;

∫ b

a

ρ (t) |α (t)|2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt(3.29)

≤ 1

4
· |Γ + γ|2

Re (Γγ̄)

[
Re

〈∫ b

a

ρ (t) α (t) g (t) dt, e

〉]2

≤ 1

4
· |Γ + γ|2

Re (Γγ̄)

∥∥∥∥∫ b

a

ρ (t) α (t) g (t) dt

∥∥∥∥2

and

0 ≤
∫ b

a

ρ (t) |α (t)|2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt(3.30)

−
∥∥∥∥∫ b

a

ρ (t) α (t) g (t) dt

∥∥∥∥2

≤
∫ b

a

ρ (t) |α (t)|2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

−
[
Re

〈∫ b

a

ρ (t) α (t) g (t) dt, e

〉]2
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≤ 1

4
· |Γ− γ|2

Re (Γγ̄)

[
Re

〈∫ b

a

ρ (t) α (t) g (t) dt, e

〉]2

≤ 1

4
· |Γ− γ|2

Re (Γγ̄)

∥∥∥∥∫ b

a

ρ (t) α (t) g (t) dt

∥∥∥∥2

.

The constants 1
2

and 1
4

above are sharp.

In the particular case of positive constants, the following simpler
version of the above inequalities may be stated.

Corollary 2. Let α ∈ L2
ρ ([a, b]) \ {0} , g ∈ L2

ρ ([a, b] ; K) , e ∈ K, ‖e‖ =
1 and M, m ∈ R with M ≥ m > 0. If

(3.31)

∥∥∥∥ g (t)

ᾱ (t)
− M + m

2
· e

∥∥∥∥ ≤ 1

2
(M −m)

for a.e. t ∈ [a, b] , or, equivalently,

(3.32) Re

〈
Me− g (t)

ᾱ (t)
,
g (t)

ᾱ (t)
−me

〉
≥ 0

for a.e. t ∈ [a, b] , then we have

(∫ b

a

ρ (t) |α (t)|2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

(3.33)

≤ 1

2
· (M + m)√

Mm
Re

〈∫ b

a

ρ (t) α (t) g (t) dt, e

〉
≤ 1

2
· (M + m)√

Mm

∥∥∥∥∫ b

a

ρ (t) α (t) g (t) dt

∥∥∥∥ ;
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0 ≤
(∫ b

a

ρ (t) |α (t)|2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

(3.34)

−
∥∥∥∥∫ b

a

ρ (t) α (t) g (t) dt

∥∥∥∥
≤

(∫ b

a

ρ (t) |α (t)|2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

) 1
2

−Re

〈∫ b

a

ρ (t) α (t) g (t) dt, e

〉

≤

(√
M −

√
m

)2

2
√

Mm
Re

〈∫ b

a

ρ (t) α (t) g (t) dt, e

〉

≤

(√
M −

√
m

)2

2
√

Mm

∥∥∥∥∫ b

a

ρ (t) α (t) g (t) dt

∥∥∥∥
0 ≤

∫ b

a

ρ (t) |α (t)|2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt(3.35)

≤ 1

4
· (M + m)2

Mm

[
Re

〈∫ b

a

ρ (t) α (t) g (t) dt, e

〉]2

≤ 1

4
· (M + m)2

Mm

∥∥∥∥∫ b

a

ρ (t) α (t) g (t) dt

∥∥∥∥2

and

0 ≤
∫ b

a

ρ (t) |α (t)|2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt(3.36)

−
∥∥∥∥∫ b

a

ρ (t) α (t) g (t) dt

∥∥∥∥2

≤
∫ b

a

ρ (t) |α (t)|2 dt

∫ b

a

ρ (t) ‖g (t)‖2 dt

−
[
Re

〈∫ b

a

ρ (t) α (t) g (t) dt, e

〉]2

≤ 1

4
· (M −m)2

Mm

[
Re

〈∫ b

a

ρ (t) α (t) g (t) dt, e

〉]2

≤ 1

4
· (M −m)2

Mm

∥∥∥∥∫ b

a

ρ (t) α (t) g (t) dt

∥∥∥∥2

.
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The constants 1
2

and 1
4

above are sharp.

4. Reverses of the Heisenberg Inequality

It is well known that if (H; 〈·, ·〉) is a real or complex Hilbert space
and f : [a, b] ⊂ R →H is an absolutely continuous vector-valued func-
tion, then f is differentiable almost everywhere on [a, b] , the derivative
f ′ : [a, b] → H is Bochner integrable on [a, b] and

(4.1) f (t) =

∫ t

a

f ′ (s) ds for any t ∈ [a, b] .

The following theorem provides a version of the Heisenberg inequal-
ities in the general setting of Hilbert spaces.

Theorem 5. Let ϕ : [a, b] → H be an absolutely continuous func-
tion with the property that b ‖ϕ (b)‖2 = a ‖ϕ (a)‖2 . Then we have the
inequality:

(4.2)

(∫ b

a

‖ϕ (t)‖2 dt

)2

≤ 4

∫ b

a

t2 ‖ϕ (t)‖2 dt ·
∫ b

a

‖ϕ′ (t)‖2
dt.

The constant 4 is best possible in the sense that it cannot be replaced
by a smaller quantity.

Proof. Integrating by parts, we have successively∫ b

a

‖ϕ (t)‖2 dt(4.3)

= t ‖ϕ (t)‖2

∣∣∣∣b
a

−
∫ b

a

t
d

dt

(
‖ϕ (t)‖2) dt

= b ‖ϕ (b)‖2 − a ‖ϕ (a)‖2 −
∫ b

a

t
d

dt
〈ϕ (t) , ϕ (t)〉 dt

= −
∫ b

a

t [〈ϕ′ (t) , ϕ (t)〉+ 〈ϕ (t) , ϕ′ (t)〉] dt

= −2

∫ b

a

t Re 〈ϕ′ (t) , ϕ (t)〉 dt

= 2

∫ b

a

Re 〈ϕ′ (t) , (−t) ϕ (t)〉 dt.

If we apply the (CBS) integral inequality∫ b

a

Re 〈g (t) , h (t)〉 dt ≤
(∫ b

a

‖g (t)‖2 dt

∫ b

a

‖h (t)‖2 dt

) 1
2
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for g (t) = ϕ′ (t) , h (t) = −tϕ (t) , t ∈ [a, b] , then we deduce the desired
inequality (4.2).

The fact that 4 is the best possible constant in (4.2) follows from
the fact that in the (CBS) inequality, the case of equality holds iff
g (t) = λh (t) for a.e. t ∈ [a, b] and λ a given scalar in K. We omit the
details.

For details on the classical Heisenberg inequality, see, for instance,
[2].

The following reverse of the Heisenberg type inequality (4.2) holds.

Theorem 6. Assume that ϕ : [a, b] → H is as in the hypothesis of
Theorem 5. In addition, if there exists a r > 0 such that

(4.4) ‖ϕ′ (t)− tϕ (t)‖ ≤ r ≤ ‖ϕ′ (t)‖

for a.e. t ∈ [a, b] , then we have the inequalities

0 ≤
∫ b

a

t2 ‖ϕ (t)‖2 dt

∫ b

a

‖ϕ′ (t)‖2
dt− 1

4

(∫ b

a

‖ϕ (t)‖2 dt

)2

(4.5)

≤ r2

∫ b

a

t2 ‖ϕ (t)‖2 dt.

Proof. We observe, by the identity (4.3), that

(4.6)
1

4

(∫ b

a

‖ϕ (t)‖2 dt

)2

=

(∫ b

a

Re 〈ϕ′ (t) , tϕ (t)〉 dt

)2

.

Now, if we apply Theorem 1 for the choices f (t) = tϕ (t) , g (t) = ϕ′ (t) ,
then by (2.2) and (4.6) we deduce the desired inequality (4.5).

Remark 1. Interchanging the place of tϕ (t) with ϕ′ (t) in Theorem 6,
we also have

0 ≤
∫ b

a

t2 ‖ϕ (t)‖2 dt

∫ b

a

‖ϕ′ (t)‖2
dt− 1

4

(∫ b

a

‖ϕ (t)‖2 dt

)2

(4.7)

≤ ρ2

∫ b

a

‖ϕ′ (t)‖2
dt,

provided

‖ϕ′ (t)− tϕ (t)‖ ≤ ρ ≤ |t| ‖ϕ (t)‖
for a.e. t ∈ [a, b] , where ρ > 0 is a given positive number.

The following result also holds.
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Theorem 7. Assume that ϕ : [a, b] → H is as in the hypothesis of
Theorem 5. In addition, if there exists M ≥ m > 0 such that

(4.8) Re 〈Mtϕ (t)− ϕ′ (t) , ϕ′ (t)−mtϕ (t)〉 ≥ 0

for a.e. t ∈ [a, b] , or, equivalently,

(4.9)

∥∥∥∥ϕ′ (t)− M + m

2
tϕ (t)

∥∥∥∥ ≤ 1

2
(M −m) |t| ‖ϕ (t)‖

for a.e. t ∈ [a, b] , then we have the inequalities∫ b

a

t2 ‖ϕ (t)‖2 dt

∫ b

a

‖ϕ′ (t)‖2
dt(4.10)

≤ 1

16
· (M + m)2

Mm

(∫ b

a

‖ϕ (t)‖2 dt

)2

and ∫ b

a

t2 ‖ϕ (t)‖2 dt

∫ b

a

‖ϕ′ (t)‖2
dt− 1

4

(∫ b

a

‖ϕ (t)‖2 dt

)2

(4.11)

≤ 1

16
· (M −m)2

Mm

(∫ b

a

‖ϕ (t)‖2 dt

)2

respectively.

Proof. We use Corollary 1 for the choices f (t) = ϕ′ (t) , g (t) = tϕ (t) ,
ρ (t) = 1, to get∫ b

a

‖ϕ′ (t)‖2
dt

∫ b

a

t2 ‖ϕ (t)‖2 dt

≤ (M + m)2

4Mm

(∫ b

a

Re 〈ϕ′ (t) , tϕ (t)〉 dt

)2

.

Since, by (4.6)(∫ b

a

Re 〈ϕ′ (t) , tϕ (t)〉 dt

)2

=
1

4

(∫ b

a

‖ϕ (t)‖2 dt

)2

,

hence we deduce the desired result (4.10).
The inequality (4.11) follows from (4.10), and we omit the details.

Remark 2. If one is interested in reverses for the Heisenberg inequality
for scalar valued functions, then all the other inequalities obtained above
for one scalar function may be applied as well. For the sake of brevity,
we do not list them here.
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