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SOME INEQUALITIES OF ACZÉL TYPE FOR GRAMIANS IN
INNER PRODUCT SPACES

S. S. DRAGOMIR AND B. MOND

Abstract. Some inequalities of Aczél type for Gramians which generalize
Pečarićs result are given Applications connected to Schwartz’s inequality are
also noted.

1. Introduction

In 1956, J. Aczél established the following interesting inequality (see [9, p. 117]):
Let a = (a1, a2, ..., an) and b = (b1, ..., bn) be two sequences of real numbers such

that either

b21 − b22 − ...− b2n > 0 or a2
1 − a2

2 − ...− a2
n > 0.

Then (
a2

1 − a2
2 − ...− a2

n

) (
b21 − b22 − ...− b2n

)
≤ (a1b1 − a2b2 − ...− anbn)2(1.1)

with equality if and only if the sequences a and b are proportional.
In [7], S. Kurepa pointed out the following inequality of Aczél type which holds

in Hilbert spaces (see [9, p. 602]):
Let X be a real Hilbert space and c a unit vector in X. Suppose that a, b ∈ X

are given vectors such that(
u2 − ‖a0‖2

)
×
(
v2 − ‖b0‖2

)
≥ 0(1.2)

where u = (a, c) , v = (b, c) , a0 = a− uc, and b0 = b− vc. Then(
u2 − ‖a0‖2

)(
v2 − ‖b0‖2

)
≤ (uv − (a0, b0))2

.(1.3)

If a and b are independent and strict inequality holds in (1.2) , then strict inequality
also holds in (1.3) .

In [10], see also [9, p. 603], J.E. Pečarić proved an interesting converse of a
known inequality of Kurepa [9, p. 599] which asserts that∣∣∣∣∣∣∣det

 (x1, y1) · · · (x1, ym)
...

...
(xm, y1) · · · (xm, ym)


∣∣∣∣∣∣∣
2

≤ Γ (x1, ..., xm) Γ (y1, ..., ym)(1.4)

where xi, yi ∈ X,
(
i = 1,m

)
, X is an inner product space over the real or complex

number field K and Γ is the Gramian of the vectors involved above.
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Pečarić’s result is (
u2 − Γ (x1, ..., xm)

) (
v2 − Γ (y1, ..., ym)

)
(1.5)

≤

uv − det

 (x1, y1) · · · (x1, ym)
...

...
(xm, y1) · · · (xm, ym)




2

provided that

u2 − Γ (x1, ..., xm) > 0 or v2 − Γ (y1, ..., ym) > 0,

where xi, yi
(
i = 1,m

)
are vectors in a real inner product space X.

Note that this result is a generalization for Gramians of the Aczél inequality
(1.1) .

The main aim of this paper is to point out some new inequalities of Aczél type
for Gramians which also generalize and extend the result of Pečarić (1.5) and com-
plement, in a sense, Chapter XX of the book [9]. Some applications to real or
complex numbers which are closely connected with those embodied in Chapter IV
of [9] are also given.

2. Some Inequalities of Aczél Type for Gramians

Let us denote by Γ̃ (x1, y1, ..., xm, ym) the determinant given by

Γ̃ (x1, y1, ..., xm, ym) := det

 (x1, y1) (x1, y2) · · · (x1, ym)
...

...
...

(xm, y1) (xm, y2) · · · (xm, ym)

 ,
where x1, y1, ..., xm, ym are vectors in inner product space (H; (·, ·)) . In addition,
we observe that if y1 = x1, ..., ym = xm, then

Γ̃ (x1, y1, ..., xm, ym) = Γ (x1, ..., xm) .

By the use of this notation, Kurepa’s inequality (1.4) may be written as:

Γ (x1, ..., xm) Γ (y1, ..., ym) ≥
∣∣∣Γ̃ (x1, y1, ..., xm, ym)

∣∣∣2(2.1)

for all xi, yi ∈ H
(
i = 1,m

)
.

The first result which gives a converse of (2.1) is embodied in the following
theorem:

Theorem 1. Let (H; (·, ·)) be an inner product space over the real or complex num-
ber field K and a, b, c three real numbers satisfying the following condition:

a, c ≥ 0 and b2 ≥ ac.

Then for all xi, yi ∈ H
(
i = 1,m

)
such that either

a ≥ Γ (x1, ..., xm) or c ≥ Γ (y1, ..., ym) ,
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we have the inequality

[a− Γ (x1, ..., xm)] [c− Γ (y1, ..., ym)](2.2)

≤ min
{(

b± Re Γ̃ (x1, y1, ..., xm, ym)
)2

;
(
b±

∣∣∣Re Γ̃ (x1, y1, ..., xm, ym)
∣∣∣)2

(
b± Im Γ̃ (x1, y1, ..., xm, ym)

)2
;
(
b±

∣∣∣Im Γ̃ (x1, y1, ..., xm, ym)
∣∣∣)2

;

b±
∣∣∣Γ̃ (x1, y1, ..., xm, ym)

∣∣∣2} .
Proof. Suppose that a > Γ (x1, ..., xm) and consider the polynomial

P (t) := at2 − 2bt+ c, t ∈ R.

Since a > 0 and b2 ≥ ac, it follows that there exists a t0 ∈ R such that P (t0) = 0.
Now put

Q1 (t) : = P (t)

−
(

Γ (x1, ..., xm) t2 ∓ 2 Re Γ̃ (x1, y1, ..., xm, ym) t+ Γ (y1, ..., ym)
)
,

for t ∈ R

and

Q̄1 (t) : = P (t)

−
(

Γ (x1, ..., xm) t2 ∓ 2
∣∣∣Re Γ̃ (x1, y1, ..., xm, ym)

∣∣∣ t+ Γ (y1, ..., ym)
)
,

for t ∈ R.

A simple calculation gives

Q1 (t) = (a− Γ (x1, ..., xm)) t2

−2
(
b± Re Γ̃ (x1, y1, ..., xm, ym)

)
t+ (c− Γ (y1, ..., ym)) ,

for t ∈ R

and

Q̄1 (t) = (a− Γ (x1, ..., xm)) t2

−2
(
b±

∣∣∣Re Γ̃ (x1, y1, ..., xm, ym)
∣∣∣) t+ (c− Γ (y1, ..., ym)) ,

for t ∈ R.

Since

Q1 (t0) := −
[
Γ (x1, ..., xm) t20 ∓ 2 Re Γ̃ (x1, y1, ..., xm, ym) t0 + Γ (y1, ..., ym)

]
≤ 0

as, by Kurepa’s inequality, one has∣∣∣Re Γ̃ (x1, y1, ..., xm, ym)
∣∣∣2 ≤ Γ (x1, ..., xm) Γ (y1, ..., ym)

which gives

Γ (x1, ..., xm) t2 ∓ 2 Re Γ̃ (x1, y1, ..., xm, ym) t+ Γ (y1, ..., ym) ≥ 0
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for all t ∈ R. Hence we conclude that Q1 has at least one solution in R, i.e.,

0 ≤ 1
4

∆1 =
(
b± Re Γ̃ (x1, y1, ..., xm, ym)

)2

= (a− Γ (x1, ..., xm)) (c− Γ (y1, ..., ym)) .

Similarly, Q̄1 has at least one solution in R which is equivalent to

0 ≤ 1
4

∆̄1 = (b± |Re Γ (x1, y1, ..., xm, ym)|)2

= (a− Γ (x1, ..., xm)) (c− Γ (y1, ..., ym))

and the first part of (2.2) is proved.
The last part can be proved similarly by considering the polynomials:

Q2 (t)

: = P (t)−
(

Γ (x1, ..., xm) t2 ∓ 2 Im Γ̃ (x1, y1, ..., xm, ym) t+ Γ (y1, ..., ym)
)
,

Q̄2 (t)

: = P (t)−
(

Γ (x1, ..., xm) t2 ∓ 2
∣∣∣Im Γ̃ (x1, y1, ..., xm, ym)

∣∣∣ t+ Γ (y1, ..., ym)
)

and

Q2 (t) := P (t)−
(

Γ (x1, ..., xm) t2 ∓ 2
∣∣∣Γ̃ (x1, y1, ..., xm, ym)

∣∣∣ t+ Γ (y1, ..., ym)
)

respectively.
This completes the proof.

Remark 1. Let (H; (·, ·)) be an inner product space and M1,M2 ∈ R. Then for all
xi, yi ∈ H

(
i = 1,m

)
with

Γ (x1, ..., xm) ≤ |M1| or Γ (y1, ..., ym) ≤ |M2| ,

one has the inequality(
M2

1 − Γ (x1, ..., xm)
) (
M2

2 − Γ (y1, ..., ym)
)

≤ min
{(

M1M2 − Re Γ̃ (x1, y1, ..., xm, ym)
)2

;(
M1M2 −

∣∣∣Re Γ̃ (x1, y1, ..., xm, ym)
∣∣∣)2

;
(
M1M2 − Im Γ̃ (x1, y1, ..., xm, ym)

)2
;(

M1M2 −
∣∣∣Im Γ̃ (x1, y1, ..., xm, ym)

∣∣∣)2
;
(
M1M2 − Γ̃ (x1, y1, ..., xm, ym)

)2
}

which improves Pečarić’s result (1.5) .

Now, using the above theorem, we can give the following inverse of Kurepa’s
inequality in inner product spaces.
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Corollary 1. Suppose that a, b, c, xi, yi
(
i = 1,m

)
are as in Theorem 1. Then we

have the inequalities:

0 ≤ Γ (x1, ..., xm) Γ (y1, ..., ym)−
[
Re Γ̃ (x1, y1, ..., xm, ym)

]2
≤ b2 − ac+ aΓ (y1, ..., ym) + cΓ (x1, ..., xm)

+2 min
{
±bRe Γ̃ (x1, y1, ..., xm, ym) ;±b

∣∣∣Re Γ̃ (x1, y1, ..., xm, ym)
∣∣∣} ;

0 ≤ Γ (x1, ..., xm) Γ (y1, ..., ym)−
[
Im Γ̃ (x1, y1, ..., xm, ym)

]2
≤ b2 − ac+ aΓ (y1, ..., ym) + cΓ (x1, ..., xm)

+2 min
{
±b Im Γ̃ (x1, y1, ..., xm, ym) ;±b

∣∣∣Im Γ̃ (x1, y1, ..., xm, ym)
∣∣∣} ;

and

0 ≤ Γ (x1, ..., xm) Γ (y1, ..., ym)−
∣∣∣Γ̃ (x1, y1, ..., xm, ym)

∣∣∣2
≤ b2 − ac+ aΓ (y1, ..., ym) + cΓ (x1, ..., xm)± 2b

∣∣∣Γ̃ (x1, y1, ..., xm, ym)
∣∣∣ .

The proof follows by a simple calculation from (2.2) . We omit the details.
The following result also holds:

Corollary 2. Let H be as above and xi, yi ∈ H
(
i = 1,m

)
with

[Γ (x1, ..., xm)]
1
2 ≤M or [Γ (y1, ..., ym)]

1
2 ≤M.

Then we have the inequality

0 ≤ Γ (x1, ..., xm) Γ (y1, ..., ym)−
[
Re Γ̃ (x1, y1, ..., xm, ym)

]2
≤ M2

[
Γ (x1, ..., xm)− 2 Re Γ̃ (x1, y1, ..., xm, ym) + Γ (y1, ..., ym)

]
.

It is important to note that a similar theorem can also be stated:

Theorem 2. Let (H; (·, ·)) be an inner product space over the real or complex num-
ber field K and α, β, γ real numbers with the property that

α, γ > 0 and β2 ≥ αγ.

Then, for all xi, yi ∈ H
(
i = 1,m

)
such that

[Γ (x1, ..., xm)]
1
2 ≤ α or [Γ (y1, ..., ym)]

1
2 ≤ γ

we have the inequality(
α− [Γ (x1, ..., xm)]

1
2

)(
γ − [Γ (y1, ..., ym)]

1
2

)
≤ min

{(
β ±

∣∣∣Re Γ̃ (x1, y1, ..., xm, ym)
∣∣∣ 1

2
)2

;

(
β ±

∣∣∣Re Γ̃ (x1, y1, ..., xm, ym)
∣∣∣ 1

2
)2

;
(
β ±

∣∣∣Γ̃ (x1, y1, ..., xm, ym)
∣∣∣ 1

2
)2
}
.
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Proof. The argument is similar to that in the proof of the previous theorem. Choos-
ing the polynomials

Q̃i (t) := P (t)−
(

[Γ (x1, ..., xm)]
1
2 t2 ∓ 2φit+ [Γ (y1, ..., ym)]

1
2

)
, t ∈ R, i = 1, 2, 3,

where

φ1 =
∣∣∣Re Γ̃ (x1, y1, ..., xm, ym)

∣∣∣ , φ2 =
∣∣∣Im Γ̃ (x1, y1, ..., xm, ym)

∣∣∣ ,
φ3 =

∣∣∣Γ̃ (x1, y1, ..., xm, ym)
∣∣∣

and

P (t) = αt2 − 2βt+ γ, t ∈ R
respectively.
We omit the details.

The following converse of Kurepa’s inequality also holds:

Corollary 3. Let H,α, β, γ, xi, yi ∈ H
(
i = 1,m

)
be as above. Then we have

0 ≤ [Γ (x1, ..., xm)]
1
2 [Γ (y1, ..., ym)]

1
2 −

∣∣∣Re Γ̃ (x1, y1, ..., xm, ym)
∣∣∣

≤ β2 − αγ + α [Γ (x1, ..., xm)]
1
2 + γ [Γ (y1, ..., ym)]

1
2

±2β
∣∣∣Re Γ̃ (x1, y1, ..., xm, ym)

∣∣∣ ;
0 ≤ [Γ (x1, ..., xm)]

1
2 [Γ (y1, ..., ym)]

1
2 −

∣∣∣Im Γ̃ (x1, y1, ..., xm, ym)
∣∣∣

≤ β2 − αγ + α [Γ (x1, ..., xm)]
1
2 + γ [Γ (y1, ..., ym)]

1
2

±2β
∣∣∣Im Γ̃ (x1, y1, ..., xm, ym)

∣∣∣
and

0 ≤ [Γ (x1, ..., xm)]
1
2 [Γ (y1, ..., ym)]

1
2 −

∣∣∣Γ̃ (x1, y1, ..., xm, ym)
∣∣∣

≤ β2 − αγ + α [Γ (x1, ..., xm)]
1
2 + γ [Γ (y1, ..., ym)]

1
2

±2β
∣∣∣Γ̃ (x1, y1, ..., xm, ym)

∣∣∣ .
Corollary 4. Let H be as above and M > 0. Suppose [Γ (x1, ..., xm)]

1
2 ≤ M or

[Γ (y1, ..., ym)]
1
2 ≤M. Then one has the inequality:

0 ≤ [Γ (x1, ..., xm)]
1
2 [Γ (y1, ..., ym)]

1
2 −

∣∣∣Γ̃ (x1, y1, ..., xm, ym)
∣∣∣

≤ M

(
[Γ (x1, ..., xm)]

1
2 + [Γ (y1, ..., ym)]

1
2 − 2

∣∣∣Γ̃ (x1, y1, ..., xm, ym)
∣∣∣ 1

2
)
.

The following inequality is well-known in the literature as Hadamard’s inequality
for the Gram determinant:

Γ (x1, ..., xm) ≤
m∏
i=1

‖xi‖2(2.3)

for all xi ∈ H
(
i = 1,m

)
(see [9, p. 597].)

Equality holds in (2.3) iff (xi, yi) = δij ‖xi‖ ‖xj‖ for all i, j ∈ {1, ...,m} .
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In the next theorem, we point out a converse inequality for (2.3) .

Theorem 3. Let (H, (·, ·)) be an inner product space over the real or complex num-
ber field K and a, b, c real numbers satisfying the following condition:

a, c > 0 and b2 ≥ ac.

Then for all xi ∈ H
(
i = 1,m

)
(m ≥ 2) such that

a ≥
k∏
i=1

‖xi‖4 or c ≥
m∏

i=k+1

‖xi‖4 ,

where 1 ≤ k ≤ m, we have the inequality(
a−

k∏
i=1

‖xi‖4
)(

c−
m∏

i=k+1

‖xi‖4
)
≤ (b± Γ (x1, ..., xm))2

.(2.4)

Proof. Fix k ∈ {1, ...,m} and suppose that a ≥
∏k
i=1 ‖xi‖

4
. Consider the polyno-

mial

P (t) = at2 − 2bt+ c, t ∈ R.

Since a > 0 and b2 ≥ ac, it follows that there exists a t0 ∈ R such that P (t0) = 0.
Now, put

φ (t) := P (t)−

((
k∏
i=1

‖xi‖4
)
t2 ∓ 2bΓ (x1, ..., xm) t+

m∏
i=k+1

‖xi‖4
)
, α ∈ R.

A simple calculation gives

φ (t) =

(
a−

k∏
i=1

‖xi‖4
)
t2 − 2 (b± Γ (x1, ..., xm)) t+

(
c−

m∏
i=k+1

‖xi‖4
)
, t ∈ R.

By Hadamard’s inequality, one has

Γ2 (x1, ..., xm) ≤
m∏
i=1

‖xi‖2 =

(
k∏
i=1

‖xi‖4
)(

m∏
i=k+1

‖xi‖4
)

which gives(
k∏
i=1

‖xi‖4
)
t2 − 2Γ (x1, ..., xm) t+

m∏
i=k+1

‖xi‖4 ≥ 0 for all t ∈ R.

Since

φ1 (t0) = −

((
k∏
i=1

‖xi‖4
)
t20 − 2Γ (x1, ..., xm) t0 +

m∏
i=k+1

‖xi‖4
)
≤ 0,

we conclude that φ has at least one solution in R, i.e.,

0 ≤ 1
4

∆1 = (b± Γ (x1, ..., xm))2 −

(
a−

k∏
i=1

‖xi‖4
)(

c−
m∏

i=k+1

‖xi‖4
)

and the theorem is proved.
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The following converses of Hadamard’s inequality hold:

Corollary 5. Suppose that a, b, c and xi ∈ H
(
i = 1,m

)
are as above. Then one

has the following inequality:

0 ≤
m∏
i=1

‖xi‖4 − Γ2 (x1, ..., xm)

≤ b2 − ac+ a
m∏

i=k+1

‖xi‖4 + c
k∏
i=1

‖xi‖4 ± 2Γ (x1, ..., xm) b.

Corollary 6. Suppose that M > 0 and xi ∈ H
(
i = 1,m

)
, with the property that

k∏
i=1

‖xi‖2 ≤M or
m∏

i=k+1

‖xi‖2 ≤M.

Then one has the inequality

0 ≤
m∏
i=1

‖xi‖4 − Γ2 (x1, ..., xm) ≤M2

(
k∏
i=1

‖xi‖4 +
m∏

i=k+1

‖xi‖4 − 2Γ (x1, ..., xm)

)
.

By a similar argument as in the proof of the last theorem, we also have:

Theorem 4. Let (H; (·, ·)) be an inner product space over the real or complex
field K and α, β, γ real numbers with α, γ > 0 and β2 ≥ αγ. Then for all xi ∈
H
(
i = 1,m

)
such that

k∏
i=1

‖xi‖2 ≤ α or
m∏

i=k+1

‖xi‖2 ≤ γ (1 ≤ k ≤ m) ,

we have the inequality(
α−

k∏
i=1

‖xi‖2
)(

γ −
m∏

i=k+1

‖xi‖2
)
≤
(
β ± [Γ (x1, ..., xm)]

1
2

)2
.

Now, by the use of the above theorem we can also state the following converses
of Hadamard’s inequality:

Corollary 7. Suppose that α, β, γ and xi ∈ H
(
i = 1,m

)
are as above. Then

0 ≤
m∏
i=1

‖xi‖2 − Γ (x1, ..., xm) ≤ β2 − αγ + α

m∏
i=k+1

‖xi‖2

+γ
k∏
i=1

‖xi‖2 ± 2β [Γ (x1, ..., xm)]
1
2 .

Corollary 8. Let M > 0 and xi ∈ H
(
i = 1,m

)
be such that

k∏
i=1

‖xi‖2 ≤M or
m∏

i=k+1

‖xi‖2 ≤M.
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Then one has the inequality

0 ≤
m∏
i=1

‖xi‖2 − Γ (x1, ..., xm)

≤ M

(
k∏
i=1

‖xi‖2 +
m∏

i=k+1

‖xi‖2 − 2 [Γ (x1, ..., xm)]
1
2

)
.

In addition, we note that the following inequality improving Hadamard’s result
holds:

Γ (x1, ..., xm) ≤ Γ (x1, ..., xk) Γ (xk+1, ..., xm)(2.5)

(see [9, p. 597]) , where xi ∈ H
(
i = 1,m

)
and 1 ≤ k ≤ m.

By the use of this inequality and a similar argument as above, we can obtain the
following converses of (2.5) .

(i) If a ≥ Γ2 (x1, ..., xk) or c ≥ Γ2 (xk+1, ..., xm) and b2 ≥ ac > 0, then[
a− Γ2 (x1, ..., xk)

] [
c− Γ2 (xk+1, ..., xm)

]
≤ (b± Γ (x1, ..., xm))2

from which one easily obtains

0 ≤ Γ2 (x1, ..., xk) Γ2 (xk+1, ..., xm)− Γ2 (x1, ..., xm)
≤ b2 − ac+ aΓ2 (xk+1, ..., xm) + cΓ2 (x1, ..., xk)± 2Γ (x1, ..., xm) b.

If Γ (x1, ...xk) ≤M or Γ (xk+1, ..., xm) ≤M, then also

0 ≤ Γ2 (x1, ..., xk) Γ2 (xk+1, ..., xm)− Γ2 (x1, ..., xm)
≤ M2 [Γ2 (x1, ..., xk) + Γ2 (xk+1, ..., xm)− 2Γ (x1, ..., xm)

]
.

(ii) If α, γ > 0 and β2 ≤ αγ, then for all xi ∈ H
(
i = 1,m

)
with

Γ (x1, ..., xk) ≤ α or Γ (xk+1, ..., xm) ≤ γ,

one has the inequality:

[α− Γ (x1, ..., xk)] [γ − Γ (xk+1, ..., xm)] ≤
(
β ± [Γ (x1, ..., xm)]

1
2

)2

which gives the following converse of (2.5) :

0 ≤ Γ (x1, ..., xk) Γ (xk+1, ..., xm)− Γ (x1, ..., xm)

≤ β2 − αγ + αΓ (xk+1, ..., xm) + γΓ (x1, ..., xk)± 2β [Γ (x1, ..., xm)]
1
2 .

If Γ (x1, ...xk) ≤M or Γ (xk+1, ..., xm) ≤M, then also

0 ≤ Γ (x1, ..., xk) Γ (xk+1, ..., xm)− Γ (x1, ..., xm)

≤ M
[
Γ (x1, ..., xk) + Γ (xk+1, ..., xm)− 2 [Γ (x1, ..., xm)]

1
2

]
.

3. Some Applications

1. Suppose that (H; (·, ·)) is an inner product space over the real or complex
number field K. If x, y ∈ H and M1,M2 are real numbers such that

‖x‖ ≤ |M1| or ‖y‖ ≤ |M2| ,
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then the following generalization of Aczél’s inequality in inner product spaces
holds:(

M2
1 − ‖x‖

2
)(

M2
2 − ‖y‖

2
)

≤ min
{

(M1M2 − Re (x, y))2 ; (M1M2 − |Re (x, y)|)2 ;

(M1M2 − Im (x, y))2 ; (M1M2 − |Im (x, y)|)2 ; (M1M2 − |(x, y)|)2
}
.

(See also the paper [5])
This inequality is obvious from Theorem 1. We omit the details.

2. Suppose that x, y ∈ H and M1,M2 ∈ R are as above. Then by the use of
Theorem 2, we have the following interesting inequality of Aczél type:

(M1 − ‖x‖)
1
2 (M2 − ‖y‖)

1
2 ≤ |M1M2|

1
2 − |(x, y)|

1
2 ,

provided that ‖x‖ ≤ |M1| and ‖y‖ ≤ |M2| .
Note that if a = (a1, a2, ..., an), b = (b1, ..., bn) ∈ Rn satisfy

a2
1 − a2

2 − ...− a2
n ≥ 0 and b21 − b22 − ...− b2n ≥ 0,

then we have the inequality[
|a1| −

(
a2

2 + ...+ a2
n

) 1
2
] [
|b1| −

(
b22 + ...+ b2n

) 1
2
] 1

2

≤ |a1b1|
1
2 − |a2b2 + ...+ anbn|

1
2 .

This is a new inequality of Aczél type for real numbers (see also [5]).
3. By the use of Corollary 2, we also have the following converse of Schwartz’s

inequality in inner product spaces:

0 ≤ ‖x‖2 ‖y‖2 − [Re (x, y)]2 ≤M2 min
{
‖x− y‖2 , ‖x+ y‖2

}
provided that x, y ∈ H with ‖x‖ ≤M or ‖y‖ ≤M.

For other inequalities of Aczél type in inner product spaces, as well as some
applications for real or complex numbers and for integrals, see the recent paper [5]
where further references are given.
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