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FURTHER BOUNDS FOR THE ESTIMATION ERROR
VARIANCE OF A CONTINUOUS STREAM WITH STATIONARY

VARIOGRAM

N. S. BARNETT, S. S. DRAGOMIR, AND I. S. GOMM

Abstract. In this paper we establish an upper bound for the estimation er-
ror variance of a continuous stream with a stationary variogram V which is
assumed to be of r-Hölder type (Lipschitzian) on [−d, d] .

1. Introduction

In [1], the authors considered X (t) as defining the quality of a product at time
t where X (t) is a continuous time stochastic process which may be non-stationary.
Typically, X (t) represents a continuous stream industrial process such as is common
in many areas of the chemical industry.

The paper [1] was concerned with issues related to sampling the stream with a
view to estimating the mean quality characteristic of the flow, X̄, over the interval
[0, d] . Specifically, focus was on obtaining the sampling location, said to be optimal,
which minimizes the estimation error variance, E

[(
X̄ −X (t)

)2]
, 0 ≤ t ≤ d.

Given that t is as specified, the problem is to find the value of t (the sampling
location) that minimizes E

[(
X̄ −X (t)

)2]
. It is shown that for constant stream

flows, the optimal sampling point is the midpoint of [0, d] for situations where the
process variogram,

V (u) =
1
2
E
[(
X̄ −X (t)

)2]
,

where

V (0) = 0, V (−u) = V (u)

is stationary (note that variogram stationarity is not equivalent to process station-
arity).

The paper [1] continues to consider optimal sampling locations for situations
where the stream flow rate varies. The optimal sampling location is seen to de-
pend on both the flow rate function and the form of the process variogram - some
examples are given.

In [2], rather than focussing on the optimal sampling point, the authors have
focussed on the actual value of the estimation error variance itself. They obtained
the following result by employing an inequality of the Ostrowski type for double
integrals.
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Theorem 1. Let V : (−d, d) → R be a twice differentiable variogram having the
second derivative V ′′ : (−d, d)→ R which is bounded. If ‖V ′′‖∞ := supt∈(−d,d) |V ′′ (t)| <
∞, then

E
[(
X̄ −X (t)

)2] ≤ [1
4

+

(
t− d

2

)2
d2

]2

‖V ′′‖∞(1.1)

for all t ∈ [0, d] .

Note that the best inequality we can get from (1.1) is that one for which t =
t0 = d

2 giving the bound

E
[(
X̄ −X (t0)

)2] ≤ d2

16
‖V ′′‖∞ .

It should be noted that the above result requires double differentiability of V in
(−d, d) and that this condition does not hold for the case of a linear variogram.
That is,

V (u) = a |u| , u ∈ R.

For other results on Ostrowski’s inequality we refer to the recent papers [3]- [7]
and the book [8].

In this note we point out another bound for the estimation error variance which
does not require the differentiability of V. Some functional properties are also given.

2. The Results

Firstly, let us recall the concept of r-Hölder type mappings.

Definition 1. The mapping f : [a, b] ⊂ R→ R is called of r-Hölder type with
r ∈ (0, 1] if

|f (x)− f (y)| ≤ H |x− y|r(2.1)

for all x, y ∈ [a, b] with a certain H > 0.
If r = 1, we get the classical concept of Lipschitzian mappings.

Example 1. If r ∈ (0, 1] , then the mapping f (x) = xr satisfies the condition

|f (x)− f (y)| = |xr − yr| ≤ |x− y|r for all x, y ∈ [0,∞) ,(2.2)

which shows that f is of r-Hölder type with the constant H = 1, on every closed
interval [a, b] .

Example 2. Any differentiable mapping f : [a, b]→ R having the derivative bounded
in (a, b) is Lipschitzian on (a, b) .

The following result holds.

Theorem 2. Assume that the variogram V : [−d, d] → R is of r-Hölder type on
[−d, d] with the constant H > 0. Then we have the inequality

E
[(
X̄ −X (t)

)2] ≤ 2H
d

[
tr+1 + (d− t)r+1

r + 1

]
≤ 2Hd
r + 1

(2.3)

for all t ∈ [0, d] .
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Proof. From [1], using an identity given in [9], it can be shown that

0 ≤ E
[(
X̄ −X (t)

)2]
=

2
d

{∫ t

0
V (u) du+

∫ d−t

0
V (u) du

}
− 1
d2

∫ b

0

∫ d

0
V (v − u) dudv.

Also, observe that (see [1])

∫ d

0
V (v − t) dv =

∫ t

0
V (u) du+

∫ d−t

0
V (u) du

and

∫ d

0
V (t− u) du =

∫ t

0
V (u) du+

∫ d−t

0
V (u) du

and then we get the identity

0 ≤ E
[(
X̄ −X (t)

)2](2.4)

=
1
d

∫ d

0
V (v − t) dv +

1
d

∫ d

0
V (t− u) du

=
1
d2

[
d

∫ d

0
V (v − t) dv + d

∫ d

0
V (t− u) du

−
∫ b

0

∫ d

0
V (v − u) dvdu

]

=
1
d2

∫ b

0

∫ d

0
[V (v − t) + V (t− u)− V (v − u)] dvdu.

Using the fact that V is of r−Hölder type, we can write that

|V (v − t)− V (v − u)| ≤ H |v − t− v + u|r(2.5)
= H |u− t|r

for all u, v, t ∈ [0, d] and

|V (t− u)| = |V (t− u)− V (0)| ≤ H |t− u|r(2.6)
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for all t, x ∈ [0, d] .
Now, using (2.4)− (2.6) , we get

E
[(
X̄ −X (t)

)2] =

∣∣∣∣∣ 1
d2

∫ d

0

∫ d

0
[V (v − t) + V (t− u)− V (v − u)] dvdu

∣∣∣∣∣
≤ 1

d2

∫ d

0

∫ d

0
|V (v − t)− V (v − u) + V (t− u)| dvdu

≤ 1
d2

∫ d

0

∫ d

0
|V (v − t)− V (v − u)|+ |V (t− u)| dvdu

≤ 1
d2

∫ d

0

∫ d

0
[H |t− u|r +H |t− u|r] dvdu

=
2H
d

∫ d

0
|t− u|r du

=
2H
d

[∫ t

0
(t− u)r du+

∫ d

t

(u− t)r du

]

=
2H
d

[
tr+1 + (d− t)r+1

r + 1

]
and the first inequality in (2.3) is proved. The second part is obvious.

Corollary 1. If V is Lipschitzian with the constant L > 0, then we have the
inequality:

E
[(
X̄ −X (t)

)2] ≤ [1
2

+

(
t− d

2

)2
d2

]
Ld.(2.7)

Proof. Choose r = 1 to get in the right hand side of the inequality

t2 + (d− t)2

2
=

[
1
4

+

(
t− d

2

)2
d2

]
d2.

Then, by (2.3), we deduce (2.7) .

Remark 1. It is easy to see that the mapping g : [0, d] → R, g (t) := tr+1 +
(d− t)r+1 has the properties

inf
t∈[0,d]

g (t) = g

(
d

2

)
=
dr+1

2r

and

sup
t∈[0,d]

g (t) = g (0) = g (d) = dr+1

which shows that the best inequality we can get from (2.3) is that one for which
t = t0 = d

2 , getting

E
[(
X̄ −X (t0)

)2] ≤ 21−rHdr

r + 1
.(2.8)

For the Lipschitzian case, we get

E
[(
X̄ −X (t0)

)2] ≤ 1
2
Ld.(2.9)
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Define the mapping ξ : [0, d]→ R given by

ξ (t) = E
[(
X̄ −X (t)

)2]
.

The following property of continuity for ξ holds.

Theorem 3. If V is of r-Hölder type with the constant H > 0 on the interval
[0, d] , then ξ is of r-Hölder type with the constant 2H.

Proof. Let t1, t2 ∈ [0, d] . Then we have

|ξ (t2)− ξ (t1)|

=

∣∣∣∣∣ 1
d2

∫ d

0

∫ d

0
[V (v − t2) + V (t2 − u)− V (v − u)] dudv

− 1
d2

∫ d

0

∫ d

0
[V (v − t1) + V (t1 − u)− V (v − u)] dudv

∣∣∣∣∣
=

∣∣∣∣∣ 1
d2

∫ d

0

∫ d

0
[(V (v − t2)− V (v − t1)) + (V (t2 − u)− V (t1 − u))] dudv

∣∣∣∣∣
≤ 1

d2

∫ d

0

∫ d

0
[|V (v − t2)− V (v − t1)|+ |V (t2 − u)− V (t1 − u)|] dudv

≤ 1
d2

∫ d

0

∫ d

0
[H |t2 − t1|r +H |t2 − t1|r] dudv

=
2H |t2 − t1|r d2

d2

= 2H |t2 − t1|r

and the theorem thus proved.

Corollary 2. If V is L-Lipschitzian on [0, d] , then ξ is 2L-Lipschitzian on [0, d] .

The following result concerning the convexity property of the mapping ξ defined
above on [0, d] holds.

Theorem 4. If the variogram V : [−d, d] is monotonic nondecreasing on the in-
terval [0, d] , then ξ (·) is convex on [0, d] .

Proof. We know that for all t ∈ [0, d]

ξ (t) =
2
d

{∫ t

0
V (u) du+

∫ d−t

0
V (u) du

}
− 1
d2

∫ d

0

∫ d

0
V (v − u) dudv.

Then

ξ′ (t) =
2
d

[V (t)− V (d− t)] .
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Now, let t1, t2 ∈ [0, d] with t2 > t1. Then

ξ (t2)− ξ (t1)− (t2 − t1) ξ′ (t1)

=
2
d

{∫ t2

0
V (u) du+

∫ d−t2

0
V (u) du

}
− 2
d

{∫ t1

0
V (u) du+

∫ d−t1

0
V (u) du

}

−2
d

[V (t1)− V (d− t1)] (t2 − t1)

=
2
d

{∫ t2

t1

V (u) du−
∫ d−t1

d−t2
V (u) du− (t2 − t1)V (t1) + (t2 − t1)V (d− t1)

}
.

As V is nondecreasing on [0, d] , then∫ t2

t1

V (u) du ≥ (t2 − t1)V (t1)

and ∫ d−t1

d−t2
V (u) du ≤ (t2 − t1)V (d− t1)

which implies that

ξ (t2)− ξ (t1) ≥ (t2 − t1) ξ′ (t1)

for all t2 > t1 ∈ [0, d] , which shows that the mapping ξ (·) is convex on [0, d] .
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