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ON A GRUSS-LUPAS TYPE INEQUALITY AND ITS
APPLICATION FOR THE ESTIMATION OF p-MOMENTS OF
GUESSING MAPPINGS

S. S. DRAGOMIR AND G. L. BOOTH

ABSTRACT. An inequality of Griiss-Lupas type in normed spaces is proved.
Some applications in estimating the p-moments of guessing mapping which
complement the recent results of Massey [1], Arikan [2], Boztas [3] and Dragomir-
van der Hoek [5]-[7] are also given.

1. INTRODUCTION

In 1935, G. Griiss proved the following integral inequality which gives an ap-
proximation of the integral of the product in terms of the product of integrals as
follows

I I I
(L.1) = [ t@s@dr— = [ 1@ ;= [Cg@)as
< (@97
where f, g : [a,b] — R are integrable on [a, b] and satisfying the assumption
(1.2) p<f(z) <P, y<g(x)<T

for each = € [a,b] where ¢, ®,~,T are given real constants.

Moreover, the constant % is sharp in the sense that it can not be replaced by a
smaller one.

For a simple proof of (1.1) as well as for some other integral inequalities of Griiss’
type see the Chapter X of the recent book [4] by Mitrinovié, Pecari¢ and Fink.

In 1950, M. Biernacki, H. Pidek and C. Ryll-Nardzewski established the following
discrete version of Griiss’ inequality [4, Chap. X]:

Theorem 1. Let a = (ay,...,an),b = (b1,...,b,) be two n-tuples of real numbers
such thatr < a; < R and s <b; < S fori=1,...,n. Then one has

e 1O I

< LB LB -

where [z] is the integer part of x,x € R.

(1.3)
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A weighted version of Griiss’ discrete inequality was proved by J.E. Pecari¢ in
1979, [4, Chap. X]:

Theorem 2. Let a,b be two monotonic n-tuples and p a positive one. Then

1 o 1 o 1 o
1.4 > iaib; — —= R ibi
Py Py
< _ _
< lan —af [ = b1 1<k ( P2

where Py, := Y p; , Poy1 = Py — Piy1.
i=1
In 1981, A. Lupas [4, Chap. X] proved some similar results for the first difference
of a as follows :

Theorem 3. Let a,b two monotonic n-tuples in the same sense and p a positive
n-tuple. Then

2
. . 1 .
(1.5) | Juin lair1 — ail | Juin biv1 — ZZ pi — (Pn lepz)
i
1 n 1 n n
< = Zpiaibi - = sz'az' Z
Fn i=1 En i=1 Fn i=1
1 & ’
< 1311-1?371 |ait1 — a;l 1<max |biv1 — by 212}72' — (Rn Z:lzm)
i

If there exists the numbers a,ay,r,71,(rr1 > 0) such that ar = a + kr and by, =
ay + kry, then in (1.5) the equality holds.

For some generalizations of Gruss’ inequality for isotonic linear functionals de-
fined on certain spaces of mappings see Chapter X of the book [4] where further
references are given .

2. SOME GRUSs-LuPAS TYPE INEQUALITIES
The following inequality of Griiss-Lupas type in normed linear spaces holds:
Theorem 4. Let (X,|]|) be a normed linear space over K = (R,C), z; € X,
a; € K andp; >0 (i =1,...,n) such that zn: p; = 1. Then we have the inequality:

i=1

(2.1)

n n n
E pio;x; — E bioy - E bix;
i=1 i=1 i=1

2
n

< 15}12571 loj 1 — ayl 1<m<ax i1 — 4] ZZ pi — (2 ipz')
i=

The inequality (2.1) is sharp in the sense that the constant C = 1 in the right
membership cannot be replaced by a smaller one.
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Proof. Let us start with the following identity which can be proved by direct com-
putation:

n n n
E Pio;x; — § picy; § PiZ;
i=1 i=1 i=1

1 n
= 3 > pipy () — i) (¢ — ;)

ij=1
n
= > play ) (@ - w).
1<i<j<n
As i < j, we can write that
j—1
aj — Qo = E (ak+1 — Ozk)
k=i
and
-1
Tj—x; = E (Tpy1 — xp) -
k=i

Using the generalized triangle inequality we have successively:

n n n
E Pio;x; — E pic; E pix;
i=1 i=1 i=1

n j—1 j—1
= E Y2y E (Qpg1 — o) E (Thy1 — 1)
1<i<j<n k=i k=i
n j—1 j—1
< E DiDj E (Qpg1 — o) E (Thy1 — 1)
1<i<j<n k=i k=i
n j—1 j—1
< E DiDj E |41 — al E |zk41 — 2k = A.
1<i<j<n k=i k=i
Note that
a — o] < max |« -«
k+1 kEl > 1<sem—1 s+1 s
and

_ < _
o =l < | max g — o

for all k =1,...,j — 1 and then by summation,

j—1
; e — el < (=) | max Jagi —ay
=i

and

7j—1

— <(i—1 — .
> lowes =l < (G =9), gz v =]
=i
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Taking into account the above estimations, we can write

n

A< g pipj (J — 2| max |asi1 — aé\ Jmnax. Hxs+1 — x| -
1<s<n-—1
1<i<j<n

As a simple calculation shows that

n n 2
Z piDj ] - Z ZZ Di — (Z ipi)
1=1

1<i<j<n

the inequality (2.1) is proved.
Assume that the inequality (2.1) holds with a constant ¢ > 0, i.e.,

n n
i Qg — E piOéiE DiZq
i=1 i=1
n n 2
.2 .
< ¢ max |aj11—Q max Tig1 — T4 1°p; — 1D;
> 1<jSm— | j+ ]|1<< || Jj+ J” El Di El Di
1= 1=

Now, choose the sequences ap, = a+kB(8#0), 2y =z+ky(y#0) (k=1,....,n).
We get

(2.2)

n n n
Zpiaixi - sz‘ai Zpil'i
i=1 i=1 i=1

n n n 2
> pips (i = 5)7 Byl = 18l Iyl | > i*pi — (Zm—)

i=1 i=1

4,j=1

and

2
n
(Jax oy —agl| max [l — ] Zz pi — (Z} z’m)
P
n n 2
= 18Iyl | Y i — <Zipi>
=1 =1

and then by (2.2) we get ¢ > 1, which proves the sharpness of the constant ¢ = 1. i

The following corollary holds:

Corollary 1. Under the above assumptions for a;,x; (i = 1,...,n) we have the in-
equality:

1 n 1 n 1 n
(23) fZaimi—fZai-foi
i=1 =1 =1
n?—1
T | Jnax. g —ay e lzj+1 — 5 -

The constant % s sharp in the sense that it cannot be replaced by a smaller one.
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The proof follows by the above theorem, putting p; = % and taking into account
that:

zn:iapz' - (ZH%) - 1~
i=1

3. APPLICATIONS FOR THE MOMENTS OF GUESSING MAPPINGS

J.L. Massey in [1] considered the problem of guessing the value of realization of
random variable X by asking questions of the form: ”"Is X equal to x ? 7 until the
answer is " Yes”

Let G (X) denote the number of guesses required by a particular guessing strat-
egy when X =z .

Massey observed that E (G (z)) , the average number of guesses, is minimized
by a guessing strategy that guesses the possible values of X in decreasing order of
probability.

We begin by giving a formal and generalized statement of the above problem by
following E. Arikan [2].

Let (X,Y) be a pair of random variable with X taking values in a finite set
x of size n,Y taking values in a countable set J. Call a function G (X) of the
random variable X a guessing function for X if G : x — {1,...,n} is one-to-one.
Call a function G (X | Y) a guessing function for X given Y if for any fixed value
Y =y,G (X | y) is a guessing function for X . G (X | y) will be thought of as the
number of guessing required to determine X when the value of Y is given.

The following inequalities on the moments of G (X) and G (X|Y') were proved
by E. Arikan in the recent paper [2].

Theorem 5. For an arbitrary guessing function G(X) and G(X |Y) and any
p > 0, we have:

1+p
(3.1) E(G(X)")>(1+1nn)” ZPX 1+p]
and
1+p
(32)  BGX|Y)Y)> 0+ Y ZPX,y@,y)w]
ye) Lzex

where Px y and Px are probability distributions of (X,Y) and X, respectively.

Note that, for p = 1, we get the following estimations on the average number of
guesses:

=

D

1+Inn

E(G (X)) =

and

Nl

1> Pxy (z,y) ]
B (G (X)) > =L

- 1+Inn
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In paper [3], Boztas proved the following analytic inequality and applied it for the
moments of guessing mappings:

Theorem 6. The relation

(3.3) [ipki] 2 z": (K" = (k=1)") px

k=1

where r > 1 holds for any positive integer n, provided that the weights p1, ..., pn are
nonnegative real numbers satisfying the condition:

1 1 1 1
(3.4) p,;_HSE(p{‘—|—...+p,:),k:1,2,...n—1

To simplify the notation further, we assume that the x; are numbered such that
xy, is always the k'* guess. This yields:

n

) =Y kpr,p > 0.

k=1

If we now consider the guessing problem, we note that (3.1) can be written as [3]:

[Zp1+p1 o >F (G1+p) _E ((G _ 1)1+P>

for guessing sequences obeying (3.4) .
In particular, using the binomial expansion of (G — 1)1“7 we have the following
corollary [3] :

Corollary 2. For guessing sequences obeying (3.4) with r = 1+m , the m*" guess-
ing moment, when m > 1 is an integer satisfies:

(3.5) E(G™)

1+m

1+m{< "y >E(Gm1)— ( mgl >E(Gm2)+...+(—1)m+1}_

The following inequalities immediately follow from Corollary 2:

% lZm

and

G2 S % lzpk

We are able now to point out some new results for the p-moment of guessing map-
ping as follows.

Using Pecarié’s result (1.4), we can state the following inequality for the moments
of a guessing mapping G (X):
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Theorem 7. Let p,q > 0. then we have the inequality:
(3.6) 0 E (GPt9) — E(G?) E(GY)
(NP =1)(n?—1) max {P;(1— Py)}

n=1,n—

IAIA

k
where P, = Y p;.
i=1

Proof. Define the sequences a; = ¥ , b; = 1% which are monotonous nondecreasing.
Using both CebySev’s and Pecarié¢’s results we can state

n n n
=1 i=1 i=1

< (;P —1) (nf —71) mex {Pe(1—Py)}

n=1n—1

0

IN

which is exactly (3.6). 1
Now, let us define the mappings m,,, M, : (0,00) — (0, 00) given by

[ at—=(m-1"ifte(0,1)
ma (1) = { 2t —1ift € [1,00)
and
2t —1ift e (0,1)
M (8) = { nt —(n—1)"if t € [1,00)
Now, using Lupas’ result (see Theorem 3) we can state the following result

Theorem 8. Let p,q > 0. Then we have the inequality
E (G”+’1) — E(GP)E (GY)
M, (p) M (q) [E (G?) - E*(G)].

IN A

Proof. Consider the sequences a; = i? , b; = i? in Lupas’ theorem (note that a;, b;
are monotonous nondecreasing) to get:

(3.8) [ duin [+ D)7 ="] min (041 =] [B (G?) - B*(Q)]
< E(GP*9) — E(G")E(GY)
< max [(i+ P —i’] min [(i+ 1) -] [E(G?) — E*(G)].

1<i< 1<i<n—1

Now, let us observe that if p € (0,1), then the sequence «; = P is concave, i.e.,
Qi1 — o <a;—a;_q foralli=2,...,n—-1

and if p € [1,00) then «; = iP is convex, i.e.,
Qip1 — ;g > a; —aoy_q foralli=2...,n—1.

Consequently

. . P _ .p —
Jain [+ 17 =57 =ma (p)

and
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Using (3.8) we get the desired inequality (3.7). I

Now, for a given p > 0, consider the sum

Sp(n) = P,
i=1

We know that

and

su(m= [205 D]

Using Biernaki-Pidek-Nardzewski’s result (see Theorem 1) we can state and prove
the following approximation result concerning the p -moment of guessing mapping
G (X).

Theorem 9. Let p > 0. Then we have the estimation

< [%} <1 - % [ZD (n? —=1) (pp — Pm)

where ppy = max{p; |i=1,..,n} and pp, :=min{p; | i =1,...,n}.

B (G (X))~ 15, (0

Proof. Let us choose in Theorem 1, a; = p;, b; = . Then p,,, < a; < ppr, 1 <b; <
n? for all i = 1,...,n and by (1.3) we get

n 1 n n
D itpi— =Y P> p;
i=1 n i=1 i=1

< 5105 5]) o= 0w s

which proves the theorem. i

Remark 1. 1. If in (3.5) we put p =1, we get

a9 |pGa) -5 <w-v[3] (1- 1 [3]) o -

2 n L2

which is an estimation of the average number of guesses in term of the size n
of X and prpr — pm-

2. Note that if p = (p1,...,pn) is close to the uniform distribution (%, vy %),
i.e.,

3

(=1 [3] (-5 [3])

then the error of approximating E (G (X)) by "T'H 1s less than € > 0.

(3.10) 0<pym—pm=< ,€>0

Now, using our new inequality in Corollary 1 we shall be able to prove another
type of estimation for the p-moment of guessing mapping G (X) as follows:
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Theorem 10. Let p > 0. Then we have the estimation:

1 n?—1)n
(3.11) E(G" (X)) = =S5 (n)| < (= 1)n M, (p) max _|pji1—pjl.
n 12 j=I,n—1
Proof. Follows by Corollary 1, choosing «; = i*,x; = p; and ||| is the usual

modulus || from the real number field R . |
Remark 2. 1. Ifin (3.11) we put p = 1, we get
n+1| _n(n?*-1)
- ‘S D j:ml%llpjﬂ—pj\,

which is another type of estimation for the average number of guesses in terms
of the size of X and of the "step size” of probabilities p;.
2. Note that if we choose

(3.12) ‘E (GP (X))

| < 12¢ S0
ma; i+1 — Dy —— €
J:LT)il pj+1 pj n (TL2 o 1)7
then
1
E(G (X)) - ”; :.
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