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AN INTEGRAL INEQUALITY FOR TWICE DIFFERENTIABLE
MAPPINGS AND APPLICATIONS

S. S. DRAGOMIR AND A. SOFO

Abstract. An integral inequality is developed from which when applied to

composite quadrature rules in numerical integration it is proved that there
is a three fold improvement in the remainder of the classical averages of the

Midpoint and Trapezoidal quadratures. Inequalities for special means are also

given.

1. Introduction.

In 1976, G. V. Milovanović and J. E. Pečarić [4] proved a generalization of
Ostrowski’s inequality for n−time differentiable mappings, from which for twice
differentiable mappings, we may write:
Theorem 1. Let f : [a, b] → < be a twice differentiable mapping such that f ′′ :
(a, b) → < is bounded on (a, b) , i.e., ‖f ′′‖∞ := sup

t∈(a,b)

|f ′′ (t)| < ∞. Then we have

the inequality∣∣∣∣∣∣12
[
f (x) +

(x− a) f (a) + (b− x) f (b)
b− a

]
− 1

b− a

b∫
a

f (t) dt

∣∣∣∣∣∣
≤ (b− a)2

4

[
1
12

+

(
x− a+b

2

)2
(b− a)2

]
‖f ′′‖∞

for all x ∈ [a, b] .
In a more recent paper Cerone, Dragomir and Roumeliotis [1] proved the follow-

ing inequality:
Theorem 2. Let f : [a, b] → < be a twice differentiable mapping on (a, b) and
f ′′ : (a, b) → < is bounded, i.e., ‖f ′′‖∞ := sup

t∈(a,b)

|f ′′ (t)| < ∞. Then we have the

inequality ∣∣∣∣∣∣f (x)−
(

x− a + b

2

)
f ′ (x)− 1

b− a

b∫
a

f (t) dt

∣∣∣∣∣∣
≤

[
(b− a)2

24
+

1
2

(
x− a + b

2

)2
]
‖f ′′‖∞ ≤ (b− a)2

6
‖f ′′‖∞

for all x ∈ [a, b] .
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Finally, Dragomir and Barnett [2] also prove the following inequality :
Theorem 3. Let f : [a, b] → < be a twice differentiable mapping on (a, b) and
f ′′ : (a, b) → < is bounded, i.e., ‖f ′′‖∞ := sup

t∈(a,b)

|f ′′ (t)| < ∞. Then we have the

inequality ∣∣∣∣∣∣f (x)− f (b)− f (a)
b− a

(
x− a + b

2

)
− 1

b− a

b∫
a

f (t) dt

∣∣∣∣∣∣
≤ (b− a)2

2


(x− a+b

2

b− a

)2

+
1
4

2

+
1
12

 ‖f ′′‖∞ ≤ (b− a)2

6
‖f ′′‖∞

for all x ∈ [a, b] .
In this paper we point out an integral inequality, similar in a sense, to that of

Cerone, Dragomir and Roumeliotis [1], or Dragomir and Barnett [2], and apply it
to special means and numerical integration. We begin with the following result.

2. An Integral Inequality.

The following theorem is now proved and subsequently applied to numerical
integration and special means.
Theorem 4. Let g : [a, b] → < be a mapping whose first derivative is absolutely
continuous on [a, b] and assume that the second derivative g′′ ∈ L∞ [a, b] . Then we
have the inequality∣∣∣∣∣∣

b∫
a

g (t) dt− 1
2

[
g (x) +

g (a) + g (b)
2

]
(b− a) +

(b− a)
2

(
x− a + b

2

)
g′ (x)

∣∣∣∣∣∣
(2.1) ≤ ‖g′′‖∞

(
1
3

∣∣∣∣x− a + b

2

∣∣∣∣3 +
(b− a)3

48

)
for all x ∈ [a, b] .

Proof. Let us start with the following integral equality

(2.2) f (x) =
1

b− a

 b∫
a

f (t) dt +

b∫
a

p (x, t) f ′ (t) dt


for all x ∈ [a, b] , provided f is absolutely continuous on [a, b] , and the kernel
p : [a, b]2 → < is given by

p (x, t) :=
{

t− a if t ∈ [a, x] ,
t− b if t ∈ (x, b];

where t ∈ [a, b] . A simple proof using the integration by parts formula can be found
in Dragomir and Wang [3]. Now choose in (2.2), f (x) =

(
x− a+b

2

)
g′ (x) to get
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(2.3)
(

x− a + b

2

)
g′ (x)

=
1

b− a

 b∫
a

(
t− a + b

2

)
g′ (t) dt +

b∫
a

p (x, t)
[
g′ (t) +

(
t− a + b

2

)
g′′ (t)

]
dt

 .

Integrating by parts we have

(2.4)

b∫
a

(
t− a + b

2

)
g′ (t) dt =

(g (a) + g (b)) (b− a)
2

−
b∫

a

g (t) dt.

Also upon using (2.2), we have that

(2.5)

b∫
a

p (x, t)
[
g′ (t) +

(
t− a + b

2

)
g′′ (t)

]
dt

=

b∫
a

p (x, t) g′ (t) dt +

b∫
a

p (x, t)
(

t− a + b

2

)
g′′ (t) dt

= (b− a) g (x)−
b∫

a

g (t) dt +

b∫
a

p (x, t)
(

t− a + b

2

)
g′′ (t) dt.

Now by (2.4), (2.5) and (2.6) we deduce that

(b− a)
(

x− a + b

2

)
g′ (x) =

(g (a) + g (b)) (b− a)
2

−
b∫

a

g (t) dt

+(b− a) g (x)−
b∫

a

g (t) dt +

b∫
a

p (x, t)
(

t− a + b

2

)
g′′ (t) dt

from where we get the identity

(2.6)

b∫
a

g (t) dt =
1
2

[
g (x) +

g (a) + g (b)
2

]
(b− a)

− (b− a)
2

(
x− a + b

2

)
g′ (x) +

1
2

b∫
a

p (x, t)
(

t− a + b

2

)
g′′ (t) dt

for all x ∈ [a, b] . Now using (2.6) we have∣∣∣∣∣∣
b∫

a

g (t) dt− 1
2

[
g (x) +

g (a) + g (b)
2

]
(b− a) +

(b− a)
2

(
x− a + b

2

)
g′ (x)

∣∣∣∣∣∣(2.7)

≤ 1
2

b∫
a

|p (x, t)|
∣∣∣∣t− a + b

2

∣∣∣∣ |g′′ (t)| dt.
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Obviously, we have

b∫
a

|p (x, t)|
∣∣∣∣t− a + b

2

∣∣∣∣ |g′′ (t)| dt ≤ ‖g′′‖∞

b∫
a

|p (x, t)|
∣∣∣∣t− a + b

2

∣∣∣∣ dt,

where ‖g′′‖∞ := sup
t∈(a,b)

|g′′ (t)| < ∞. Also

I :=

b∫
a

|p (x, t)|
∣∣∣∣t− a + b

2

∣∣∣∣ dt =

x∫
a

(t− a)
∣∣∣∣t− a + b

2

∣∣∣∣ dt +

b∫
x

(b− t)
∣∣∣∣t− a + b

2

∣∣∣∣ dt.

We have two cases:
a). For x ∈

[
a, a+b

2

]
we obtain

I =

x∫
a

(t− a)
(

a + b

2
− t

)
dt+

a+b
2∫

x

(b− t)
(

a + b

2
− t

)
dt+

b∫
a+b
2

(b− t)
(

t− a + b

2

)
dt.

We have

I1 =

x∫
a

(t− a)
(

a + b

2
− t

)
dt

=
(a + 3b− 4x) (x− a)2

12
,

I2 =

a+b
2∫

x

(b− t)
(

a + b

2
− t

)
dt

=
(5b− a− 4x) (2x− a− b)2

48

and

I3 =

b∫
a+b
2

(b− t)
(

t− a + b

2

)
dt

=
(b− a)3

48

and hence, upon simplification

I =
2
3

(
a + b

2
− x

)3

+
(b− a)3

24
, x ∈

[
a,

a + b

2

]
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b). For x ∈
(

a+b
2 , b

]
we obtain

I =

a+b
2∫

a

(t− a)
(

a + b

2
− t

)
dt

+

x∫
a+b
2

(t− a)
(

t− a + b

2

)
dt +

b∫
x

(b− t)
(

t− a + b

2

)
dt

=
(b− a)3

48
+

(4x− 5a + b) (2x− a− b)2

48
+

(4x− 3a− b) (x− b)2

12

=
2
3

(
x− a + b

2

)3

+
(b− a)3

24
,

and referring to (2.7), we obtain the result (2.1) of Theorem 4.

Remark 1. In (2.1) if we investigate the end points x = a, x = b and the midpoint
x = a+b

2 we find that the midpoint gives us the best estimator, so that we have∣∣∣∣∣∣ 1
b− a

b∫
a

g (t) dt− 1
2

[
g

(
a + b

2

)
+

g (a) + g (b)
2

]∣∣∣∣∣∣ ≤ ‖g′′‖∞
(b− a)2

48
.

3. Application To Composite Quadrature Rules.

We may utilize the previous inequality to give us estimates of composite quad-
rature rules which, it turns out have a markedly smaller error than that which may
be obtained by the classical results.

Theorem 5. Let In : a = x0 < x1 < ... < xn−1 < xn = b be a partition of the
interval [a, b] , hi = xi+1 − xi, ν (h) := max {hi : i = 1, ..., n} , ξi ∈ [xi, xi+1] ,

S (g, In, ξ) =
1
2

n−1∑
i=0

[
g (ξi) +

g (xi) + g (xi+1)
2

]
hi

−1
2

n−1∑
i=0

(
ξi −

xi + xi+1

2

)
hig

′ (ξi)

then
b∫

a

f (x) dx = S (g, In, ξ) + R (g, In, ξ)

and

|R (g, In, ξ)| ≤ ‖g′′‖∞

[
1
3

n−1∑
i=0

∣∣∣∣ξi −
xi + xi+1

2

∣∣∣∣3 +
1
48

n−1∑
i=0

h3
i

]
.
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Proof. Applying (2.1) on ξi ∈ [xi, xi+1] we have∣∣∣∣∣∣
xi+1∫
xi

g (t) dt− 1
2

[
g (ξi) +

g (xi) + g (xi+1)
2

]
hi +

1
2

(
ξi −

xi + xi+1

2

)
hig

′ (ξi)

∣∣∣∣∣∣
≤ ‖g′′‖∞

(
1
3

∣∣∣∣ξi −
xi + xi+1

2

∣∣∣∣3 +
h3

i

48

)
.

Now summing over i from 0 to n− 1 and utilizing the triangle inequality, we have∣∣∣∣∣∣
n−1∑
i=0

 xi+1∫
xi

g (t) dt

∣∣∣∣∣∣
≤

n−1∑
i=0

hi

∣∣∣∣12
[
g (ξi) +

g (xi) + g (xi+1)
2

]
− 1

2

(
ξi −

xi + xi+1

2

)
g′ (ξi)

∣∣∣∣
≤ ‖g′′‖∞

n−1∑
i=0

(
1
3

∣∣∣∣ξi −
xi + xi+1

2

∣∣∣∣3 +
h3

i

48

)
and therefore

|R (g, Ih, ξ)| ≤ ‖g′′‖∞

(
1
3

n−1∑
i=0

∣∣∣∣ξi −
xi + xi+1

2

∣∣∣∣3 +
1
48

n−1∑
i=0

h3
i

)
.

Corollary 1. If ξi = xi+xi+1
2 then

S (g, In) =
1
2

n−1∑
i=0

[
g

(
xi + xi+1

2

)
+

g (xi) + g (xi+1)
2

]
hi

and

(3.1)
∣∣R (g, In)

∣∣ ≤ ‖g′′‖∞
48

n−1∑
i=0

h3
i .

S (g, In) may be thought of as the arithmetic mean of the Midpoint and the Trape-
zoidal quadrature rules.
Remark 2. However it is clear that inequality (3.1) is much better than the classical
averages of the remainders of the Midpoint and Trapezoidal quadratures. Consider

b∫
a

f (x) dx = AT (f, Ih) + RT (f, Ih)

where AT (f, Ih) is the Trapezoidal rule

(3.2) AT (f, Ih) :=
n−1∑
i=0

[
f (xi) + f (xi+1)

2

]
hi

and the remainder term RT (f, Ih) satisfies

(3.3) |RT (f, Ih)| ≤
‖f ′′‖∞

12

n−1∑
i=0

h3
i .
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Also
b∫

a

f (x) dx = AM (f, Ih) + RM (f, Ih)

where

(3.4) AM (f, Ih) :=
n−1∑
i=0

[
f

(
xi + xi+1

2

)]
hi

is the Midpoint quadrature rule and the remainder term RM (f, Ih) satisfies the
estimation

(3.5) |RM (f, Ih)| ≤
‖f ′′‖∞

24

n−1∑
i=0

h3
i .

Now we see from (3.2) (3.3) (3.4) and (3.5)
b∫

a

f (x) dx =
1
2

(AM (f, Ih) + AT (f, Ih) + RM (f, Ih) + RT (f, Ih)) ,

from the remainders and using the triangle inequality we have
1
2
|RM (f, Ih) + RT (f, Ih)| ≤ 1

2
|RM (f, Ih)|+ 1

2
|RT (f, Ih)|

≤
‖f ′′‖∞

24

n−1∑
i=0

h3
i +

‖f ′′‖∞
48

n−1∑
i=0

h3
i

=
‖f ′′‖∞

16

n−1∑
i=0

h3
i .(3.6)

It can be clearly seen that (3.1) is a three fold better estimator than (3.6).
The conclusion of Corollary 1 can also be obtained from the Milovanović-Pečarić

result, Theorem 1, upon setting x = a+b
2 .

4. Applications For Some Special Means.

Let us recall the following means:
(a) The Arithmetic mean:

A = A (a, b) :=
a + b

2
, a, b ≥ 0.

(b) The Geometric mean:

G = G (a, b) :=
√

ab, a, b ≥ 0.
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(c) The Harmonic mean:

H = H (a, b) :=
2

1
a + 1

b

, a, b > 0.

(d) The Logarithmic mean:

L = L (a, b) :=


a if a = b

b−a
ln b−ln a if a 6= b

, a, b > 0.

(e) The Identric mean:

I = I (a, b) :=


a if a = b

1
e

(
bb

aa

) 1
b−a

if a 6= b

, a, b > 0.

(f) The p−logarithmic mean:

Lp = Lp (a, b) :=


a if a = b

[
bp+1−ap+1

(p+1)(b−a)

] 1
p

if a 6= b

, a, b > 0

where p ∈ <\ {−1, 0} . The following is well known in the literature:

H ≤ G ≤ L ≤ I ≤ A.

It is also well known that Lp is monotonically increasing over p ∈ < (assuming that
L0 := I and L−1 := L).

The inequality (2.1) may be rewritten as∣∣∣∣∣∣12 (A (a, b)− x) g′ (x) +
1
2

[
g (x) +

g (a) + g (b)
2

]
− 1

b− a

b∫
a

g (t) dt

∣∣∣∣∣∣
(4.1) ≤ ‖g′′‖∞

(
1

3 (b− a)
|x−A (a, b)|3 +

(b− a)2

48

)
.

We may now apply (4.1) to deduce some inequalities for special means given above,
by the use of some particular mappings as follows.

(1) Consider g (x) = lnx, x ∈ [a, b] ⊂ (0,∞) then

1
b− a

b∫
a

g (t) dt = ln I (a, b) ,

g (a) + g (b)
2

= lnG (a, b)

and

‖g′′‖∞ = sup
t∈(a,b)

|g′′ (t)| = 1
a2

.
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From (4.1) we have that∣∣∣∣A (a, b)
x

− 1 + lnx + lnG (a, b)− 2 ln I (a, b)
∣∣∣∣

≤ 2
a2

(
1

3 (b− a)
|x−A (a, b)|3 +

(b− a)2

48

)
from which we obtain the best estimate at the centre point x = a+b

2 , so that

|lnA (a, b) + lnG (a, b)− 2 ln I (a, b)| ≤ (b− a)2

24a2
,

or ∣∣∣∣ln(AG

I2

)∣∣∣∣ ≤ (b− a)2

24a2
.

(2) Consider g (x) = 1
x , x ∈ [a, b] ⊂ (0,∞) then

1
b− a

b∫
a

g (t) dt = L−1 (a, b) ,

g (a) + g (b)
2

=
A (a, b)
G2 (a, b)

and

‖g′′‖∞ = sup
t∈(a,b)

|g′′ (t)| = 2
a3

.

From (4.1) we have that∣∣∣∣ 1
2x

(
2− A (a, b)

x

)
+

A (a, b)
2G2 (a, b)

− L−1 (a, b)
∣∣∣∣

≤ 2
a3

(
1

3 (b− a)
|x−A (a, b)|3 +

(b− a)2

48

)
and the best estimate is obtained at the centre point x = a+b

2 , so that∣∣∣∣ 1
2A (a, b)

+
A (a, b)

2G2 (a, b)
− L−1 (a, b)

∣∣∣∣ ≤ (b− a)2

24a3
.

(3) Consider g (x) = xp, g : (0,∞) → < where p ∈ <\ {−1, 0} then for a < b

1
b− a

b∫
a

g (t) dt = Lp
p (a, b) ,

g (a) + g (b)
2

= A (ap, bp)

and

‖g′′‖∞ = |p (p− 1)| .

 bp−2 if p ∈ [2,∞)

ap−2 if p ∈ (−∞, 2) \ {−1, 0}
.
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From (4.1) we have that∣∣∣∣xp−1

2
(p (A (a, b)− x) + x) +

A (ap, bp)
2

− Lp
p (a, b)

∣∣∣∣
≤ |p (p− 1)| δp (a, b)

(
1

3 (b− a)
|x−A (a, b)|3 +

(b− a)2

48

)
where

δp (a, b) :=

 bp−2 if p ∈ [2,∞)

ap−2 if p ∈ (−∞, 2) \ {−1, 0}
.

At x = a+b
2 the best estimate is∣∣Ap (a, b) + A (ap, bp)− 2Lp

p (a, b)
∣∣ ≤ |p (p− 1)| δp (a, b)

(b− a)2

48
.
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