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SOME INEQUALITIES IN 2-INNER PRODUCT SPACES

Y.J. CHO, S.S. DRAGOMIR, A. WHITE, AND S.S. KIM

ABSTRACT. In this paper we extend some results on the refinement of Cauchy-
Buniakowski-Schwarz’s inequality and Aézel’s inequality in inner product spaces
to 2—inner product spaces.

1. INTRODUCTION

Let X be a real linear space of dimension greater than 1 and let ||-,-|| be a
real-valued function on X x X satisfying the following conditions:

(Ny) |z, y]| = 0 if and only if 2 and y are linearly dependent;

(Vo) syl =y, ll;

(N3) oz, y|| = |a| ||z, y|| for any real number «;

(Vo) lzy + 2l < [le,yll + [z, 2]

I, || is called a 2—norm on X and (X, |-, -||) a linear 2—normed space cf. [10].
Some of the basic properties of the 2-norms are that they are nonnegative, and
|z, y + x| = ||z, y|| for every x,y in X and every real number a.

For any non-zero 1, s, ...,z in X, let V (x1, xa, ..., z,) denote the subspace of
X generated by x1, 9, ..., x,. Whenever the notation V (z1, z9, ..., z,,) is used, we
will understand that zi, xs, ..., x, are linearly independent.

A concept which is closely related to linear 2-normed space is that of 2 inner
product spaces. For a linear space X of dimension greater than 1 let (-,- | -) be a
real-valued function on X x X x X which satisfies the following conditions:

(I) (x,2 ] z) > 0;(z,x | 2) = 0if and only if 2 and z are linearly dependent;
(L) (z2]|2)=(2z2]);

(13) (x,y|z)=(y,:z:\z);
(1) (ax,y | z) = a(z,y | 2) for any real number «;
(I5)  (x+a'y|2) = (@y|2)+ @y 2).

(+,+]-)iscalled a 2-innerproduct and (X, (-,-|+)) a 2-inner product space ([3]).

These spaces are studied extensively in [1], [2], [4]-[6] and [11]. In [3] it is
shown that ||z, z| = (z,x | z)% is a 2—norm on (X, |-,-||). Every 2—inner prod-
uct space will be considered to be a linear 2—normed space with the 2—norm
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|z, z|| = (z, | z)% . R. Ehret, [9], has shown that for any 2—inner product space
(X, (G, ) llw, 2|l = (x,2 | 2)2 defines a 2-norm for which
1 2 2
(1.1) (@.y12) =7 (lz+v.20° = o =y, 2I) |
2 2 2 2
(1.2) o+, 2 + e =y, 207 = 2 (ll2, 21 + lly, 217 -
Besides, if (X, ||+, -]|) is a linear 2—normed space in which condition (1.2), being

a 2-dimensional analogue of the parallelogram law, is satisfied for every z,y, z € X,
then a 2-inner product on X is defined on by (1.1).
For a 2-inner product space (X, (-, - | -)) Cauchy-Schwarz’s inequality

1 1
@,y | 2)| < (z,2]2)2 (y,y]2)2 =z, 2] Iy, 2l ,
a 2—dimensional analogue of Cauchy-Buniakowski-Schwarz’s inequality, holds (cf.
3])-
2. REFINEMENTS OF CAUCHY-SCHWARZ’S INEQUALITY

Throughout this paper, let (X, (-, |-)) denote a 2—inner product space with

|z, z|| = (z,2 | 2)? , R the set of real numbers and N the set of natural numbers.
Theorem 2.1. Let z,y,z,u,v € X with z ¢ V (x,y,u,v) be such that
(2.1) lu 2l <2(@,u|2),  fo,z|* <2(y,v]2).

Then, we have the inequality

(2.2) (2@l 2) ~ ) (2001 2) = o,2)7)°
1@,y | 2) = (2,01 2) = (uy | 2)+ (o] 2)] < oz 21

Proof. Note that

(2.3) (m* —n?) (p* — ¢%) < (mp — nq)®

for every m,n,p,q € R. Since
@,y ] 2) = (@0 ] 2) = (wy | 2)+ (wo | 2)
—l@—wy—v| 2 < oz lly v,z
= (2 + s 207 = 2 @, ] 2)) (N 207 + o, 20 = 29,01 2))
by (2.3), we have
(2.4) @,y ] 2) = (@0 ] 2) = (wy | 2)+ (wo ] 2)

[ME

}2.

%
s{mxnmJn—(ﬂau|a—rmdﬁ (201 2) = lv.2I7)
On the other hand

0< (2@ ul2) = lluzl)" <z,

Nl=

|

2\ 2
0< (20012 —llo.2l?)" < lly.2l,
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which imply

1 1
(2G@ul2) = lu=l?)” (2001 2) = o, 20) " <l 2l g, 2] -
Therefore, from (2.4), we have the inequality (2.2). This completes the proof. I
Corollary 2.2. Let z,y,z,e € X be such that |le,z|| =1 and z ¢ V (z,y,¢e) . Then
(2.5) [,y | 2) <[z, y ] 2) = (z,e]2)(e;y | 2)|
+l( e | 2)(e,ul 2)| <l 2|y, =] -

Proof. If we put u = (x,e | z)e and v = (y, e | z) e, then the conditions (2.1) hold.
In fact,

2(z,u | 2) = |luz|* =2 (2, (z,e | 2) e | 2) = ||(z,e ] 2) e, 2|
=2(z,e|2)(z,e|2)— (z,e]2)? = (z,e|2)(z,e]|2) >0.

And similarly for the second condition in (2.1).
Moreover,

@,y [ 2) = (z,0] 2) = (w,y [ 2) + (u, 0] 2)]
=@y l2) = (x,e]2)(ye|z) = (z,e|2)(ey]2)+(z.e]2)(y,e]2)
=[x,y ] 2) = (z,e]2)(e,y | 2)]
so0, by Theorem 2.1, we have (2.5). I

Corollary 2.3. Let z,y,z € X be such that ||z,z|* < 2,y 2> < 2 and z ¢
V (z,y). Then

2:6) @yl 2P (2= le =) (2= lel?)’

2
2 2
1y | 1= o2l = Ny, 2 + @y | 2)| < s 2l s 211

Proof. If we put w = (z,y | 2) y and v = (y,x | z) z, then the inequality (2.3) holds.
Moreover, we have

(2ul )= fusl?) (200 2)— fo.:1?)
=l P (2= leal?)* (2= 21?)

@y | 2) = (@] 2) = (wy | 2)+ (o] 2)
2 2 2
= Iz | 2 [1 = 2 21 = g, 2 + (2w | 2)P)

1
2

Therefore, by Theorem 2.1, we have the inequality (2.6). 1

Theorem 2.4. Let z,y,z,e € X be such that |le,z|| =1 and z ¢ V (x,y,e). Then
2

(2.7) [,y | 2) — (z,e ] 2) (e, y | )]

< (e, 217 = I(@se | 2)P) (217 = 1w e 1 2)I°)

Proof. Consider a mapping P : X x X X X — R defined by P (z,y,2) = (z,y | 2) —
(z,e| z)(e,y | 2) for every z,y, z,e € X, having the properties:
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(i) P(z,z,2) >0,
(ii) P(ax+ B2’ y,2) = P (z,y,2) + BP (2',y, z),
(iii) P (2,y,2) = P(y,,2).
Then Cauchy-Schwarz’s inequality
(2.8) 1P (2,y,2)]* < P(2,2,2) P (y,y,2)
holds.

Indeed, we observe that

0< P(x+aP(v,y,2)y,r+aP(x,y,2)y,2)

= P(z,2,2) 4+ 2P (2,y,2)° + o*P (2,y,2)° P (y,4,2) (V)a €R.
It is well known that if ¢ > 0 and
aa® + Ba+¢>0 forall o € R,

then A = b% — 4ac < 0.
Then by the above inequality we deduce

(2.9) P(z,y,2)" < P(z,2,2) P (y,y,2) P (z,y,2)".

If P(z,y,2) =0 then (2.8) holds.
If P(x,y,2) # 0 then we can devide in (2.9) by P (x,y, z) and obtain (2.8).
The theorem is thus proved. I

Remark 2.1. By the inequalities (2.3) and (2.7), we have
2,y ] 2) = (z.e| 2) (e;y | )|

< (e 21 = l(w.e | 2P (I 217 = wee | 2))

< (2 1y, 2l = (. e | 2) e,y | 2))*
Since [z, 2] 19,21l 2 I(w,€ | 2) (e, | 2)], we get
@,y | 2) = (@,e|2)(e;y | 2)| < =, 2l ly, 2l| = |(z, e | 2) (e,y | 2)],
which yields the inequality (2.5).
Corollary 2.5. Letx,y,z,e € X be such that |le,z|| =1 and z ¢ V (z,y,e). Then

1
(2.10) (le 49,21 = @+ e 2)F)°
3 3
< (o2l = @y e 1 2)7) " + (2l = lwe [ 2F)
Proof. If we define S : X x X — R by S(z,2) = P(x,x,z)% for every z,y € X
and use the triangle inequality for S (z,z), then we have (2.10). I

Corollary 2.6. For every non-zero x,y,z,u € X, with z ¢ V (z,y,u) , we have

2 2
2, 2 1y, =l 1y, 2|l flu =]l [[u 2| |z, =|
l, 201 My, 217 lu, 2]
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For the proof of next theorem, we need the following lemma:

Lemma 2.7. For every non-zero x,y,z € X with z ¢ V (z,y), we have

T Y
(2.12) (||x72||+||y,2||)‘ -2 <2z -y, 2.
lz, 2l ly, 2]l
Proof. Since
o, 2l Ny, =
ly, 2l Al zll —

we have the inequality

2 .zl ly, 2l
(I, 2l + 1y, 2ID7 = (2,9 | 2) < + —2(z,y | 2)

ly, 2l =, 2]l

2 2
< 2|z, 2l + [y, 2lI” — 4 (z,y | 2)

which implies (2.12). §

Theorem 2.8. For every non-zero x,y,z € X with z ¢ V (z,y) we have
(2.13)

2 2
X ) x Y
(e, 211+ Iy 212 _ Y \ -
B EIRATE]
2 2
<8 (Jla 21 + Iy, 21%)
Proof. By (2.12) we have
X Yy ? Y ?
(WZH+MJWQH— : ] -
! R AT

< 4(llz =y 2l + o +y,2)7)
and, by a 2—dimensional analogue of the parallelogram law, we get (2.13). I

Remark 2.2. For some similar results in inner product spaces, see [7].

3. A¢zEL'S INEQUALITY

In this section, we shall point out some results in 2—inner product spaces in con-
nection to Aézel’s inequality [12]. For some other similar results in inner products,
see [8]. We note that the results obtained here, in 2—inner product spaces used
different techniques as those in [8].

Theorem 3.1. Let (X, (-,-|-)) be a 2—inner product space, My, My € R and
x,y,z € X such that

”xﬂZ” < |M1|7 ”vaH < |M2|7
then
2 2 2
1) (M =2l (M =y, 2I) < (M| = (2 | 2))%.
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Proof. Using the elementary inequality (2.3), we get

2 2 2
0< (M2 =l 2I*) (MZ = lly. 2I7) < (IMaMa| = o, 2]l =)
and by Cauchy-Schwarz’s inequality,
0 < |MyMs| — ||z, 21|l 21| < |Mi M| = (2,9 | 2)
implying (3.1). I

Corollary 3.2. If z,y,z € X, are such that ||z, 2|, ||y, z|| < M, M > 0, then we
have the inequality

2 2 2 2
(3.2) 0 < flz 2l” lys 2[I° = (2,9 | 2)° < M? [l —y, 2|
which is a counterpart of Cauchy-Schwarz’s inequality.

Another similar results to the generalization (3.1) of Aczel’s inequality is the
following one

Theorem 3.3. Let (X, (-,-|-)) be a 2—inner product space, and My, Ms € R and
x,y,z € X such that ||z, 2| < |Mi|, |ly,z| <|Ma|. Then

1 1 1 1
(3.3) (IMy] = Jlz, 2[])2 (IM2] = lly, 2[)? < [MyMa|® — [(z,y | 2)]* .

Proof. Applying (2.3) form = \/|M1|, p=+/|M. n=+/|z,zll, ¢=+|vz|
and using Cauchy- Schwarz S 1nequahty for 271nner products we deduce (3.3). 11

Corollary 3.4. Suppose that x,y,z € X and M > 0 are such that ||z, 2| , ||y, z|| <
M. Then we have the following converse of Cauchy-Schwarz’s inequality

(3.4) 0 <z, 2l lly, Il = [(z,y | 2)]

1/2
< M (Jla, 2l + lly. 21l = 21 (. | 2)]?).

Theorem 3.5. Let (-,- | -) be a 2—inner product and {(-,- | -);},cn @ sequence of
2—inner products satisfying
(o)
2 2
(3.5) lz, 2l* > e, 2Il;
i=0

for all x, z, being linearly independent. Then we have the following refinemenet of
Cauchy-Schwarz’s inequality

(3.6) [, 2l Iy, 21l = (2,9 [ 2)]

(3.7) >3 Mzl Y szl = [y | 2)]
i=0 i=0
forall z,y,z € X.
Proof. Let n € N and n > 1. Define the mapping
(z,y]2), = (x,y]2) - ny\ z,y,z € X.
=0
We observe, by (3.5), that the mapping (-,- | -),, satisfies the properties

i) (z,z|2), >0,
(ii) (ax+ B2,y | 2), =a(z,yl|2), +6y]2),,
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(i) (z,y2), = (7] 2),

for every z,z’,y,2z € X and a,a’ € R.

By a similar proof to that in Theorem 2.4, we can state Cauchy-Schwarz’s in-
equality

2
(@, | 2), Wy 2),>yl|=2),", zyzelX,
that is

(3-8) <||9E,Z||2 - IIz,ZIIf> (IIWII2 - ||y72|f>
1=0 1=0

> ((w,y [2) =) (zy] 2%) :

=0

Using Aézel’s inequality [12]

m m m ?
<a2 — Zaf) <b2 — Zb?) S (Clb— Zazbz> )
i=0 i=0 =0

where a,b,a;,b; € R for ¢« =0, ..., m; we can prove that

n 2
(3.9) <||w72|| ly, 2l = ll, =1, IIy,ZIIl)

=0

n n
2 2 2 2
i=0 1=0

for all x,y, z € X. Since, by Cauchy-Buniakowski-Schwarz’s inequality

2 2
[, 2| Iy, 2l > (Z lz, (15 ”va”i) >l 2y =l
i=0 i=0 i=0

then by (3.8) and (3.9) we deduce

n
2l lys 2l = Nl 21l Ny, 2l

=0

n

> |(z,y ] 2)| = )@y | 2);]

=0

n
I, 2l llys 21l = D Nl 21l N1y, =l
i=0

which implies (3.6), by using the inequality
2z, 2l; ly, z[l; = [z, y | 2);] = 0.
The theorem is thus proved. i

The following corollaries are interesting as refinements of the triangle inequality
for 2-norms generated by 2-inner products.

Corollary 3.6. With the assumptions from Theorem, we have the following re-
finement of the triangle inequality

2 2
(NI, 2l + 1y, 1) = ll= + y, 2]l
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2 2
>3 [zl + lly 210 = lle + 3,217 2 0,29, € X.
=0

Corollary 3.7. Let (.,.|.);,(.,.|.)s be two 2-inner products such that
2z, 2lly > llz, 2]l
for all x, z being linearly independent in X. Then

2, 2l 1y, 2lly = [(2,y [ 2),]

> |l zlly lys 2l = @,y | 2)4] > 0,2, 9,2 € X.
Corollary 3.8. Let (.,.|.);,(.,.].)y be as above. Then
2 2
(s zlly + N1y 2ll2)" = ll= +y, 213

2 2
> ([l 2lly + 1y, 2l1)” = llz + 9, 2ly = 0,2,9,2 € X.
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