

Some Inequalities in 2-inner Product Spaces

This is the Published version of the following publication

Cho, Yeol Je, Dragomir, Sever S, White, A and Kim, Seong Sik (1999) Some Inequalities in 2-inner Product Spaces. RGMIA research report collection, 2 (2).

The publisher's official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/17201/

SOME INEQUALITIES IN 2-INNER PRODUCT SPACES

Y.J. CHO, S.S. DRAGOMIR, A. WHITE, AND S.S. KIM

ABSTRACT. In this paper we extend some results on the refinement of Cauchy-Buniakowski-Schwarz's inequality and Aćzel's inequality in inner product spaces to 2—inner product spaces.

1. Introduction

Let X be a real linear space of dimension greater than 1 and let $\|\cdot, \cdot\|$ be a real-valued function on $X \times X$ satisfying the following conditions:

- ||x,y|| = 0 if and only if x and y are linearly dependent;
- (N_2) ||x,y|| = ||y,x||;
- (N_3) $\|\alpha x, y\| = |\alpha| \|x, y\|$ for any real number α ;
- (N_4) $||x, y + z|| \le ||x, y|| + ||x, z||.$

 $\|\cdot,\cdot\|$ is called a 2-norm on X and $(X,\|\cdot,\cdot\|)$ a linear 2-normed space cf. [10]. Some of the basic properties of the 2-norms are that they are nonnegative, and $\|x,y+\alpha x\|=\|x,y\|$ for every x,y in X and every real number α .

For any non-zero $x_1, x_2, ..., x_n$ in X, let $V(x_1, x_2, ..., x_n)$ denote the subspace of X generated by $x_1, x_2, ..., x_n$. Whenever the notation $V(x_1, x_2, ..., x_n)$ is used, we will understand that $x_1, x_2, ..., x_n$ are linearly independent.

A concept which is closely related to linear 2-normed space is that of 2 inner product spaces. For a linear space X of dimension greater than 1 let $(\cdot, \cdot \mid \cdot)$ be a real-valued function on $X \times X \times X$ which satisfies the following conditions:

- (I_1) $(x, x \mid z) \ge 0; (x, x \mid z) = 0$ if and only if x and z are linearly dependent;
- (I_2) $(x, x \mid z) = (z, z \mid x);$
- (I_3) $(x, y \mid z) = (y, x \mid z);$
- (I_4) $(\alpha x, y \mid z) = \alpha (x, y \mid z)$ for any real number α ;
- $(I_5) (x+x',y \mid z) = (x,y \mid z) + (x',y \mid z).$
- $(\cdot, \cdot | \cdot)$ is called a 2-inner product and $(X, (\cdot, \cdot | \cdot))$ a 2-inner product space ([3]). These spaces are studied extensively in [1], [2], [4]-[6] and [11]. In [3] it is

shown that $||x,z|| = (x,x \mid z)^{\frac{1}{2}}$ is a 2-norm on $(X,||\cdot,\cdot||)$. Every 2-inner product space will be considered to be a linear 2-normed space with the 2-norm

1

¹⁹⁹¹ Mathematics Subject Classification. Primary 26D99; Secondary 46Cxx.

Key words and phrases. 2-Inner Product, Cauchy-Buniakowski-Schwarz's Inequality, Triangle Inequality, Aćzel's Inequality.

This paper has been supported in part by NON-DIRECTED RESEARCH FUND, Korea Research Foundation, 1996.

 $||x,z||=(x,x\mid z)^{\frac{1}{2}}$. R. Ehret, [9], has shown that for any 2-inner product space $(X,(\cdot,\cdot\mid\cdot)),||x,z||=(x,x\mid z)^{\frac{1}{2}}$ defines a 2-norm for which

(1.1)
$$(x, y \mid z) = \frac{1}{4} (\|x + y, z\|^2 - \|x - y, z\|^2),$$

(1.2)
$$||x+y,z||^2 + ||x-y,z||^2 = 2(||x,z||^2 + ||y,z||^2).$$

Besides, if $(X, \|\cdot, \cdot\|)$ is a linear 2—normed space in which condition (1.2), being a 2-dimensional analogue of the parallelogram law, is satisfied for every $x, y, z \in X$, then a 2-inner product on X is defined on by (1.1).

For a 2-inner product space $(X, (\cdot, \cdot \mid \cdot))$ Cauchy-Schwarz's inequality

$$|(x,y \mid z)| \le (x,x \mid z)^{\frac{1}{2}} (y,y \mid z)^{\frac{1}{2}} = ||x,z|| ||y,z||,$$

a 2—dimensional analogue of Cauchy-Buniakowski-Schwarz's inequality, holds (cf. [3]).

2. Refinements of Cauchy-Schwarz's Inequality

Throughout this paper, let $(X, (\cdot, \cdot | \cdot))$ denote a 2-inner product space with $||x, z|| = (x, x | z)^{\frac{1}{2}}$, **R** the set of real numbers and **N** the set of natural numbers.

Theorem 2.1. Let $x, y, z, u, v \in X$ with $z \notin V(x, y, u, v)$ be such that

$$||u, z||^2 \le 2(x, u \mid z), \qquad ||v, z||^2 \le 2(y, v \mid z).$$

Then, we have the inequality

(2.2)
$$\left(2(x, u \mid z) - \|u, z\|^{2} \right)^{\frac{1}{2}} \left(2(y, v \mid z) - \|v, z\|^{2} \right)^{\frac{1}{2}} + \left| (x, y \mid z) - (x, v \mid z) - (u, y \mid z) + (u, v \mid z) \right| \leq \|x, z\| \|y, z\|.$$

Proof. Note that

(2.3)
$$(m^2 - n^2) (p^2 - q^2) \le (mp - nq)^2$$

for every $m, n, p, q \in \mathbf{R}$. Since

$$|(x, y \mid z) - (x, v \mid z) - (u, y \mid z) + (u, v \mid z)|^{2}$$

$$= |(x - u, y - v \mid z)|^{2} \le ||x - u, z||^{2} ||y - v, z||^{2}$$

$$= (||x, z||^{2} + ||u, z||^{2} - 2(x, u \mid z)) (||y, z||^{2} + ||v, z||^{2} - 2(y, v \mid z)),$$

by (2.3), we have

$$(2.4) |(x,y \mid z) - (x,v \mid z) - (u,y \mid z) + (u,v \mid z)|^{2}$$

$$\leq \left\{ ||x,z|| \, ||y,z|| - \left(2 \, (x,u \mid z) - ||u,z||^{2} \right)^{\frac{1}{2}} \left(2 \, (y,v \mid z) - ||v,z||^{2} \right)^{\frac{1}{2}} \right\}^{2}.$$

On the other hand

$$0 \le \left(2(x, u \mid z) - \|u, z\|^2\right)^{\frac{1}{2}} \le \|x, z\|,$$
$$0 \le \left(2(y, v \mid z) - \|v, z\|^2\right)^{\frac{1}{2}} \le \|y, z\|,$$

which imply

$$\left(2(x, u \mid z) - \|u, z\|^{2}\right)^{\frac{1}{2}} \left(2(y, v \mid z) - \|v, z\|^{2}\right)^{\frac{1}{2}} \leq \|x, z\| \|y, z\|.$$

Therefore, from (2.4), we have the inequality (2.2). This completes the proof.

Corollary 2.2. Let $x, y, z, e \in X$ be such that ||e, z|| = 1 and $z \notin V(x, y, e)$. Then

(2.5)
$$|(x, y \mid z)| \le |(x, y \mid z) - (x, e \mid z) (e, y \mid z)|$$

$$+ |(x, e \mid z) (e, u \mid z)| \le ||x, z|| ||y, z||.$$

Proof. If we put $u = (x, e \mid z) e$ and $v = (y, e \mid z) e$, then the conditions (2.1) hold. In fact,

$$2(x, u \mid z) - ||u, z||^{2} = 2(x, (x, e \mid z) e \mid z) - ||(x, e \mid z) e, z||^{2}$$
$$= 2(x, e \mid z)(x, e \mid z) - (x, e \mid z)^{2} = (x, e \mid z)(x, e \mid z) \ge 0.$$

And similarly for the second condition in (2.1).

Moreover,

$$|(x, y \mid z) - (x, v \mid z) - (u, y \mid z) + (u, v \mid z)|$$

$$= |(x, y \mid z) - (x, e \mid z) (y, e \mid z) - (x, e \mid z) (e, y \mid z) + (x, e \mid z) (y, e \mid z)|$$

$$= |(x, y \mid z) - (x, e \mid z) (e, y \mid z)|$$

so, by Theorem 2.1, we have (2.5).

Corollary 2.3. Let $x, y, z \in X$ be such that $||x, z||^2 \le 2$, $||y, z||^2 \le 2$ and $z \notin V(x, y)$. Then

$$|(x,y \mid z)|^{2} \left(2 - \|x,z\|^{2}\right)^{\frac{1}{2}} \left(2 - \|y,z\|^{2}\right)^{\frac{1}{2}} + |(x,y \mid z)| \left|1 - \|x,z\|^{2} - \|y,z\|^{2} + (x,y \mid z)\right|^{2} \le \|x,z\| \|y,z\|.$$

Proof. If we put $u = (x, y \mid z) y$ and $v = (y, x \mid z) x$, then the inequality (2.3) holds. Moreover, we have

$$\left(2(x, u \mid z) - \|u, z\|^{2}\right)^{\frac{1}{2}} \left(2(y, v \mid z) - \|v, z\|^{2}\right)^{\frac{1}{2}} \\
= \left|(x, y \mid z)\right|^{2} \left(2 - \|x, z\|^{2}\right)^{\frac{1}{2}} \left(2 - \|y, z\|^{2}\right)^{\frac{1}{2}}, \\
\left|(x, y \mid z) - (x, v \mid z) - (u, y \mid z) + (u, v \mid z)\right| \\
= \left|(x, y \mid z)\right| \left|1 - \|x, z\|^{2} - \|y, z\|^{2} + \left|(x, y \mid z)\right|^{2}\right|.$$

Therefore, by Theorem 2.1, we have the inequality (2.6).

Theorem 2.4. Let $x, y, z, e \in X$ be such that ||e, z|| = 1 and $z \notin V(x, y, e)$. Then

$$(2.7) |(x,y \mid z) - (x,e \mid z)(e,y \mid z)|^2$$

$$\leq (||x,z||^2 - |(x,e \mid z)|^2) (||y,z||^2 - |(y,e \mid z)|^2).$$

Proof. Consider a mapping $P: X \times X \times X \to \mathbf{R}$ defined by $P(x, y, z) = (x, y \mid z) - (x, e \mid z) (e, y \mid z)$ for every $x, y, z, e \in X$, having the properties:

- (i) $P(x, x, z) \ge 0$,
- (ii) $P(\alpha x + \beta x', y, z) = P(x, y, z) + \beta P(x', y, z)$,
- (iii) P(x, y, z) = P(y, x, z).

Then Cauchy-Schwarz's inequality

$$(2.8) |P(x,y,z)|^2 \le P(x,x,z) P(y,y,z)$$

holds.

Indeed, we observe that

$$0 \le P(x + \alpha P(x, y, z) y, x + \alpha P(x, y, z) y, z)$$

$$= P(x, x, z) + 2\alpha P(x, y, z)^{2} + \alpha^{2} P(x, y, z)^{2} P(y, y, z) \quad (\forall) \alpha \in \mathbf{R}.$$

It is well known that if $a \ge 0$ and

$$a\alpha^2 + \beta\alpha + c \ge 0$$
 for all $\alpha \in \mathbf{R}$,

then $\Delta = b^2 - 4ac \le 0$.

Then by the above inequality we deduce

(2.9)
$$P(x, y, z)^{4} \le P(x, x, z) P(y, y, z) P(x, y, z)^{2}.$$

If P(x, y, z) = 0 then (2.8) holds.

If $P(x, y, z) \neq 0$ then we can devide in (2.9) by P(x, y, z) and obtain (2.8).

The theorem is thus proved. ■

Remark 2.1. By the inequalities (2.3) and (2.7), we have

$$|(x, y \mid z) - (x, e \mid z) (e, y \mid z)|^{2}$$

$$\leq (\|x,z\|^2 - |(x,e \mid z)|^2) (\|y,z\|^2 - |(y,e \mid z)|^2)$$

$$\leq (\|x,z\| \|y,z\| - |(x,e \mid z) (e,y \mid z)|)^{2}.$$

Since $||x, z|| ||y, z|| \ge |(x, e | z) (e, y | z)|$, we get

$$|(x,y \mid z) - (x,e \mid z)(e,y \mid z)| \le ||x,z|| \, ||y,z|| - |(x,e \mid z)(e,y \mid z)|,$$

which yields the inequality (2.5).

Corollary 2.5. Let $x, y, z, e \in X$ be such that ||e, z|| = 1 and $z \notin V(x, y, e)$. Then

(2.10)
$$\left(\|x+y,z\|^2 - \left| (x+y,e \mid z) \right|^2 \right)^{\frac{1}{2}}$$

$$\leq (||x,z||^2 - |(x,e \mid z)|^2)^{\frac{1}{2}} + (||y,z||^2 - |(y,e \mid z)|^2)^{\frac{1}{2}}.$$

Proof. If we define $S: X \times X \to \mathbf{R}$ by $S(x,z) = P(x,x,z)^{\frac{1}{2}}$ for every $x,y \in X$ and use the triangle inequality for S(x,z), then we have (2.10).

Corollary 2.6. For every non-zero $x, y, z, u \in X$, with $z \notin V(x, y, u)$, we have

(2.11)
$$\left| \frac{(x,y \mid z)}{\|x,z\| \|y,z\|} \right|^{2} + \left| \frac{(y,u \mid z)}{\|y,z\| \|u,z\|} \right|^{2} + \left| \frac{(u,x \mid z)}{\|u,z\| \|x,z\|} \right|^{2}$$

$$\leq 1 + 2 \left| \frac{(x,y \mid z) (y,u \mid z) (u,x \mid z)}{\|x,z\|^{2} \|y,z\|^{2} \|u,z\|^{2}} \right|.$$

For the proof of next theorem, we need the following lemma:

Lemma 2.7. For every non-zero $x, y, z \in X$ with $z \notin V(x, y)$, we have

$$(2.12) \qquad (\|x,z\| + \|y,z\|) \left\| \frac{x}{\|x,z\|} - \frac{y}{\|y,z\|}, z \right\| \le 2 \|x-y,z\|.$$

Proof. Since

$$\frac{\|x,z\|}{\|y,z\|} + \frac{\|y,z\|}{\|x,z\|} \ge 2,$$

we have the inequality

$$(\|x, z\| + \|y, z\|)^{2} - (x, y \mid z) \left(\frac{\|x, z\|}{\|y, z\|} + \frac{\|y, z\|}{\|x, z\|}\right) - 2(x, y \mid z)$$

$$\leq 2\|x, z\|^{2} + \|y, z\|^{2} - 4(x, y \mid z)$$

which implies (2.12).

Theorem 2.8. For every non-zero $x, y, z \in X$ with $z \notin V(x, y)$ we have (2.13)

$$(\|x,z\| + \|y,z\|)^{2} \left(\left\| \frac{x}{\|x,z\|} - \frac{y}{\|y,z\|}, z \right\|^{2} + \left\| \frac{x}{\|x,z\|} + \frac{y}{\|y,z\|}, z \right\|^{2} \right)$$

$$\leq 8 \left(\|x,z\|^{2} + \|y,z\|^{2} \right).$$

Proof. By (2.12) we have

$$(\|x,z\| + \|y,z\|)^2 \left(\left\| \frac{x}{\|x,z\|} - \frac{y}{\|y,z\|}, z \right\|^2 + \left\| \frac{x}{\|x,z\|} + \frac{y}{\|y,z\|}, z \right\|^2 \right)$$

$$\leq 4 \left(\|x-y,z\|^2 + \|x+y,z\|^2 \right)$$

and, by a 2-dimensional analogue of the parallelogram law, we get (2.13).

Remark 2.2. For some similar results in inner product spaces, see [7].

3. AĆZEL'S INEQUALITY

In this section, we shall point out some results in 2—inner product spaces in connection to Aćzel's inequality [12]. For some other similar results in inner products, see [8]. We note that the results obtained here, in 2—inner product spaces used different techniques as those in [8].

Theorem 3.1. Let $(X, (\cdot, \cdot | \cdot))$ be a 2-inner product space, $M_1, M_2 \in \mathbf{R}$ and $x, y, z \in X$ such that

$$||x, z|| \le |M_1|, \qquad ||y, z|| \le |M_2|,$$

then

$$(3.1) \qquad \left(M_1^2 - \|x, z\|^2\right) \left(M_2^2 - \|y, z\|^2\right) \le \left(|M_1 M_2| - (x, y \mid z)\right)^2.$$

Proof. Using the elementary inequality (2.3), we get

$$0 \le \left(M_1^2 - \|x, z\|^2\right) \left(M_2^2 - \|y, z\|^2\right) \le \left(|M_1 M_2| - \|x, z\| \|y, z\|\right)^2,$$

and by Cauchy-Schwarz's inequality,

$$0 \le |M_1 M_2| - ||x, z|| \, ||y, z|| \le |M_1 M_2| - (x, y \mid z)$$

implying (3.1).

Corollary 3.2. If $x, y, z \in X$, are such that $||x, z||, ||y, z|| \leq M, M > 0$, then we have the inequality

$$(3.2) 0 \le ||x,z||^2 ||y,z||^2 - (x,y|z)^2 \le M^2 ||x-y,z||^2$$

which is a counterpart of Cauchy-Schwarz's inequality.

Another similar results to the generalization (3.1) of Aćzel's inequality is the following one

Theorem 3.3. Let $(X, (\cdot, \cdot | \cdot))$ be a 2-inner product space, and $M_1, M_2 \in \mathbf{R}$ and $x, y, z \in X$ such that $||x, z|| \leq |M_1|$, $||y, z|| \leq |M_2|$. Then

$$(3.3) \qquad (|M_1| - ||x, z||)^{\frac{1}{2}} (|M_2| - ||y, z||)^{\frac{1}{2}} \le |M_1 M_2|^{\frac{1}{2}} - |(x, y | z)|^{\frac{1}{2}}.$$

Proof. Applying (2.3) for $m=\sqrt{|M_1|}, \quad p=\sqrt{|M_2|}, \quad n=\sqrt{\|x,z\|}, \quad q=\sqrt{\|y,z\|}$ and using Cauchy-Schwarz's inequality for 2-inner products we deduce (3.3).

Corollary 3.4. Suppose that $x, y, z \in X$ and M > 0 are such that $||x, z||, ||y, z|| \le M$. Then we have the following converse of Cauchy-Schwarz's inequality

$$(3.4) 0 \le ||x, z|| \, ||y, z|| - |(x, y \mid z)|$$

$$\leq M \left(\|x, z\| + \|y, z\| - 2 |(x, y \mid z)|^{1/2} \right)$$

Theorem 3.5. Let $(\cdot, \cdot | \cdot)$ be a 2-inner product and $\{(\cdot, \cdot | \cdot)_i\}_{i \in \mathbb{N}}$ a sequence of 2-inner products satisfying

(3.5)
$$||x,z||^2 > \sum_{i=0}^{\infty} ||x,z||_i^2$$

for all x, z, being linearly independent. Then we have the following refinement of Cauchy-Schwarz's inequality

$$||x,z|| \, ||y,z|| - |(x,y \mid z)|$$

$$(3.7) \geq \left[\sum_{i=0}^{\infty} \|x, z\|_{i} \sum_{i=0}^{\infty} \|y, z\|_{i} - |(x, y \mid z)| \right] \geq 0$$

for all $x, y, z \in X$.

Proof. Let $n \in \mathbb{N}$ and $n \geq 1$. Define the mapping

$$(x, y \mid z)_n = (x, y \mid z) - \sum_{i=0}^n (x, y \mid z)_i, \qquad x, y, z \in X.$$

We observe, by (3.5), that the mapping $(\cdot, \cdot | \cdot)_n$ satisfies the properties

(i)
$$(x, x \mid z)_n \ge 0$$
,

(ii)
$$(\alpha x + \beta x', y \mid z)_n = \alpha (x, y \mid z)_n + \beta (x', y \mid z)_n$$

(iii)
$$(x, y \mid z)_n = (y, x \mid z)_n$$

for every $x, x', y, z \in X$ and $\alpha, \alpha' \in \mathbf{R}$.

By a similar proof to that in Theorem 2.4, we can state Cauchy-Schwarz's inequality

$$(x, x \mid z)_n (y, y \mid z)_n \ge |(x, y \mid z)_n|^2, \quad x, y, z \in X,$$

that is

(3.8)
$$\left(\|x, z\|^2 - \sum_{i=0}^n \|x, z\|_i^2 \right) \left(\|y, z\|^2 - \sum_{i=0}^n \|y, z\|_i^2 \right)$$

$$\geq \left((x, y \mid z) - \sum_{i=0}^n (x, y \mid z)_i \right)^2.$$

Using Aćzel's inequality [12]

$$\left(a^2 - \sum_{i=0}^m a_i^2\right) \left(b^2 - \sum_{i=0}^m b_i^2\right) \le \left(ab - \sum_{i=0}^m a_i b_i\right)^2,$$

where $a, b, a_i, b_i \in \mathbf{R}$ for i = 0, ..., m; we can prove that

(3.9)
$$\left(\|x,z\| \|y,z\| - \sum_{i=0}^{n} \|x,z\|_{i} \|y,z\|_{i}\right)^{2}$$

$$\geq \left(\|x,z\|^{2} - \sum_{i=0}^{n} \|x,z\|_{i}^{2}\right) \left(\|y,z\|^{2} - \sum_{i=0}^{n} \|y,z\|_{i}^{2}\right)$$

for all $x, y, z \in X$. Since, by Cauchy-Buniakowski-Schwarz's inequality

$$||x,z|| ||y,z|| \ge \left(\sum_{i=0}^{n} ||x,z||_{i}^{2} \sum_{i=0}^{n} ||y,z||_{i}^{2}\right)^{1/2} \ge \sum_{i=0}^{n} ||x,z||_{i} ||y,z||_{i},$$

then by (3.8) and (3.9) we deduce

$$\left\|x,z\right\|\left\|y,z\right\| - \sum_{i=0}^{n} \left\|x,z\right\|_{i} \left\|y,z\right\|_{i}$$

$$=\left|\left\|x,z\right\|\left\|y,z\right\|-\sum_{i=0}^{n}\left\|x,z\right\|_{i}\left\|y,z\right\|_{i}\right|\geq\left|\left(x,y\mid z\right)\right|-\sum_{i=0}^{n}\left|\left(x,y\mid z\right)_{i}\right|$$

which implies (3.6), by using the inequality

$$||x, z||_i ||y, z||_i - |(x, y | z)_i| \ge 0.$$

The theorem is thus proved. ■

The following corollaries are interesting as refinements of the triangle inequality for 2-norms generated by 2-inner products.

Corollary 3.6. With the assumptions from Theorem, we have the following refinement of the triangle inequality

$$(||x,z|| + ||y,z||)^2 - ||x+y,z||^2$$

$$\geq \sum_{i=0}^{\infty} \left[\left(\|x,z\|_i + \|y,z\|_i \right)^2 - \|x+y,z\|_i^2 \right] \geq 0, x,y,z \in X.$$

Corollary 3.7. Let $(., |.)_1, (., |.)_2$ be two 2-inner products such that

$$||x,z||_2 > ||x,z||_1$$

for all x, z being linearly independent in X. Then

$$\begin{aligned} & \|x,z\|_2 \, \|y,z\|_2 - |(x,y\mid z)_2| \\ \geq & \|x,z\|_1 \, \|y,z\|_1 - |(x,y\mid z)_1| \geq 0, x,y,z \in X. \end{aligned}$$

Corollary 3.8. Let $(., . | .)_1, (., . | .)_2$ be as above. Then

$$(\|x,z\|_2 + \|y,z\|_2)^2 - \|x+y,z\|_2^2$$

$$\geq (\|x,z\|_1 + \|y,z\|_1)^2 - \|x+y,z\|_1^2 \geq 0, x, y, z \in X.$$

References

- Y.J. Cho, S.S. Kim, Gâteaux derivatives and 2-inner product spaces, Glašnik Mat., 27(1992), 271-282
- [2] Y.J. Cho, C.S. Lin, A. Misiak, Theory of 2-Inner Product Spaces, unpublished book
- [3] C. Diminnie, S. Gähler, A. White, 2-inner product spaces, *Demonstratio Mathematica*, **6**(1973), 525-536.
- [4], Remarks on generalizations of 2-inner products, Math. Nachr., 74(1974), 269-278.
- [5] _____, 2-inner product spaces II, Demonstratio Mathematica, 10(1977), 169-188.
- [6] C. Diminnie, A. White, 2-inner product spaces and Gâteaux partial derivatives, Comment. Math. Univ. Carolinae, 16(1975), 115-119.
- [7] S.S. Dragomir, I. Sándor, Some inequalities in prehilbertian spaces, Studia Univ. Babes-Bolyai, Mathematica, 32(1987), 71-78.
- [8] S.S. Dragomir, A generalization of Aćzel's inequality in inner product spaces, Acta Math. Hungar., 65(1994), 141-148.
- [9] R. Ehret, Linear 2-normed spaces, Doctoral Diss., Saint Louis Univ., 1969.
- [10] S. Gähler, Lineare 2-normierte Räume, Math. Nachr., 28(1965), 1-43.
- [11] S. Gähler, A. Misiak, Remarks on 2-inner products, Demonstratio Math., 17(1984), 655-670.
- [12] D.S. Mitrinović, Analytic Inequalities, Springer Verlag, 1970.

DEPARTMENT OF MATHEMATICS, GYEONSANG NATIONAL UNIVERSITY, CHINJU 660-701, KOREA $E\text{-}mail\ address$, Y.J. Cho: yjcho@nongae.gsnu.ac.kr

School of Communications and Informatics, Victoria University of Technology, PO Box 14428, Melbourne City MC, Victoria 8001, Australia.

E-mail address, S.S. Dragomir: sever@matilda.vut.edu.au

Department of Mathematics, St. Bonaventure University, St. Bonaventure, NY 14778, U.S.A.

Department of Mathematics, Dongeui University, Pusan 614-714