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NEW INEQUALITIES FOR CONVEX FUNCTIONS WITH
APPLICATIONS FOR THE N-ENTROPY OF A DISCRETE
RANDOM VARIABLE

S. S. DRAGOMIR

ABSTRACT. New inequalitieis for convex mappings of a real variable and ap-
plications in Information Theory for Shannon’s entropy are given.

1. INTRODUCTION

The following converse of Jensen’s discrete inequality for convex mappings of a
real variable has been proved in 1994 by S.S. Dragomir and N.M. Ionescu [?]:

Theorem 1. Let f : I C R — R be a convez function on the interval I, x; el (I is

the interior of I), p; >0, (i=1,...,n) and >_ p; = 1. Then we have the inequality
i=1

Zpl ‘rl (Zplx’L)
meh (@) meszh (i)

where fjr is the right derivative of f on I

IN

(1.1) 0

IN

They also pointed out some natural application of (??) in connection to the
arithmetic mean - geometric mean inequality, to the generalized polygonal inequal-
ity etc.

A generalization of (??) for differentiable convex mappings of several variables
has been obtained in 1996 by S.S. Dragomir and C.J. Goh in [?].

Theorem 2. Let f : K C R™ — R be a differentiable convexr mapping on the
n

conver set K, Z; € K (i=1,..,n), p; >0 (¢ =1,...,n) with > p; = 1.Then
i=1

va ;) (me)
Zpl V (%), Ti) <szvf Zi) Zpla?,>

where (.,.) is the usual inner product on R™ and V f(Z) = (6“2) 6f(i)).

oz, 7 dxom

(1.2) 0
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2 S. S. DRAGOMIR

The authors applied the inequality (??) in Information Theory for the entropy
mapping, conditional entropy, mutual information etc.

An integral version of (??) has been employed by S.S. Dragomir and C.J. Goh
[?] to obtain different bounds for the entropy, conditional entropy and mutual in-
formation of continuous random variable. Also, some applications in torsion theory
of a similar result which counterparts Hadamard’s inequality, has been given by
S.S. Dragomir and G. Keady in 1996 [?].

For recent generalizations, both for the discrete case and continuous case as well
as extensions for mappings defined on normed linear spaces, we recommend M.
Matié¢’s Ph.D. Dissertation [?], where further applications in Information Theory
have been given.

In paper [?], the authors obtained the following upper bound for the first member
in (?7),

Theorem 3. Let f : K C R™ — R be a differentiable convexr mapping on the
n

conver set K, Z; € K (i=1,..,n), p; >0, (i=1,...,n) with > p; = 1. Then
i=1

1=

0 < Zpif(xi)—f<2pixi>
i—1 i1

max ||z, —z;|| 3 pips V(i) — V()5
1<i<j<n 1<i<j<n
1/p 1/q
< ( > pipi @ — $j||p> ( > pip IVf(Z:) - Vf(l"j)q> ;
= 1<i<j<n 1<i<j<n
p>1, % + % =1;
max ||V f(z:) = V(@) > pipi 17 — 7
1<i<j<n 1<i<j<n
1
< = To— s 7:) — T
< g nax @ -3 max [IVF(3:) - V(7))
where ||-|| is the usual Euclidean norm on R™.

and applied it for the entropy mapping in Information Theory.
In [?], the authors pointed out other converse inequalities which are more useful
in applications.
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Theorem 4. Let f : K C R™ — R be a differentiable convexr mapping on the
convex set K, 2, € K (i=1,...,n),p; >0, (i=1,....,n) with >, p; = 1. Then
i=1

(1.4)
0 < szf(xz)—f< pzfﬂz>
=1 i=1
max i:lpﬂj épi V(@) - i:lpjvf(%)

IA
T
i
=

max
i=1,..,n

V@) - X p9S@)

n
Z Pi
i=1

n
T — ), DjTj
j=1
n

Enaxn Z Vf(z;) — ijvf(jj)
, =

i=1

ijvf -75]

In this paper, we point out other general inequalities for convex mappings of a
real variable and apply them in Information Theory for the entropy mapping.

< max

) 7n

2. SOME RESULTS FOR CONVEX FUNCTIONS OF A REAL VARIABLE

We shall define the following sequence of functionals:

Jn 2 Conv (I) x ST (R) x P} (N) x § (I) — R
given by:

n

. 1
JIn (fapa H,Z) = PT Z puplnf (

l’il + ...+ l’in)
)
H ;. i,eH

where
Conv(I):={f: I CR— R|f is convex on the interval I};

7{p plleN|p,>0f0ralleN}

‘}3} (N):={H CN|H is finite and H # 0} ;

S (I) = {x = (Zi);en

The following estimation holds:

x; € [forallie N, I is the interior of I} .

Theorem 5. Let f! I R be the right derivative of the convex function f. Define
the sequence of mappings:

1 Ty, + .o+,
E,(f,p,H,z) : = pr Z pz‘p--Pian. <“nl> Tiy
H oy, 7in€H

Ti + ...+ T4,
e Lpigy X e fy ()

Hch Pir i1,0yin€H



4 S. S. DRAGOMIR

for (f,p,H,x) € Conv (I) xS} (R) x P} (N)x S (I) . Then we have the inequalities:

1
(21) OSjn(fyp’H’x)_3n+1(f,p7H7x)SmEn(f,pvax)
and
1
2.2 <3J H - - i bg SETL ’ 7H7
(2:2) 0<Jn (f,p, H,2) f(P ;{px> (.0, H,2)

for allm > 1 and (f,p, H,z) € Conv (I) x S7 (R) x P} (N) x S (I) .
Proof. By the convexity of f on I, we have the inequality:
(2.3) o) @—y)<f@)—fl)<fi@)@-y)

for all =,y el.
If we choose in (?7)

_ ZL'Z'I ++{I?Zn Giandy: l’il +...+£L'in+1 Ei’
n n+1
where i1, ..., 9,41 € H, we deduce:
(2.4) f_/‘_ Ti + ...+ iy Tiy + o+ T, — NLj,
n+1 n(n+1)

T + ...+ T, Ti + ..+ T,
< () o ()

f, Tip + ...+ T, Ti + ...t T, —NTi, .,
* n n(n+1)

IN

for all ¢1,...,%,41 € H.
If we multiply (??) by p;,...pi,, > 0 and summing over i1, ..., 4,41 € H we deduce:

. 1 p o Tig T T T
(25) A : = W - Z pi1~-~pi”+1f+ ( nt1

é 3n(f7paHax)_3n+1(f7p7H7m)
1 Ti, + ...+,
S D MR G

i1,eeyin+1 €H

Tiy + oo T4, — T4,
n(n+1)
= B.

As, it is clear that

1 , ZT; ++$zﬂ 1
P;LI+1 Z pil...p¢n+1f+< : n+1 - >z2k

i1yeeying1 €H

1 , Ti, —|—...—|—l‘in+1
= Pn—i—l Z Piy-Pipga f+ <TL+1 Ti;
H iy, ing1€H
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for all k,7 € {1,...,n+ 1}, we deduce that A = 0.
On the other hand, since

1 ;[ Tiy T+

P T in

pril E Piy-Pinir [+ n (mik - xinﬂ)
H 4y, in1€H

1 Ti + ...+ T,
= P;LIJrl Z pil"'pin+lf</|> (M> (mil - xin+1)

. ) n
i1,eeyint1 €H

for all k € {1,...,n}, we get that

1 1 iy —+ ...+ Ti,,
B o= iimm 2 Puepunf: (Pt ) (o - )

) - n
i1yesiny1 €H

1 1 ’ iz —|—...—|—1‘,‘n
n+1 Fﬁ Z pil...piylf_"_( L P Ty

i1,y in €H
1 1 ’ l‘il —|——|—a:ln
- E Zpimipiﬁ ‘ Z pi1~-~pinf+ <n
i€H 1 yeesin€H

and by (?7?), the inequality (??) is proved.
Now, if we choose in (?7?):

Gt 1 .
xzueIandyz—prieL
" Pu

where 11, ...,1, € H, we deduce:

(2.6) fh (PlH Zpﬂi)

i€eH

.Til + +£E,L'n 1
# - E szxz

Ti + .o+ 25, 1
< f(1n> —f (P Zpﬂ%)
H icH
ZT; —&—...—f—mi" X, + +£L'1” 1
< g () [mtete s
H icH

for all 44, ...,4, € H.
If we multiply the inequality (??) by p;,...p;, > 0 and summing over i1, ...,i, € H
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we deduce:
1 , 1
H gy, in€H Hicn
Ty + ...+ Ti, _ L .
e
i€H
N 1
< n(fipHiz)— f szpﬂz
Hien
LS g ()
PH 11,---,;61‘1 ' ! n

As it is clear that:
1 1
Pr Z Piy---Pip, Tiy, = P Zpifﬂi
H .. incH H e

for all k € {1,...,n}, then C' = 0.
In addition, because

1 Ti + ...+ T,
Pi}} Z pz‘ynpinf/+ <ln> Liy,

i1,emin€H
1 Tiy, + .o+,
= pn Z Piy--Pin 4 (”nl> Ty
H .  .i,eH
for all k € {1,...,n}, then
1 ’ €T; —|— —|— I‘in
D = PT% _ Z Diy--Di, 4 (1n Tiy
i1yt €H
1 1 ’ Ti + ...+ Ti,
_FH Zplleiﬁ, Z Diy--Di, [ (ln .
i€H 11 yeesin€H

Consequently, by (??) we deduce the inequality (??) and the theorem is thus
proved. i

Remark 1. From the above theorem we have the inequalities:

1 ~
(28) f(P szxz> S "'§3n+1 <f7paHa-T)§1jn(f7paHax)
H
i€H
1

< <3 ) ,H,$:7 i \Li

1(fip Hoo) = 5 i;{p f (@)
which have been established for the first time by S. S. Dragomir and J. E. Pecarié

in 1987 [?] for the general case of convex mappings f : C C X — R defined
on convex subsets from linear spaces. Note that, in the paper [?] the authors used
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Jensen’s discrete inequality for multiple sums, i.e., a different argument that we
used before.
In what follows we shall estimate the sequence of functionals F,,.

Theorem 6. With the assumptions of Theorem 77, and the conditions that s > 1
and % + % =1, we have the inequality:

(29) 0 < En(fp,H )

ZT; —f—...—|—$in
f ()

1
< ﬁ Z Piy---Di,,
H Tl yeney in€H
1 q
Tiy + .o + T,
LS e [Bretme Le S
Hogy, ineH H e

for all (f,p, H,z) € Conv (I) x S% (R) x P} (N) x § (I) andn > 1.
Proof. Using an identity from Theorem ?? we have that

0 < En(.ﬂpaHax):‘En(favavx)‘
1 Tiy + ...+,
P > pipi, f+< - )

Hoiy,.ineH
Applying Holder’s inequality for multiple sums, i.e.,

§ Piysoovin Qigs-oviy bily--~7in,

IN

xll + + 'rln
n - PH szxz .
i€H

i1yeeyin €H
1 1
s q
s q
S E Diyseeevin ‘a/ll7' 7zn| X E Dirs ovsin |bi17"'7in| 3
D yeeey in€H 1 yeens in€H

where % +é =1,5>1, Gy eenrin biy,oin €R, Diyyeys, > 0 for all 4q,...,7, € H, we
deduce the desired inequality (?7). I

The above theorem admits the following corollary which is more useful in appli-
cations.

Corollary 1. With the above assumptions and if the condition

M—sup’f+ ‘<oo
zel

holds, then we have the estimate:

Nl

(2.10) 0 < Ep (f,p,H,2) < zfp > piv (wi = x;)’
i,j€EH

for alln > 1 and (p, H,z) € S5 (R) x B (N) x S (I) .
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Proof. For s = p =2 and by the boundedness of f/ on I we get:

1
B, (f,p,Haa) <M | 5= > pi.pi,

P n
H . i,eH

Let us compute:

1 Ty o+ Ty, 1
F =—= > Dpiepi, | — ?Zpixz
H i ncH HchH
1
-~ pn Z Diy---Piy,
H’Ll ..... in€H

We also have:

(i, + o 435, Zx +2 Z i Tips

1<5<I<n

then

1 €Ty ++.§Czn 2
LY ()

11,ein€H
1 1
= ﬁ : pn Z Diy ---Pi, Zw +2 Z xljxu
H gy, incH 1<j<i<n
= G| St ( zmz)
ZGH ’LEH
- % Ay Zvt +n—1< zpﬂ:z)
H ZEH

On the other hand we have:

1 Ty + ..o+ x,
LS g (B Ly,

1€H

N

L me
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Thus,
e S R T
(mm)
=ipH2pw—< 5

= sz > pir — (ZP#Q)

i€H i€H i€H

2
ang Z pzp] _xj)
szH

and the corollary is proved. i
We have the following corollary of Theorem ?7:

Corollary 2. With the assumptions of Corollary 7?7 we have the estimate:

(211) 0 < Sn(fvvavx)_anrl (favaax)
1
2
ﬂM
< N —
s 5 (n n 1 ;szp] )
(2.12) 0 < 3.(fp,H,x) < me>
zEH

2

2\FP Z Png 7‘TJ

i,jeH
for all (p, H,x) € 5% (R) x B} (N) x S (1) .
We can conclude with the following theorems of convergence:

Theorem 7. (Convergence) If f : I C R — R is a convex function having a
bounded derivative on I, then for all (p, H,z) € St (R) x P3(N) x 8 (I) we have:

n——oo

im0 3, (5, H,) = duia (o Hoa)] =0 for a e [0.3)
and
nhi? n [Jn(fava € ( ;{M%)] =0 for Be |:Oa ;)

The proof is obvious by the inequalities (??) and (?7).
Finally, we have the following.
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Theorem 8. (Uniform Convergence) If f : I C R— R is a convex function
having a bounded derivative on I, then

. o~ o 3
lim 0% (3 (s Ho) — Gnss (fps Hy )] = 0 for o € [o, )

n—s00 2
and
lim n” l?jn (fip.Hyx)— f (12192961)] =0 for fe {0, 1)
e Pu ih 2
uniformly on St (R) x B} (N) x S ([a,b]) where [a, b] cl.

Proof. Let (p, H,x) € 5% (R) <P} (N) xS ([a,b]) . Then |z; —z;| <b—a (i,j € H)
and, by (?7?) and (?7?) we get that:

N N V2M (b - a)
0<3.(fip,H,x) = Jny1 (f,p, H,x) < m

and

Ogﬁn(f,p,Hw)*f (PlH Zpixi> < \ﬁ]\g\(};a)’

which proves the theorem. i

Remark 2. Similar results can be stated for differentiable mappings of several vari-
ables by using the inequality

(Vi) z—y) < flx) = fly) <(Vf(z),z—y)
for any x,y € R™. We omit the details.

3. APPLICATIONS FOR THE MAPPING log,

If we assume that g: I C R — R is a concave mapping on I and (p, H,z) €
St (R) x PB5 (N) x S (I) we have that:

(31) 31 (gvpaHax) S Sgn (g,p,HJ?)

- 1

i€H
and
~ ~ 1
(32) 0 S L"fl"rl (g7p7 H7 x) - \Sn (gvpa Ham) S an (g7p7 H7 I)
and
1 ~
(33) OSg(P Zp’txl> —‘jn(g,p,H,m)gLn(g,p,H,x)
H
i€H
respectively, where:
. 1 1 ’ Ty “+ ...+ Zi,,
Lu(g.p. Hyw) = =5 me P Z Diy--Din G <n>
1€H 01 4.eyin €H

1 ’ xZ; ++Izn
P > pil---ping+<1n Tjy-

01500y in €H
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If M :=sup,; ’ng ’ < 00, then we have:

(3.4)
1
3

V2M
<~n 77H7 n 7H fi = 0 T
0 < 3ns1 (9.0 Ho2) =30 (9.9, How) < 5o P > pip; (zi — )
i,j€EH
and
(3.5)

[

\/§M 1 2
— H, — —
< Pr > pm) n (9,0, H,1) < N > pip; (i — ;)

icH i,j€H

If 2; € [a,b] CI, i € H, we have that:

(36) 0 S 3714—1 (gapa H,IE) Jn (gap7H ZL') — \2[(734_-’_(?)\/0;)
and

3 V2M (b — a)
(3.7) 0§g< ;{pzxz> n(g,p, H,x )§72\/ﬁ .

Now, for the concave mapping g : (0,00) — R, g (z) = log, x, b > 1, we define the
sequence of mappings:

1 Tiy + ...+ T
H, (1%9575) = ﬁ Z Piy---Pi, IOgb (ln> ,n>1

S —
01,0y tn=1

where s > 1 is given in N and p;,2; > 0 for alli € N, 4 > 1 and Py :=Y;_, p;.
Note that for this case we have:

0 < Ln(pv'rab)

n pil"'pin
= —_— €T; _—
b sz z . Z: LL'Z'I ++.’EZTL
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For n = 1 we have

1 &p [1<
L b) = b= o — 2
1(p,$7 ) InbP; ; <P5 pr $]>
j=1 i=1
1|1 < 1 < pi
= 315 ili® 5 — -1
b Ps;px P, £z, 1

On the other hand we have:

1~ pipy 2 1¢ >\ pi
(IZ?,; — l‘j) = — Pil; — -1
2F Jzzl Lity P ; =1 i

2
S g

and then:

If x; >m >0,i€{1,..,s}, then we have:
1 1 1 1
/
S G
IO = 2 S m
By the inequality (?7?) we have:
(3.8)

[N

1 1 2
0<H, ,x,b) — H, (p,z,b) < ————— . — ipi (15 — x5 ,
< Hpi1 (p,,b) (p,,b) iV P 1§§§Spp]( i)

and by (?77?) we derive
(3.9)

N|=

1 o 1 1 5
0 < log, (P § pixz) - H, (p,z,b) < =P § pipj (x; — x5)
S i=1 S

forallpe ST (R),b>1and s > 1.
Finally, if ; € [m, M] C (0,00), then we have:

V2 (M —m)
(3.10) 05 Huts (p2,0) = Ha (p,2,b) < 500 =35

and

1 @ V2 (M —m)
. < - g | — n Py 4y <—F—F
(3.11) 0 < log, <Ps ;pzxz> H, (p,=,b) i

for all s > 1, for all x; € [m, M] C (0,00), ¢ € {1,...,s},b>1,n>1and p; >0
for all 7 € N.
These two inequalities enable us to state the following results of convergence:

lim n®[H,41 (p,z,b) — Hy, (p,x,b)] =0 for o € [O, 2)

n——oo

and

1< 1
; B e — —
nhm n [logb (Ps ;:1 p1x1> H, (p,x,b)] 0 for g€ {0, 2>
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uniformly for (p,s,z,b) € S5 (R) x M* x S [m, M] x (1, 00).

4. SOME ESTIMATION FOR THE n — b—ENTROPY MAPPING

Suppose that X is a discrete random variable whose range is finite R = {1, ..., 2} .
Let p; = P{X =z;}.
We can introduce the following concept.

Definition 1. The n — b—entropy mapping associated to the random variable X
can be defined by:

1 1
+o 4+ L
(4.1) H,(X;b):= Z Diy--pi, logy <M>

D1 yeeeybp =1

where n > 1.

Note that for n = 1 we recapture the usual b-entropy, i.e.,
> 1
H, (X;b)=H(X,b) = i log, —
(X;0) (X,0) Zp g

Using the results from section 3, we have
(4.2) 0 < Hi(X;b)<Hy(X;b)<..<H,(X;b)
< Hp41 (X;0) <...<log,s foralln>1,;

and
(4.3) 0 <logyr — H, (X;b) < h, (X;b) foralln>1
and
(4.4) 0< Hpy1 (X50) — Hy, (X50) < 7h (X;b) foralln>1
where
no<E D L+t
i1yemyin=1 Pi Pin,

1 1
- i Piy---Pin, s P et
Inb IR T n

i1yeeyin=1 Piy Pin

L yeeny in=1 Piy DPin
For n = 1, we have:
1 < pp; (1 1)\°
X)) = g 3 T (‘)
D0 i \Pi P
- 2
1,7=1

1 2
= b Z (pi —pj)”~ -

1<i<j<s
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Let us denote py := max,_5{pi}, pm = min;,_75{pi}. Then pi € [

and by (??) and (??) we have that:

(45) 0 S H7L+1 (Xv b) - Hn (X7 b)
- s 2_ %
bPm Z (pi _pj)
(n + 1) \/ﬁ 1<i<j<s pipj
_ o1
1 L i)
Pi —Pj
, n>1
(n+1)v/n 13%55 DiDj
and
(4.6) 0 < logys— Hy(X;b)
- . 2_ %
< by Z (pi —pj)

n o
Vn 1<i<j<s PiP;

< e Zs: (pi*pj)2

n .
Vn 1<i<j<s Pip;

NJ=

Now, if we use the inequalities (?7?) and (??) we have that:

\@ (pM - pm)

4. < H, X:b)-H, (X:b) < —F— T2 >
( 7) O— n+1( 7b) n( ’b)_2pm(n+1)\/ﬁ’n_
and

) _
(4.8) 0 < log, s — Hy (X;b) < V2(prt — pm)

~YEUEM T Bm) >
~ 2ppm(n+1)y/n
The following result of convergence also holds:

(4.9) lim n® [Hp41 (X;0) — H, (X;50)] =0, a € [0, ;)
and

1
(4.10) lim n” [log, s — H, (X;b)] =0, 3 € [0, 2)

uniformly by rapport of b > 1 and s > 1.
We can state the following proposition.

Proposition 1. With the above assumptions we have the estimation:
S

1 2
(4.11) 0 <log, s — Hy (X) < — > (pi—p)

1<i<j<s
Proof. Follows from the inequality (??) taking into account that

1 S
hl(XEb):m Z (Pi*Pj)Q-
1<i<j<s

1 1

pPM’ Pm

],
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Remark 3. The result we obtained above is exactly Theorem 4.3 from [?] written
in another form.

Corollary 3. With the above assumptions and if

Ips 1< 2eln s
1§I?<a;(§s Pi=Pil =4[5 (s—1)
for e >0, then:

(4.12) 0<log,s— Hy(X)<e.

The following theorem holds.
Theorem 9. Lete > 0. If p; >0 (i =1,5) (s > 2) are such that:

o |2ta-Valgtd 2+atValat D)) o

Dj 2 2 - -
where:

2¢2 2
4= asrzinj)l) =l
Then we have the estimate:
(4.13) 0< Hpp1 (X;b) — Hy (X3b) <e, n> 1.
Proof. By the inequality (??) we have that
s 2] ®
0 < Hyor (X3b) — Hy (Xib) < ———— Z:Eﬁlﬁl

(n+1)yn e, v
Let us consider the inequality:

2
(pi — Pj)
DiPj

<q,1<i1<j3j<s,¢qg>0,

which is equivalent to
p;i—(2+q)pipj +p; <0, 1<i<j<s, ¢>0

or

2

(“) —e+lii<o 1<i<i<s,

Yz Dj

or, additionally,
P
pj

2+q—/q(g+4) 2+q++/q(qg+4) l<i<j<s
2 b 2 b — — .

Now, if we choose

B 220 (n + 1)
1= s(s—1)
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then
s 2
— -1
Z (pi p;) < 3(32 )q —e2n (n+ 1)2
1<icj<s PiPi
and

N

1

0< Hnga (X;0) = Ha (X30) < oy

[5271 (n+ 1)2} =e.

The theorem is thus proved. i

Similarly, we can prove the following theorem too.

Theorem 10. Lete > 0. If p; >0 (i =1,s) (s > 2) are such that:

i 2+q—/q(g+4) 2+q++/q(qg+4) o
ks 5 , 5 , 1<i<j<s,

pj

where

2e2n

q:s(s—l)’

then we have the estimate;

0<logys— Hp(X)<e, n>1.

The proof goes by the inequality (??) and we shall omit the details.

(1]
2]

(3]

(4]

(5]

[6]

[7]
(8]
[9]

[9]
[10]

(11]
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