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A GENERALIZATION OF OSTROWSKI INTEGRAL
INEQUALITY FOR MAPPINGS WHOSE DERIVATIVES

BELONG TO L1[a, b] AND APPLICATIONS IN NUMERICAL
INTEGRATION

S.S. DRAGOMIR

Abstract. A generalization of Ostrowski integral inequality for mappings
whose derivatives belong to L1[a, b], and applications for general quadrature
formulae are given.

1. Introduction

In 1938, A. Ostrowski proved the following integral inequality [5, p. 468]

Theorem 1. Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b)
whose derivative f ′ : (a, b)→ R is bounded on (a, b), i.e., ‖f ′‖∞ := sup

t∈(a,b)
|f ′ (t)| <

∞. Then we the inequality∣∣∣∣∣∣f (x)− 1
b− a

b∫
a

f (t) dt

∣∣∣∣∣∣ ≤
[

1
4

+

(
x− a+b

2

)2
(b− a)2

]
(b− a) ‖f ′‖∞

for all x ∈ [a, b] . The constant 1
4 is the best possible.

For some generalizations and related results see the book [5, p. 468-484].
In paper [1], S.S. Dragomir and S. Wang pointed out the following inequality∣∣∣∣∣∣f (x)− 1

b− a

b∫
a

f (t) dt

∣∣∣∣∣∣ ≤
[

1
2

+

∣∣x− a+b
2

∣∣
b− a

]
(b− a) ‖f ′‖1

for all x ∈ [a, b], provided f is continuous on [a, b] and differentiable on (a, b) and
the derivative f ′ ∈ L1 (a, b) .

Note that this result also can be obtained from Fink’s theorem (Theorem 1, p.
471, [5]) for n = 1 and appropriate computations.

Some applications of the above results in Numerical Integration and for special
means have been given in [1]-[4].

In this paper we point out a new generalization of Ostrowski’s inequality for
absolutely continuous mappings and apply it for quadrature formulae in Numerical
Analysis. Some connections with the rectangle, the midpoint and Simpson’s rule
are also established.
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2 S.S. DRAGOMIR

2. Some Integral Inequalities

We start with the following theorem

Theorem 2. Let Ik : a = x0 < x1 < ... < xk−1 < xk = b be a division of the
interval [a, b] and αi (i = 0, ..., k + 1) be ”k+2” points so that α0 = a, αi ∈ [xi−1, xi]
(i = 1, ..., k) and αk+1 = b. If f : [a, b]→ R is absolutely continuous on [a, b], then
we have the inequality: ∣∣∣∣∣∣

b∫
a

f (x) dx−
k∑
i=0

(αi+1 − αi) f (xi)

∣∣∣∣∣∣
≤
[

1
2
ν (h) + max

{∣∣∣∣αi+1 −
xi + xi+1

2

∣∣∣∣ , i = 0, ..., k − 1
}]
‖f ′‖1

≤ ν (h) ‖f ′‖1(2.1)

where ν (h) := max {hi|i = 0, ..., k − 1}, hi := xi+1−xi (i = 0, ..., k − 1) and ‖f ′‖1 :=
b∫
a

|f ′ (t)| dt, is the usual L1 [a, b]− norm.

Proof. Define the mapping K : [a, b]→ R given by (see also [6])

K (t) :=


t− α1, t ∈ [a, x1)
t− α2, t ∈ [x1, x2)
.............................
t− αk−1, t ∈ [xk−2, xk−1)
t− αk, t ∈ [xk−1, b] .

Integrating by parts, we have successively
b∫
a

K (t) f ′ (t) dt =
k−1∑
i=0

xi+1∫
xi

K (t) f ′ (t) dt =
k−1∑
i=0

xi+1∫
xi

(t− αi+1) f ′ (t) dt

=
k−1∑
i=0

 (t− αi+1) f (t)|xi+1
xi
−

xi+1∫
xi

f (t) dt



=
k−1∑
i=0

[(αi+1 − xi) f (xi) + (xi+1 − αi+1) f (xi+1)]−
b∫
a

f (t) dt

= (α1 − a) f (a) +
k−1∑
i=1

(αi+1 − xi) f (xi) +
k−2∑
i=0

(xi+1 − αi+1) f (xi+1)

+ (b− αn) f (b)−
b∫
a

f (t) dt

= (α1 − a) f (a) +
k−1∑
i=1

(αi+1 − xi) f (xi) +
k−1∑
i=1

(xi − αi) f (xi)
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+ (b− αn) f (b)−
b∫
a

f (t) dt

= (α1 − a) f (a) +
k−1∑
i=1

(αi+1 − αi) f (xi) + (b− αn) f (b)−
b∫
a

f (t) dt

=
k∑
i=0

(αi+1 − αi) f (xi+1)−
b∫
a

f (t) dt

and then we have the integral equality (see also [6])
b∫
a

f (t) dt =
k∑
i=0

(αi+1 − αi) f (xi)−
b∫
a

K (t) f ′ (t) dt.(2.2)

On the other hand, we have∣∣∣∣∣∣
b∫
a

K (t) f ′ (t) dt

∣∣∣∣∣∣ =

∣∣∣∣∣∣
k−1∑
i=0

xi+1∫
xi

K (t) f ′ (t) dt

∣∣∣∣∣∣
≤
k−1∑
i=0

xi+1∫
xi

|K (t)| |f ′ (t)| dt =
k−1∑
i=0

xi+1∫
xi

|t− αi+1| |f ′ (t)| dt =: T.

But
xi+1∫
xi

|t− αi+1| |f ′ (t)| dt ≤ sup
t∈[xi,xi+1]

|t− αi+1|
xi+1∫
xi

|f ′ (t)| dt

= max {αi+1 − xi, xi+1 − αi+1}
xi+1∫
xi

|f ′ (t)| dt

=
[

1
2

(xi+1 − xi) +
∣∣∣∣αi+1 −

xi + xi+1

2

∣∣∣∣]
xi+1∫
xi

|f ′ (t)| dt.

Then

T ≤
k−1∑
i=0

[
1
2
hi +

∣∣∣∣αi+1 −
xi + xi+1

2

∣∣∣∣]
xi+1∫
xi

|f ′ (t)| dt

≤ max
i=0,...,k−1

[
1
2
hi +

∣∣∣∣αi+1 −
xi + xi+1

2

∣∣∣∣] k−1∑
i=0

xi+1∫
xi

|f ′ (t)| dt

≤
[

1
2
ν (h) + max

{∣∣∣∣αi+1 −
xi + xi+1

2

∣∣∣∣ , i = 0, ..., k − 1
}]
‖f ′‖1 =: V
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Now, as ∣∣∣∣αi+1 −
xi + xi+1

2

∣∣∣∣ ≤ 1
2
hi,

then

max
{∣∣∣∣αi+1 −

xi + xi+1

2

∣∣∣∣ , i = 0, ..., k − 1
}
≤ 1

2
ν (h)

and, consequently,

V ≤ ν (h) ‖f ′‖1 .

The theorem is completely proved.

Now, if we assume that the points of the division Ik are given, then the best
inequality we can obtain from Theorem 2 is embodied in the following corollary:

Corollary 1. Let f and Ik. Then we have the inequality:

∣∣∣∣∣∣
b∫
a

f (x) dx− 1
2

[
(x1 − a) f (a) +

k−1∑
i=1

(xi+1 − xi−1) f (xi) + (b− xk−1) f (b)

]∣∣∣∣∣∣
≤ 1

2
ν (h) ‖f ′‖1(2.3)

Proof. We choose in Theorem 2,

α0 = a, α1 =
a+ x1

2
, α2 =

x1 + x2

2
, ...,

αk−1 =
xk−2 + xk−1

2
, αk =

xk−1 + xk
2

and αk+1 = b.

In this case we get
k∑
i=0

(αi+1 − αi) f (xi)

= (α1 − α0) f (a) + (α2 − α1) f (x1) + ...+ (αk − αk−1) f (xk−1) + (b− αk) f (b)

=
(
a+ x1

2
− a
)
f (a) +

(
x1 + x2

2
− a+ x1

2

)
f (x1)

+...+
(
xk−1 + b

2
− xk−2 + xk−1

2

)
f (xk−1) +

(
b− xk−1 + b

2

)
f (b)

=
1
2

[
(x1 − a) f (a) +

k−1∑
i=1

(xi+1 − xi−1) f (xi) + (b− xk−1) f (b)

]
.

Now, applying the inequality (2.1), we get (2.3).

The following corollary for equidistant partitioning also holds.
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Corollary 2. Let

Ik : xi := a+ (b− a)
i

k
(i = 0, ..., k)

be an equidistant partitioning of [a, b]. If f is as above, then we have the inequality:∣∣∣∣∣∣
b∫
a

f (x) dx−

[
1
k
· f (a) + f (b)

2
(b− a) +

(b− a)
k

k−1∑
i=1

f

[
(k − i) a+ ib

k

]]∣∣∣∣∣∣
≤ 1

2k
(b− a) ‖f ′‖1 .(2.4)

3. The Convergence of a General Quadrature Formula

Let ∆n : a = x
(n)
0 < x

(n)
1 < ... < x

(n)
n−1 < x

(n)
n = b be a sequence of division of

[a, b] and consider the sequence of numerical integration formulae

In (f,∆n, wn) :=
n∑
j=0

w
(n)
j f

(
x

(n)
j

)
where w(n)

j (j = 0, ..., n) are the quadrature weights.

The following theorem provides a sufficient condition for the weights w(n)
j so that

In (f,∆n, wn) approximates the integral
b∫
a

f (x) dx.

Theorem 3. Let f : [a, b] → R be an absolutely continuous mapping on [a, b] . If
the quadrature weights w(n)

j satisfy the condition

x
(n)
i − a ≤

i∑
j=0

w
(n)
j ≤ x(n)

i+1 − a for all i = 0, ..., n− 1,(3.1)

then we have the estimate ∣∣∣∣∣∣In (f,∆n, wn)−
b∫
a

f (x) dx

∣∣∣∣∣∣

≤

1
2
ν
(
h(n)

)
+ max


∣∣∣∣∣∣a+

i∑
j=0

w
(n)
j −

x
(n)
i + x

(n)
i+1

2

∣∣∣∣∣∣ , i = 0, ..., n− 1


 ‖f ′‖1

≤ ν
(
h(n)

)
‖f ′‖1(3.2)

where ν
(
h(n)

)
:= max

{
h

(n)
i |i = 0, ..., n− 1

}
and h(n)

i := x
(n)
i+1 − x

(n)
i . Particularly,

lim
ν(h(n))→0

In (f,∆n, wn) =

b∫
a

f (x) dx(3.3)

uniformly by rapport of the wn.
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Proof. Define the sequence of real numbers

α
(n)
i+1 := a+

i∑
j=0

w
(n)
j , i = 0, ..., n.

Note that

α
(n)
n+1 = a+

n∑
j=0

w
(n)
j = a+ b− a = b,

and observe also that α(n)
i+1 ∈

[
x

(n)
i , x

(n)
i+1

]
.

Define α(n)
0 := a and compute

α
(n)
1 − α(n)

0 = a,

α
(n)
i+1 − α

(n)
i = a+

i∑
j=0

w
(n)
j − a−

i−1∑
j=0

w
(n)
j = w

(n)
i (i = 1, ..., n− 1) ,

α
(n)
n+1 − α(n)

n = b−

a+
n−1∑
j=0

w
(n)
j

 = w(n)
n .

Then

n∑
i=0

(
α

(n)
i+1 − α

(n)
i

)
f
(
x

(n)
i

)
=

n∑
i=0

w
(n)
i f

(
x

(n)
i

)
= In (f,∆n, wn) .

Applying the inequality (2.1) , we get the estimate (3.2).
The uniform convergence by rapport of quadrature weights w(n)

j is obvious by
the last inequality.

Now, consider the equidistant partitioning of [a, b] given by

En : x(n)
i := a+

i

n
(b− a) (i = 0, ..., n)

and define the sequence of numerical quadrature formulae

In (f, wn) :=
n∑
i=0

w
(n)
i f

[
a+

i

n
(b− a)

]
.

The following corollary which can be more useful in practice holds:

Corollary 3. Let f be as above. If the quadrature weight w(n)
j satisfy the condition:

i

n
≤ 1
b− a

i∑
j=0

w
(n)
j ≤ i+ 1

n
, i = 0, ..., n− 1;(3.4)

then we have: ∣∣∣∣∣∣In (f, wn)−
b∫
a

f (x) dx

∣∣∣∣∣∣
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≤

b− a
2n

+ max


∣∣∣∣∣∣a+

i∑
j=0

w
(n)
j − 2i+ 1

2
· (b− a)

n

∣∣∣∣∣∣ , i = 0, ..., n− 1


 ‖f ′‖1

≤ (b− a)
n

‖f ′‖1 .(3.5)

Particularly, we have the limit

lim
n→∞

In (f, wn) =

b∫
a

f (x) dx,

uniformly by rapport of wn.

4. Some Particular Integral Inequalities

The following proposition holds

Proposition 1. Let f : [a, b] → R be an absolutely continuous mapping on [a, b] .
Then we have the inequality:∣∣∣∣∣∣

b∫
a

f (x) dx− [(α− a) f (a) + (b− α) f (b)]

∣∣∣∣∣∣
≤
[

1
2

(b− a) +
∣∣∣∣α− a+ b

2

∣∣∣∣] ‖f ′‖1(4.1)

for all α ∈ [a, b] .

The proof follows by Theorem 2 choosing x0 = a, x1 = b, α0 = a, α1 = α ∈ [a, b]
and α2 = b.

Remark 1. a) If in (4.1) we put α = b, then we get the ”left rectangle inequality”∣∣∣∣∣∣
b∫
a

f (x) dx− (b− a) f (a)

∣∣∣∣∣∣ ≤ (b− a) ‖f ′‖1 ;(4.2)

b) If α = a, then by (4.1) we get the ”right rectangle inequality”∣∣∣∣∣∣
b∫
a

f (x) dx− (b− a) f (b)

∣∣∣∣∣∣ ≤ (b− a) ‖f ′‖1 ;(4.3)

c) It is easly to see that the best inequality we can get from (4.1) is for α = a+b
2

obtaining the ”trapezoid inequality”∣∣∣∣∣∣
b∫
a

f (x) dx− f (a) + f (b)
2

(b− a)

∣∣∣∣∣∣ ≤ 1
2

(b− a) ‖f ′‖1 .(4.4)

Another proposition with many interesting particular cases is the following one:
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Proposition 2. Let f be as above and a ≤ x1 ≤ b, a ≤ α1 ≤ x1 ≤ α2 ≤ b. Then
we have

∣∣∣∣∣∣
b∫
a

f (x) dx− [(α1 − a) f (a) + (α2 − α1) f (x1) + (b− α2) f (b)]

∣∣∣∣∣∣
≤ 1

2

[
1
2

(b− a) +
∣∣∣∣x1 −

a+ b

2

∣∣∣∣+
∣∣∣∣α1 −

a+ x1

2

∣∣∣∣
+
∣∣∣∣α2 −

x1 + b

2

∣∣∣∣+
∣∣∣∣∣∣∣∣α1 −

a+ x1

2

∣∣∣∣− ∣∣∣∣α2 −
x1 + b

2

∣∣∣∣∣∣∣∣] ‖f ′‖1
≤
[

(b− a)
2

+
∣∣∣∣x1 −

a+ b

2

∣∣∣∣] ‖f ′‖1 ≤ (b− a) ‖f ′‖1 .(4.5)

Proof. Consider the division a = x0 ≤ x1 ≤ x2 ≤ b and the numbers α0 = a, α1 ∈
[a, x1] , α2 ∈ [x1, b] and α3 = b. Now, applying Theorem 2, we get∣∣∣∣∣∣

b∫
a

f (x) dx− [(α1 − a) f (a) + (α2 − α1) f (x1) + (b− α2) f (b)]

∣∣∣∣∣∣
≤ 1

2

[
max {x1 − a, b− x1}+ max

{∣∣∣∣α1 −
a+ x1

2

∣∣∣∣ , ∣∣∣∣α2 −
x1 + b

2

∣∣∣∣}] ‖f ′‖1
=
[

1
4

(b− a) +
1
2

∣∣∣∣x1 −
a+ b

2

∣∣∣∣+
1
2

∣∣∣∣α1 −
a+ x1

2

∣∣∣∣
+

1
2

∣∣∣∣α2 −
x1 + b

2

∣∣∣∣+
1
2

∣∣∣∣∣∣∣∣α1 −
a+ x1

2

∣∣∣∣− ∣∣∣∣α2 −
x1 + b

2

∣∣∣∣∣∣∣∣] ‖f ′‖1
and the first inequality in (4.5) is proved.

Now, let observe that∣∣∣∣α1 −
a+ x1

2

∣∣∣∣ ≤ x1 − a
2

,

∣∣∣∣α2 −
x1 + b

2

∣∣∣∣ ≤ b− x1

2
.

Consequently,

max
{∣∣∣∣α1 −

a+ x1

2

∣∣∣∣ , ∣∣∣∣α2 −
x1 + b

2

∣∣∣∣} ≤ 1
2

max {x1 − a, b− x1}

and the second inequality in (4.5) is proved.
The last inequality is obvious.

Remark 2. If we choose above α1 = a, α2 = b, then we get the following Os-
trowski’s type inequality obtained by Dragomir-Wang in the recent paper [1]:∣∣∣∣∣∣

b∫
a

f (x) dx− (b− a) f (x1)

∣∣∣∣∣∣ ≤
[

1
2

(b− a) +
∣∣∣∣x1 −

a+ b

2

∣∣∣∣] ‖f ′‖1(4.6)

for all x1 ∈ [a, b] .
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We note that the best inequality we can get in (4.6) is for x1 = a+b
2 obtaining

the ”midpoint inequality”∣∣∣∣∣∣
b∫
a

f (x) dx− f
(
a+ b

2

)
(b− a)

∣∣∣∣∣∣ ≤ 1
2

(b− a) ‖f ′‖1(4.7)

b) If we choose in (4.5) α1 = 5a+b
6 , α2 = a+5b

6 and x1 ∈
[ 5a+b

6 , a+5b
6

]
, then we

get ∣∣∣∣∣∣
b∫
a

f (x) dx− b− a
3

[
f (a) + f (b)

2
+ 2f (x1)

]∣∣∣∣∣∣
≤ 1

2

[
1
2
· (b− a) +

∣∣∣∣x1 −
a+ b

2

∣∣∣∣
+ max

{∣∣∣∣x1 −
2a+ b

3

∣∣∣∣ , ∣∣∣∣a+ 2b
3
− x1

∣∣∣∣}] .(4.8)

Particularly, if we choose in (4.8) , x1 = a+b
2 , then we get the following ”Simpson’s

inequality” ∣∣∣∣∣∣
b∫
a

f (x) dx− b− a
3

[
f (a) + f (b)

2
+ 2f

(
a+ b

2

)]∣∣∣∣∣∣
≤ 1

3
(b− a) ‖f ′‖1 .(4.9)

5. Some composite quadrature formulae

Let us consider the partitioning of the interval [a, b] given by ∆n : a = x0 <
x1 < ... < xn−1 < xn = b and put hi := xi+1 − xi (i = 0, ..., n− 1) and ν (h) :=
max {hi|i = 0, ..., n− 1} .

The following theorem holds:

Theorem 4. Let f : [a, b]→ R be absolutely continuous on [a, b] and k ≥ 1. Then
we have the composite quadrature formula

b∫
a

f (x) dx = Ak (∆n, f) +Rk (∆n, f)(5.1)

where

Ak (∆n, f) :=
1
k

T (∆n, f) +
n∑
i=0

k−1∑
j=1

f

[
(k − j)xi + jxi+1

k

]
hi

(5.2)

and

T (∆n, f) :=
1
2

n−1∑
i=0

[f (xi) + f (xi+1)]hi(5.3)

is the trapezoid quadrature formula.
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The remainder Rk (∆n, f) satisfies the estimate

|Rk (∆n, f)| ≤ 1
2k
ν (h) ‖f ′‖1 .(5.4)

Proof. Applying Corollary 2 on the intervals [xi, xi+1] (i = 0, ..., n− 1) we get∣∣∣∣∣∣
xi+1∫
xi

f (x) dx−

1
k

f (xi) + f (xi+1)
2

hi +
hi
k

k∑
j=1

f

[
(k − j)xi + jxi+1

k

]∣∣∣∣∣∣
≤ 1

2k
hi

xi+1∫
xi

|f ′ (t)| dt.

Now, using the generalized triangle inequality, we get:

|Rk (∆n, f)|

≤
n−1∑
i=0

∣∣∣∣∣∣
xi+1∫
xi

f (x) dx−

1
k
· f (xi) + f (xi+1)

2
hi +

hi
k

k−1∑
j=1

f

[
(k − j)xi + jxi+1

k

]∣∣∣∣∣∣
≤ 1

2k

n−1∑
i=0

hi

xi+1∫
xi

|f ′ (t)| dt ≤ ν (h)
2k

n−1∑
i=0

xi+1∫
xi

|f ′ (t)| dt =
ν (h)
2k
‖f ′‖1

and the theorem is proved.

The following corollaries hold:

Corollary 4. Let f be as above. Then we have the formula:
b∫
a

f (x) dx =
1
2

[Tn (∆n, f) +Mn (∆n, f)] +R2 (∆n, f)(5.5)

where Mn (∆n, f) is the midpoint quadrature formula,

Mn (∆n, f) :=
n−1∑
i=0

f

(
xi + xi+1

2

)
hi

and the remainder R2 (∆n, f) satisfies the inequality:

|R2 (∆n, f)| ≤ 1
4
ν (h) ‖f ′‖1 .(5.6)

Corollary 5. Under the above assumptions we have
b∫
a

f (x) dx

=
1
3

[
Tn (∆n, f) +

n−1∑
i=0

f

(
2xi + xi+1

3

)
hi +

n−1∑
i=0

f

(
xi + 2xi+1

3

)
hi

]

+R3 (∆n, f) .(5.7)
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The remainder R3 (∆n, f) satisfies the bound:

|R3 (∆n, f)| ≤ 1
6
ν (h) ‖f ′‖1 .(5.8)

The following theorem holds:

Theorem 5. Let f and ∆n be as above and ξi ∈ [xi, xi+1] (i = 0, ..., n− 1) . Then
we have the quadrature formula:

b∫
a

f (x) dx =
n−1∑
i=0

[(ξi − xi) f (xi) + (xi+1 − ξi) f (xi+1)] +R (ξ,∆n, f) .(5.9)

The remainder R (ξ,∆n, f) satisfies the estimation:

|R (ξ,∆n, f)| ≤
[

1
2
ν (h) + max

{∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣ , i = 0, ..., n− 1
}]
‖f ′‖1

≤ ν (h) ‖f ′‖1 .(5.10)

for all ξi as above.

Proof. Apply Proposition 1 on the interval [xi, xi+1] (i = 0, ..., n− 1) to get∣∣∣∣∣∣
xi+1∫
xi

f (x) dx− [(ξi − xi) f (xi) + (xi+1 − ξi) f (xi+1)]

∣∣∣∣∣∣
≤
[

1
2
hi + max

{∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣}]
xi+1∫
xi

|f ′ (t)| dt.

Summing over i from 0 to n − 1, using the generalized triangle inequality and
the properties of the maximum mapping, we get (5.10) .

Corollary 6. Let f and ∆n be as above. Then we have
1) the ”left rectangle rule”

b∫
a

f (x) dx =
n−1∑
i=0

f (xi)hi +Rl (∆n, f) ;(5.11)

2) the ”right rectangle rule”
b∫
a

f (x) dx =
n−1∑
i=0

f (xi+1)hi +Rr (∆n, f) ;(5.12)

3) the ”trapezoid rule”
b∫
a

f (x) dx = T (∆n, f) +RT (∆n, f)(5.13)

where

|Rl (∆n, f)| |Rr (∆n, f)| ≤ ν (h) ‖f ′‖1
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and

|RT (∆n, f)| ≤ 1
2
ν (h) ‖f ′‖ .

The following theorem also holds.

Theorem 6. Let f and ∆n be as above and ξi ∈ [xi, xi+1] , xi ≤ α(1)
i ≤ ξi ≤ α

(2)
i ≤

xi+1, then we have the quadrature formula:

b∫
a

f (x) dx =
n−1∑
i=0

(
α

(1)
i − xi

)
f (xi) +

n−1∑
i=0

(
α

(2)
i − α

(1)
i

)
f (ξi)

+
n−1∑
i=0

(
xi+1 − α(2)

i

)
f (xi+1) +R

(
ξ, α

(1)
i , α

(2)
i ,∆n, f

)
.(5.14)

The remainder R
(
ξ, α

(1)
i , α

(2)
i ,∆n, f

)
satisfies the estimation∣∣∣R(ξ, α(1)

i , α
(2)
i ,∆n, f

)∣∣∣
≤
{

1
2

[
1
2
ν (h) + max

i=0,...,n−1

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣]

+ max
{

max
i=0,...,n−1

∣∣∣∣α(1)
i −

xi + ξi
2

∣∣∣∣ , max
i=0,...,n−1

∣∣∣∣α(2)
i −

ξi + xi+1

2

∣∣∣∣}} ‖f ′‖1
≤
[

1
2
ν (h) + max

i=0,...n−1

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣] ‖f ′‖1 ≤ ν (h) ‖f ′‖1 .(5.15)

Proof. Apply Proposition 2 on the interval [xi, xi+1] to obtain

∣∣∣∣∣∣
xi+1∫
xi

f (x) dx−
[(
α

(1)
i − xi

)
f (xi) +

(
α

(2)
i − α

(1)
i

)
f (ξi) + (xi+1 − ξi) f (xi+1)

]∣∣∣∣∣∣
≤ 1

2

[
1
2
hi +

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣
+ max

{∣∣∣∣α(1)
i −

xi + ξi
2

∣∣∣∣ , ∣∣∣∣α(2)
i −

ξi + xi+1

2

∣∣∣∣}]
xi+1∫
xi

|f ′ (t)| dt.

Summing over i from 0 to n− 1 and using the properties of modulus and maxi-
mum, we get the desired inequality.

We shall omit the details.

The following corollary is the result of Dragomir-Wang from the recent paper [1]
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Corollary 7. Under the above assumptions, we have the Riemann’s quadrature
formula:

b∫
a

f (x) dx =
n−1∑
i=0

f (ξi)hi +RR (ξ,∆n, f) .(5.16)

The remainder RR (ξ,∆n, f) satisfies the bound

|RR (ξ,∆n, f)|

≤
[

1
2
ν (h) + max

{∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣ , i = 0, ..., n− 1
}]
‖f ′‖1

≤ ν (h) ‖f ′‖1 .(5.17)

for all ξi ∈ [xi, xi+1] (i = 0, ..., n) .

Finally, the following corollary which generalizes Simpson’s quadrature formula
holds

Corollary 8. Under the above assumptions and if ξi ∈
[
xi+1+5xi

6 , xi+5xi+1
6

]
(i = 0,

..., n− 1), then we have the formula:
b∫
a

f (x) dx =
1
6

n−1∑
i=0

[f (xi) + f (xi+1)]hi

+
2
3

n−1∑
i=0

f (ξi)hi + S (f,∆n, ξ) .(5.18)

The remainder S (f,∆n, ξ) satisfies the estimate:

|S (f,∆n, ξ)|

≤
{

1
2

[
ν (h)

2
+ max
i=0,...,n−1

{∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣}

+ max
{

max
i=0,...,n−1

∣∣∣∣ξi − 2xi + xi+1

3

∣∣∣∣ , max
i=0,...,n−1

∣∣∣∣xi + 2xi+1

3
− ξi

∣∣∣∣}]} ‖f ′‖1 .
(5.19)

The proof follows by the inequality (4.8) and we omit the details.

Remark 3. Now, if we choose in (5.18) , ξi = xi+xi+1
2 , then we get ”Simpson’s

quadrature formula”
b∫
a

f (x) dx =
1
6

n−1∑
i=0

[f (xi) + f (xi+1)]hi

+
2
3

n−1∑
i=0

f

(
xi + xi+1

2

)
hi + S (f,∆n)(5.20)
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where the remainder term S (f,∆n) satisfies the bound:

|S (f,∆n)| ≤ 1
3
ν (h) ‖f ′‖1 .(5.21)
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